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Abstract: Wireless Sensor Networks (WSNs) have been extensively applied in ecological environment
monitoring. Typically, event boundary detection is an effective method to determine the scope of an
event area in large-scale environment monitoring. This paper proposes a novel lightweight Entropy
based Event Boundary Detection algorithm (EEBD) in WSNs. We first develop a statistic model using
information entropy to figure out the probability that a sensor is a boundary sensor. The EEBD is
independently executed on each wireless sensor in order to judge whether it is a boundary sensor
node, by comparing the values of entropy against the threshold which depends on the boundary
width. Simulation results demonstrate that the EEBD is computable and offers valuable detection
accuracy of boundary nodes with both low and high network node density. This study also includes
experiments that verify the EEBD which is applicable in a real ocean environmental monitoring
scenario using WSNs.

Keywords: event boundary detection; information entropy; wireless sensor networks; determining
rules; ecological environment monitoring

1. Introduction

Wireless Sensor Networks (WSNs) are composed of a considerable number of low-cost,
low-power and small-sized wireless sensors and have gained particular interest for many environment
applications [1]. These sensor nodes are often utilized to monitor and detect real-world events
like oil diffusion, fires, chemical leaks by monitoring various physical parameters such as humidity,
concentration, temperature, salinity and so on. In many monitoring tasks, the core goal of WSNss is to
detect and track unexpected and abnormal events in real time [2,3]. Event boundary detection is of
particular importance to determine the scope of event occurrence and make preventive measures when
unfortunate events happen in the environment. In many cases, an event may spread over a network
and sensor-based area of an irregular shape. After a sudden incident such as oil spill pollution, timely
and accurate detection of the diffusion range of events requires lots of sensor nodes to work together
and consumes large amounts of energy. When compared with the analysis of the entire event area,
event boundary detection is more efficient as it provides a proper view of the sensors that will be
affected by broadcast messages [4].

This paper proposes a new lightweight Event Boundary Detection distributed algorithm (EEBD) to
identify the real event boundary sensor nodes of a monitoring area using WSNs. Two main principles
of Information Entropy, that is, uncertainty and information quantity [5], are applied to figure out the
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probability of a node being a boundary node. We introduce an entropy based algorithm that determines
the boundary nodes by comparing the values of entropy amongst the neighbouring nodes. A series of
simulations show that the EEBD algorithm provides good precision when detecting event boundaries.

2. Related Work

Several studies have been presented to solve the problem of event boundary detection.
A non-ranging event area detection algorithm to predict the event region considered as circular
has been introduced [6]. In Reference [7], the authors propose a graph theory based location-free event
boundary detection algorithm that can adjust both network parameters and the threshold dynamically.
In Reference [8], the authors propose a distributed in-network event boundary detection algorithm
using the node’s local information to determine spatial and temporal evolution of event boundary. The
authors in Reference [9] proposed an algorithm for detecting boundary nodes based on a combination
of statistics with model classification and selection. A mathematical statistical method for edge node
detection is presented in References [10,11], where the aim is to decide whether a boundary candidate
node is located on the real boundary of an event region through information interaction with its
neighbouring nodes.

In Reference [12], the authors take into account the spatial-temporal correlation of sensors to
detect boundary nodes. A decentralized fault-tolerant event region detection method is put forward in
Reference [13]. It can accurately identify fault nodes and eliminate the abnormal sensed data to avert
false detection. At the experimental level, they tuned every threshold to get higher boundary fitting
accuracy. In Reference [14], the authors presented a Secure Event Boundary Detection (SEBD) method
utilizing local level information. This approach is highly resilient and provides a good compromise
between node detection and random measurement fault. The main principle behind the SEBD approach
is that a highly reliable determination rule and a system threshold are set for a node to recognize itself
as a boundary node. In Reference [15], the hidden markov random field model and iterative conditions
are used to calculate the event coverage in the WSNs but the parameters of the markov random model
need to be trained by a large amount of sample data.

