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Abstract. This paper proposes two deadline adjustment techniques for
scheduling non preemptive tasks subject to precedence relations, release
dates and deadlines on a limited number of processors. This decision
problem is denoted by P |prec, ri, di|? in standard notations. The first
technique is an extension of the Garey and Johnson algorithm that in-
tegrates precedence relations in energetic reasoning. The second one is
an extension of the Leung, Palem and Pnueli algorithm that builds iter-
atively relaxed preemptive schedules to adjust deadlines.
The implementation of the two classes of algorithms is discussed and
compared on randomly generated instances. We show that the adjust-
ments obtained are slightly different but equivalent using several metrics.
However, the time performance of the extended Leung, Palem and Pnueli
algorithm is much better than that of the extended Garey and Johnson
ones.

Keywords: Scheduling Problem · Precedence constraints · Energetic
reasoning · Preemptive relaxation.

1 Introduction

This paper addresses the decision scheduling problem described in standard no-
tations introduced in [15] as P |prec, ri, di|?. A set of tasks T and a precedence
graph G are given. Each task i ∈ T has a deadline di, a release date ri and a
duration pi. Tasks are performed on m identical processors. We address the ex-
istence of a feasible schedule. Notice that the problem is NP-hard in the strong
sense, even in the special cases where no precedence constraints exists and one
machine is considered 1|ri, di|? [12] or with unit execution times of tasks and
common deadline P |prec, ri, di = D, pi = 1|? [29].

However, defining efficient polynomial algorithms providing necessary exis-
tence conditions is a challenging question since they might be used to improve
the efficiency of constraint programming or branch and bound algorithms for the
related optimization problems. Indeed, such necessary existence conditions com-
bined to a binary search can provide a lower bound of the makespan (Cmax) or
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the maximum lateness (Lmax). Exact algorithms make use of these bounds [24],
which appear particularly interesting when the branching scheme is based on
splitting or reducing the tasks’ intervals [2,5].

Such necessary conditions have been investigated by many authors since the
early eighties, thoroughly improving the efficiency of exact algorithms. Several of
them use interval adjustment techniques (ie. reducing deadlines and increasing
release times) by relaxing precedence constraints. The special case of unit exe-
cution times has been also investigated with adjustment techniques considering
both precedence and resource constraints.

Interval adjustment techniques based on energetic reasoning, ie. on the mea-
sure of the mandatory workload of time intervals, have been the subject of
much attention when no precedence constraint is considered. These techniques
developed for the problem P |ri, di|? were extended to handle the cumulative
scheduling problem (CuSP). In this case, each task i requires ci resources for its
execution, and the total number of resources is bounded. Baptiste et al. [1] and
Derrien and Petit [9] have developed low time complexity algorithms by reduc-
ing the number of considered intervals. Ouellet and Quimper [27] and Carlier et
al. [6] have improved the data structures used in the algorithms. Tesch in [28]
analyzed the time needed to reach a fixed point for the technique called energetic
edge finding.

Most recent studies taking into account both precedence and resource con-
straints are devoted to the resource constrained scheduling problem (RCPSP)
and extend earlier work on 1-machine and job-shop scheduling problems. Ac-
cording to Laborie and Nuijten [22], energetic constraints are either propagated
on precedence relations, or precedence constraints are considered independently
from the job’s release times and deadlines in “energy precedence constraints”.
In order to compute a lower bound on the makespan, Haouari et al. proposed to
integrate RCPSP resources and precedence constraints through linear program-
ming via relevant relaxations of precedence and valid inequalities, either using
energetic [18] or preemptive bounds [19].

In addition, the special case with unit processing times (pi = 1 for each task
i ∈ T ) has been investigated by several authors, most of them using reduction of
deadline techniques embedding precedence and resource constraints. Garey and
Johnson in [12] derived a polynomial algorithm (GJ algorithm in short) based
on energetic reasoning that solves the decision problem for m = 2 processors.
This algorithm was extended by Hanen and Zinder [17] to get an approximation
algorithm for the Lmax criteria for general parallel machines case when tasks
have unit processing times. The Leung, Palem and Pnueli algorithm [23] (abbre-
viated to LPP algorithm) expresses necessary conditions on deadlines based on
the iterative construction of schedules for relaxed sub-problems without prece-
dence constraints. They also proved that this algorithm optimally solves several
problems with particular precedence graphs. Hanen and Munier [4] showed that
these two algorithms reach the same fixed point deadlines and an experimental
study confirmed that the LPP algorithm is faster than the GJ one.
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Our contribution in this paper is to extend both the GJ and LPP algorithms
to handle tasks with any duration, and to compare the two approaches. Notice
that, due to the inherent symmetry of the problem, all the algorithms considered
here can be used to modify release dates as well, by simply reversing the orienta-
tion of the precedence arcs and swapping release times and deadlines. However,
our experiments only considered deadline modifications.

The extension of the GJ algorithm theoretically dominates usual energetic
reasoning due to the addition of precedence constraints. Our approach also con-
siders stronger conditions than Laborie [21] who only considers the successors
of a task to adjust the deadlines. The extension of LPP algorithm is based on
the iterative construction of preemptive schedules. These two approaches were
experimentally compared on randomly generated instances: we first proposed
several measures of the effective deadline reduction, and the variation of the
intrinsic parallelism of the instances. We observed that the reductions of the
deadlines are roughly similar for the two extensions, even if the deadlines ob-
tained are not necessarily equal. However, we also observed that according to
the theoretical time complexity evaluation, the LPP algorithm has a much lower
complexity than GJ.

The paper has seven sections. In Section 2, we present the problem and the
main notations. Section 3 is devoted to the extension of the GJ algorithm and
the energetic reasoning. Section 4 presents the extension of the LPP algorithm.
Section 5 presents our testing procedures, while Section 6 is dedicated to our
experiments. Finally, we conclude in Section 7.

