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CubeSat Attitude Estimation via AUKF using
Magnetometer measurements and MRPs

F. Sanfedino, M. Scardino, Jérémie Chaix and Stéphanie Lizy-Destrez

Abstract In this article the Attitude and Control system of a CubeSat is presented.
The attitude estimation design approach used is based on Adaptative Unscented
Kalman Filter (AUKF) using three-axis magnetometer measurements. A set of mod-
ified Rodrigues Parameters (MRPs) is used to evaluate the attitude. Finally in order
to have an complete ADCS system two control laws are introduced (Bdot and Slid-
ing Mode) to best simulate a real CubeSat mission. The first one allows the space-
craft the control during the detumbling phase (phase at high angular rates) and in
case of reaction wheels saturation and the second one is used for the nominal control
(phase at low angular rates).

1 Introduction

During the last decades there has been a great development of cheap and small satel-
lites, especially in CubeSat projects.
The CubeSat concept created in 1999 by Jordi Puig-Suari of California Polytechnic
State University and Bob Twiggs of Stanford University in order to allow students
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to achieve all the skills which a complex satellite project needs [1].
CubeSats are picosatellites of standardised dimensions (cubes of 10cm per side with
a maximum mass of 1kg). The standard 10x10x10cm basic CubeSat is often called
one unit or 1U CubeSat. CubeSats are scalable along only one axis by 1U incre-
ments. As in all satellites also in CubeSats the Attitude and Determination Control
System (ADCS) plays a key role in their lives, because it guarantees the right point-
ing for the communication with the ground station.
In a CubeSat application the ADCS is based above all on three-axis magnetometer
employment. This sensor has several advantages such as relative low cost, low re-
quired power and continuous availability. In fact the major part of CubeSat orbits
are Low Earth Orbit (LEO) and for these ones, during solar eclipse, only the Earth’s
magnetic field observations are available. Besides magnetometers can also serve as
backup attitude estimators [2].
An example of CubeSat which exploits this idea is the JumpSat. The JumpSat is a
3U CubeSat mission proposed by ISAE Supaero in collaboration with TELECOM
Bretagne, Massachusetts Institute of Technology (MIT), Centre National dEtude
Spatial (CNES) and ONERA.
The goals of this mission are [3]

• Technological verification and Space qualification of a star tracker, which is cur-
rently under development by ISAE Supaero for future use in small satellite sys-
tems.

• Mapping of the properties of the Earth radiation belt with emphasis of the South
Atlantic Anomaly using a directional radiation sensor under development by ON-
ERA.

• Technological verification and Space qualification of the three-axis attitude con-
trol system of the Jumpsat space segment.

The ADCS is the system which has the role of satellite attitude control in each
phase of its life-cycle. The information taken from some sensors is exploited by
actuators in order to produce correction torques. The way of control is based on the
specific operational phase.
In the JumpSat mission several phases have been identified.
The most influent ones are two [3]:

• Rotational Rate Reduction Mode (Angular rates higher than 5◦/s): an operational
mode to eliminate the rotational energy of the system after separation from the
lunch vehicle or after idle times of the system. It is based on the B-dot control
law [4] and utilizes the Magnetometer and Magnetorquer only.

• Attitude Acquisition Mode (Angular rates smaller than 5◦/s): the main operation
mode of the ACS system, based on all available sensors and actuators. It allows
pointing of the satellite in any direction in any of the reference frame.

The attention has been focused on the Rotational Rate Reduction Mode, which
guarantees the satellite mission survival. Thus the model of a real magnetometer has
been made by adding a noise and a bias term to the magnetic field. Thanks to this
model and a Kalman Filter employment an estimation of the system states (attitude
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and angular rate) can be obtained.
For this non-linear application it is necessary to use the Unscented Kalman Filter
(UKF) algorithm, based on the Unscented Transformation (UT) [5]. The UT uses
a set of sigma points in order to compute the statistics behaviour (propagation of
means and covariance) of variables undergone to a nonlinear transformation. Sigma
points can be selected according to the symmetric and spherical simplex sigma point
[6].
In the next sections the implemented methods and the simulation results will be
presented.

