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 concerning homogeneous multipliers of degree zero. We further generalize the result of Kazaniecki and Wojciechowski. We prove that, given an integer l ≥ 1, every multiplier on Ẇ l,1 R d or on Ẇ l,∞ R d is a bounded continuous function on R d . We obtain these results via a substantial simplification of the Riesz products technique used by Kazaniecki and Wojciechowski.

Introduction

In this paper, we study the continuity properties of functions which are Fourier multipliers on the homogeneous Sobolev spaces Ẇ l,1 R d and Ẇ l,∞ R d , where l ≥ 1 is an arbitrary integer.

Given a nonnegative integer l and a parameter 1 ≤ p ≤ ∞, the space Ẇ l,p R d consists of those distributions f on R d for which ∇ l f ∈ L p R d . This space is endowed with the seminorm given by

f Ẇ l,p (R d ) = ∇ l f L p (R d ) = max α∈N d ,|α|=l ∇ α f L p (R d ) .
Given a function m ∈ L 1 loc (R d ), we say that m is a Fourier multiplier on Ẇ l,p R d if, for each Schwartz function f ∈ S(R d ) the distribution m f is tempered and if, in addition, the following estimate holds:

T m f Ẇ l,p ≤ C f Ẇ l,p , ∀ f ∈ S(R d ), (1) 
for some constant C < ∞, where T m is defined by the relation

T m f = m f , ∀ f ∈ S(R d ).
The least constant C in the above inequality will be called the norm of m and will be denoted by T m (which is a quantity depending on p and l).

The Fourier transform that we work with is given by the following formula

f (ξ) := R d e -i x,ξ f (x)dx, ∀ f ∈ S(R d ).
Some classical examples of multipliers on Ẇ l,p R d in the case 1 < p < ∞ (for any l), are the functions m j (ξ) := iξ j / |ξ|, defined for ξ ∈ R d \ {0} and any j = 1, 2, ..., d. In this case we have T m j = R j , where R 1 , ..., R d are the Riesz transforms on R d . Let us observe that the functions m j are homogeneous of degree zero, i.e., m j (λξ) = m j (ξ), for all ξ ∈ R d \ {0} and any λ > 0. Also, m j are not continuous at zero. If p = 1, the situation is different. When l = 0, the m j 's fail to be multipliers on Ẇ 0,1 R d = L 1 R d , since the R j 's are not bounded on L 1 R d . In fact, if m is a multiplier on L 1 R d , then it is easy to see that m is the Fourier transform of a finite measure and hence m ∈ C b R d . The case of the multipliers on L ∞ R d is similar. Suppose d ≥ 2. Then there exist Fourier multipliers on Ẇ 1,1 R d which are not Fourier transforms of finite measures (see [START_REF] Poornima | On the Sobolev spaces W k,1 R d . Harmonic analysis[END_REF]Proposition 2.2]). In fact, the proof in [START_REF] Poornima | On the Sobolev spaces W k,1 R d . Harmonic analysis[END_REF] concerning Ẇ l,1 R d applies to all the spaces Ẇ l,p R d , with l ≥ 1 and 1 ≤ p ≤ ∞.

Let us illustrate this when d = 2 and l = 1, via a simple example from [START_REF] Poornima | On the Sobolev spaces W k,1 R d . Harmonic analysis[END_REF]. As a consequence of Ornstein's L 1 non-inequality (see [START_REF] Ornstein | A non-inequality for differential operators in the L1 norm[END_REF]), there exists a distribution u, supported in the unit ball, such that ∂ 2 1 u, ∂ 2 2 u are L 1 functions on R 2 and ∂ 1 ∂ 2 u is not a finite measure. We define m := ∂ 1 ∂ 2 u. Clearly, m is not the Fourier transform of a finite measure, however m is a multiplier on Ẇ 1,p (R 2 ) for all 1 ≤ p ≤ ∞. Indeed,

T m f = ∂ 1 ∂ 2 u * f ,
for any Schwartz function f .

Hence, ∇T m f = ∂ 2 1 u * ∂ 2 f, ∂ 2 2 u * ∂ 1 f and thus, by Young's inequality,

∇T m f L p ≤ ∂ 2 1 u L 1 ∂ 2 f L p + ∂ 2 2 u L 1 ∂ 1 f L p = ∂ 2 1 u L 1 + ∂ 2 2 u L 1 ∇f L p .
Using Ornstein's L 1 non-inequality, Bonami and Poornima proved in 1987 that the only Fourier multipliers on Ẇ l,1 R d which are homogeneous functions of degree zero and continuous outside the origin are the constant functions. More precisely, they proved the following (see [START_REF] Bonami | Nonmultipliers of the Sobolev spaces W k,1 R d[END_REF]Theorem 2]).

Theorem 1 Suppose d ≥ 2, l ≥ 1 are two integers and let Ω be a continuous function on R d \ {0}, homogeneous of degree zero. If Ω is a Fourier multiplier on Ẇ l,1 R d , then Ω is a constant.

When l = 1, this result was generalized by Kazaniecki and Wojciechowski in 2013 as follows (see [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF]Theorem 1.1]).

Theorem 2 Suppose d ≥ 2. If m is a Fourier multiplier on Ẇ 1,1 R d , then m ∈ C b R d .
Since any function homogeneous of degree zero that is continuous on R d has to be constant, we see that Theorem 2 implies Theorem 1 when l = 1. In order to prove Theorem 2, Kazaniecki and Wojciechowski used Theorem 1 and some Riesz product technique reminiscent of [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF]. Also, for technical reasons, some constructions concerning the tranference of multipliers, were involved in the argument. The central role is played by the Riesz products technique, a key tool being a relatively difficult lemma of Wojciechowski (see [9, Lemma 1], [10, Lemma 1]) concerning the L 1 -norm of some trigonometric polynomials.

It seems that, since the above result of Kazaniecki and Wojciechowski, there was no progress in studying the general case of arbitrary multipliers when the regularity of the space is higher than 1.

We follow the ideas in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF] in order to prove a generalisation of Theorem 2 for the case of Ẇ l,1 R d , where l ≥ 1. The proof is also based on the Riesz products technique and the constructions we use are very similar to those in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF]. However, rather than using Wojciechowski's lemma we rely on much easier facts instead (see Lemmas 14 and 16 below). The other ingredient is Theorem 1. We do not use transference theorems and, apart from Bonami and Poornima's result, the proof is quite elementary. Another advantage of our approach is that it also applies to multipliers on Ẇ l,∞ R d . Note that the case of Ẇ 1,∞ R d was not considered in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF].

Our results are the following.