2 Notations

An instance I of our scheduling problem is given by a set of n tasks T , a
precedence graph G = (T ,A) and m identical processors. For every task i ∈ T ,
we denote by pi the execution time of i. We suppose that the release time ri and
the deadline di of each task i are given, and satisfy

ri + pi ≤ di. (1)

A feasible schedule assigns a starting time ti, such that ri ≤ ti ≤ di−pi, and
a processor among the m available ones, so that two tasks assigned to the same
processor do not overlap. We consider the decision problem of the existence of a
feasible schedule denoted by P |prec, ri, di|?.

For any pair of tasks (i, j) ∈ T 2, we note i→ j if there exists a path in G from
i to j. Then, Γ+?(i) (resp. Γ−?(i)) is the set of descendants (resp. ancestors) of
i, which are tasks j such that i → j (resp. j → i). For any pair of tasks (i, j)
with i → j, we denote by `?ij the maximum value

∑
k∈ν,k 6=j pk of a path ν of G

from i to j. We assume that these values are pre-processed. This can be done in
time complexity O(n3) by using the Floyd-Warshall algorithm [8].

We assume that release times and deadlines are consistent with the prece-
dence constraints:

∀(i, j) ∈ A, ri + pi ≤ rj and dj − pj ≥ di. (2)
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In the sections below, we introduce deadline modification algorithms.
We consider the algorithm Propagate(i, d) that computes a consistent dead-

line vector assuming that all values of the input deadline vector d, except maybe
the modified deadline di, are consistent ie. follows conditions (1) and (2). Prop-
agate(i, d) returns false if di − pi < ri, otherwise it adjusts all the ancestors j
of i by setting dj = min(dj , di− `?ji + pj − pi) and returns true. Notice that then
for any ancestor j of i, rj + pjdj . The time complexity of Propagate(i, d) is
O(n) provided that the values `?ij are preprocessed.

3 Extension of the Garey and Johnson Algorithm

In this section we first explain the deadline reduction principle on which the
Garey and Johnson algorithm [12] is based. Then we present the extended Garey
and Johnson algorithm (eGJ in short) in its weak form, and analyze its time
complexity. Finally we present the strong form of eGJ.

3.1 Principles of deadline reductions

The idea of the original Garey and Johnson algorithm [12], which was designed
to solve the problem for two processors and tasks with unit processing times, is
to reduce the deadline of a job i based on the measure of the number of tasks
that must be executed in an interval [s, t] assuming i ends at its deadline. This
idea is extended here for tasks with any processing time by considering energetic
reasoning [1] on time intervals.

Let i be a task and let us consider two values s ≤ t such that i may end
between s and t:

ri ≤ s ≤ di ≤ t. (3)

Figure 1 presents the three subsets of tasks I(i, s, t), S(i, s, t) and T(i, s, t) that
should have a part processed between s and t.

T(i, s, t)

j ∈ S(i, s, t)

j ∈ I(i, s, t)

rj s di t dj

T(i, s, t) = I(i, s, t) ∪ S(i, s, t)

S(i, s, t) is the set of tasks j ∈
Γ+?(i) such that dj − pj < t.

I(i, s, t) is the set of tasks j 6∈
Γ+?(i) such that rj + pj > s
and dj − pj < t.

Fig. 1: Sets of tasks I(i, s, t), S(i, s, t) and T(i, s, t) with some mandatory part in
[s, t]

Any task j ∈ I(i, s, t) has no precedence relation with i; we set wj(i, s, t) as
the minimum part of the task j that must be performed between s and t in any
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feasible schedule, ie. when j is left shifted and right shifted as illustrated by the
blue parts in Figure 1. Clearly, for any task j ∈ I(i, s, t),

wj(i, s, t) = min(t− s, pj ,max(0, rj + pj − s),max(0, t− (dj − pj))).

Similarly, tasks j from S(i, s, t) are descendants of i with a minimum part
wj(i, s, t) that must be performed between s and t assuming i may end be-
tween s and di. Notice that the task j starts after s and we just have to consider
the contribution of j when it is right shifted.

∀j ∈ S(i, s, t), wj(i, s, t) = min(pj ,max(0, t− (dj − pj))).

The total amount of work that is to be performed between s and t considering
the minimum contribution of i in the interval [s, t] is then:

W (i , s, t) = max(0, ri + pi − s) +
∑

j∈T(i,s,t)

wj (i , s, t).

We define the associated slack ∆(i, s, t) = W (i , s, t) − m(t − s). If ∆(i, s, t) >
0, there is not enough room in the time interval [s, t] to execute the energy
W (i , s, t). This situation will fall into one of two cases, as in the following
properties:

Property 1. Let us consider a task i ∈ T and two values s and t such that
ri ≤ s ≤ di ≤ t. If ∆(i, s, t) > 0 and S(i, s, t) = ∅ then no feasible schedule
exists.

Proof. If S(i, s, t) = ∅, then T(i, s, t) = I(i, s, t); any task j ∈ I(i, s, t) has no
precedence relation with i and thus wj(i, s, t) part of j must be executed in the
time interval [s, t]. The total energy W (i , s, t) must then be executed in [s, t] in
any feasible schedule. Since ∆(i, s, t) > 0, no feasible schedule exists, the result.

Property 2. Let us consider a task i ∈ T and two values s and t such that
ri ≤ s ≤ di ≤ t. If ∆(i, s, t) > 0 and S(i, s, t) 6= ∅, then in any feasible schedule,
the completion time Ci of i verifies the inequality

Ci ≤ t−
⌈

W (i , s, t)

m

⌉
. (4)

Proof. The part wj(i, s, t) of any task j ∈ S(i, s, t) must be executed before time
t and after the end of i. Otherwise, if j ∈ I(i, s, t), wj(i, s, t) is the part of j
that must be executed between s and t. Since W (i , s, t) > 0 , the only way to
execute these tasks is to decrease the completion time Ci of i in order to fit tasks
from T(i, s, t) between Ci and t, thus the completion time Ci of i must verify
equation (4).
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3.2 Description of the eGJ algorithm

The eGJ algorithm takes as input an instance (T ,G,m, r, d) of the problem and
outputs either a set of modified deadlines d∗ = (d?i )i∈T that should be fulfilled
by any feasible schedule, or indicates that no feasible schedule exists, based on
the conditions expressed in Properties 1 and 2.

