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TABLE I
OVERVIEW OF BER ANALYSIS OF LORA SYSTEM ACCORDING TO

DIFFERENT MODELS AND APPROACHES.

Reference Channel Approach
exact [5]

[3]–[5] AWGN approximation [4]
Monte-Carlo [3]

[8] AWGN+channel coding approximation
[7] AWGN+interference approximation
[6] Rayleigh, Rice, Nakagami exact

have been suggested, but they are approximations based on
error functions. In [6], the exact expression of the BER for
LoRa signal over different channel models has been derived.
However, despite their exactness, the BER expressions in [6]
are not tractable, and lead to problem of precision. This
is mainly due to the fact that the solutions involve sums
of binomial coefficients whose full precision computation
requires hundreds of bits.

We provide in Table I a summary of the literature dealing
with BER derivation in LoRa system according to the channel
model (AWGN, Rayleigh, etc.) and the approach (exact or
approximated BER expression). Note that we have added [7]
and [8] to enlarge the scope of this overview. In fact, these
paper does not deal with BER of LoRa signal over specific
channel model, but their BER analyses consider the effect of
the channel coding and the impact of interference on the BER
performance, respectively.

In this paper we derive a very simple and tractable asymp-
totic expression of the BER of LoRa signal over Rice and
Rayleigh channels from that developed in [6], which tends
to the exact BER for low noise variance value. It is shown
through simulations that this approximation matches well the
exact BER behaviors [6] in wide BER ranges. Furthermore,
the suggested solution only involves straightforward functions.
Thus, the proposed BER expressions is a good trade-off be-
tween accuracy and simplicity, allowing for a fast assessment
of the achievable performance of a LoRa signal over Rice and
Rayleigh channels. Moreover, we provide a summary of the
literature dealing with more sophisticated BER expressions in
different channel models, as well as including the effect of
interference [7] and channel coding [8].

The rest of the paper is organized as follows: Section II

Abstract—This paper deals with the bit error rate (BER) of 
LoRa signal over Rayleigh and Rice channels. Exact analytical 
expressions of the BER in LoRa systems have been proposed 
in the literature, but they are not tractable and raise problems 
of computation precision. This is mainly due to the fact that 
these expressions involve sums of binomial coefficients, leading to 
extremely large numbers and leading to problem of precision. We 
then hereby suggest asymptotic expressions of the BER, which are 
at the same time tractable and accurate over a wide BER range. 
These expressions do not involve sums of binomial coefficients 
anymore, but only closed-form functions, and can then be easily 
obtained through computer simulations.

I. INTRODUCTION

Among the digital communication technologies used in 
the low power wide area network (LPWAN) world, LoRa 
is the most studied by the scientific c ommunity t o date. 
This is mainly due to the open deployment strategy chosen 
by Semtech. The digital communication technique used in 
LoRa modulation is the chirp spread spectrum (CSS) initially 
described by Winkler in [1]. Despite a high sensitivity to poor 
time/frequency synchronization, this technique offers many 
advantages such as i) a constant envelope which allows to 
operate with power amplifiers ( PAs) i n s aturation m ode and 
thus to have excellent amplification efficiency, ii) a sensitivity 
that can be optimized at the cost of a loss of spectral efficiency, 
iii) a low complexity demodulation based on fast Fourier 
transform (FFT).

LoRa or more generally CSS has given rise to numerous 
studies and analyses in recent years. At the physical layer level, 
one will retain works proposing to optimize the receivers in 
order to improve the synchronization steps or to find solutions 
to destructive collisions [2]. However, in order to be able 
to judge the effectiveness of the proposed processing, it is 
necessary to situate the performance in terms of bit error rate 
(BER) of the developed algorithms based on the theoretical 
results. Thus [3] and [4], [5] have proposed approximates 
and closed expressions of the binary error probabilities of 
LoRa system over additive white Gaussian noise (AWGN) 
channels. However, LoRa propagation channels are generally 
non frequency-selective for which only few literature proposes 
a closed form expression of binary error probability. In [4], 
expressions of the BER of LoRa signal over Rayleigh channel



is dedicated to the description of the LoRa modulation and
demodulation principles and to the introduction of the exact
BER expression. The derivation of a very simple approxima-
tion of theses closed form expressions is developed in Section
III. The simulations results are presented in Section IV, and
we draw conclusions in Section V.