Theorem 3 Suppose d ≥ 2 and l ≥ 1 are integers. If m is a Fourier multiplier on Ẇ l,∞ R d , then m ∈ C b R d . Theorem 4 Suppose d ≥ 2 and l ≥ 1 are integers. If m is a Fourier multiplier on Ẇ l,1 R d , then m ∈ C b R d .

Remark 5

In fact, what we prove in these theorems is that m is a.e. equal to some bounded continuous function.

The proofs go as follows. First, following the idea in the proof of Lemma 3.1 in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF] we show, by simple arguments, that, whenever m is a multiplier on Ẇ l,1 R d or on Ẇ l,∞ R d , we need to have m ∈ C b R d \ {0} . (More specifically, as a preliminary step in our analysis, we define a function which equals m a.e. on R d and is continuous and bounded on R d \ {0}.) Next, using this conclusion, we prove that, if m is a multiplier on Ẇ l,1 R d or on Ẇ l,∞ R d , then m has to be continuous at the origin. For this part of the proof, we use constructions based on Riesz products.

While the proofs of these facts are similar, we start by studying the multipliers on Ẇ l,∞ R d , since the proof is simpler in this setting. For this purpose, we adapt and simplify the ideas in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF] to the case of Ẇ l,∞ R d , with the help of Lemma 14 below. Next, we study multipliers on Ẇ l,1 R d . We show by a duality method that the boundedness of T m implies the existence of bounded solutions for some underdetermined differential equation. We conclude that such solutions do not exist if m is not continuous. Here, the technique is similar to the one in [START_REF] Curcȃ | The divergence equation with L ∞ source[END_REF], which was in turn inspired by the one in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF].

Continuity outside the origin

Suppose that m is a multiplier of Ẇ l,p R d for some 1 ≤ p ≤ ∞ and l ≥ 0. Let us notice that the norm of T m is invariant by dilations and isometries. More precisely, if λ ∈ R\ {0}, respectively R ∈ O(d) and we set m λ (ξ) := m (λξ), respectively m R (ξ) := m(Rξ), ∀ξ ∈ R d , then

T m λ = T m and T m R ∼ l,d T m , (2) 
where the T m is the norm of

T m : Ẇ l,p R d → Ẇ l,p R d .
Let us justify this when m ∈ L 1 (R d ); the general case is obtained by approximation. For any d × d real invertible matrix A and any Schwartz function f on R d , we have the following identity:

f A (ξ) = 1 | det A| f A -1 ξ ,
where f A (x) := f (Ax) for any x ∈ R d . Via a change of variables, we find that

T m A f (x) =(2π) -d R d e i x,ξ m (Aξ) f (ξ) dξ = (2π) -d | det A| R d e i x,A -1 ξ m (ξ) f A -1 ξ dξ =(2π) -d R d e i (A -1 ) t x,ξ m (ξ) f A (ξ) dξ = T m f A A -1 t x for a.e. x ∈ R d .
When, A = λI, we get that T m λ f = T m f λ (•/λ). We obtain

∇ l T m λ f L p =λ -l ∇ l T m f λ (•/λ) L p = λ -l λ d/p ∇ l T m f λ L p ≤ T m λ -l λ d/p ∇ l f λ L p = T m ∇ l f L p .
Hence, T m λ ≤ T m for any λ = 0. This gives the first equivalence in (2).

When, A = R, where R is orthogonal, we get

T m R f = T m f R (R•).
Since the absolute value of each entry of R is bounded by 1, we obtain

∇ l T m R f L p l,d ∇ l T m f R (Rx) L p = ∇ l T m f R L p ≤ T m ∇ l f R L p l,d T m ∇ l f L p .
Hence, T m R l,d T m for any orthogonal d × d matrix R. This gives the second equivalence in [START_REF] Curcȃ | The divergence equation with L ∞ source[END_REF].

Let us first observe that the multipliers of Ẇ l,1 R d and the multipliers of Ẇ l,∞ R d are bounded and continuous on R d \ {0}.

Lemma 6 If m is a multiplier on Ẇ l,1 R d , then m ∈ C b R d \ {0} .
Remark 7 We recall that (see Remark 5) the statement means that m has a bounded continuous representative on R d \ {0}.

Proof. We recall that l ≥ 1. We essentially follow the argument in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF]Lemma 3.1]. We first prove that m has a continuous representative on R d \ {0}. Indeed, let ρ be any Schwartz function such that ρ(ξ) = 0, ∀ξ (e.g. a standard Gaussian). Set α j := (δ j k l) 1≤k≤d , where δ j k is the Kronecker delta. Since ∂ α j (T m ρ) ∈ L 1 , we find that m j := (iξ) α j T m ρ is a continuous bounded function, and

(iξ j ) l m(ξ) ρ(ξ) = m j (ξ) for a.e. ξ ∈ R d . (3) 
Set, for ξ = 0,

m(ξ) := m j (ξ) (iξ j ) l ρ(ξ) , if ξ j = 0.
It is not clear if the above definition is correct, since the result may depend not only on ξ, but also on the choice of the coordinate ξ j . However, (3) implies first that this definition is correct for a.e. ξ, next, using the continuity of m j , the definition is correct for every ξ = 0 and that, in addition m is continuous on R d \ {0}. Clearly (from (3)), we have that m = m a.e. and

(iξ j ) l m(ξ) ρ(ξ) = m j (ξ) for every ξ ∈ R d \ {0}. ( 4 
)
Using the fact that each m j is bounded, we find from (4) that m is bounded on the unit sphere S d-1 . More specifically, we have max

|ξ|=1 | m(ξ)| T m . (5) 
Combining ( 5) and ( 2), we find that m is bounded on R d \ {0}.

Lemma 8 If m is a multiplier on Ẇ l,∞ R d , then m ∈ C b R d \ {0} .
Proof. As in the proof of Lemma 6, we first prove that m has a representative which is continuous on R d \ {0}. Set m defined by m (ξ) := m (-ξ). Clearly, m is also a multiplier on Ẇ l,∞ R d , with the same norm as m.