Triples (i, s, t) are enumerated in a way that will be described below, and at
each step if ∆(i, s, t) > 0 then it either results in an infeasibility or defines a
modification of the deadline of i based on the inequality (4):

di ← t−
⌈

W (i , s, t)

m

⌉
Once a modification of di occurs, the algorithm propagates the modification

to the nodes of Γ−?(i) using Propagate(i, d).
Not all possible triples (i, s, t) following inequality (3) need to be considered;

Hanen and Munier [16], inspired by Carlier et al. [7] show that the slack ∆(i, s, t)
has a local maxima only at the dominant triples with the forms (i, rj , dk),
(i, di, dk), (i, rk+dk−dj , dk), (i, di, rk+dk−di) with di > rk or (i, rj , rk+dk−rj)
with rj > rk.

For a current deadline vector d, we denote by R(d) the set of values t such
that there exists a dominant triple (i, s, t). If t ∈ R(d), we denote by Xt(d)
the set of tasks i such that there exists a dominant triple (i, s, t). Finally, for
t ∈ R(d), and i ∈ Xt(d) we denote by Li,t(d) the set of values s, such that (i, s, t)
is a dominant triple.

Algorithm 1 enumerates the dominant triples in three nested loops. The outer
loop enumerates t in decreasing order by maintaining a sorted list R correspond-
ing to the set {τ ∈ R(d), τ < t}. The intermediate loop browses elements i of
a list X corresponding to the set Xt(d) in decreasing order of deadlines, and
the inner loop browses elements s of a list L corresponding to the set Li,t(d) in
increasing order. At each iteration, ∆(i, s, t) is computed and either a contradic-
tion is found, or di is updated and propagated. Ordered lists X and R are then
updated.

3.3 Complexity analysis of eGJ

The next lemma will be later used to bound the number of iterations of the outer
loop.

Lemma 1. Consider an iteration t of the outer loop for which at the beginning
of the iteration at least one task k satisfies t = dk. At the end of this iteration,
either infeasibility is detected or there is at least one task removed from X in
line 16.

Proof. Let us suppose by contradiction that at iteration t = di for i ∈ X, no
infeasibility is detected and no task is removed from X. If di is modified with
an interval [s, t], then ∆(i, s, t) > 0 and according to the propagation at each
step, any task j ∈ Γ+?(i) satisfies dj − pj ≥ di = t, so S(i, s, t) = ∅. Following
Property 1, the algorithm returns infeasibility (the contradiction).
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Algorithm 1 eGJ algorithm

Require: A precedence graph G, release dates vector r, deadline vector d, processing
times vector p and m identical processors

Ensure: Modified deadlines vector d? or infeasibility
1: dmax = maxi∈T di,
2: R = R(dmax) in decreasing order, X = Xdmax(d) in decreasing order
3: while R 6= ∅ and X 6= ∅ do
4: t = first element of R, remove t from R
5: for all i ∈ X do
6: L = Li,t(d) in increasing order
7: repeat
8: s = first element of L, remove s from L
9: if ∆(i, s, t) > 0 then

10: Update di or return false (infeasibility) per Properties 1, 2
11: d = Propagate(i, d), return false if inconsistency with release times.
12: Update R (sorted list of {τ < t, τ ∈ R(d)})
13: end if
14: until s ≥ di
15: end for
16: Remove from X the tasks j for which dj = t
17: end while
18: return d? = (di)i∈T

The next lemma is an outcome of Lemma 1 that bounds the number of
iterations of the outer loop of Algorithm 1.

Lemma 2. The successive values of t are strictly decreasing. Moreover, the total
number of these successive values belongs to O(n2).

Proof. At the initialization step, all the values of R are different. At line 12, R
is updated with a list of values strictly less than t, thus the successive values of
t are strictly decreasing. Let us consider now all the possible successive values
for t:

– If t = dk, then following Lemma 1, at least one task i is removed from X.
Thus, there are at most n iterations in this case.

– Now, if t = rk + dk − di with di > rk, then dk > t and thus will not be
later modified by the algorithm. Moreover, if di is decreased to d′i, t

′ =
rk + dk − d′i > t and thus will not be considered after t. There are then at
most n2 iterations in this case.

– Lastly, if t = rk + dk − rj with rj > rk, then dk > t and will also not be
decreased further. There are also n2 iterations in this case.

We deduce that the number of the successive values of t belongs to O(n2), which
concludes the lemma.

Theorem 1. Algorithm eGJ is in time O(n5 log(n)).
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Proof. For a fixed task i ∈ X, the execution time of the inner loop belongs
to O(n2 log n). Indeed, there are O(n2) values of s that must be sorted (in
time O(n2 log(n)). The time of the computation of the slack is in O(n). The
modification of di and the propagation happen only once per iteration on i; the
next value of di is less than s and thus the inner loop on s ends. So the time
complexity of this modification and propagation is O(n). Lastly, updating of the
sorted list R is O(n2 log(n)).

Now, the size of X is bounded by n, while by Lemma 2, the total number of
iterations of the outer loop belongs to O(n2), thus the theorem is proved.

The tightness of this bound is not proved. We will show in Section 6 that the
experimental complexity of this algorithm is much smaller.