In Reference [16], a distributed and location-free boundary detection (DBD) algorithm for
determining the event boundary is proposed in mobile WSNs. DBD only needs the sensed data of
single node three-hop neighbours. However, DBD only considers the scenario of a mobile sensor
node density less than 0.6, so it is not applicable to WSNs where all sensor nodes move in real time.
In Reference [17], the authors utilized the QUDG for event boundary area detection and partition the
event boundary area into disjoint dominating sets based on graph theory. Through periodic rotating
the disjoint dominating sets of event boundary area in WSNs can realize the lifespan maximization
of boundary sensors. Two algorithms are proposed for identifying faulty node and event boundary
detection in Reference [18]. The algorithm can achieve accurate boundary node detection for various
scalar sensed data values. The boundary width is fixed equal to half the communication radius
of sensors. However, this is not suitable for low network densities and scenarios with a small
communication radius of nodes because the number of boundary nodes increases as the network
density and node radius increase. Then the communication cost of the boundary node reports the
message to the base station increases. Conversely, if the number of boundary nodes is too small, it will
affect the boundary node to fit the real boundary. To sum up, the existing boundary node detection
algorithm is highly dependent on node sensing data and the binary decision result of a neighbour
node with the calculation error is used as input data, which results in cumulative error. In addition,
due to the high computational complexity and high energy consumption, the methods proposed above
are not suitable for event boundary detection in mobile WSNs, such as marine WSNs.

3. Network Model and Assumptions

Let us consider a WSN with dense enough sensor nodes evenly deployed in a two-dimensional sea
area of interest—called the sensor area—at the initial moment of event occurrence. We use the topology
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control scheme proposed in a previous work [19]. When an event occurs, the relevant environmental
parameters in the related area are likely to change, that is, the event reports a time-varying sensing
signal to its neighbour region. Normally, the intensity of the signal will decrease with increasing
distance from the event centre. An event area is the domain around the actual boundary of the event
where the intensity of signal exceeds the given threshold value Th. Then all sensors in this sensor sea
region receive radio wave signals from the event area. The proposed algorithm recommends a method
for identifying boundary nodes.

We assume that sensor nodes are similar in terms of their computation, battery life and
communication capability. Each node works well and has a loose synchronization. It assumes
that the sensor’s location information is correct since we require the right sensor’s location information
for the accurate detection of boundary sensor nodes. A series of prior definitions are given below:

e  The term sensor area, denoted as ), not only refers to the geographical area covered by the WSN
but also to the set of nodes in this area. We denote an event region as w, which is the sub-region
of ), covered by an event and @ is the remaining region. Thus, }, = w + @. Hence, a sensor node
S; € w means it is an affected node while S; € ® means it is a normal node.

e A sensor node S; with its location information, that is S;(xi, yi), is considered to be a boundary
node when it is on the actual boundary. Let us consider a boundary width R defined as the
communication radius of the sensor S; according to [13]. Let N(S;) denote the disk centred at node
S; with the radius R. Therefore S; is a boundary node if ||S;, B||< » where ||S;, B|| is the geographic
distance between S; and B the actual boundary. Then the event boundary B(S;) is the collection of
such boundary nodes.

Suppose that the sensor data of nodes in the event area w forms a gaussian distribution N(u1,0?%)
and the readings of other sensors in @ form another distribution N (2, 0?), where ¢ is small compared
with )‘ul - y2|. A sensor node is considered to be an affected node when its sensing information
exceeds the threshold gy, = #, while the others are called normal nodes. Let us suppose that
the event boundary is a circular boundary centred on the event source. The sensor area is shown in
Figure 1, the black nodes are the boundary nodes. Figure 1 on the right shows the local area of a single

boundary node.
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Figure 1. An illustration of a sensor area.
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4. Proposed Algorithm

4.1. The Statistical Boundary Detection Model

Our goal is to design a distributed algorithm for a single node to decide whether it is a boundary
sensor by comparing the sensing information with its neighbour sensor nodes. Without loss of
generality let us maximize the local boundary region of a single boundary node in Figure 1, where
the actual boundary can be considered a straight line. We use the nearest boundary tangent of the
boundary node instead of the actual boundary of a single node. Because the event region is generally
much larger than the neighbour area of a given node, the neighbour area refers to the area that a node
can cover within its communication radius.