It follows that

∂ l 1 T m ϕ L ∞ (R d ) ≤ T m ∇ l ϕ L ∞ (R d ) , (6) 
for any ϕ ∈ C ∞ c (R 2 ). Consider now the normed subspace

V := ∇ l ϕ | ϕ ∈ C ∞ c R d ⊂ C 0 R d β , endowed with the norm induced by C 0 R d β , where β := # α ∈ N d | |α| = l .
Let ρ be as in the proof of Lemma 6. We consider the linear functional L ρ : V → R defined by

L ρ ∇ l ϕ := ρ, ∂ l 1 T m ϕ , ∀ϕ ∈ C ∞ c R d .
Thanks to ( 6), L ρ is well-defined and bounded on V and

L ρ ≤ T m ρ L 1 (R d ) .
Using the Hahn-Banach theorem, we obtain a bounded extension

L ρ of L ρ to C 0 R d β .
Moreover, we can choose

L ρ ∈ C 0 R d β * = M R d β such that its norm equals L ρ . Let (µ α ) |α|=l ∈ M R d β be an element representing L ρ . We have that µ α M (R d ) ≤ T m ρ L 1 (R d ) , (7) 
for any multiindex α, with |α| = l. Also, we have

∂ l 1 T m ρ, ϕ = (-1) l ρ, ∂ l 1 T m ϕ = (-1) l L ρ ∇ l ϕ = (-1) l L ρ ∇ l ϕ = (-1) l |α|=l µ α , ∇ α ϕ = |α|=l ∇ α µ α , ϕ , i.e., ∂ l 1 T m ρ = |α|=l ∇ α µ α , (8) 
in the sense of tempered distributions on R d .

Taking the Fourier transform in (8), we obtain

(iξ 1 ) l m(ξ) ρ(ξ) = |α|=l (iξ) α µ α (ξ) := m 1 (ξ) a.e. on R d . (9) 
Similar identities hold for the partial derivatives ∂ l j T m f , j = 2, . . . , d. Noting that each µ α is a continuous function (since µ α is a finite measure), we continue as in the proof of Lemma 6 and find some m

∈ C(R d \ {0}) such that m = m a.e.
The boundedness of m is obtained exactly as in Lemma 6

Remark 9 In the case where

1 < p < ∞, it is not true that if m is a multiplier on Ẇ l,p R d , then m ∈ C b R d \ {0} . For example if m(ξ) := isgn (ξ 1 )
, then T m is the Hilbert transform on the first coordinate and hence m is a multiplier of any space Ẇ l,p R d , with 1 < p < ∞. However, m is singular on the whole hyperplane {ξ 1 = 0}. Also, if p = 2, any bounded measurable function is a multiplier. Hence, in this case, the multiplier may be even less regular.

It remains to study, in Ẇ l,1 and Ẇ l,∞ , the continuity of the multipliers at the origin.

Almost radial limits

Following [3, Section 2], we will say that a function f : R d \ {0} → C has almost radial limits1 at the origin if the following condition is satisfied.

If (v n ) n≥1 , (w n ) n≥1 ⊂ R d \ {0} are two sequences converging to 0 such that (f (v n )) n≥1 , (f (w n )) n≥1 are convergent sequences and lim n→∞ f (v n ) = lim n→∞ f (w n ), then lim inf n→∞ v n |v n | - w n |w n | > 0. (I)
Note that, if (I) does not hold for f = m, which is bounded, then there exists a sequence

(v n ) n≥1 ⊂ R d \ {0}, converging to 0 and such that v n |v n | → ν ∈ S d-1 , m(v 2n ) → b 1 , m(v 2n+1 ) → b 2 , with b 1 , b 2 ∈ C, b 1 = b 2 .
By considering the possible limits (up to subsequences) of (m(-v 2n )) and (m(-v 2n+1 )), we obtain the following. If m : R d \ {0} → C is a bounded function which does not have almost radial limits at the origin, then there exists a sequence (v n ) n≥1 ⊂ R d \ {0}, converging to 0, and such that (at least) one of the two happens:

v n |v n | → ν ∈ S d-1 , m(v 2n ) → b 1 , m(-v 2n ) → b 1 , m(v 2n+1 ) → b 2 , m(-v 2n+1 ) → b 2 , with b 1 , b 2 ∈ C, b 1 = b 2 , (IIs) 
or

v n |v n | → ν ∈ S d-1 , m(v n ) → b 1 , m(-v n ) → b 2 , with b 1 , b 2 ∈ C, b 1 = b 2 . (IIa)
We will refer to the first case as the symmetric case, and to the second as the asymmetric case.

The plan of the proofs of Theorems 3 and 4 consists of establishing the desired results separately in cases (I), (IIs) and (IIa). In case (I), the proof relies on Theorem 1 or on its Ẇ l,∞ variant, Theorem 10 below.

4 Proof of Theorems 3 and 4 in case (I) 4.1 The case of Ẇ l,1 R d First, as in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF], we observe that a bounded function having almost radial limits at 0 also has (genuine) radial limits at 0, and therefore we may define the function

Ω (ξ) := lim n→∞ m (ξ/n) . ( 10 
)
Clearly, the function Ω is homogeneous of degree 0. Now, one can easily see that Ω is a multiplier on Ẇ l,1 R d . Indeed, let f be a Schwartz function and let ψ be an arbitrary Schwartz function with ψ L ∞ ≤ 1. Thanks to (2) we have, for any multiindex α with |α| = l and any n ≥ 1,

∇ α T m 1/n f, ψ ≤ T m f Ẇ l,1 .
On the other hand, the dominated convergence theorem gives, with

c = c α,d := ı |α| (2π) -d , ∇ α T m 1/n f, ψ = c R d ξ α m (ξ/n) f (ξ) ψ (ξ) dξ → c R d ξ α Ω (ξ) f (ξ) ψ (ξ) dξ = ∇ α T Ω f, ψ , and hence, | ∇ α T Ω f, ψ | ≤ T m f Ẇ l,1 .
By Lemma 6, we have that Ω ∈ C R d \ {0} . We are now in position to apply Theorem 1 and obtain that Ω is constant. From this and condition (I), we deduce that m is continuous at the origin.

The case of Ẇ l,∞ R d

As above, we conclude that the function Ω defined by ( 10) is a multiplier on Ẇ l,∞ R d . In particular, by Lemma 8, we have that Ω ∈ C R d \ {0} . In order to complete (as above) the proof in this case, it suffices to establish the following analogue of Theorem 1.

Theorem 10 Let d ≥ 2 and l ≥ 1 be some integers and let

Ω ∈ C R d \ {0} ; C be homogeneous of degree zero. If Ω is a multiplier on Ẇ l,∞ R d , then Ω is a constant.
Proof of Theorem 10. We adapt the arguments from [START_REF] De Leeuw | A priori estimates for differential operators in L ∞ norm[END_REF]. As in the proof of Lemma 8, for any Schwartz function ρ with integral 1, one can find some finite measures µ α such that

∂ l 1 T Ω ρ = |α|=l ∇ α µ α , (11) 
where Ω (ξ) := Ω (-ξ). Now, if ϕ ∈ S R d and ϕ ε (x) := ϕ(εx) for some ε > 0, then

∂ l 1 T Ω ϕ ε (x) = ε l ∂ l 1 T Ω ϕ (εx), ( 12 
)
since Ω is homogeneous of degree zero.

