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• Modeling influenceability considering the nodes’ social and spatial structure.
• Using dual space and the concept of line graph as the background modeling framework.
• Identifying influential users around a point or across a region using feature vectors.
• Evaluating the nodes’ influence using Thiessen polygons.
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a b s t r a c t

Identifying influential nodes in social networks is a key issue in many domains such as sociology,
economy, biology, and marketing. A common objective when studying such networks is to find the
minimum number of nodes with the highest influence. One might for example, maximize information
diffusion in social networks by selecting some appropriate nodes. This is known as the Influence
Maximization Problem (IMP). Considering the social aspect, most of the current works are based on
the number, intensity, and frequency of node relations. On the spatial side, the maximization problem
is denoted as the Location-Aware Influence Maximization Problem (LAIMP). When advertising for a
new product, having access to people who have the highest social status and their neighbors are
distributed evenly across a given region is often a key issue to deal with. Another valuable issue is to
inform the maximum number of users located around an event, denoted as a query point, as quickly
as possible. The research presented in this paper, along with a new measure of centrality that both
considers network and spatial properties, extends the influence maximization problem to the location-
based social networks and denotes it hereafter as the Socio-Spatial Influence Maximization Problem
(SSIMP). The focus of this approach is on the neighbor nodes and the concept of line graph as a possible
framework to reach and analyze these neighbor nodes. Furthermore, we introduce a series of local and
global indexes that take into account both the graph and spatial properties of the nodes in a given
network. Moreover, additional semantics are considered in order to represent the distance to a query
point as well as the measure of weighted farness. Overall, these indexes act as the components of the
feature vectors and using k-nearest neighbors, the closest nodes to the ‘ideal’ node are determined as
top-k nodes. The node with maximum values for feature vectors is considered as the ‘ideal’ node. The
experimental evaluation shows the performance of the proposed method in determining influential
nodes to maximize the socio-spatial influence in location-based social networks.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The range of research topics in the area of social networks
varies from macroscopic to microscopic issues. In the former,
the whole structure of the network and its general properties
such as small world [1] and scale-free [2] are often evaluated.
In the latter, the focus is on the nodes themselves and their

∗ Corresponding author.
E-mail address: mhosseinpour@mail.kntu.ac.ir (M. Hosseinpour).

respective roles in the network [3]. Identifying influential nodes
in a given network is classified into this latter category. Iden-
tifying important nodes in a network is likely to give a better
understanding and even control over a network. When the ob-
jective is to broadcast some information over a given network
from some given nodes, it is possible to increase the impact on
the other nodes of the network by selecting the ones the most
structurally important. In fact, the search for a general index
that will reflect the role and importance of some social network
nodes is highly dependent on the specific case [4]. However,

https://doi.org/10.1016/j.future.2019.06.024
0167-739X/© 2019 Elsevier B.V. All rights reserved.
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one might consider that a node which has the capability to
spread information faster and to a large part of the network
is an effective one [5,6]. For instance, when promoting some
novel products, the most valuable impacts are often derived from
direct recommendations, as people usually trust their relatives.
With the advent and development of social networks, this issue
has become a crucial one. Existing methods to determine such
effective nodes vary from structural measures, either local such
as the measure of degree, or global from betweenness centrality
or closeness centrality. Another approach, suggested recently, is
to apply the concept of the line graph. In graph theory, the line
graph of an undirected graph represents the adjacencies between
the edges of the initial graph. Line graph has some prominent
properties that make it easier to analyze social networks [7–9].
A line graph can retrieve the original network by preserving all
its information. In addition, indirect neighbors are considered
besides direct neighbors. Furthermore, a line graph of a graph
has a higher degree of overlapping. The importance of this issue
becomes apparent when searching for overlapped vertices. Finally
yet importantly, using a line graph, the problems of resolution
limit and the necessity of having prior knowledge about the
number of communities, are not relevant anymore.

The objective of the research presented in this paper is to
provide a modeling framework together with a series of indexes
for identifying nodes that are influential in a location-based so-
cial network. Hereafter, influential nodes are those who have a
higher social status, and whose ‘‘friends’’ are evenly distributed
around an event hereafter denoted as a query point or inside a
given region. In fact, we are looking for nodes that have a high
social centrality, but along with this, location centrality is also
considered. Location centrality means having ‘‘friends’’ that are
distributed properly and uniformly across the region or around a
query point. The motivation behind the integration of the spatial
dimension is, for instance, the need to diffuse some information
uniformly and quickly in a specific region or to get feedback from
citizens about the quality of the services provided by different
organizations within a specified region.

More precisely, we extend the problem of maximizing influ-
ence in social networks to location-based social networks, and
we call this approach as the Socio-Spatial Influence Maximization
Problem (SSIMP). Accordingly, we model a social network as
a line graph, and where for each subgraph k1,n (n ≥ 3) of the
initial graph, there is a complete subgraph kn−1 in the line graph.
Several indexes are defined to measure the influence level of
these subgraphs both locally and globally. They are referred to as
the socio-spatial influence index, the query point index and the
weighted farness index. Finally, by applying a supervised cluster-
ing algorithm through k-nearest neighbors, influential nodes are
identified. The outputs of the analysis are evaluated and is shown
that how the proposed technique can be applied to identify social
and spatial influential nodes. In summary, the main contributions
of this paper are as follows:

• Modeling influential nodes in a given network considering
both the social structure and the spatial distributions of the
neighbor nodes;

• Using dual space and the concept of line graph as the back-
ground modeling framework;

• Identifying influential users around a query point or across
a given region using feature vectors;

• Evaluating the nodes’ influence in a location-based social
network using Thiessen polygons.