II. BACKGROUND

LoRa uses several spreading factors (SF ) to control the
bit rate, improve the range, and decrease the energy con-
sumption. Initially, the binary information flow generated
from the medium access control (MAC) layer is divided into
subsequences, each of length SF ∈ [7 . . . 12]. The set of SF
consecutive bits constitutes a symbol. The number of possible
symbols is hence equal to M = 2SF . In the LoRa context, SF
also indicates the spreading factor and the relation between
the bit rate Db and the symbol rate Ds that can be written
as: Ds = Db/SF . Spread spectrum is obtained through a
signal known as chirp that varies continuously and linearly
in frequency. When the derivative of the frequency variation
is positive, then we deal with an up chirp, conversely it is a
down chirp.

When the chirp is up or down over the entire symbol period
Ts, which is also called the signaling interval, it is identified as
raw chirp. Its complex envelope is mathematically expressed
as follows, for t ∈

[
−Ts2 ,

Ts
2

)
:

c(t) = ejθc(t), (1)

with θc(t) = ±π B
Ts
t2 where B is the frequency excursion

of the transmitted chirp. The ’+’ and ’-’ signs stand for up
and down raw chirp, respectively. If we note fc(t) the chirp
frequency variation in time, we have:

fc(t) =
1

2π

dθc(t)

dt
= ±B

Ts
t. (2)

For digital communication systems with no spreading spec-
trum, the bandwidth used by the transmitted signal is propor-
tional to the symbol rate. The coefficient of proportionality
depends on the shaping filter, which is in general a half
Nyquist one. In the CSS modulation used in LoRa, the signal
bandwidth is fixed by B which has the following relationship
with Ts:

M = B × Ts. (3)

To distinguish between the M different symbols of the
constellation, M orthogonal chirps have to be defined so that
each symbol exhibits a specific instantaneous phase trajectory.
In the sequel, we denote mi the transmitted symbol at time
iTs, with mi ∈ {0, ...,M − 1} and i ∈ N. The chirp
associated to the i-th transmitted symbol is then obtained
from the raw chirp by applying a delay τi = mi

B and
the raw chirp outside the interval [−Ts2 ,

Ts
2 ) is cyclically

brought back into [−Ts2 ,−
Ts
2 + τi]. As a consequence, the the

instantaneous phase modulated chirp (e.g. up chirp) related to
the transmission of the symbol mi breaks down into two parts:

θic(t) =π

[
B

Ts
(t− 2τi)t+ 2Bt

]
for t ∈

[
−Ts

2
,−Ts

2
+
mi

B

)
θic(t) =

πB

Ts
(t− 2τi)t

for t ∈
[
−Ts

2
+
mi

B
,
Ts
2

)
. (4)

Accordingly, the complex envelope of the LoRa symbol
transmitting the symbol mi is si(t) = ejθ

i
c(t−iTs).

In the following, we consider perfect time and frequency
synchronizations and a one tap block fading channel h ∼
NC(µ, σ

2
h). Thus, |h| obeys a Rice distribution if µ 6= 0,

and a Rayleigh distribution if µ = 0. Moreover, we introduce
the Rice coefficient κ = λ

σ2
h

, where λ = |µ|2. Under these
assumptions, the received signal sampled at rate Te and
denoted by yi(nTe) can be written as

yi(nTe) = h× si(nTe) + w(nTe), (5)

where w(nTe) ∼ NC(0, σ
2) represents the complex noise

assumed to be white, Gaussian and circular. Furthermore, n
is the sample index with n ∈ J−N2 ,

N
2 − 1K, N being the

number of samples of a LoRa symbol. At Nyquist rate, we
have Te = 1

B , and then M = N .
At the receiver, the transmitted symbols are detected by

multiplying every received signal yi by the conjugate version
of the raw chirp (1) used in the transmitter, i.e. ri(nTe) =
yi(nTe)e