Combining (11) and ( 12), we find that

ε l R d ρ(x) ∂ l 1 T Ω ϕ (εx) dx = ε l |α|=l R d (∇ α ϕ) (εx) dµ α (x). ( 13 
)
Since Ω is bounded, ∂ l 1 T Ω ϕ is the inverse Fourier transform of an L 1 function and hence, ∂ l 1 T Ω ϕ is continuous and bounded. Dividing both sides in (13) by ε l and taking ε → 0, we get by the dominated convergence theorem,

∂ l 1 T Ω ϕ (0) = |α|=l µ α (R d ) (∇ α ϕ) (0),
for any ϕ ∈ S R d . This implies that

∂ l 1 T Ω ϕ (x) = |α|=l µ α (R d ) (∇ α ϕ) (x),
for any ϕ ∈ S R d and any x ∈ R d . Hence, by taking the Fourier transform, we get

ξ l 1 Ω (ξ) ϕ (ξ) = |α|=l µ α (R d ) ξ α ϕ (ξ) ,
and we have

ξ l 1 Ω (ξ) = |α|=l µ α (R d ) ξ α =: p 1 (ξ) .
We can write

Ω (ξ) = p 1 (ξ) ξ l 1 , (14) 
as an equality of two continuous functions in the domain where ξ 1 = 0. Similarly, there exists a homogeneous polynomial p d of degree l such that

Ω (ξ) = p d (ξ) ξ l d , (15) 
as an equality of two continuous functions in the domain where ξ d = 0. From ( 14) and (15), we get

ξ l d p 1 (ξ) = ξ l 1 p d (ξ) everywhere in R d . ( 16 
)
By identifying the coefficients in (16), we see that p 1 must be a multiple of ξ l 1 , thus a constant multiple of ξ l 1 (since p 1 is of degree l). Going back to (14), we find that Ω is constant in the region {ξ 1 = 0}. Similarly, Ω is constant in the region {ξ d = 0}, and thus constant (by arguing similarly in other directions).

From now on, we investigate cases (IIs) and (IIa), which are more involved.

Proof of Theorem 3 in case II

We argue by contradiction. We assume that m is not continuous in 0 and we show that (1) does not hold. The following easy lemma will enable us to replace some estimates involving Schwartz functions with similar estimates involving instead functions which are linear combinations of some exponentials. This last type of functions will be used to explicitly construct a sequence of functions violating [START_REF] Bonami | Nonmultipliers of the Sobolev spaces W k,1 R d[END_REF].

Lemma 11 Let m be a multiplier on Ẇ l,∞ R d for some integer l ≥ 0. Consider the set of functions

P m := n j=1 c j e i •,q j n ∈ N * , q 1 , ..., q n ∈ R d \ {0} and c 1 , ..., c n ∈ C .
Let T m : P m → P m be defined by

T m n j=1
c j e i •,q j := n j=1 c j m(q j )e i •,q j , for any n ∈ N * , q 1 , ..., q n ∈ R d \ {0} and c 1 , ..., c n ∈ C.

We have that

T m f Ẇ l,∞ (R d ) ≤ T m f Ẇ l,∞ (R d ) , (17) 
for any function f ∈ P m .

Remark 12 Note that, since the exponentials e i •,q j are linearly independent and P m is formed only with (finite) linear combinations of these exponentials, the definition of T m is correct.

Proof. We note that at this point we know that m is continuous and bounded on R d \ {0}. This will be used in the proof below.

Consider a function η ∈ C ∞ c R d whose integral is 1. Fix q ∈ R d \ {0}.
For any small ε > 0, we set ϕ ε q (t) := e i t,q η (εt) on R d . Since ϕ ε q is a Schwartz function, we have

T m ϕ ε q (ξ) = m(ξ)ϕ ε q (ξ) ,
in the sense of tempered distributions on R d . A direct computation gives

ϕ ε q (ξ) = R d e -i t,ξ-q η(εt)dt = 1 ε d R d e -i t, ξ-q ε η(t)dt = 1 ε d η ξ -q ε = (2π) d ε d η q -ξ ε .
Hence,

T m ϕ ε q (ξ) = m(ξ) (2π) d ε d η q -ξ ε , (18) 
Note that, since m ∈ L ∞ , the right hand side of (18) is L 1 ; we obtain using the Fourier inversion formula,

T m ϕ ε q (t) = R d e i t,ξ m(ξ) 1 ε d η q -ξ ε dξ = R d e i t,q-εξ m(q -εξ)η(ξ)dξ, (19) 
in the sense of tempered distributions. We naturally identify T m ϕ ε q with the right hand side of (19). Now we can prove (17). Let f ∈ P m , with

f (t) = n j=1
c j e i t,q j . Using (19) we have

∇ l n j=1 c j R d
m(q j -εξ)e i t,q j -εξ η(ξ)dξ

L ∞ t = ∇ l T m n j=1 c j ϕ ε q j (t) L ∞ t ≤ T m ∇ l (f (t) η(εt)) L ∞ t .
In other words, for every multiindex α ∈ N d with |α| = l, n j=1 c j R d (q j -εξ) α m(q j -εξ)e i t,q j -εξ η(ξ)dξ

L ∞ t ≤ T m ∇ l f (t) η(εt) L ∞ t + ε T m C f,η ,
where C f,η is a finite constant only depending on f and η. Letting ε → 0 we find that:

∇ α n j=1 c j m(q j )e i t,q j L ∞ t = n j=1 c j q α j m(q j )e i t,q j L ∞ t ≤ T m ∇ l f L ∞ .
Here, we use the fact that η(0) = 1 and the obvious fact that

∇ l f (t) η(0) L ∞ t ≤ lim inf ε→0 ∇ l f (t) η(εt) L ∞ t .
The proof of Lemma 11 is complete.

Remark 13 For simplicity, from now on, we will denote both operators T m and T m by T m . We keep this convention even in the case where p = 1. As we will see this will turn out to be convenient in some computations.

The symmetric case, (IIs)

In what follows we suppose for simplicity that d = 2. Also, we suppose without loss of generality that b 1 = 1, b 2 = 0 and ν = (1, 0). This is possible thanks to the rotation and dilation invariance we have discussed.

We will need the following simple lemma (see the Appendix).