The rest of the paper is structured as follows. Section 2 briefly
reviews related works in the field of social networks and location-
based social networks. Section 3 develops the problem defini-
tion, while Section 4 introduces the proposed methodology. Sec-
tion 5 applies the proposed method on two real social networks

and Section 6 discusses the results. Finally, Section 7 draws the
conclusions and outlines future works.

2. Related works

A social network can be constructed from relational data and
can be defined as a set of social entities, such as people, groups,
and organizations, with some relations or interactions between
them [10]. Methods for analyzing social networks are designed
to explore patterns of interaction between social network en-
tities [11]. The focus is on the relationships between nodes,
rather than entities themselves. Determining influential nodes in
order to maximize the spread of influence in social networks is
one of the key issues. The problem of selecting effective nodes
for marketing purposes was first introduced by Domingos and
Richardson [12], while the influence maximizing problem was
defined as an optimization problem by Kempe et al. [13]. The
authors provided a simple greedy algorithm that evaluates all the
nodes in the network and combination of this method with a
Monte Carlo simulation is, however computationally expensive.
While a series of follow-up works have suggested additional
developments such as a combination with evolutionary algo-
rithms to improve computational times, these approaches are still
limited in terms of performance, and strictly applied to conven-
tional social networks [14,15]. Another category of approach has
applied heuristic algorithms with the advantage of better run-
ning time, but still limited to some approximations. For instance,
Jiang et al. [16] developed a simulated annealing algorithm and
introduced two new heuristic methods in order to accelerate
the convergence while searching for influential nodes. Reyes and
Silva [17] search for influential nodes in the form of a maximum
coverage problem and presented some new heuristics that take
into account the network topology. Li et al. [18] suggested a
new formulation of the problem, so-called the Keyword-Based
Targeted Influence Maximization (KB-TIM). The objective is a
search for a set of candidate nodes that maximize the influence
on users who are relevant to some advertisements. The authors
used a sampling technique based on a weighted reverse influence
set and achieved an approximation ratio. However, and as for the
previous optimization-based algorithms, most of these works are
oriented to conventional social networks, without further con-
sideration of additional geographical dimensions. Indeed, these
algorithms can be applied to many application areas, but they are
not appropriate for geographical contexts where social networks
can be inferred.

On the other hand, the widespread use of smart devices and
location-based services has created a new concept of social me-
dia so-called location-based social networking. A location-based
social network can be roughly defined as a social network that
is closely related to a geographical context and where nodes
and links are located in space. Location-based social networks
generally regroup a set of entities that share some relationships
and experiences, and can offer services and opportunities to the
users involved. Indeed the issue of influence maximization in
such networks is also a key issue to study, in order to analyze
the most influential nodes, but indeed the difference being here
to not only analyze the network underlying structure, but also the
influence of space, topology, and distances between the entities
involved. As for conventional social networks, greedy algorithms
have been developed to find influential users in location-based
social networks. For example, Li et al. [19] developed two greedy
algorithms that increase the speed of diffusion in location-based
social networks. Bhosale and Kulkarni [20] have also used a
community-based greedy algorithm for mining top-k influential
nodes. This algorithm has two components: dividing the network
into clusters by taking into account the information diffusion,
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and then finding the influential nodes in each cluster by dynamic
programming.

Beside greedy algorithms, the tree structure is also have been
used to identify target users. Li et al. [21] introduced a PR-tree
index structure and developed a community-based seed selec-
tion algorithm, which frequently selects users with the most
adverse influences in their communities using offline indexes.
Recently, Su et al. [22] devised a TR-tree index structure where
each tree node stores users’ topic and geographical preferences.
By traversing the TR-tree in depth-first order, targeted users are
determined.

However, one of the works most related to ours is by Wang
et al. [23], who modeled influential nodes near a particular land
use, such as new restaurants and introduced a distance — aware
influence maximization model, which integrates two influence
factors such as spread and users’ distance to some given locations.
Another related approach is developed by Bouros et al. [24]
whose main goal was to find influential people in a particular
geographic area. In order to do this, the initial regional influence
of each user is obtained by assigning weights to the edges and
calculating the network distance between the users.

Overall, and while the subject of the papers discussed here is
mostly about the Location Promotion Problem, which is to select
a small set of seed users who can lure other users to the target
location well, the location of neighbor nodes is hardly considered.
On the other hand, evenly distribution of the neighbor nodes in
a given region or around a query point is an issue required for
applications such as an incident or for advertising purposes. In
fact, the spatial distribution of such neighbor nodes in the graph
plays an important role in many information diffusion contexts.
This is the challenge we address in this paper.

3. Problem definition

Let us consider a location-based social network as an undi-
rected graph G = (V , E) comprising of n nodes and e edges in a
geographic region of R. Each pair of nodes u, v ∈ V is connected
by an edge (u, v) ∈ E if they have a direct relationship. Every node
v ∈ V has a specific location lv and a set of immediate neighbors,
Nv .