As illustrated in Figure 2, r is the boundary width and if an only if S; lies within r, can it be
considered as a boundary sensor. Let p denote the expected number of sensor nodes deployed per
neighbour area of S;, called network node density. Let Ng, denote the neighbour nodes set of sensor
node S;. The sensors in the event area are denoted as affected nodes and the remaining nodes as
normal nodes.

e AffectedNod¢" -~ | Actual boundary
& Normal Node -~ -

; ’ 4 s

.

Figure 2. An illustration of Boundary Detection Model.

If a node is located exactly on the actual boundary, its neighbour nodes would have half nodes as
affected nodes while the other half as normal nodes under the condition of large-scale dense sensor
node deployment. In other words, such a node has a high probability of being a boundary node.
However, there is a need for a determination rule to figure out whether a node belongs to B(S;, 7).
Thus, a proper range of proportion is needed to measure how close a node is to the actual boundary:.
In order to formulate this problem, let us introduce an entropy function H(p) to evaluate the probability
of a sensor node is a boundary sensor node. The entropy is used as a sort of probability variable
that evaluates the distribution of the sensors in the neighbourhood of a given sensor. According to
Reference [20], H(p) is computed as

H(p) = —Z pilogpi 1)

where p; denotes the categories of nodes among the neighbour nodes with i = 0, 1. Let i = 0 represent
the category of normal nodes, while i = 1 represents the affected nodes, respectively. Then p; is
computed as

pi=ki/(pi—1) @)
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where k; is the number of i status nodes and p; is the network node i density. In our case, there are
total two possibilities with p and g4 = 1 — p, where p denotes the ratio of affected nodes among total
neighbour nodes, while g denotes the normal ones. So H can be reduced by

H = —(plogp +qlogq) ®)
which is schematized in Figure 3 as a function of p.
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Figure 3. The characteristics of the H function.

It appears that the derived values of the entropy as denoted in (3) play an important role in
calculating the probability that a sensor node can be defined as a boundary node:

1. H=0if and only if all the p; but one are null. This means that all the neighbours of S; are entirely
affected or absolutely normal. Otherwise, if H is positive, that is, node S; has the probability to be
a boundary node. The higher the value of H is, the closer the node is to the actual boundary.

2. Whenall the p; are equal (i.e., p = 9), the value of H is the largest and is log 2. This is also intuitively
the higher probability a node to be a boundary node.

3. Any change towards equalization of the probabilities p, g increases H.

Figure 4 is a relationship diagram of the value of H and the number of neighbour nodes. Figure 4
shows that entropy H and the number of neighbour nodes are positively correlated.
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Figure 4. Entropy vs. Number of Neighbour Nodes.

4.2. Determining Rules

6 of 17

Consider Figure 5, where the actual boundary meets the disk of S; at dots P; and P, while the
event boundary width line meets the disk at dots P3 and P4. Therefore, the actual boundary intersects
the neighbouring area of S; in two areas. Let A; represent the left part of Ng, separated by actual
boundary. The remaining area of N, is represented by A>. So we estimate the probability of node

distribution using geometric probability.
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Figure 5. An illustration of critical node.

As in Figure 5, we consider a node S; that satisfies ||S;, B| = r as a critical node and its entropy H

as the determining threshold Hy,. A; has an area

1
Al = ERRZ + Sp,P,PsP,

where Sp, p,p,p, means the area of sector P1P,P3P,, and
5 T
Spypypsp, =1 R2—7r2+ Rzarcsmﬁ
so that we can estimate the probability of affected nodes in Ng, as

Spyp,psp,

1
P = §+ R2

4)

©)

(6)
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Meanwhile the probability of normal nodes is

g =1 —pm ()

According to (3), the determining threshold Hy, is

Hy, = = (pm1og(pm) + qim log(qm)) (8)

Here let us give a brief description of the case if that if the H; of S; beyond the Hy, that S; can be
determined as a boundary node. Consider Figure 6, if node Sy is in the area of B(S;, 1), p1 < py, and
q1 > q- Then Hy > Hy,. If node Sy is outside of B(S;, 1), p2 > py, and g2 < gy, Then Hy < Hy,. In other
words, nodes that fall into the area of B(S;, r) are more likely to make p and g similar, which causes the
entropy to be greater than Hy,.