Lemma 14 Fix N ∈ N * . There exists a finite sequence

(σ k ) 1≤k≤N in {0, 1} such that N k=1 σ k k k-1 j=1 1 + i j ≥ 1 π ln N . ( 20 
)
Suppose N ∈ N * is fixed and σ 1 , ..., σ N ∈ {0, 1} are some fixed numbers such that inequality (20) holds. We construct, by backward induction on k, a sequence (a k ) 1≤k≤N in R 2 satisfying the following properties: (P1) for each k ∈ {1, ..., N } we have 

m ε k a k + 1≤j≤k-1 ε j a j -σ k < 1 4 N , for all ε 1 , ..., ε k ∈ {-1, 0, 1} with ε k = 0; ( 
ε j a j (1) , a k (2) + 1≤j≤k-1 ε j a j (2) < 1,
for all ε 1 , ..., ε k-1 ∈ {-1, 0, 1};

(P4) for each k ∈ {1, ..., N } we have

a k (2) + 1≤j≤k-1 ε j a j (2)
a k (1) + 1≤j≤k-1 ε j a j (1) < 1 4 N , for all ε 1 , ..., ε k-1 ∈ {-1, 0, 1}.
(A similar construction appears in [3, Subsection 2.2] and in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF].) We proceed by backward induction; we start by constructing a N , then a N -1 , ending eventually with a 1 . At the step N -k we construct the vector a k taking into account the values a N , a N -1 ,....,a k+1 . More precisely, the construction goes as follows. We first modify the sequence (v n ) n≥1 in (IIs) such that v n (2) = 0 for all n ≥ 1. This is possible, since m is continuous on R 2 \ {0}. At each step we choose a k to be a term in the set {v n | n ≡ 0 ( mod 2)} or {v n | n ≡ 1 ( mod 2)} if σ k = 1 or σ k = 0 respectively (recall that b 1 = 1 and b 2 = 0). It remains to see that at each step the term a k can be chosen sufficiently small in order to satisfy the above conditions. Since v n → 0, we can choose a vector a k with both components nonzero and such that |m(ε k a k ) -σ k | < (1/2) 4 -N , for any ε k ∈ {-1, 1}. Since m is continuous outside the origin, there exists r k > 0 such that |m(ξ) -σ k | < 4 -N for any ξ ∈ B(a k , r k ) ∪ B(-a k , r k ). Hence, if a k-1 , ..., a 1 are sufficiently small, then (P1) is satisfied. We have that ν = (1, 0), and hence if a k = v n , for n sufficiently large, and a k-1 , ..., a 1 are sufficiently small, then (P4) is satisfied. It is easy to see that the remaining conditions can be satisfied too.

Consider the set Λ

N := N k=1 ε k a k ε 1 , ..., ε N ∈ {-1, 0, 1} , not all 0 . ( 21 
)
Thanks to (P2), for each q ∈ Λ N the representation

q = N k=1 ε k a k , for some ε 1 , ..., ε N ∈ {-1, 0, 1} ,
is unique. Let us also observe that, for each q ∈ Λ N we have (from (P3) and (P4)),

0 < |q(1)| , |q(2)| < 1 (22) and |q(2)| |q(1)| < 1 4 N . ( 23 
)
Define the function

R N (t) := -1 + N k=1 1 + i k cos t, a k , t ∈ R 2 . ( 24 
)
By (57) (see the Appendix below),

R N (t) = N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k = q∈Λ N c q e i t,q , (25) 
for some coefficients c q with |c q | ≤ 1. Thanks to (22) we have that q(1) = 0, for any q ∈ Λ N . This allows us to define the function

h N (t) := q∈Λ N c q (q(1)) l e i t,q , on R 2 . ( 26 
)
We claim that

∇ l h N L ∞ (R 2 ) ≤ 4. ( 27 
)
Indeed, we have

∂ l 1 h N L ∞ (R 2 ) = R N L ∞ (R 2 ) ≤ 1 + N k=1 1 + 1 k 2 1/2 ≤1 + N k=1 e 1/2k 2 ≤ 1 + e π 2 /12 ≤ 4. ( 28 
)
On the other hand, if l 1 ,l 2 are nonnegative integers with l 1 + l 2 = l and l 1 < l, we have (using ( 22), ( 23)),

∂ l 1 1 ∂ l 2 2 h N L ∞ (R 2 ) = q∈Λ N (q(2)) l 2 (q(1)) l-l 1 c q e i t,q L ∞ (R 2 ) ≤ q∈Λ N |q(2)| l 2 |q(1)| l-l 1 = q∈Λ N |q(2)| |q(1)| l 2 ≤ q∈Λ N 4 -N l 2 ≤ |Λ N | 4 -N ≤ 3 N 4 -N ≤ 1.
We are now going to estimate

T m h N Ẇ l,∞ (R 2 )
. Since by (26), h N ∈ P m , with P m as in Lemma 11, we may define T m h N via Lemma 11 (see Remark 13). More specifically, we will prove that

T m h N Ẇ l,∞ (R 2 ) ≥ 1 π ln N -1. ( 29 
)
In order to see this, it suffices to prove that

∂ l 1 T m h N L ∞ (R 2 ) ≥ 1 π ln N -1. ( 30 
)
We have

∂ l 1 T m h N L ∞ (R 2 ) = T m ∂ l 1 h N L ∞ (R 2 ) = T m R N L ∞ (R 2 ) .
Using (25), we obtain

T m R N (t) = N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 m(ε 1 a 1 + ...ε k a k )   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k . ( 31 
)
Introducing the function

Z(t) := N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 σ k   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k , ( 32 
)
we have (by the identities ( 57) and ( 59) in the Appendix),

Z(t) = N k=1 iσ k k cos t, a k k-1 j=1 1 + i j cos t, a j .
Lemma 14 yields

Z L ∞ (R 2 ) ≥ |Z(0)| ≥ 1 π ln N . ( 33 
)
Also, using property (P1), together with (31) and (32), we get

T m R N -Z L ∞ (R 2 ) ≤ |Λ N | 4 -N ≤ 3 N 4 -N ≤ 1. (34) 
Using ( 33), (34) and the triangle inequality, we arrive at

T m R N L ∞ (R 2 ) ≥ Z L ∞ (R 2 ) -T m R N -Z L ∞ (R 2 ) ≥ 1 π ln N -1,
concluding the proof of (30).

By taking N → ∞, (27) and (29) give us that m is not a multiplier on Ẇ l,∞ (R 2 ).

Remark 15 To deal with the case d > 2 we may suppose that ν = (1, 0, ..., 0); we consider constructions like R N ⊗ 1, where R N is defined as above on R 2 and the constant function 1 is defined on R d-2 .