Definition 1 (Influence Area). The influence area of a node v ∈ V

in a location-based social network denoted as IAv is the geo-
graphic area affected by that node and is defined using Thiessen
polygons. In other words, the area of Thiessen polygon covering
the node v is considered as the influence area of that node. Let X
be a metric space with a distance d. The influence area associated
with the node v is the set of all points in X whose distance to node
v is lower than their distance to the other nodes in V .

IAv = {x ∈ X | d(x, v) ≤ d(x, u)} , v, u ∈ V (1)

Definition 2 (Geographic Coverage). The Geographic Coverage GCv

of a node v ∈ V is given by the geographical area to which its
immediate neighbors are distributed. It is given as follows where
Nv denotes the neighbor set of v, and IAu is the area covered by
a neighbor node u:

GCv =

n
∑

i=1

IAu, u ∈ Nv (2)

Definition 3 (Influence Area Index). the influence area index of a
node v ∈ V , denoted as Iia(v), is defined as the aggregate influence
area of its neighbor set, Nv , divided by the total area of the extent
of the whole location-based social network considered AR.

Iia (v) = GCv/AR, v ∈ V (3)

Fig. 1. (Color online) Graphical representation of the problem definition.

Definition 4 (Influential User). A node is considered as an in-
fluential user in a location-based social network if it meets the
following two conditions:

1. The greater number of its direct or indirect neighbors is lo-
cated inside the query region or around a query point
compared to other nodes. Indirect neighbor of a given node
is considered as the one not directly connected to that
node, that is, located at a graph distance equal or higher
than two from that node. Conversely, direct neighbor of a
node is the one directly connected to that node.

2. These neighbors are evenly distributed within the query re-
gion or around the query point, that is, they have a greater
coverage area.

Influential node is determined in such a way that it has the
highest number of followers inside a query region or around a
query point.

Problem Statement. The influence maximization problem as
applied to a conventional social network is to find a minimum
subset of nodes so that the information diffusion provided by
this subset has the most expected influence on the network.
The objective of the present paper is to extend the influence
maximization problem for location-based social networks and
considers it as a socio-spatial influence maximization problem.
Given a location-based social network G = (V , E) and a query
point q, the problem is to find a set k ⊆ V so that the extent
of the geographic coverage of their neighbors around that query
point is maximal. In other words, the total Influence Area Index
of subset k is the highest over any other arbitrary subset with the
same number of nodes:

∀f ⊆ V | n (f ) = n (k) ,
∑

Iia(f ) ≤
∑

Iia(k) (4)

Fig. 1 depicts a graphical representation of the discussed prob-
lem. The context we assume is to diffuse information within a
specified geospatial region or around a query point as soon as
possible. We are looking for users having an influence over more
possible number of users, which are located inside the query
region or around the query point.

We consider the following assumptions in the process of in-
formation diffusion:

1. Networks are considered either directed or undirected. Each
node can affect the other connected nodes so a node may
be affected by two or more neighboring nodes.
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Fig. 2. Overview of the proposed method.

2. The cost of activating primary nodes for all nodes is consid-
ered the same. If the costs of activating or convincing the
primary nodes are different, the cost minimization issue
should be considered from the outset. That is, the initial
nodes are chosen in a way to have the highest influence at
the lowest cost.

3. The probability of affecting each neighbor node follows the
Independent Cascade Model (ICM) [25]. Under the ICM
model, time unfolds in discrete steps. At any time-step t ,
each newly activated node u ∈ V gets one independent
attempt to activate each of its outgoing neighbors with a
probability function.

4. Affected nodes are considered as active nodes and other nodes
as inactive, and each affected node will remain active until
the end of the diffusion process.

4. Proposed methodology

A general solution to the socio-spatial influence maximization
problem is to determine effective features and evaluate nodes’
performance with respect to these features. The type and the
number of these features vary according to the application and
the type of the used network. Using these features as feature
vector components, the status of each node could be drawn in an
n-dimensional space where n is the number of specified features.
Next, by introducing the best possible values for these features,
that is, the so-called ‘ideal’ feature vector, the Euclidean distance
between each vector and the ‘ideal’ vector in this n-dimensional
space can be derived. The lower the Euclidean distance, the
greater the probability of that node to fall into the set of top-k
nodes. As a peculiarity of this work, all these steps and computa-
tions are carried out under the line graph instead of the initial
graph. This reflects the interest of the line graph, that is, the
fact that in such applications, relationships between nodes are
more important than nodes themselves. Accordingly, the nodes
are replaced with the complete subgraphs. In addition, converting
the initial graph to line graph removes leaf nodes and nodes
with degree two, those being hardly classified as influential users
in the large networks. This has the advantage of reducing the
computation load. Finally, by performing reverse operations, the
nodes associated with these top-k subgraphs are identified in the
initial graph.

The first step of the proposed methodology is to model the
propagation of influence between the users by the Social Hier-
archical Graph (SHG). Three major features named socio-spatial
influence index, query point index and weighted farness index
are also defined. By applying the line graph to the SHG, features
and computations are transferred to the new mathematical space.
At the next step, the ideal feature vector is derived and comparing
the feature vectors with the ideal vector leads to the top-k sub-
graph in the line graph and correspondingly top-k nodes in the
initial graph. Fig. 2 gives an overview of the proposed method.