Event Region

N
,

Event Boundary

Figure 6. An illustration of boundary node and non-boundary node.

By applying the proposed detection model, we can set the boundary width r conveniently to
achieve different detection goals. However, due to the geometric probability method, the relationship
between r and p has an impact on the accuracy of the evaluation. If 7 is very small, Hy, can be extremely
high, that is, a few nodes can be detected as boundary nodes. If  is large, Hy, becomes very small in
some satiation Hy, even be null as illustrated in Figure 6. Thus an appropriate r should be set to get an
accurate event boundary.

Consider that nodes are deployed utilizing the grid partitioning method, then the area of a
square grid 6 equal to ”TRZ where p is the network node density. So the grid width is Vo = R \/% .
Firstly, the boundary region with r should contain at least one square grid ¢ as illustrated in Figure 7.
Secondly, the boundary width r should not be greater than R — V5 in order not to make Hy, too
small. See examples for the above situation in Figures 7 and 8. To sum up, r should satisfy the
following inequality,

Vo<r<R- Vo )

R\/ESrSR—R T (10)
p P

As a result of the inequality, we get

R—R\/EZR\/E (11)
p P

SO

simplification leads to p > 41 ~ 13.
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From the above discussion, it can be seen that the formulation of Hy, is influenced by the
relationship between 7, R and p. By setting the boundary width 7 in a certain range, we can get the
appropriate threshold Hy, and then achieve the corresponding detection results. This allows an outline
that fits the event boundary to be customizable.

The EEBD algorithm consists of three steps. Firstly, each affected node S; collects information
from its neighbour nodes. Then it computes the value of H; according to (3), that is

—(plogp +qlogq) (12)
where
_ number of af fected node 3
total neighbor number (13)
p=1-¢q (14)

Then, sensor node S; reports the value of H; and listens to its neighbours node information. In the
third step, given boundary width r and communication radius R to calculate the entropy threshold Hy,
which is defined in (8). If H; > Hy;,, node S; finally marks itself as a boundary node. The steps of EEBD
algorithm are as shown below.
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Algorithm 1: Entropy based Event Boundary Detection (EEBD) Algorithm

Input : Node S;, boundary width 7, node density p, communication radius R and Mg,= {}
Output: broadcast the ID if it is the real event boundary senor node
For each sensor node
Initialize : compute Hy, according to (8), H; = 0;
step 1;
Discover the affected sensor nodes
if sensing data > puy,

flag(i) <1
else

flag(i) <0
end
Broadcast Mg, := {S;, H;, flag(i)} to its neighbour nodes
if flag(i) ==

H; < —(plogp +qlogq)

Update Mg, with new H;
end
step 2;
Broadcast messageMs, := {S;, H;, flag(i)}
Listen to its neighbour nodes
step 3
if H; > Hy,

broadcast S; as the final boundary node to the sink, B(S;, 1)

5. Simulation Results

5.1. Simulation Initialization

In this simulation, wireless sensors are uniformly distributed in a 200 x 200 square area. Suppose
that the square area is in the first quadrant of the plane coordinates. We suppose that the test event
area is a circle with a radius of 50 and the centre of the region is located at (100, 100). Assume that
normal node readings satisfy the normal distribution N(u1,0?) while sensor readings are depicted
form N(uo, 0?) in event area. Then the threshold Ui = w Mean and variance can be selected
according to the actual situation, as long as the standard deviation is small compared with |y1 - yzj.
In this simulation, we set u;= 10, yp= 30, 0= 1.