3.4 Strong form of eGJ

The deadline reduction can be strengthened by considering for any valid triple
(i, s, t) a new slack ∆(i, s, t) assuming i is right shifted ie. i ends exactly at its
deadline:

∆(i, s, t) = min(pi, di − s) +
∑

j∈T(i,s,t)

wj(i, s, t)−m(t− s) (5)

Now assume that ∆(i, s, t) ≤ 0 and ∆(i, s, t) > 0. In any feasible schedule

the completion time of i satisfies Ci − s+
∑

j∈T(i,s,t)

wj(i, s, t) ≤ m(t− s) so that

Ci ≤ s+ min(pi, di − s)−∆(i, s, t). (6)

The deadline of i can thus be reduced to the right term of equation (6). This
condition can be inserted in Algorithm 1. We add to the inner loop (line 13) the
following pseudo-code in the case where ∆(i, s, t) ≤ 0 and ∆((i, s, t) > 0:

Algorithm 2 s-eGJ pseudo code to be inserted in Algorithm 1

1: Modify di according to (6)
2: d=Propagate(i, d), return false if inconsistency
3: if not resultP then
4: return false
5: end if
6: update L

The arguments stated in Lemma 1 do not apply in this case; instead, all
possible values of 0 ≤ t ≤ dmax might be considered in the outer loop without
updating R at each modification of deadlines, which would lead to a pseudo-
polynomial complexity.
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Theorem 2. The complexity of strong form of eGJ can be pseudo-polynomially
bounded by O(dmax min(dmax, n

2).n3 log(n)).

Proof. Unlike the weak form of eGJ, after a strong modification, the inner loop
does not end and L must be updated to include new values s′ greater than the
current s, but still lower than di. Updating and sorting L after a modification of
a deadline and its propagation can be done in O(n2 log(n)) since only the form
rk +dk−dj , with t = dk is concerned. In the intermediate loop on i, the number
of updates of di is bounded by its margin di − ri and by the maximum number
O(n2) of elements in L. Let us define ρ = min(maxi∈T (di−ri), n2). In the worst
case the inner loop has a complexity O(ρn2 log(n)). So, there are O(n) iterations
in the intermediate loop, and finally, if all possible values of t are considered,
the outer loop has O(dmax) iterations.

3.5 eGJ and energetic reasoning

Energetic reasoning, when used to check feasibility in problems without prece-
dence,tests the energy in intervals which are also considered by the eGJ algo-
rithm. So eGJ dominates energetic reasoning, by considering precedence con-
straints and making iterative adjustments. Adjustments in usual energetic rea-
soning use the same ideas as in strong eGJ, but again, considering successors and
fixed points lead theoretically to lower deadlines. On another hand, Laborie [21]
proposes an adjustment of deadlines method that measures the energy used by
the successors of each task i to define a bound on its completion time. The eGJ
algorithm uses stronger conditions by also considering tasks independent from i
in the energy measure. Moroeover, adjustments are iterated.

4 Extension of the Leung Palem and Pnueli Algorithm

This section is devoted to the description of two extended forms of the Leung,
Palem and Pnueli algorithm [23] for tasks with different execution times. Subsec-
tion 4.1 presents a general possible extension of this algorithm (eLPP in short),
based on an optimization scheduling problem BackwardSchedule. Two im-
plementations are then discussed. In Subsection 4.2, this problem is relaxed to
obtain a polynomial time algorithm while an exact pseudo-polynomial time al-
gorithm is presented is Subsection 4.3.

4.1 Description of the eLPP algorithm

For any task i ∈ T , we note Indep(i) the set of tasks j ∈ T such that i 6→ j and
j 6→ i. We set also Ti = Γ+?(i)∪ Indep(i). Consider release and deadline vectors
r and d and a task i ∈ T . For any value t ∈ {ri, . . . , di − pi} corresponding to
a possible starting time of i, we define t-dependent temporary release dates and
deadlines for tasks in Ti ∪ {i} as:

r̂j(t) =


max{rj , t+ `?ij} if j ∈ Γ+?(i)
t if i = j
rj if j ∈ Indep(i)

and d̂j(t) =

{
dj if j ∈ Ti
t+ pi if j = i.
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Consider a function Existence(i, t, r, d) which checks the feasibility of the pre-
emptive relaxation of the problem for tasks in Ti ∪ {i} with release dates r̂(t),

due dates d̂(t) and the m machine constraint. In a preemptive schedule each
task might be interrupted and resumed on different machines.

Existence(i, t, r, d)
Input: A task i ∈ T , release dates and deadlines vectors r and d, and

t ∈ {ri, . . . , di − pi}.
Question: Is there a feasible preemptive schedule of tasks from Ti ∪ {i}

meeting the release dates r̂(t) and the deadlines d̂(t)?

This decision problem belongs to the class P |ri, di, pmtn|?. As shown by
Martel [25], it can be transformed polynomially into a network flow problem
and thus polynomially solved using a classical maximum-flow algorithm [14].

Let us now define the function BackwardSchedule(i, r, d) that returns the
maximum value t? ∈ {ri, . . . , di − pi} such that Existence(i, t?, r, d) is true. If
such a value exists, t? + pi is an upper bound of the completion time of i in
any feasible schedule of the initial scheduling problem. Otherwise, no feasible
schedule exists and the function returns false. We will discuss in the following
several implementations of this function.

Algorithm 3 presents the extended version of the LPP algorithm. Tasks are
first sorted by decreasing release date. Deadlines of the tasks are then improved
iteratively in this order using the previous function BackwardSchedule. The
calls to Propagate maintain consistent deadlines considering precedence con-
straints.