Fig. 3. (Color online) Constructing the social hierarchical graph based on the
direction of links between the users.

4.1. Social hierarchical graph

Directed user relations in a social network graph are crucial to
model their respective influence. In many applications, followers
are often affected by opinion leaders. This indeed stresses the
role of direct relations in assessing the influence propagation in
a given social network. A social hierarchical graph is a structure
that can nicely take into account directed links and the underlying
hierarchical structure among the users of a network. This graph
also has the advantage of easily identifying and eliminating the
users who do not have any follower or connection within the
query region or around the query point and hence reduce the
computational load. Fig. 3 schematically shows the structure of
a sample social hierarchical graph with different levels of users.

4.2. Line graph

An appropriate method to have access directly to neighbor
nodes, and to assess their interactions with each other, is given
by the line graph. By converting the initial graph to the line
graph, each node with degree 3 or higher will be converted to a
complete subgraph (Fig. 4), this being not the case for leaf nodes
or nodes with degree two so these nodes will be eliminated from
the calculations and hence reduce the computational load. By
doing this conversion, neighbor nodes, which now are organized
as complete subgraphs are directly processed. First, by defining a
social and spatial index, the status of these subgraphs is exam-
ined locally. Next, the status of the complete subgraphs must be
evaluated relative to each other and to a query point. Therefore,
by defining a weighted farness index and a query point index,
the distance between subgraphs and their distance to the query
point are calculated, respectively. Considering these indexes as
elements of feature vectors and then clustering subgraphs using
the k-nearest neighbors method, the final seed set is identified.

Definition 5 (Line Graph). The line graph of a graph G is the graph
L(G) that represents the adjacencies between the edges of G.

The line graph of G = (V , E), has the following properties [26]:
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1. For each edge in graph G, there is a node in L(G) such that
|nL| = |eG|

2. For each path of length 2 in G, there exists an edge in L(G)

The number of edges in the line graph of G, is e′ = 1
2

∑

υϵV (G)

d (υ)2 − e and for each subgraph k1,n(n ≥ 3) of the G there is a
complete subgraph kn−1 in L(G).

In a line graph, each node represents an edge in the initial
graph, and each edge corresponds to a pair of connected edges.
The common node between the connected pair of edges is the in-
termediate node. Therefore, by switching to the line graph, these
intermediate nodes are removed and direct links are established
between the neighbors.

In order to analyze the neighbor nodes, a series of local and
global parameters have been defined. The local parameter repre-
sents the status of the neighbor nodes using node degree and the
standard distance between the neighbors, both socially and spa-
tially. These two subparameters are referred to as Social Influence
Index and Spatial Influence Index respectively. Combining these
two indexes provides a single index called Socio-Spatial Influence
Index, which is a local measure for assessing the status of the
neighbors.

4.3. Defining features

In order to identify the top-k nodes so that their neighbors
have the best spatial distribution around a query point or across
a given region, these must meet the simultaneous following con-
ditions: (1) these nodes must have high social and spatial in-
fluences; (2) their neighboring nodes must have lower spatial
distribution towards a query point; and (3) the spatial correlation
between the neighbor nodes of top-k nodes must be minimized.

4.3.1. Social influence index

The influence of individuals on one another in social networks
depends on a variety of parameters, including the type, intensity,
and frequency of the relationships between them. In order to
measure the influence of some individuals on a given social
network, several models have been so far suggested, e.g., ICM.
Under the ICM model, time unfolds in discrete steps. At any time-
step t , each newly activated node u ∈ V gets one independent
attempt to activate each of its outgoing neighbors with a prob-
ability p (u, v) = W (u, v). In other words, W (u, v) denotes the
probability of u influencing v [27]. For implementation purposes,
the probability of affecting each neighbor node is considered as 1,
(P (u → v) = 1), which assumes that each affected node can af-
fect certainly its neighbor nodes. Based on the social hierarchical
graph, users can activate their neighbors in a cascading mode.

Assume that Nv = {u1, u2, . . . , un} denotes the set of activated
neighbors of the node v. The social influence index for node v is
denoted as Iso(v) and is defined as the normalized version of its
number of affected neighbor nodes:

Iso(v) = (nv − min (n))/(max (n) − min(n)),

v ∈ V , n ∈ N, 0 ≤ Iso(v) ≤ 1 (5)

Where nv denotes the number of affected neighbor nodes of
node v while min(n) and max(n) denote minimum and maximum
number of affected neighbors of nodes in V , respectively.