2 Methods

2.1 Unscented Kalman Filter

2.1.1 Unscented Transformation

The Unscented Transformation is a method for calculating the statistics of random
variable, which undergoes under a non linear transformation. In order to do this, it
uses a set of sigma points that guarantees the propagation of means and covariance
through the non linear equations. Supposing a random variable x ∈ Rn has mean x
and covariance Px, and x is propagated trough a non linear function, y = g(x). In
order to calculate the statistics of y, the sigma points can be selected according to
the symmetric and spherical simplex sigma points. For the symmetric sigma points
it is necessary to have 2n sigma points to represent the mean and covariance, while
for the spherical simplex sigma points it is necessary to have n+2 points. Generally,
the computational cost of Unscented Transformation are proportional to the number
of sigma points. For this reason the spherical sigma points approach is chosen. In
order to evaluate the spherical silmplex sigma points, the algorithm shows [6] is
used.

2.1.2 State estimation

The Unscented Transformation and the sigma points permit the estimation of a non
linear dynamic system state vector.

An example of this system in discrete time is:{
xk = F(xk−1,wk−1)

yk = H(xk,vk)
(1)

where xk represents the states of the system, yk is the measurement of the system, wk
and vk are noise, respectively, of the system and of the measurement. The non-linear
dynamic equation system considered in this work is:
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xk = f(xk−1) + wk−1

yk = h(xk) + vk
(2)

For this particular non-linear system the Unscented Kalman Filter is called Additive
Unscented Kalman Filter. The Additive Unscented Kalman Filter, respect to clas-
sical Unscented Kalman Filter used for the non-linear system 1, provides a greater
estimation error, but it is more difficult to tune. The formulation for Additive Un-
scented Kalman Filter is given as follows.

Firstly, the filter is initialized as:

x̂0 = E[xo] = [xo]
T (3)

P0 = E[(xo − x̂0)(xo − x̂0)
T ] = diag(Po) (4)

Then the predicted state mean and covariance are computed using Unscented
Transformation:

χi,k|k−1 = f(χi,k−1) i = 0, ....,n+1 (5)

x̂−k =
n+1

∑
i=0

wm
i χi,k|k−1 (6)

P−xk+1
=

n+1

∑
i=0

wc
i (χi,k|k−1− x̂−k )(χi,k|k−1− x̂−k )

T + Qk (7)

where χ represents the matrix of sphercial simplex sigma points. The mean and
covariance observations are found by:

Yi,k = h(χi,k|k−1) i = 0, ....,n+1 (8)

ŷ−k =
n+1

∑
i=0

wm
i Yi,k (9)

Pyk =
n+1

∑
i=0

wc
i (Yi|k− ŷ−k )(Yi|k− ŷ−k )

T + Rk (10)

where Qk and Rk are the covariance matrix noise, respectively, of the state and mea-
surement. The cross correlation covariance is calculated using:

Pxkyk =
n+1

∑
i=0

wc
i (χi,k− x̂−k )(Yi,k− ŷ−k )

T (11)

Finally, the correction stage is defined as follows:

Kk = Pxkyk P−1
yk

(12)

x̂k = x̂−k + Kk(yk− ŷk) (13)

Pxk = P−xk
− KkPyk KT

k (14)
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2.1.3 The adaptive tuning of the Q Matrix

The estimation error of UKF depends on the initial choice of the covariance matrix
noise Q and of the measurements covariance matrix. For this reason it is necessary
to present the Adaptive Unscented Kalman Filter (AUKF), that is a method based on
UKF, but the value of Q changes at each step time, in order to reduce the estimation
error. An each time step the observation of Q can be written as [7]:

Q∗ = ∆xk+1∆xT
k+1 + P−k − Pk +Qk (15)

where Qk is the current covariance matrix noise and ∆xk+1 is the difference be-
tween the estimated and the predicted state.

∆xk+1 = x̂k − x̂−k (16)

So the estimation for the covariance matrix noise is

Qk+1 = Qk +
1
γ
[Q∗−Qk] (17)

where γ represents the window size that sets the level of expected change in the
noise covariance.