The communication radius is R = 10m. The boundary width r = R/2. The area 6 of a grid is
computed by dividing the area of a circle disk N(S;), by the network node density. The degree of fitting
(DF) is applied for estimation of accuracy as a performance measure.

|A(<7)NA@d)|

DF =
)A(< r)l

(15)

where A(<r) is the node group signifying that the distance to the boundary is no more than r, while
A(d) is the set of boundary nodes which are detected by proposed method.
False detection rate (FR) is used to measure detection error.

|A(> ) nA@)|

FR =
|A(> r)’

(16)

where A(>r) is the set of nodes that the distance to the boundary is beyond r. The higher DF and the
lower FR mean the better performance an algorithm does.
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5.2. Simulation Results

The results are averaged over 100 independently runs by NS2 (Network Simulator version 2,
NS2). To evaluate the performance of EEBD, the selected benchmark algorithms are DBD [16] and
LFEBD [18]. We also suppose that nodes are uniformly deployed in the monitoring region and the
locations of all one hop neighbour sensors are available to a sensor node. Since this is one of the most
prevalent and simple mobility models, sensor node motion is simulated using the random waypoint
motion model [21]. Without loss of generality, we report the results with boundary shapes of a circle
or a straight line. Figure 9a shows a visualized result of EEBD with network node density p= 20,
Figure 9b presents a visualized result of EEBD with network node density p= 10. The small dots
represent nodes that do not belong to the boundary sensor nodes while the bold ones represent the
detected boundary sensor nodes. This shows that the detected event boundary by EEBD gives a good
approximation of the event boundary as introduced in definition 3.

Figure 9. Cont.
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Figure 9. Visualized simulation result. (a) p= 20 (b) p= 10.

Figures 10 and 11 show comparative studies of the DF and FR, as mentioned above. From
Figure 10, one can observe that the proposed algorithm has a better degree of fitting than the DBD
and LFEBD algorithms when the node density is under 40. This demonstrates that the node density
is proportional to the DR in both boundary shapes. When the density is increased, the number of
sensors in N(S;) will increase accordingly. Thus, more sensors are close to the boundary, that is, more
sensors are in the B(S;, 7). So the geometric probability based on the area is more accurate. From the
Figure 10, with the increase in node density, especially when it is greater than 30, both the degree of
fitting increase slightly but our algorithm converges earlier with a density of about 20.

5
N

Degree of fitting
=)
(=)}

—+— EEBD for straight line
EEBD for ellipse
—S— DBD for straight line

o
W

0.4 .
DBD for ellipse
03 % LFEBD for straight line | |
y —— LFEBD for ellipse
0'2%” I I I I I I I
10 15 20 25 30 35 40 45 50

Node density
Figure 10. Degree of fitting vs. network density.
Figure 11 shows a comparative study of FR. The EEBD algorithm false detection rate gradually

decreased with the increase of node density but the FR of the proposed algorithm is slightly higher
than the LFEBD and DBD algorithm, especially in the case of low node density but still in a very small
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range. This is owing to the small number of neighbour sensors in the case of low density, which causes
the entropy of the node which is close to critical nodes to fluctuate beyond the entropy threshold but
this error decreases with the increase of the node density. Thus, even if the node being misjudged is
still near the boundary, this has little effect on fitting the event boundary. For practical applications,
there is a certain error within the acceptable range.

Node density Vs.FR

0.01 , ) )

—+— EEBD for straight line
0.009¢ EEBD for ellipse |
0.008 —S— DBD for straight line

DBD for ellipse
. 0.007 —<— LFEBD for straight line |
E 0.006.- LFEBD for ellipse
2
8 0.0051 |
Q
]
g 0.004 1
g
\\
0.002 . b
: N S —
0.001 /@/9***** ]
0 4 L L L L L L L
10 15 20 25 30 35 40 45 50

Node density

Figure 11. False detection rate vs. network density.

Figure 12 shows that setting the different boundary width has little effect on the accuracy of the
detection under the constraint conditions. This permits us to try to choose few boundary nodes, both
to fit the event boundary but also save data fusion and communication costs.

Boundary width Vs, DF

o5t 3
09% 1

0ast 1

nar 1

075+ 1

Degree of fitting

07 B

065+ 1

06 1

0s 1 1 1 . 1 1 1
3 35 4 448 5 55 g 6.5 7

Boundary width

Figure 12. Degree of fitting vs. boundary width.