4.3.2. Spatial influence index

Section 3 first introduces the influence area index that gives
the geographical area covered by the neighbor nodes using the
Thiessen polygons. Next, the Spatial Influence Index reflects the
amount of spatial dispersion between the neighbor nodes. The
larger the extent of the spatial distribution of the neighbors of a

given node, the higher the spatial influence of that node. Several
measures can evaluate the spatial distribution of a set of nodes.
The standard distance is one of these measures, which provides
a direct measure for the spatial distribution of these nodes. The
standard distance measures the degree of concentration or dis-
persion of a set of nodes relative to the geometric center of those
nodes. Scattered and clustered nodes have a larger and smaller
standard distance respectively. The standard distance for a node
v is given by Eq. (6):

SDv =

√

∑n

i=1

(

Xi − X
)2

n
+

∑n

i=1

(

Yi − Y
)2

n
(6)

In which, n is the number of affected neighbors, (Xi, Yi) is the
location of ith active neighbor and (X, Y ) is the geometric center
of the nodes included in the set of affected neighbors and is
calculated as:

(

X, Y
)

=

(

1

n

n
∑

i=1

Xi,
1

n

n
∑

i=1

Yi

)

(7)

Normalizing the standard distance gives the spatial influence
index for node v denoted as Isp(v):

Isp (v) = (SDv − min(SD))/(max (SD) − min(SD)) (8)

4.3.3. Socio-spatial influence index

One might search for the relation between the number of
neighbors and their spatial distribution, and the relationship with
the influenceability of a node. In other words, this allows us to
compare the respective influence level of two nodes, one with
a higher number of neighbors, but lower spatial distribution
and the other with a lower number of neighbors but a larger
spatial distribution of its neighbors. A linear combination of these
two indexes gives a local comprehensive index so-called the
socio-spatial influence index and denoted as Iss. Iss establishes an
equilibrium between two separate indexes using the α parameter
and provides a single quantity to assess the local performance of
each influential node, both socially and spatially. Another benefit
of the Iss is that it reduces the dimension of the vector features
and thus decreases the computational cost. For a node v, Iss is
computed through a linear combination as below:

Iss(v) = α.Iso(v) + (1 − α) .Isp(v) (9)

The greater the value of this index for a given node, the more
effective that node. α is a parameter that controls the weight of
each index and it can vary from 0 to 1 as follows:

- α = 0: the final index is merely equal to the spatial index,
this leading to the superiority of nodes that only have the
spatial effects regardless of social popularity.

- 0 < α < 0.5: the spatial index is more effective than the so-
cial index and, for example, a node with two neighbors that
have a greater spatial distribution has priority over a node
with three neighbors which have lower spatial distribution.

- α = 0.5: both indexes contribute to the final index equally,
and spatial influence will be as important as social popular-
ity and vice versa.

- 0.5 < α < 1: the social index is more effective than the
spatial index and, for example, a node with three neighbors
which have a smaller spatial influence has priority over a
node with two outspread neighbors.

- α = 1: the final index is merely equal to the social index,
this leading to the superiority of nodes that are only socially
popular, regardless of spatial influence.
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Fig. 4. (a) A sample graph with its direct neighbors and (b) the line graph of the sample graph.

Table 1

Calculating the socio-spatial influence index of two sample nodes for different
values of α.

Node N Nmin Nmax SD(m) SDmin SDmax α Iss Rank

U 5
1 10

100
10 500

0.25 0.249 1
0.75 0.379 2

V 8 30
0.25 0.225 2
0.75 0.593 1

The α parameter can be used to determine the preference and
superiority of each of the indexes. Table 1 shows, how does the
value of α affect the prioritization of the nodes shown in Fig. 5.
As shown is this figure, in the case of α = 0.25, the node U is
prioritized to the node V , but by increasing the value of α to 0.75,
this priority has been reversed.

After examining the status of nodes using Iss, one can sort
them and choose the appropriate k nodes as the effective ones.
However, the neighbors of the selected nodes may have high
geographic correlation or may be located at a distance far away
from the query point. Therefore, it is necessary to assess the
status of the neighbor nodes globally. This assessment includes
calculating the distance between the nodes and the distance to
the query point.

4.3.4. Query point index

Distance to the query point, so-called query point index, is
one of the main features in maximizing the spatial influence in
a network. In other words, people whose neighboring nodes are
closer to the location of an event denoted as a query point will
have a higher priority to the information diffusion process. In
cases other than the occurrence of an event, and without loss of
generality, the purpose of which is to disseminate the influence
within a given geographical area, the query point is considered as
the geometric center of that area. In order to measure the distance
of subgraphs to the query point, the concept of standard distance
is applicable, except that the instead of the geometric center of
the neighbors, the location of the query point is used. The query
point index for the node v denoted as Iqp(v) is given by Eq. (10):

Iqp(v) =

√

∑n

i=1

(

Xi − Xq

)2

n
+

∑n

i=1

(

Yi − Yq

)2

n
(10)

Where, n is the number of affected neighbor nodes and (Xq, Yq) is
the coordinates of the query point. In order to control the values
obtained for this quantity, the normalized value of this index is
defined according to Eq. (11):

Îqp(v) = (Iqp − min
(

Iqp
)

)/(max
(

Iqp
)

− min(Iqp)) (11)

4.3.5. Weighted farness index

The spatial correlation between the affected neighbors of
nodes should also be taken into account in order to avoid choos-
ing the nodes with overlapping neighbors. In other words, using a
global index, the spatial distribution of the neighbors of a node is
determined relative to the other ones. Given that, the final nodes
are selected in a way that they have the best spatial distribution
around a query point. So, one should use a parameter of farness
or closeness for nodes. By definition, the closeness is reciprocal
of the farness and for large social networks is given as follows:

C (x) = N/
∑

y

d(y, x) (12)

Where N is the number of nodes in the graph and d(y, x) is the
distance between vertices x and y.