Algorithm 3 eLPP algorithm

Require: A precedence graph G, release dates r, deadline d, processing times p and
m identical processors

Ensure: Modified deadlines d? or infeasibility
1: Adjust all ri in topological order to reflect precedence
2: Adjust all di in reverse topological order to reflect precedence
3: Renumber tasks such that r1 ≥ r2 ≥ . . . ≥ rn
4: for i = 1 to n do
5: resultB=BackwardSchedule(i, r, d)
6: if not resultB then
7: return false
8: end if
9: di =resultB

10: d =Propagate(i, d), return false if inconsistency with release times
11: end for
12: return d∗ = (di)i∈T

The main problem addressed below is that no usual binary search on t
can be considered to solve BackwardSchedule because of the resource con-
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straint for the task i. Indeed, a binary search can be considered to compute
t? if Existence(i, t, r, d) = true for each value t ∈ {ri, . . . t?}, and Exis-
tence(i, t, r, d) = false for each value t ∈ {t? + 1, . . . di − pi}. This property
on t? is not verified.

Then, a simple approach to solve the optimization problem Backward-
Schedule would be to start with t = di − pi and check each integer value in
decreasing order until Existence(i, t, r, d) is true. The number of steps would
then be not polynomially bounded. Two implementations of BackwardSched-
ule were developed in the following to cope with this problem.

4.2 Weak eLPP algorithm

The simplest way to speed-up the time complexity of the eLPP algorithm is
to limit the function Existence to tasks from Ti instead of Ti ∪ {i}. Indeed,
if the task i is removed, the problem Existence(i, t, r, d) is more constrained
when t increases, and thus a binary search on t can be considered to implement
BackwardSchedule. The complexity of the deadlines reduction algorithm is
in polynomial time in this case as proven in Theorem 3. However, the deadlines
obtained might be greater than the ones given by Algorithm 3.

Theorem 3. The weak eLPP algorithm is in time O(n4×maxi∈T log(di− pi−
ri)).

Proof. For each task i ∈ T and any value t ∈ {ri, . . . , di−pi}, the time complex-

ity for the computations of the vectors r̂ and d̂ is O(n2). The number of nodes
(resp. arcs) of the graph associated with the flow problem belongs to O(n) (resp.
O(n2)) [25]. The time complexity of the flow algorithm is in O(n3) using a push-
relabel algorithm with a FIFO vertex selection rule [14]. As t? is computed using
a binary search in the time interval {ri, . . . , di−pi}, we conclude that the overall
time complexity of weak eLPP algorithm is O(n4 × maxi∈T log(di − pi − ri)),
proving the theorem.

4.3 Strong eLPP algorithm

The purpose of the strong version of eLPP is to develop an implementation
of Algorithm 3 that is faster but remains exact. Let us consider the relaxed
decision problem ExistenceR(i, u, v, r, d) defined as follows which dissociates
the parameters for the computation of the release dates and deadlines:

ExistenceR(i, u, v, r, d)
Input: A task i ∈ T , release dates and deadlines vectors r and d, and a

pair of values (u, v) ∈ {ri, . . . , di − pi}2 with u ≥ v.
Question: Is there a feasible preemptive schedule of tasks from Ti ∪ {i}

meeting the release dates r̂(v) and the deadlines d̂(u)?

This decision problem also belongs to the class P |ri, di, pmtn|?. Thus, as for
Existence it can be solved using Martel’s transformation [25] to a network flow
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problem coupled with a classical maximum-flow algorithm [14]. We can also note
that Existence is a special case of ExistenceR for which t = u = v.

Now, let us define the function BackwardScheduleR(i, u, r, d) with u ∈
{ri, . . . , di − pi} that returns the maximum value v? ∈ {ri, . . . , u} such that
ExistenceR(i, u, v?, r, d) is true if any, and false otherwise. Observe that, for
any (v, v′) ∈ {ri, . . . , di − pi}2 with v < v′, ExistenceR(i, u, v, r, d) is less
constrained than ExistenceR(i, u, v′, r, d). Thus, if ExistenceR(i, u, v′, r, d) =
true, then so is ExistenceR(i, u, v, r, d) and a binary search can be considered
to solve BackwardScheduleR.

The remaining problem is then to find the maximal fixed point of Back-
wardScheduleR, that is, u? such that u? = BackwardScheduleR(i, u?, r, d).
The next lemma establishes the relationship between BackwardScheduleR
and BackwardSchedule.

Lemma 3. For any task i ∈ T , release dates and deadlines vectors r and d,
the value u? = BackwardScheduleR(i, u?, r, d) exists if and only if the value
t? =BackwardSchedule(i, r, d) exists. Moreover, u? = t?.

Proof. Assume first that u? exists; then ExistenceR(i, u?, u?, r, d) = true and
thus Existence(i, u?, r, d) = true. BackwardSchedule(i, r, d) then returns
an optimal value t? ≥ u?. Conversely, let us suppose that t? exists; then Exis-
tence(i, t?, r, d) = true. The consequence is that ExistenceR(i, t?, t?, r, d) =
true, thus u? exists and t? ≤ u?.

The following lemma shows an important property of the function Back-
wardScheduleR.

Lemma 4. Let us consider i ∈ T , release dates and deadlines vectors r and d.
For u ∈ {ri, . . . , di − pi}, the function u →BackwardScheduleR(i, u, r, d) is
non decreasing (if it returns an integer).

Proof. Assume that u and u′ are two integers in {ri, . . . , di − pi} with u′ < u.
If BackwardScheduleR(i, u′, r, d) = v′ ∈ {ri, . . . , u′}, then we get Exis-
tenceR(i, u′, v′, r, d) = true. Since u′ < u, ExistenceR(i, u, v′, r, d) = true
and v′ ≤ u′ < u. Thus, BackwardScheduleR(i, u, r, d) exists and v′ ≤ v.

We now show how to compute the value u?. This can be done by computing
a sequence of upper bounds uβ , β ≥ 0 of u? that converges to u?. Indeed, let us
consider the sequence of integers uβ defined as:

1. u0 = di − pi;
2. For any β > 0, uβ =BackwardScheduleR(i, uβ−1, r, d).