2.2 Attitude dynamics and sensor models

This section provides a brief review of spacecraft attitude dynamics. The attitude pa-
rameters here introduced are the Modified Rorigues Parameters. A quaternion sys-
tem is generally applied for spacecraft pointing and regulation thanks to the absence
of singularities in its kinematic equations. However, the use of quaternions requires
an extra parameter which leads to a non-minimal parametrization. The Rodrigues
parameters provide a minimal (i.e., three dimensional) parametrization. However,
a singularity exists for 180◦ rotations, which hinders this parametrization for ex-
tremely large angle rotations. The compromise between the two models it is the
modified Rodrigues parameters application, whose singularity at 360◦ can be solved
by a method explained in the section 2.2.1. Moreover they answer to the minimal
parametrization need.
As in [8] this parametrization is derived by employing a stereographic projection of
the quaternions. The quaternion representation is given by:

q≡
[

q13
q4

]
(18)

with
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q13 ≡

q1
q2
q3

= n̂sin
(

θ

2

)
(19)

q4 = cos
(

θ

2

)
(20)

where n̂ is the unit vector corresponding to the axis of rotation and θ is the angle of
rotation.
The Modified Rodrigues Parameters are defined by Equation (21):

p =
q13

1+q4
= n̂ tan

(
θ

4

)
(21)

where p is a 3× 1 vector. The kinematic equations of motion are derived by using
the spacecraft’s angular velocity w, given by:

ṗ =
1
2

{
1
2
(
1−pT p

)
I3×3 +[p×]+ppT

}
w (22)

The non-linear three-axis rotational dynamics of the rigid spacecraft with momen-
tum wheel may be expressed as:

ẇ = J−1{Tc− Ḣi− [w×]Hi− [w×]Jw+∆T
}

(23)

where, J is the moment of the inertia matrix, Tc is the magnetorquer control torque,
Hi is the angular momentum vector and , Ḣi is the wheel control torque and ∆T is
the disturbance torque.
For convenience, defining the state vector x ∈ R7×1 in the attitude estimator as
x =

[
pT wT t

]T , where the time t is added as estimation variable for a simpler
implementation.
The non-linear dynamics equation for propagating x is rewritten as

ẋ = F (x,wT ) = f(x)+wT (24)

where

f(x) =

 1
2

{ 1
2

(
1−pT p

)
I3×3 +[p×]+ppT

}
w

J−1
{

Tc− Ḣi− [w×]Hi− [w×]Jw+∆T
}

1

 (25)

and the process noise wT is zero-mean white noise described by the process noise
matrix Q. The attitude measurement model for a single sensor is given by:

yk =

[
Bbodyk

tk

]
+vk =

[
A(pk)

1

][
Bk

tOBC

]
+vk (26)

where yk is the kth measurement vector, tOBC is the time provided by the on-board
computer, and vk is measurement zeros-mean white noise. So the measurements of



CubeSat Attitude Estimation via AUKF using Magnetometer measurements and MRPs 7

the Earth magnetic field in the orbital frame are translated into the spacecraft body
frame by using the matrix A(p)

A(p) = I3×3−
4
(
1−pT p

)
(1+pT p)2 [p×]+ 8

(1+pT p)2 [p×]
2 (27)

2.2.1 How to avoid the singularity of Modified Rodrigues Parameters

In order to avoid the singularity of Modified Rodrigues Parameters, it is possible to
use the similar parameters, which are called shadow Modified Rodrigues Parameters
[9]:

pS
i = − qi

1−q4
= − pi

pT p
(28)

The shadow parameters pS have some interesting properties. They have a singularity
at the zero rotation and they go to zero at ±360 ◦ of principal rotation. This is the
exact opposite of p. For this reason they can be used when the Modified Rodrigues
Parameters go to singular. So with these shadow points it is possible describe any
rotation of satellite without singularity, but one discontinuity is present at the switch-
ing point. In terms of p the cosine matrix and the kinematic equation are exactly the
same as 22 and 27.