The asymmetric case, (IIa)

This case is very similar to the previous one. We again suppose without loss of generality that b 1 = 1, b 2 = 0 and ν = (1, 0). In a similar way we construct a sequence (a k ) 1≤k≤N satisfying the above properties (P2)--(P4) and (P1') below:

(P1') for each k ∈ {1, ..., N } we have

m ε k a k + 1≤j≤k-1 ε j a j - 1 + ε k 2 σ k < 1 4 N , for all ε 1 , ..., ε k ∈ {-1, 0, 1} with ε k = 0.
With this new sequence (a k ) 1≤k≤N we define Λ N as in (21). We again have ( 22), (23). We also define R N and h N as in ( 24) and ( 26) respectively. The inequality (27) holds in this case too and it remains to show that

∂ l 1 T m h N L ∞ (R 2 ) = T m R N L ∞ (R 2 ) ≥ 1 π ln N -1. (35) 
Using (57), we have

T m R N (t) = N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 m(ε 1 a 1 + ...ε k a k )   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k . ( 36 
)
Introducing the function

Z(t) := N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 1 + ε k 2 σ k   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k , (37) 
we observe that, by ( 57) and (59), we have

Z(t) = N k=1 iσ k k e i t,a k k-1 j=1 1 + i j cos t, a j .
Lemma 14 gives us that

Z L ∞ (R 2 ) ≥ |Z(0)| ≥ 1 π ln N . (38) 
Property (P1'), together with (36) and (37), give

T m R N -Z L ∞ (R 2 ) ≤ |Λ N | 4 -N ≤ 3 N 4 -N ≤ 1. (39) 
Using (38), (39) and the triangle inequality, we get

T m R N L ∞ (R 2 ) ≥ Z L ∞ (R 2 ) -T m R N -Z L ∞ (R 2 ) ≥ 1 π ln N -1,
concluding the proof of (35). (For the case d > 2, see Remark 15.)

Proof of Theorem 4 in case II

We prove now Theorem 4. Suppose m is not continuous in 0. As in the preceding section, we may assume that m is in one of the cases (IIs) or (IIa). Again we work under the hypothesis

d = 2, b 1 = 1, b 2 = 0 and ν = (1, 0).
Comparing with the strategy we had in the preceding section, there are two main differences. First, since it turns out it is more convenient to work with L ∞ than L 1 , we reformulate the problem by duality. Secondly, we work with genuine trigonometric polynomials on T 2 rather than exponential sums on R 2 . This allows us to use some techniques specific to T 2 that are not available on R 2 .

As in (31) we have

T m R N (t) = N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 m(ε 1 a 1 + ...ε k a k )   ε j =0 i 2j   e i t,ε 1 a 1 +...ε k a k . ( 43 
)
For each N we fix a positive integer

M = M (N ) such that M a k ∈ Z 2 for all 1 ≤ k ≤ N . From (43) we get that T m R N is a component-wise 2πM -periodic function. Hence, T m R N (M t) is component-wise 2π-periodic.
We will show that u α in (42) can be chosen to be component-wise 2πM -periodic. In order to prove this we need the following easy lemma.

Lemma 17 Let A > 0 be a real number and suppose u ∈ L ∞ (R 2 ) is given. We consider the sequence of functions

u n (t) := 1 |B n | χ∈Bn u (t + Aχ) , t ∈ R 2 , n ≥ 1,
where

B n := B(0, n) ∩ Z 2 . Then, there exists g ∈ L ∞ (R 2 ), component-wise A-periodic, with g L ∞ (R 2 ) ≤ u L ∞ (R 2 )
and such that u n → g up to a subsequence, in the sense of distributions.

Proof of Lemma 17. Since

u n L ∞ (R 2 ) ≤ u L ∞ (R 2 )
for any n ≥ 1, by the sequential Banach-Alaoglu theorem, there exists

g ∈ L ∞ (R 2 ) with g L ∞ (R 2 ) ≤ u L ∞ (R 2 )
such that u n g in the w * -topology of L ∞ up to a subsequence. (For simplicity we still denote the subsequence by (u n ) n≥1 .) In particular, u n → g in the sense of distributions. Also, we easily get that g is component-wise A-periodic. Indeed, for ϕ ∈ C ∞ c (R 2 ), and any χ 0 ∈ Z 2 , we have

R 2 u n (t + Aχ 0 ) ϕ (t) dt = R 2 u n (t) ϕ (t -Aχ 0 ) dt → R 2 g (t) ϕ (t -Aχ 0 ) dt = R 2 g (t + Aχ 0 ) ϕ (t) dt. (44) 
Also,

R 2 u n (t + Aχ 0 ) ϕ (t) dt = 1 |B n | χ∈Bn R 2 u (t + A (χ + χ 0 )) ϕ (t) dt = 1 |B n | χ∈Bn+χ 0 R 2 u (t + Aχ) ϕ (t) dt = 1 |B n | χ∈Bn R 2 u (t + Aχ) ϕ (t) dt + r n = R 2 u n (t) ϕ (t) dt + r n ,
where

r n := 1 |B n | χ∈(Bn+χ 0 )\Bn R 2 u (t + Aχ) ϕ (t) dt - 1 |B n | χ∈Bn\(Bn+χ 0 ) R 2 u (t + Aχ) ϕ (t) dt. Since |(B n + χ 0 ) \B n |, |B n \ (B n + χ 0 )| n and |B n | ∼ n 2 , we have r n → 0. Hence, lim n→∞ R 2 u n (t + Aχ 0 ) ϕ (t) dt = lim n→∞ R 2 u n (t) ϕ (t) dt,
which together with (44) concludes the proof of Lemma 17.

Now, since ∂ l 1 T m R N is component-wise 2πM -periodic, we have ∂ l 1 T m R N = ∂ l 1 T m R N n (with A = 2πM ) for any n ≥ 1. From (42) we get ∂ l 1 T m R N = ∂ l 1 T m R N n = |α|=l ∇ α (u α ) n ,
for any n ≥ 1. Taking n → ∞ and applying Lemma 17 to the functions u α ∈ L ∞ , with A := 2πM , we get

∂ l 1 T m R N = |α|=l ∇ α g α , (45) 
for some component-wise 2πM -periodic functions g α ∈ L ∞ (R 2 ) such that

g α L ∞ (R 2 ) ≤ 4 T m (46) 
(see ( 41)).

From now on, for each function ψ on R 2 , we write ψ M for the function ψ M (t) := ψ (M t).