The next theorem shows the convergence of this sequence to t?.

Theorem 4. If t? exists, the sequence uβ tends to t? (ie. there exists β? ∈ N
such that uβ? = t?).



Two Deadline Reduction Algorithms 13

Proof. We first prove that, for any value β ∈ N, uβ = t? or u0 > u1 > . . . > uβ ≥
t?. Indeed, u0 = di − pi ≥ t?. Now, let us suppose by recurrence that u0 > u1 >
. . . > uβ ≥ t? for β ≥ 1. By Lemma 4, the function BackwardScheduleR is
non decreasing with respect to u, thus since uβ−1 > uβ , we get uβ ≥ uβ+1.

1. If uβ = uβ+1, then by definition of u?, uβ = u? = uβ+1 and thus by Lemma 3,
uβ+1 = t?;

2. Let us suppose now that uβ > uβ+1. Then, since uβ > t?, we get by Lemma 4
that uβ+1 ≥ t?.

Lastly, since the sequence uβ is strictly decreasing until it reaches t?, there exists
a minimum integer β? such that uβ? = t?, and the theorem is proved.

The implementation of BackwardSchedule based on BackwardSched-
uleR simply consists of computing the sequence uβ until a fixed point is reached.
Alas, we do not have any polynomial upper bound of the time complexity of this
algorithm.

Theorem 5. The strong eLPP algorithm is in time O(n4×maxi∈T (di−pi−ri)).

Proof. For each task i ∈ T , the number of executions of BackwardScheduleR
is bounded by di − pi − ri to compute t?. Following the same arguments as the
proof of Theorem 3, we get the upper bound of the time complexity.

5 Data generation for tests

This section describes the testing procedure of the four algorithms eGJ and eLPP
in their strong and weak forms. Subsection 5.1 presents the algorithm considered
to build the instances of the scheduling problem P |prec, ri, di|?, while Subsec-
tion 5.2 explains how the parameters were chosen to get significant instances.
The minimal consistent date of an algorithm is introduced in Subsection 5.3 to
compare the performances of the algorithms, followed by the experiment condi-
tions.

5.1 Description of the instances

The parameters considered for the instances description are the number of tasks
n, the number of machines m, the maximum processing time pmax, the proba-
bility of arc creation p, and the upper limit ∆ for release dates and tails.

Recall that the tail qi of a task i is the minimum length between the end of
the task i and the end of the schedule, ie. Ci + qi ≤ C. Once a lower bound C−

of the makespan is fixed, we set di = C− − qi for each task i ∈ T .
Algorithm 4 generates a random instance I of P |prec, ri, di|?. Lines 1−2 build

a directed acyclic graph G from a random non directed graph H = Gn,p [11].
Edges of H are then transformed into arcs of G by setting the arc a = (i, j) if
e = {i, j} with i < j. Lines 3 − 4 randomly generate p, r and q, while line 5
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adjusts r and q such that, for each task i, ri = max(ri,maxj∈Γ−(i)(rj + pj))
and qi = max(qi,maxj∈Γ+(i)(qj + pj)). List scheduling via Earliest Due Date,
constrained to respect precedence, is considered in line 6 to generate an upper
bound C+ of the makespan for precedence and resource constraints.

For a fixed value of the makespan C, the instance can be relaxed to an
instance of P |ri, di|? by ignoring precedence relations and allowing preemption.
As noted above, this last problem can be transformed into a flow problem using
the Martel’s transformation [25] and thus solved with a classical maximum-flow
algorithm [14]. A lower bound C− of the initial problem is then obtained using
a binary search on C at line 7.

We observe that if C+ = C−, the list schedule is optimal, and thus the
instance is discarded for our testing. Otherwise, the deadlines are deduced from
C− and q at line 11.

Algorithm 4 Generation of a random instance I of P |prec, ri, di|?
Require: Positive integers n, m, pmax, p and ∆
Ensure: An instance I of P |prec, ri, di|?
1: Construct a (non oriented) graph H = Gn,p [11]
2: Build a precedence graph G by transforming each edge e = {i, j} of the graph
H = ({1, . . . , n}, E) with i < j to an arc (i, j) of G = ({1, . . . , n},A)

3: Generate random values of pi in [1, pmax] for i ∈ {1, . . . , n}
4: Generate random values of ri and qi in [1,∆] for i ∈ {1, . . . , n}
5: Adjust r and q to account for precedence
6: Run list scheduling algorithm to get upper bound on optimal makespan, C+

7: Perform a binary search on the problem without precedence relations and allowing
preemption, C−

8: if C+ = C− then
9: return false

10: end if
11: For each task i ∈ {1, . . . , n} set di = C− − qi
12: return I = (G, p, r, d)

5.2 Choice of parameters

Parameters for the experiments were fixed to keep the problem size manageable
and to generate non trivial comparable instances with respect to the deadline
reduction measures.

The number of tasks n varied from 10 to 50, while pmax ∈ [1, 5]. High values
of m make the problem trivial, thus we set m ∈ [1, 3]. The probability of arc
creation p was fixed to 0.2 to get precedence graphs with a reasonable amount
of connectedness. We generated 10 instances for each combination of input pa-
rameters.
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The remaining parameter is ∆, the maximum value of ri and qi. To fix
this parameter we first studied its influence on the parallelism of the instance,
measured by the pathwidth.

The pathwidth pw of an instance I is the maximum number of tasks that can
be executed simultaneously considering only release dates and deadlines. This
measure was introduced by Munier [26] as the parameter of a fixed-parameter
algorithm for P |prec, ri, di = D, pi = 1|Cmax.