In order to switch between these parameters it is possible to use the following
relationship:

|p||ps| = 1 (29)

When using p to represent the attitude, there is switch from p to ps if |p| > 1 and
thus:

ps = − p
|p|2

(30)

While using ps to represent the attitude, there is switch from ps to p if |ps|> 1, and
thus:

p = − ps

|ps|2
(31)

So with this definition the magnitude of p and ps will never exceed 1, which results
in avoiding the singularity.

2.3 Control law

This section will present the two control laws implemented in this project: the B-
Dot for the Rate-Reduction Mode and the Sliding Mode for the Attitude-Acquisition
Mode.
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2.3.1 B-Dot Control Law

This section describes the B-Dot control law for the Rate-Reduction Mode. The
principle on which the B-Dot is based [4] is the minimization of the derivative of the
Earth’s magnetic field vector B measured by a magnetometer. The rate of its change
depends on the spacecraft rotation rate. Thus the minimization of this derivative
determines a decrease of the satellite angular rate that corresponds to a reduction of
the rotational kinetic energy. This is defined as:

Ėrot =
d
dt

(
1
2

wbody
T · Isat ·wbody

)
(32)

This means that the scalar product of the angular rate of satellite body and the
control torque must be smaller than zero:

wbody
T ·Tc < 0 (33)

The control torque Tc is the result of the interaction of the Earth magnetic field
vector B and the magnetorquers magnetic momentum Mtorquer:

Tc = Mtorquer×BEarth (34)

Thus:

wbody
T · (Mtorquer×BEarth)< 0 (35)

After rearranging, Equation (35) becomes:

Mtorquer ·
(
wbody

T ×BEarth
)
< 0 (36)

From this inequality it can be deduced that the unique negative parameter has
to be Mtorquer. Thus a negative control scalar gain Cb−dot is introduced in order to
minimise the rotation kinetic energy.

The commanded control torque becomes:

Mtorquer =−Cb−dot · (wbody×BEarth) (37)

In Equation 37 the cross product between the angular body rate wbody and the
Earth’s magnetic field vector is equal to the time derivative of the Earth’s magnetic
field vector ḂEarth:

ḂEarth = wbody×BEarth (38)

The control law finally becomes:

Mtorquer =−Cb−dot · ḂEarth (39)
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2.3.2 Synthesis of Sliding mode control

Considering the following non-linear system:

ẋ = f(x) + g(x)U (40)

where x is the state vector of the system and U represents the command that stabi-
lizes x. For this system the goal is to find the value of U. In order to do this, one
approach is to choose a surface in the state space, called sliding surface S(x), where
the command objective is:

• If S(x) = 0, the value of state vector has to be zero (x = 0)
• To bring the state vector from an arbitrary position to the sliding surface.

Besides, the command of sliding mode can be characterized by the principle of
attractiveness (S(x)Ṡ(x) < 0) and of invariance (Ṡ(x)) = 0 for S(x)) = 0). With
these principles it is possible to compute the value of U [10]:

U = −

((
δS
δx

)T

g(x)

)−1((
δS
δx

)T

f(x)

)
− Ksat(S(x,ε)) (41)

where K is a diagonal matrix that permits U to assure the condition of attractiveness
and sat(S(x)) is the saturation function, that generally is equal to:

sat(S(x,ε)) =


−1 i f S(x)<−ε
S(x)

ε
i f |S(x)|< ε

1 i f S(x)> ε

(42)

Sliding Surface using Modified Rodrigues and reaction wheels

For the operational mode, only the reaction wheels represent the way to stabilize
the JumpSat. For this reason the control torque of magnetotorques is equal to zero
and the Equation (23) of dynamics becomes:

Jẇ + [w×]Jw = − [w×]Hi − Ḣi + ∆T (43)

Finally the linear model for spacecraft motion is:

ṗ = F(p)w (44)

ẇ = f(x) − J−1U − J−1
∆T (45)

where,

F(p) =
1
2

{
1
2
(
1−pT p

)
I3×3 +[p×]+ppT

}
(46)

f(p) = −J−1 [w×]Jw (47)
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U = − [w×]Hi− Ḣi (48)

For this dynamics the sliding surface is[11]:

S(p) = w −m(p) (49)