WSNs can be deployed on a large scale in target monitoring sea areas and are often utilized
to monitor ocean information such as light, ocean currents, wind direction, hydrology and water
pollution. A second series of simulations has been made in an ocean monitoring experiment using
WSNs. In the marine environment, the position of the node and its relative position to the other nodes
are time-varying. We randomly select 50-80% of nodes as mobile nodes and the remaining nodes are
anchor nodes. The simulation set the mobile node speed from 6 to 10 m/s to demonstrate more different
performances of EEBD. We use the random waypoint model to characterize the movement of the sensor
nodes. A marine sensor node renews its own one-hop neighbouring node data at time intervals 5-20 s.
The relationship between the detection rates and node speed are displayed in Figure 13. As the density
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of the mobile node increases, the value of detection rate decreases. As can be seen from Figure 13,
the updating interval greatly affects the event boundary detection rate. The relationship between
updating interval and boundary detection rate is inversely proportional.
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Figure 13. Cont.
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Figure 13. The boundary detection rates of EEBD with different densities of marine mobile nodes. (a)
50%. (b) 60%. (c) 70%. (d) 80%.

Figure 14 presents the computer simulation diagram of marine event boundary detection using 25
buoy nodes that integrate multiple marine sensors. Figure 15 shows the visualized simulation result
of boundary detection obtained by the EEBD algorithm. As can be seen from Figure 15, the EBBD
algorithm achieves accurate event boundary detection at low buoy node densities.
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Figure 15. Visualized simulation result of marine event boundary.

5.3. Efficiency Evaluation

Overall, communication consumption is the most important energy consumption of WSNs. The
communication complexity of each stage of the LFEBD is O(d), because the EEBD only receives
the information report of the neighbour node when the boundary detection is carried out. In the
implementation of the LFEBD algorithm, nodes and neighbours need to exchange data twice, first the
sensor data, secondly to evaluate the difference between the calculated data. Moreover, data exchange
needs to choose a different neighbourhood. So in the detection, the proposed algorithm saves at
least half of the communication consumption. In terms of computational complexity, the proposed
algorithm only performs simple statistics and comparisons. In the LFEBD algorithm, each node needs
to divide its neighbourhood according to the geographic coordinates into two or three parts and then
update the difference, so the computational complexity of the LFEBD algorithm is higher compared
to EEBD. Because each node needing its three-hop neighbouring sensing data, the computational
complexity of DBD algorithm is higher compared to EEBD.
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The proposed algorithm can customize the setting of the boundary width in a certain range. This
allows us to control the number of boundary sensors while ensuring the boundary detection rate and
reduce the communication consumption of the boundary nodes to report sensing data to the sink node.

It can be seen from the above discussion that the EEBD algorithm can achieve better detection
results with less traffic and lower computational complexity, especially in low density, in the range of
reasonable false alarm rate.

6. Conclusions

This experimental research introduced a distributed boundary detection algorithm EEBD. Under
the same boundary detection probability, the proposed algorithm can reduce the number of nodes to be
deployed compared to the two benchmark algorithms in monitoring a sea area. The boundary width
can be customized to not only reduce the communication consumption of reporting but also to satisfy
the detection accuracy. The simulation results demonstrate that the EEBD performs better in terms of
accuracy with both low and high node density. The following two-fold directions are recommended
for next study.

(1) To further decrease the sensor nodes’ energy consumption and extend network lifespan under
the condition of ensuring the accuracy of event boundary detection, the energy consumption
model and the event reporting routing protocol need further research.

(2) A complete event dataset is necessary before the boundary detection algorithm is executed. Due
to the adverse conditions of the sea, the collected marine big data always experience a serious data
loss phenomenon in WSNs [22]. To further improve the accuracy of event boundary detection,
the missing data recovery of WSNs is an important research topic.

(3) Real marine event boundary detection experiments and event boundary dynamic tracking are
also key research directions for the future.
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