The relationship between the pathwidth of the generated instances and ∆ is
not straightforward. For each value of n, the pathwidth is highest when ∆ = 0
(in this case, release dates and deadlines are only defined by the precedence rela-
tions) and decreases as ∆ increases, eventually stabilizing at a roughly constant
level. By trial and error, we discovered that pw

n is a piecewise linear function of
m3

n ∆, with only two thresholds as shown in Figure 2. The values of the thresh-
olds for ∆ are approximately b n

2m3 c, b nm3 c. By choosing ∆ ∈ {0, b n
2m3 c, b nm3 c} ,

we allow a maximum amount of pathwidth variation in the input instances to
be captured.

Fig. 2: Variation of pathwidth by ∆ and n

5.3 Minimal consistent dates and testing procedure

The aim of our experiments was to compare the strong and the weak versions of
the eGJ and eLPP algorithms. For this purpose, we defined for each instance I
and each algorithm A, the value δ?A(I) ∈ Z which is the smallest value such that
the algorithm A does not detect infeasibility if, for each task i ∈ T , di + δ?A(I)
is used as the deadline.
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For any instance I, the values δ?A(I) and δ?A′(I) can be considered as a
performance measure of algorithms A and A′. Indeed, if δ?A(I) > δ?A′(I), then A
detects an infeasibility for d+ δA′(I), and thus A beats A′.

For each couple (A, I), this value can be found by binary search. The lower-
bound in the beginning of the binary search is given by solving the preemptive
relaxation of I with no precedence constraints. An upper bound can be computed
using an Earliest Due Date priority list scheduling algorithm, constrained to
respect precedence. For each problem instance I generated, this binary search
to find δ?A(I) ∈ Z was applied using each algorithm (eLPP and eGJ, weak and
strong forms) ie. for A ∈ {s-eGJ, s-eLPP,w-eGJ,w-eLPP}.

The algorithms were implemented using Python 3.7.6 coupled with the pack-
ages numpy 1.18.1 and networkX 2.4. All our experiments were performed on an
Acer Swift SF314-41 composed of an AMD Ryzen 5 3500U running at 2.1Ghz
with 4 cores, 8 Logical Processors and 8MB RAM.

6 Experiments

This section is devoted to the description of our experiments’ results. Subsec-
tion 6.1 motivates in an experimental sense the choice of the shortest augment-
ing path flow algorithm [10] with an initial flow built using Jackson’s preemptive
algorithm [20] to solve the two problems Existence and ExistenceR. Subsec-
tion 6.2 compares the running times of our four algorithms, while Subsection 6.3
deals with their output analysis.

6.1 eLPP efficiency choices

Before beginning comparison of the algorithms, the choice of the maximum flow
algorithm is discussed to find the most efficient implementation for the problems
Existence and ExistenceR. As expected, this function took up the majority
(98%) of eLPP runtime, so these choices had significant impact on time com-
plexity.

Three maximum flow algorithms were considered: preflow push [13], shortest
augmenting path [10], and Edmonds Karp [10]. Shortest augmenting path had
the best performance on this dataset; preflow push and Edmonds Karp took
longer by 11% and 9% respectively. The gap widened as n increased in both
cases; however, for preflow push it narrowed as m increased, indicating that this
may be more suitable for m > 3.

An initial solution attempt was constructed by using Jackson’s preemptive
schedule [20]. This was tested against the basic approach on randomly generated
data (Figure 3) with n extended up to 100 to more accurately assess complexity.
On average, the runtime of Existence and ExistenceR was reduced by 47%,
and the complexity, determined by a log-log regression of runtime against n, was
reduced from O(n2) to O(n1.6).

In practice in the e-LPP tests, runtime was reduced by 36%. In 2% of calls
to the function, a solution was found immediately by Jackson’s preemptive al-
gorithm [20] so that the maximum flow algorithm was bypassed.
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Fig. 3: ExistenceR runtime with and without an initial solution following the
number of tasks

In the following, s-eLPP (resp. w-eLPP) was therefore implemented with
ExistenceR (resp. Existence) using a shortest augmenting path algorithm
supplied with an initial flow.

6.2 Complexity analysis

Here the runtime of each of the four algorithms is compared, as well as how they
change with each of the problem parameters.

As shown in Figure 4, up to n = 30, eGJ performed similarly to eLPP,
but eLPP was faster for higher values of n. The weak version of eGJ made no
appreciable difference to the speed, but for eLPP the weak version was faster
about 33% on average.

The runtime for each problem instance was regressed against n, m, pmax,
pw
n and the choice of algorithm. The runtime and number of tasks were both

log transformed to help meet the model assumptions and identify the order of
complexity. 95% of the variation in runtime was able to be explained by these
variables. The results were as follows:

– Though neither strong form is proven to be polynomial, in practice both eGJ
forms were about O(n3.4), while the eLPP forms were about On2.8).

– Increasing m by 1 resulted in a 38% decrease in runtime for eGJ, and a 30%
decrease for eLPP.

– Increasing pmax by 1 increased runtime by 26% for eGJ, and 18% for eLPP.
– Increasing pathwidth by n

10 increased runtime by 2% for eGJ, and 9% for
eLPP.

As far as speed is concerned, eLPP is clearly the stronger option. It was also
less sensitive to increases in most of the parameters, so the trend can be expected
to continue beyond the range tested. The usefulness of the weak form of eLPP
depends on the results of the following section.
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Fig. 4: Comparison of algorithm runtimes following the number of tasks

6.3 Output analysis

If we compare the results of the strong forms s-eGJ vs. s-eLPP, in all but 0.2%
of problem instances, the final δ?A values matched; in 96%, each individual date
matched as well. Most of the 4% mismatches were due to one or two slightly
higher s-eLPP deadlines. Even when the dates did not match, the differences
were few and small, and overall, the s-eGJ dates dominated a majority of the
time (but not all the time). When n = 50, neither algorithm has a significant
advantage over the other in terms of date reduction.