Consider the function

G N (t) := -1 + N k=1 (1 + cos t, a k ) , t ∈ R 2 .
Notice that G M N is component-wise 2π-periodic. (We recall here that each M a k belongs to Z 2 .) Also, (T m R N ) M and each g M α are component-wise 2π-periodic. From (45) we get

∂ l 1 (T m R N ) M = |α|=l ∇ α g M α ,
in the sense of distributions on R 2 and hence in the sense of distributions on T 2 . Taking convolution (on the torus T 2 ) with G M N , we get

∂ l 1 (T m R N ) M * G M N = |α|=l ∇ α g M α * G M N . ( 47 
)
From the properties of G N it follows that the spectrum of each g M α * G M N and the spectrum of (T m R N ) M * G M N , as functions on the torus T 2 , are included in M Λ N and therefore do not touch the set {0} × Z (see ( 22)). Hence, we can apply the operator ∂ -l 1 in (47) to obtain

(T m R N ) M * G M N = |α|=l ∇ α ∂ -l 1 g M α * G M N .
Hence,

(T m R N ) M * G M N L ∞ (T 2 ) ≤ |α|=l ∇ α ∂ -l 1 g M α * G M N L ∞ (T 2 ) . ( 48 
)
We claim that

∇ α ∂ -l 1 g M α * G M N L ∞ (T 2 ) ≤ 8 T m , (49) 
for any multiindex α with |α| = l. This estimate is similar to (27).

Indeed, for α = (l, 0) we have, using (46),

∂ l 1 ∂ -l 1 g M α * G M N L ∞ (T 2 ) = g M α * G M N L ∞ (T 2 ) ≤ g M α L ∞ (T 2 ) G M N L 1 (T 2 ) ≤2 g α L ∞ (R 2 ) ≤ 8 T m . (50) 
Here, we have used the fact that G M N L 1 (T2 ) ≤ 2. This can be justified as follows. We have N k=1

(1 + cos t, M a k ) ≥ 0 and hence, thanks to (57) and (P2) 2 , we obtain

N k=1 (1 + cos •, M a k ) L 1 (T 2 ) = 1.
We now turn to the proof of (49) for α = (l, 0).

Writing g M α * G M N (t) = q∈Λ N
c q e i t,M q , we get that (note that c q is a Fourier coefficient):

c q ≤ g M α * G M N L ∞ (T 2 ) ≤ 8 T m ,
for all q ∈ Λ N .

Hence, if α = (l 1 , l 2 ), with l 1 + l 2 = l and l 1 < l, we have (using ( 22), (23)),

∂ l 1 1 ∂ l 2 2 ∂ -l 1 g M α * G M N L ∞ (T 2 ) = q∈Λ N (M q(2)) l 2 (M q(1)) l-l 1 c q e i t,M q L ∞ (T 2 ) ≤8 T m q∈Λ N |q(2)| l 2 |q(1)| l-l 1 = 8 T m q∈Λ N |q(2)| |q(1)| l 2 ≤8 T m q∈Λ N 4 -N l 2 ≤ 8 T m |Λ N | 4 -N ≤ 8 T m 3 N 4 -N ≤8 T m . (51) 
We see that (50) and (51) imply (49).

We next obtain a contradiction. The starting point is the left-hand side of (48). We claim that

(T m R N ) M * G M N L ∞ (T 2 ) ≥ 1 2π ln N -1. (52) 
The method applied to obtain this estimate is similar to the one used to obtain (30). Indeed, by using (57) and (58) (see the Appendix) we have:

(T m R N ) M * G M N (t) = N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 m(ε 1 a 1 + ...ε k a k )   ε j =0 i 4j   e i t,ε 1 M a 1 +...+ε k M a k . (53)
Introducing the function

Z(t) := N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0 σ k   ε j =0 i 4j   e i t,ε 1 M a 1 +...+ε k M a k on T 2 , ( 54 
)
we observe that, by ( 57) and (59), we have

Z(t) = N k=1 iσ k 2k cos t, M a k k-1 j=1 1 + i 2j cos t, M a j .
Lemma 16 gives us that

Z L ∞ (T 2 ) ≥ |Z(0)| ≥ 1 2π ln N . (55) 
Also, using property (P1), together with (53) and (54), we get

(T m R N ) M * G M N -Z L ∞ (T 2 ) ≤ |Λ N | 4 -N ≤ 3 N 4 -N ≤ 1. (56) 
Using (55), (56) and the triangle inequality, we obtain

(T m R N ) M * G M N L ∞ (T 2 ) ≥ Z L ∞ (T 2 ) -(T m R N ) M * G M N -Z L ∞ (T 2 ) ≥ 1 2π ln N -1,
concluding the proof of (52). Now, (48), (49) and (52) allow us to write

1 2π ln N -1 ≤ 8 T m 2 l .
Since N is arbitrary, the last inequality implies that m is not a multiplier on Ẇ l,1 (R 2 ).

The asymmetric case, (IIa)

This case is very similar to the previous one and we skip the proof. We can again suppose by contradiction that m is a multiplier on Ẇ l,1 (R 2 ) and use this result to obtain a representation result similar to the one in (42). The only difference is that now we have to follow the "asymmetric case" as in the proof corresponding to multipliers on Ẇ l,∞ (R 2 ). The functions R N and G N will be constructed as above, starting, as in the case of Ẇ l,∞ (R 2 ), with a sequence (a k ) 1≤k≤N in Q 2 satisfying the conditions (P1'), (P2)-(P4).

7 Appendix

Some useful identities

We quickly recall here some elementary facts and formulas concerning some trigonometric polynomials on the torus.

Fix a finite sequence (a k ) 1≤k≤N in Z d . For each finite sequence α 1 , ..., α N of complex numbers we have the following expansion rule:

N k=1 (1 + α k cos t, a k ) = 1 + N k=1 ε 1 ,...,ε k ∈{-1,0,1} ε k =0   ε j =0 α j 2 
  e i t,ε 1 a 1 +...+ε k a k . (57)

A sequence (a k ) k=1,N in Z d will be called dissociated if the only solution to the equation

ε 1 a 1 + ... + ε N a N = ε 1 a 1 + ... + ε N a N ,
with ε 1 , ..., ε N , ε 1 , ..., ε N ∈ {-1, 0, 1} is the trivial solution ε 1 = ε 1 , ..., ε N = ε N . For example any sequence (a k ) 1≤k≤N in Z d which is lacunary on at least one component is dissociated. If (a k ) 1≤k≤N is dissociated and α 1 , ..., α N and β 1 , ..., β N are complex numbers, by using (57) and the relation between convolution and the Fourier transform, we obtain that

N k=1 (1 + α k cos •, a k ) * N k=1 (1 + β k cos •, a k ) = N k=1 1 + α k β k 2 cos •, a k , (58) 
as functions on the d-dimensional torus.