Relying solely on the notion of farness might lead to a selection
of nodes that are located at the margin of the considered region.
In order to avoid this and to enhance the distance between im-
portant nodes, we introduce a notion of Weighted Farness Index
denoted as Iwf as given by Eq. (13):

Iwf (v) =

f−1
∑

i=1

(Iss(v) ∗ d((kn)v, (km)i)), v ∈ V ; n,m ∈ N (13)

Where, kn represents the subgraph (a node along with its affected
neighbors) which, Iwf is calculated for and km denotes the neigh-
bor subgraphs while f is the number of subgraphs in the line
graph.

The distance between two subgraphs is also equal to the sum
of distances between their pairwise nodes, which is given by
Eq. (14):

d((kn)v, (km)i) =

n
∑

i=1

m
∑

j=1

dij, v ∈ V ; n,m ∈ N (14)

In Eq. (13), the Iss is used as the weight parameter. Applying
the weights enhances the farness of the influential nodes from
each other. The more distant an important node from others, in
particular, important ones, the more preference it gets. In order
to control this quantity the normalized version of this index is
defined as follows:

Îwf (v) = (Iwf (v) − min(Iwf ))/(max
(

Iwf

)

− min(Iwf )) (15)

4.4. Selecting top-k subgraphs in L(G)

After deriving the local and global indexes required examining
the status of top-k complete subgraphs, those with the best values
for these three indexes are selected as the final influential sub-
graphs. In order to do this, the feature vector for each subgraph
is drawn based on the results obtained for its features. Feature
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Fig. 5. Two sample nodes along with their immediate neighbors: (a) a node with more neighbors and lower spatial distribution; (b) a node with fewer neighbors
and higher spatial distribution.

vectors are used to represent the qualitative or quantitative prop-
erties of an object mathematically and analytically. A feature
vector contains various elements of an object and is represented
as a point in the feature space.

The feature vectors are drawn in a 3D space that takes into
account the socio-spatial influence index, the query point index
and the weighted farness index as their three axes. After pro-
jecting subgraphs into this 3D space, the better-performing ones
are identified by a clustering technique. The k-Nearest Neighbor
algorithm is used for this purpose. kNN is a supervised clustering
technique that is simple but effective in practice. This method
assumes that the data is distributed in a metric feature space
and then finds the k-nearest neighbors to the sample data. Since
kNN is a supervised method, it needs to have one or more sample
data so that it could measure the distance between the input data
and the sample data. Here, the sample data is considered as the
‘ideal’ point that has the best performance for all three features.
This performance is related to the type of the query point. If the
query point is the location of an incident, then the ‘ideal’ point
will have the highest values for Iss and Iwf and the lowest value
for Iqp. In addition, if the query point is the geometric center of
the given region, then the greatest values of all three indexes
represent the ‘ideal’ point. By calculating the Euclidean distance
between this ‘ideal’ point and the other ones, the top-k subgraphs
are identified.

4.5. Selecting top-k nodes in G

The last step in detecting influential users includes an inverse
operation. This is to retrieve the corresponding nodes of top-
k complete subgraphs by returning to the root graph, which is,
converting the line graph to the original graph. Several algorithms
can perform this function. Roussopoulos [28] introduced one of
such algorithm; its complexity is non-polynomial and is based on
an algorithm that searches for the maximal connected common
subgraphs in graphs. The Matrix Relabeling Inverse Line Graph
Algorithm is another approach proposed by Liu et al. [29], and
is more effective than the previous algorithm, but its complexity
is also non-linear. Later, the authors of this algorithm intro-
duced the Inverse Line Graph Algorithm (ILIGRA) [30]. The time
complexity of this algorithm is linear in the number of nodes
in the line graph. This algorithm assumes that the given graph
is a line graph and starts to construct the root graph. During
the process, this algorithm checks whether the given graph is
a line graph or not and stops when it finds the graph is not a
line graph. We adopted the ILIGRA algorithm to convert the line
graph to its original graph because of its efficiency and decreased
computational complexity.

Fig. 6. A sample network with four important nodes A, B, C, D, and their
neighbors distributed in different sub-regions.

Table 2

Ranking of important nodes shown in Fig. 6 using local and global features.

No Degree Iso Isp Iss Iqp Iwf d(v, p) Rank

A 8 1 0 0.5 0.51 1 0.49 2
B 6 0.33 0.3 0.32 1 0.18 0.84 3
C 5 0 0.55 0.28 0 0 1.43 4
D 5 0 1 0.5 0.89 0.71 0.31 1

5. Implementation

Prior to larger experimentation, a small network with 21
nodes and 24 edges, illustrated in Fig. 6, is used as a test net-
work. The underlying region is divided into four areas, and in
each area, a node with an alphabetical tag is considered as an
important node. The geographic distribution for the neighbors
of these nodes is different. The neighbors of the node A are
only distributed in one sub-region, and nodes B, C, and D have
neighbors from 2, 3 and 4 sub-regions, respectively. The goal
is to identify a node with high social and spatial influence. The
geometric center of the area acts as the query point and the
‘ideal’ node is defined as p

(

max (Iss) ,max
(

Iqp
)

,max
(

Iwf

))

. The
values of indexes for all four important nodes are calculated and
presented in Table 2. Finally, these nodes are ranked according to
their distance to the ‘ideal’ node and, as we expected, the node
D was identified as the most influential node due to the spatial
distribution of its neighbors.