−jθc(nTe). Then, when a non coherent demodulation
strategy is used, the optimal estimation of mi can be performed
by searching for the maximum of the periodogram of ri(nTe),
computed as Pi[k] = |Ri[k]|2, where Ri[k], for k ∈ J0, N −
1K, is the discrete Fourier Transform (DFT) of N samples
from ri(nTe). Thus, the estimation of mi can be achieved by
computing:

m̂i = N − argmax
k∈J0,N−1K

(Pi[k]) . (6)

The symbol error probability, denoted by Ps, is defined as
the probability that m̂i is not equal to the actual transmitted
symbol mi, i.e. Ps = P[m̂i 6= mi]. The BER is then obtained
through:

Pb =
2SF−1

2SF − 1
Ps. (7)

It has been proved in [6] that, in the absence of prior
information, all the symbols can be considered as equiprobable
so that the symbol error probability over a Rice channel,
denoted by PRices , is expressed as

PRices =−
N−1∑
k=1

(
N−1
k

)
(−1)kσ2

kNσ2
h + (k + 1)σ2

× exp
(
− λkN

kNσ2
h + (k + 1)σ2

)
. (8)



It must be noticed that the error probability over Rayleigh
channel (denoted by PRays in the following) is straightfor-
wardly deduced from (8) by setting λ = 0. Alternatively,
the symbol error probability in AWGN channel is obtained
by setting (λ = 1, σ2

h = 0). In any case, despite the
exactness of the expression (8), it requires the computation of
the high-valued binomial coefficient

(
N−1
k

)
. This may suffer

from precision problems since we remind that, in LoRa we
have N ∈ {128, 256, .., 4096}. It results that (8) is hardly
computable in practice nor tractable, therefore limiting its
application to theoretical results. This is the reason why we
hereby provide simple expressions of PRices and PRays in
asymptotic cases where the noise variance value is low.

III. ASYMPTOTIC BER EXPRESSION

In this section we provide simple expressions of the asymp-
totic BER value for LoRa system over Rice and Rayleigh
channels.

Proposition. Let the noise variance value σ2 be low enough
to consider that k ≥ 1 >> 1

N.
σ2
h
σ2

+1
, and kNσ2

h >> (k +

1)σ2. Then, for any N = 2SF , we can make the following
approximation

PRices ≈ e−κ × γ + ln(N − 1)

N.
σ2
h

σ2 + 1
, (9)

where γ is the Euler-Mascheroni constant γ ≈ 0.577.

Proof. According to the assumption of low σ2 value, then, for
any k = 0, 1, .., N −1, the exponential functions in (8) can be
approximated as

exp
(
− λkN

kNσ2
h + (k + 1)σ2

)
≈ exp(−κ). (10)

The substitution of (10) into (8) then leads to

PRices ≈ −e−κ
N−1∑
k=1

(
N−1
k

)
(−1)kσ2

kNσ2
h + (k + 1)σ2

. (11)

Then, in conditions where 1 >> 1

N.
σ2
h
σ2

+1
, PRices in (11) can

be simplified as

PRices ≈ − e−κ

N.
σ2
h

σ2 + 1

N−1∑
k=1

(
N−1
k

)
(−1)k

k
. (12)

Moreover, we consider N large enough to assume that the
approximation

(
N−1
k

)
∼

N→+∞
(N−1)k

k! holds, which yields

PRices ≈ − e−κ

N.
σ2
h

σ2 + 1

N−1∑
k=1

(N − 1)k

k.k!
. (13)

Then, let

E1(z) =

∫ +∞

z

e−t

t
dt,

with z ∈ C\R−, be the exponential integral function, defined
in [9]. The series representation of E1 is

E1(z) = −γ − ln(z)−
+∞∑
k=1

(−1)kzk

kk!
. (14)

Since lim
z→+∞

E1(z) = 0, and reminding that we assume N →
+∞, then the substitution of z by (N − 1) in the sum of (14)
and then in (13) leads to (9), which concludes the proof.