The following identity is also useful. We have (1 + c j ) (59)

for any complex numbers c 1 ,..., c N .

A selection lemma

The following interesting fact is taken from [START_REF] Rudin | Real and Complex Analysis[END_REF] (Lemma 6.3, p. 118).

Lemma 18 Suppose z 1 ,..., z N are some complex numbers. Then, there exist σ 1 ,..., σ N ∈ {0, 1} such that

N k=1 σ k z k ≥ 1 π N k=1 |z k | .
The proof is elementary and we skip it.

Let us define two sequences (z 0 k ) 1≤k≤N and (z 1 k ) 1≤k≤N by the expressions

z β k := 1 2 β k k-1 j=1 1 + i 2 β j
for k = 1, ..., N , where β = 0, 1 is an index. Here, the product over an empty set is by convention equal to 1.

It is easy to see that, using Lemma 18 applied to the sequence (z 0 k ) 1≤k≤N we get Lemma 14. Similarly, using Lemma 18 applied to the sequence (z 1 k ) 1≤k≤N we get Lemma 16. (1 + cos t, a j ) , which concludes the proof.

Remark 21 In fact, it is possible to prove Lemma 20 (up to a multiplicative constant) without using Lemma 18. Indeed, the sequence (z k ) 1≤k≤N defined in (61) has a quite simple form: the argument of z k is (k -1) θ N (mod 2π), where θ N := arctan 1/2 √ N . One can choose the sequence (σ k ) 1≤k≤N explicitly: σ k = 1, if -π/4 ≤ (k -1) θ N (mod 2π) ≤ π/4, and σ k = 0, otherwise.

  P2) for each k ∈ {1, ..., N -1} we have 4 |a k (1)| < |a k+1 (1)| and 4 |a k (2)| < |a k+1 (2)| ; (Here, a k (1) and a k (2) are the two coordinates of a k . ) (P3) for each k ∈ {1, ..., N } we have 0 < a k (1) + 1≤j≤k-1

{ε 1 a 1 +

 1 defined on T d . Note that, by (58), we haveg N * G N (t) = ... + ε k a k | ε 1 , ..., ε k ∈ {-1, 0, 1} , ε k = 0}and the projection P A defined byP A f (n) = f (n) if n ∈ A and P A f (n) =0 otherwise, for any trigonometric polynomial f on T d . Observe that (59) and (63) giveP A (g N * G N ) (t) = a j ,and thanks to (62),|P A (g N * G N ) (0G N L 1 (T d ) ≥ g N L ∞ (T d ) P A G N L 1 (T d ) ≥ | g N , P A G N | = |P A (g N * G N ) (0)| ≥ √ N 2π .It remains to observe that,P A G N (t) = N k=1 σ k cos t, a k k-1 j=1

Actually, the definition given in[START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF] Section 

2] is slightly different. However, this aspect is unimportant in what follows.

Note that (P2) implies the fact that the sequence (M a k ) 1≤k≤N is dissociated. See the Apendix below.
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The symmetric case, (IIs)

We need the following analogue of Lemma 14 (see the Appendix):

Lemma 16 Fix N ∈ N * . There exists a finite sequence (σ k ) 1≤k≤N in {0, 1} such that

In what follows (a k ) 1≤k≤N is a sequence in Q 2 satisfying the properties (P1)--(P4) for the sequence (σ k ) 1≤k≤N from Lemma 16 above. It is easy to see that such a sequence exists. Using this sequence we construct the function R N as in (24).

Suppose that m is a multiplier on Ẇ l,1 (R 2 ). Then m defined by m (ξ) := m (-ξ) is also a multiplier on Ẇ l,1 (R 2 ) with the same norm as m. It follows that

for any ϕ ∈ C ∞ c (R 2 ). Consider now the normed subspace

endowed with the norm induced by (L 1 (R 2 ))

. We consider the linear functional L N : V → R defined by

Note that L N is well-defined on V . Thanks to (40), L N is bounded on V . Using the Hahn-Banach theorem, we get that there exists a bounded extension

such that its norm equals L N . Note that, by (28),

be the element representing L N , where α ∈ N 2 are multiindexes. We have that

for any multiindex α, with |α| = l. Also, we have (see Remark 13)

in the sense of distributions on R 2 .

Remarks on Wojciechowski's inequality

We discuss here some inequalities in the spirit of Lemma 14 and Lemma 16. Wojciechowski was the first one to use such inequalities in the proof of non-estimates. In particular, he obtained in [START_REF] Wojciechowski | On the strong type multiplier norms of rational functions in several variables[END_REF] the following relatively difficult estimate (see [

9, Lemma 1], [10, Lemma 1]):

Lemma 19 There exists a constant C > 0 such that, for any integer N ≥ 2 there exist M = M (N ) and a sequence σ 1 ,..., σ N ∈ {0, 1} such that

whenever the sequence

This lemma was already used in conjunction with the Riesz products technique [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF], [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF], [START_REF] Kazaniecki | Ornstein's non-inequalities: Riesz product approach[END_REF]. Lemma 19 was used in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF] to prove that there exists g ∈ L 1 (T 2 ) such that there are no

It was also used in [START_REF] Kazaniecki | Ornstein's non-inequalities: Riesz product approach[END_REF] in order to prove some anisotropic Ornstein-type non-inequalities and in [START_REF] Kazaniecki | On the continuity of Fourier multipliers on the homogeneous Sobolev spaces Ẇ 1,1 R d[END_REF] to study the continuity of the multipliers on Ẇ 1,1 R d .

Here we want to point out that, in the above-mentioned applications, a weaker form suffices: we only need to know that the lower bound in (60) goes to ∞ when N → ∞. (In the case of the application of Lemma 19 given in [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF], this was observed by Wojciechowski [START_REF] Wojciechowski | On the representation of functions as a sum of derivatives[END_REF]Remark 1].) This weaker version can be achieved by much cheaper arguments than the ones used to obtain Lemma 19. In this direction we mention the following.

Lemma 20 For any integer N ≥ 2 there exists a sequence σ 1 ,..., σ N ∈ {0, 1} such that

Proof. The proof follows the ideas in [START_REF] Curcȃ | The divergence equation with L ∞ source[END_REF]. By applying Lemma 18 to the sequence (z k ) 1≤k≤N , where

we obtain a sequence (σ k ) 1≤k≤N in {0, 1} such that (1 + cos t, a k ) ,