Real datasets have been collected from two location-based
social networks, Brightkite and Gowalla [31]. Brightkite was once
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Table 3

Statistics of the used datasets.

Dataset |V | |E| #Check − In Ave.Deg Mode

Brightkite 58,228 214,078 4,491,143 7.4 Undirected
Gowalla 196,591 950,327 6,442,890 9.7 Undirected

a location-based social networking service provider where users
shared their locations by checking-in. The friendship network
consists of 58,228 nodes and 214,078 edges. Gowalla is another
location-based social networking website where users share their
location by checking-in. The friendship network is undirected and
consists of 196,591 nodes and 950,327 edges. Table 3 shows the
general properties of these datasets. They contain information
about the locations visited by each user, with a total of about 6.5
million check-ins for the former network and about 4.5 million
check-ins for the latter one. Since there is a need to have a specific
location for each user, the average locations recorded by the users
can be considered as their specific locations.

First, let us estimate the appropriate value of α for these
networks. The value of α should be estimated and selected in such
a way that top-k nodes in terms of Iss have the highest spatial
distribution and social influence. Three subgraphs with 1000,
2000, and 3000 nodes are randomly selected from each network
as training data. By changing the value of α from 0 to 1 with step
0.05, the value of socio-spatial influence index, the distance to
the query point and the weighted farness index are calculated
for all nodes in each subgraph. Regarding the number of training
datasets, the value of k is considered as equal to 50. Furthermore,
the query point is considered as the geometric center of the
entire geographical region. After determining the top-k nodes,
proportional to the different values of α in each of the three
subgraphs, the standard distance for each k set is calculated to
obtain the spatial distribution of the selected nodes. By drawing
the values of standard distance versus α, the appropriate value
for α is obtained in all three subgraphs. As shown in Fig. 7, the
value of α of the Brightkite dataset is estimated as 0.85 and for
Gowalla, its value is 0.75. It is also clear from the diagram that by
increasing the number of nodes from 1000 to 3000, the spatial
distribution of the selected nodes also naturally increases.

After determining the optimal value of α using the train-
ing data, in order to ensure the accuracy of these values, it is
also necessary to evaluate them using the test data. Accordingly,
from each dataset, 5000 nodes are selected as the test data, and
with α being known, the top-k nodes are identified. In order
to ensure that the selected nodes are optimal, the final nodes
are determined using other values of α and again the spatial
distribution of the selected nodes is compared with the value
of α using a diagram. As expected, for the same values of α
obtained in the previous step, the selected nodes had the highest
spatial distribution. Fig. 8 shows the results for the test data from
Brightkite and Gowalla.

Then top-k nodes are identified for two real datasets after
ensuring the values of alpha. For the Brightkite social network,
the set of the final nodes has a total social index of 0.06375. This
means that of 58,228 nodes included in this network, 3713 of
them are as direct neighbors of the nodes in the final k set. The
spatial distribution of the neighbor nodes of this k set gives an
area of 9,922.63 Km2. In the case of Gowalla, the total social index
for selected nodes is 0.15636 and the number of direct neighbors
is 30740 of 196591. The spatial distribution of these nodes is also
equal to 8,747.29 Km2.

6. Evaluation

The objective of this paper and of the experiment is to identify
influential nodes whose neighbors have the maximum geographic

coverage within a query region or have the best spatial distribu-
tion around a query point. As compared to the previous works,
the peculiarity of our approach is the two new heuristic methods
that assess the efficiency of the suggested algorithm. The first
evaluation method relies first on the selection of subsets of size
k from the real networks, secondly by using the α value and
measuring the spatial distribution and the total social influence
index of the neighbors of the selected nodes, and thirdly by
comparing it with the characteristics of the top-k nodes of that
network. We randomly selected nodes, one hundred times from
both datasets and measured the spatial distribution and the total
social influence index of their neighbors. The results of these
measurements are shown in Fig. 9 for each dataset.

As shown in Fig. 9, the best set of randomly selected nodes for
the Brightkite social network has a spatial distribution of 9,289.91
Km2 and its total social index is 0.06985. While for this network,
the top-k nodes obtained in α = 0.85 has a higher spatial
distribution of 9,922.50 Km2 and its total social index is 0.06375,
which is close to the previous one. In the case of Gowalla, as
shown in Fig. 9, the best two sets of nodes selected by random
have the highest social indexes with values of 0.152 and 0.15755
and spatial distributions of 3,105.19 Km2 and 4,266.73 Km2 re-
spectively. While the top-k nodes obtained for this network with
α = 0.75 has a total social influence index of 0.15637 and a
spatial distribution of 8,747.29 Km2, which totally has a better
performance than the randomly selected sets from this network.