The asymptotic error probability in Rayleigh channel is
straightforwardly obtained when κ = 0, leading to

PRays ≈ γ + ln(N − 1)

N.
σ2
h

σ2 + 1
. (15)

It should be noted that (9) and (15) are more tractable
expressions than (8) as they only involve usual functions.
Furthermore, the suggested approximations do not require the
computation of

(
N−1
k

)
, which leads to problems of com-

putation precision, especially when N is large (e.g. N =
1024, 2048, 4096). In the following, we investigate through
simulations the accuracy and the domain of validity of our
approximations of the error probability.

IV. SIMULATIONS RESULTS

Simulations have been performed to verify the accuracy
of the suggested approximations of the error probability in
(9) and (15). Theoretical results have been obtained using
Python 3.6 with scipy and gmpy2 packages for mathematical
computing and precision improvement, respectively1. It must
be emphasized that the theoretical results presented in [6] had
been validated through simulations. As a consequence, we do
not reproduce the Monte-Carlo simulations to avoid excessive
plots.

Fig. 1 shows the BER performance of LoRa system over
Rayleigh and Rice channel models versus 1/σ2 (in dB) for
SF7 (a) and SF12 (b). Other series of simulations have been
undertaken for SF8 to SF11, but the results are not shown
in this paper, as the BER performance is equivalent to that
of SF7, except that the BER curves are shifted to the left
(a shift of about -3 dB per SF). The performance of the
exact expression (8) obtained from [6] (referred as ”exact”)
is compared with that of suggested approximations (9) and
(15) (referred as ”approx.”) for κ = 0 (Rayleigh), κ = 1, and
κ = 4.

It can be observed in Figs. 1-(a) and (b) that the larger the
Rice coefficient κ, the lower the BER. This is a very well-
known result since asymptotically, the case κ = +∞ corre-
sponds to the AWGN channel, which is a lower performance
bound. Otherwise, we notice that the domain of validity of
the suggested approximations depends on the coefficient κ.
In fact, we can see that in the Rayleigh case (κ = 0), the
asymptotic expression well matches the exact performance for
BER values lower than 10−1, which is relevant as a BER range
larger than 10−1 is usually not of interest in practice. For the

1The code can be found at https://github.com/b-com/ber LoRa
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Fig. 1. BER versus 1/σ2 (dB) for SF7 (a) and SF12 (b), comparison of the
exact BER expression (8), and the suggested approximations (9) and (15) for
κ = 0 (Rayleigh), κ = 1, and κ = 4.

Rice channel with κ = 1, we observe that the approximation
well matches the exact expression for any BER value, and for
κ = 4, the asymptotic expression of the BER well matches the
exact one for BER values lower than 10−3. We deduce that the
suggested approximations are more relevant for lower values
of the Rice coefficient κ, which is consistent with theory since
no asymptotic BER expression can be derived for the AWGN
channel corresponding to κ = +∞ [5].

The accuracy of the suggested BER expressions compared
with the exact one is very interesting in practice, especially
since (8) is not tractable, and raises some computing precision
problems. In fact, to give an idea of the required precision, the
full precision computation of the binomial coefficient

(
N−1
k

)
in (8) in SF7 requires at least 150 bits, and even up to 4000
bits in SF12 (e.g.

(
4096
200

)
returns infinity in Matlab), which

can be achieved only with the use of the package gmpy2 in
python. This practically shows the relevance of the suggested
asymptotic BER expressions, in addition to their accuracy.

V. CONCLUSION

In this paper, we have derived simple asymptotic expres-
sions of the BER of LoRa signal over Rice and Rayleigh
channel, considering low noise variance value. We have shown
through simulations the validity of the suggested approximated
expressions compared with the exact one. The advantage
of the proposed analysis is to obtain tractable and easily
computable solutions, whereas the computation of the exact
BER expression may raise problems of precision, or requires
large variables sizes. In general, the suggested expressions well
fit the exact BER value over a wide BER range. Moreover, an
overview of the available literature dealing with BER analysis
in LoRa system according to different models and approaches
has been provided as well.
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