The weak forms w-eGJ and w-eLPP had a δ?A value that was 1 lower in
about 1% of cases for each compared with the respective strong forms s-eGJ
and s-eLPP. This decreased with n and increased with ∆. Only 55% of the final
deadlines matched their strong counterparts. The difference between the dates
produced was often in several tasks and with values larger than 1.

Four metrics, defined below, were calculated for each instance and averaged
across all instances.

Percentage of modified instances a 0/1 flag indicates whether any date was
modified in an instance;

Percentage of modified tasks the proportion of individual deadline values
modified;

Interval shrinkage the reduction as a proportion of the available intervals, so

1−
∑n

i=1(d̃i−r̃i)∑n
i=1(di−ri)

where r, d are the initial dates and d̃, r̃ the final dates;

Pathwidth reduction the reduction in pathwidth pw as a percentage of the
original.

Table 1 summarises the metrics discussed above by algorithm, across all
test instances. As the previous results suggested, the strong forms were nearly
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identical. The amount of reduction made by the weak forms was slightly less,
though the number of modified dates was similar.

Table 1: Date modifications across all tests

s-eGJ s-eLPP w-eGJ w-eLPP
% instances modified 81% 81% 79% 79%
% tasks modified 34.2% 34.1% 32.4% 32.4%
Interval shrinkage 12.0% 12.0% 9.4% 9.5%
Pathwidth reduction 8.9% 8.9% 7.2% 7.2%

Reductions improved with n for all algorithms; Table 2 shows the same statis-
tics when n = 50. Dates were also reduced more with smaller m, and with larger
pathwidth pw (as a proportion of n). In particular, the interval shrinkage was
approximately halved with each addition of a machine. The gap between the
weak and strong forms narrowed slightly as n increased.

Table 2: Date modifications for n = 50

s-eGJ s-eLPP w-eGJ w-eLPP
% instances modified 98% 98% 97% 97%
% tasks modified 52.8% 52.9% 52.1% 52.2%
Interval shrinkage 18.7% 18.8% 16.9% 16.9%
Pathwidth reduction 13.6% 13.6% 12.9% 12.9%

With such little difference between the outputs of the strong forms, eLPP
maintains its advantage from the runtime results. The weak form offers a trade-
off; while it is considerably faster, less reduction is performed. It may be useful in
time-sensitive contexts where incremental reductions are relatively less valuable,
particularly if n is large.

7 Conclusions

We developed in this paper several extensions of the GJ and the LPP algorithms
to handle tasks with different processing times and precedence relations. The
aim here was to evaluate whether considering at the same time precedence and
resource constraints in deadline reduction algorithm was an interesting approach.

Two versions of each algorithm was developed: the weak ones (of polyno-
mial time complexity), and the strong ones (non polynomially time bounded
complexity). The strong version of the two extensions improves slightly the re-
sults, with experimentally the same complexity as their weak counterpart. As
the LPP extensions outperforms the GJ ones in terms of theoretical as well as
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experimental complexity, it should be preferred. However, their time complexity
remains still large, and further improvement should be investigated, inspired by
the recent improvements of the computational complexity of energetic reasoning
for problems without precedence constraints [3,27].

Our approach that embeds precedence and resources should be experimen-
tally compared to a process of usual precedence relaxation to compute reduced
deadlines followed by precedence propagation, repeated iteratively. An interest-
ing further study would compare the results of several interval reduction tech-
niques, in particular the one proposed by Haouari et al. [18,19].

Most of the algorithms that have been proposed for problems with parallel
processors extend quite naturally to cumulative resources. The extension of eGJ
and eLPP to such problems might be easier for eGJ.

Finally, the aim of the algorithms presented in this paper is to improve the
efficiency of either branch and bound or constraint programming algorithms.
This should be experimentally investigated in subsequent research.
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19. Haouari, M., Kooli, A., Néron, E., Carlier, J.: A preemptive bound for the resource
constrained project scheduling problem. J. Sched. 17(3), 237–248 (2014)

20. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness. man-
agement science research project (1955)

21. Laborie, P.: Algorithms for propagating resource constraints in AI planning and
scheduling: Existing approaches and new results. Artif. Intell. 143(2), 151–188
(2003)

22. Laborie, P., Nuijten, W.: Constraint Programming Formulations and Propagation
Algorithms, chap. 4, pp. 63–72. John Wiley & Sons, Ltd (2008)

23. Leung, A., Palem, K.V., Pnueli, A.: Scheduling time-constrained instructions on
pipelined processors. ACM Trans. Program. Lang. Syst. 23, 73–103 (January 2001)

24. Lombardi, M., Milano, M.: Optimal methods for resource allocation and scheduling:
a cross-disciplinary survey. Constraints An Int. J. 17(1), 51–85 (2012)

25. Martel, C.: Preemptive scheduling with release times, deadlines, and due times.
Journal of the Association of Computing Machinery 29(3), 812–829 (Jul 1982)

26. Munier Kordon, A.: A fixed-parameter algorithm for scheduling unit dependent
tasks on parallel machines with time windows. Discrete Applied Mathematics 290,
1 – 6 (2021)

27. Ouellet, Y., Quimper, C.: A O(n log2 n) checker and O(n2 logn) filtering algorithm
for the energetic reasoning. In: van Hoeve, W.J. (ed.) CPAIOR 2018, Delft, The
Netherlands, June 26-29. Lecture Notes in Computer Science, vol. 10848, pp. 477–
494. Springer (2018)

28. Tesch, A.: Improving energetic propagations for cumulative scheduling. In: Hooker,
J.N. (ed.) CP 2018, Lille, France, August 27-31. Lecture Notes in Computer Sci-
ence, vol. 11008, pp. 629–645. Springer (2018)

29. Ullman, J.: NP-complete scheduling problems. J. Comput. System Sci. 10, 384–393
(1975)


	Two Deadline Reduction Algorithms for Scheduling Dependent Tasks on Parallel Processors