The second method applied for evaluating the efficiency of
the proposed algorithm is to compare the total geographical area
covered by the neighbors of the top-k nodes obtained using α

value with the total area covered by the neighbors of the nodes
selected by using other values of α for each dataset. The suggested
method for measuring the total area covered by neighbors is
to apply weighted Voronoi diagrams [32]. These diagrams are a
special case of space gridding in which, every node has a distinct
weight. In other words, the distance between the nodes will be
a function of their weights. The value of socio-spatial influence
index of each node acts as the weight parameter, so the influence
area of each node becomes more or less in proportion to this
index. Thus, thanks to the weighted case of the Thiessen polygons,
the given region is divided between all nodes and it is assumed
that each polygon is affected by the diffusion of the influence
to its corresponding node. These polygons denote the influence
areas of these nodes (see Fig. 10). The total area of the polygons
in which the neighboring nodes are located in is also considered
as the influence area of that node. Division of this influence area
by the total area of R also results in the influence area index for
each node.

The total area covered by the neighbors of the randomly
selected subsets of size k versus the sum of the social index of
these subsets for both Brightkite and Gowalla networks is shown
in Fig. 11.

As for the discussion conducted for Fig. 9, the extremums in
both networks are also lower in terms of social influence index
and the influence area compared to the ones for top-k nodes for
these datasets. In the case of the Brightkite dataset, the total influ-
ence area index of the top-k nodes is 0.0359 and their total social
influence index is calculated as 0.06375. By comparing these
indexes with the extremums in Fig. 11, it becomes clear that the
top-k nodes selected by using α = 0.85 have better performance.
For Gowalla, the total influence area index calculated as 0.0348
for top-k nodes selected using α = 0.75 and the total social
influence index was 0.15637 from the former section. Compared
to the extremums of Fig. 11, although the social influence index
of the top-k set is lower, it has a higher influence area index, and
overall it can be said that the performance of the nodes in this
set is also optimal.
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Fig. 7. (Color online) Finding the optimal value of α for Brightkite and Gowalla using the training data.

Fig. 8. (Color online) Spatial distribution of the selected nodes compared with different values of α for test data from Brightkite and Gowalla.

Fig. 9. Comparison of the spatial distribution of the randomly selected nodes’ neighbors and their total social influence index for Brightkite and Gowalla.

Fig. 10. A sample social network and influence area of each node created with Thiessen polygons.

Since one of the main applications of the proposed method is
to consider the area where an event occurs, the diffusion process
of information to the most possible geographical regions should

be computed and timely evaluated. It appears from our approach
that the nodes with higher socio-spatial centrality (SSC), i.e., the
influential users as identified by the proposed method can diffuse
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Fig. 11. Changes of the total influence area of neighbors versus the total social influence index for randomly selected subsets of size k of two real datasets.

Fig. 12. (Color online) Diagram for the geographic distribution of information over time. Influential users selected by the socio-spatial centrality (SSC) can diffuse
information in a vaster area in the first moments of an incident, compared with other centrality metrics like DC, CC, and BC.

information faster and vaster. In order to do so, influential nodes
can be conventionally identified using some centrality metrics
like degree centrality (DC), betweenness centrality (BC) and close-
ness centrality (CC). In order to compare these metrics to our own
algorithm, ICM first models the spatial distribution of information
among the neighbor nodes of influential users and then the SSC
method is applied. Computational times are derived from the
three centrality measures and the SSC method and are depicted
in Fig. 12. The figures show that the SSC method can diffuse
information in a vaster area in the first moments of an incident.

7. Conclusion

The research developed in this paper addresses the issue of
identifying influential nodes in the location-based social net-
works. We introduce a model and a series of indexes to resolve
the socio-spatial influence maximization problem. Regarding the
importance of neighbor nodes in the diffusion of influence, the
line graph is considered as an appropriate framework to access
and analyze the neighboring nodes directly. The line graph is
derived by converting each node with degree 3 and above into
a complete subgraph. In order to identify the influential nodes
in the location-based social networks, a local social and spatial
index and two global indexes have been introduced. By a linear
combination and ponderation of social and spatial dimensions,
a socio-spatial influence index is derived for all complete sub-
graphs. Therefore, by considering these values as the subgraph
weights, a weighted farness index is defined and calculated for
all subgraphs. The distance between the subgraphs and the query
point also computed as the query point index. Assuming the
values of these three indexes as the components of the feature
vector, all subgraphs can be mapped to a 3D space. By defining
the notion of ‘ideal’ point, whose components include the best
values of the features, the distance between the subgraphs and
the ‘ideal’ point are calculated. Finally, using the kNN algorithm,
the top-k subgraphs and their corresponding nodes in the initial
graph are chosen as the top-k nodes.

The proposed method has been implemented on two real
datasets from location-based social networks, Brightkite and
Gowalla. Formerly, three subsets of the main networks are se-
lected randomly as training data and the appropriate value of
α is calculated using these sampled data for each real dataset.
The results are evaluated in a different subset of data from each
network, named the test data. After confirmation of the results,
the proposed method is implemented on the real datasets. In
order to evaluate the results, two methods are also used. The
evaluations show the proper functioning of the selected top-k
nodes to meet the needs for high social influenceability and the
condition for optimal spatial distribution of the neighbor nodes.

So far, the networks are considered static, and the location
of the users in the network is also calculated from the average
locations visited by them, but social networks, and in particu-
lar, location-based social networks have a dynamic nature and
existing connections between nodes as well as the location of
individuals are constantly changing. Nodes may also act as influ-
ential at a time and lose this feature another time. Therefore, it is
necessary to identify the influential nodes immediately over the
time using the dynamic modeling of the networks.
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