The value of m(p) is calculated from a desired vector of Modified Rodrigues Pa-
rameters and the kinematics equation:

m(p) = F−1(p)d(p) (50)

where,

F−1(p) =4(1 + pT p)−2{
(1 + pT p)I3×3 − 2 [p×] + 2ppT}

and
d(p) = Λ (p−pd) (51)

where Pd is the desired reference of Modified Rodrigues Parameters and Λ is a di-
agonal matrix with negative elements. So with these elements the value of command
is:

U = − J
{

f(w) − δm
δp

[F(p)m(p) + F(p)S(p)]
}

− JKsat(S(p),ε)

Supposing that the matrix Λ is given by a scalar λ times the identity matrix, the
quantity m(p) becomes:

m(p) =4λ
(
1+pT p

)−1−4λ
(
1+pT p

)−2{(
1−pT p

)
I3×3−2 [p×]+2ppT}pd

ans its derivative respect p is equal to:

δm(p)
δp

= 4λ
(
1+pT p

)−1
{

I3×3−2
(
1+pT p

)−1 ppT
}

−8λ
(
1+pT p

)−2{ppT
d −pdpT +[pd×]+

(
pT

d p
)

I3×3
}

+16λ
(
1+pT p

)−3{(
1−pT p

)
I3×3−2 [p×]+2ppT}pdpT

Finally in order to eliminate the effects of external disturbances, it is necessary to
add to the quantity U another torque Udist , so the command to stabilise the system
becomes:

Utot = U+Udist (52)

where
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Udist = −∆ T̂ (53)

∆ T̂ is generally computed by an observer, but in our case it is a value computed by
the Unscented Kalman Filter.

3 Results and Simulation

In this section two implemented models will be presented. Firstly the efficiency of
the UKF estimation without the introduction of the control law will be analysed in
order to give confidence to the measurements of the three-axis magnetometers. Then
the results of the controlled system will be presented. For the simulations a model
of the Earth magnetic field has been introduced according to the specification of
IGRF11 available until 2015 [12]. The magnetic field vector has been computed at
each 0.1s interval. In the reality only the measurements of the sensor will be used
in order to evaluate the spacecraft attitude. The model of the magnetometer con-
sists in a sensor with a bias and a white Gaussian noise to best simulate the errors
accumulated by a real instrument. According to the verification of UKF algorithm
all the control part has been removed. For the JumpSat mission a system of reaction
wheels and magnetorquers is used to actuate the control. The elimination of the con-
trol system has as consequence the suppression of the wheel control torque Ḣi and
of the angular momentum vector Hi, which have an important role in the dynamics
Equation (23), but also of Tc.

The complete system scheme is presented in Figure 1, where also the control law
block is considered.

 

Orbit propagator and  

disturbance sources 

Three-Axis 

Magnetometer 

 

UKF 

Satellite dynamics 

and kinematics 
Attitude Control 

System 

Bbody 

T 

p, 

pe, e 

pe, e, BEarth_e, Te 

H

Bbody_Magnetometer 

 

Time 

+ 

Fig. 1 Simulation scheme

For the test of estimation the blocks architecture except for the UKF are heritage
of Christoph Pierls work [13], but all the equations has been translated into the



12 F. Sanfedino, M. Scardino, Jérémie Chaix and Stéphanie Lizy-Destrez

Parameter Value
J diag[0.045,0.045,0.005]kgm2

Bbias [25,−25,25]T nT
Bresdip [5 ·10−8,5 ·10−8,5 ·10−6]Am2

Bpds [2 ·10−9;2 ·10−9;2 ·10−9]T
W0 0.5
P0 diag[0.087;0.087;0.87;1;1;1;0.1] ·10−1

Q0 diag[1.563;1.43;1.984;0;0;0;0.3] ·10−14

R0 diag[25;25;25;100] ·10−15

p0 [0;0.414;0]
w0 [0;0;0]rad/s
γ 50
λ −0.015
ε 0.01
k 0.0015

Cb−dot −20000

Table 1 Parameters used in the estimation model. Bbias is the bias on the three-axis magnetometer,
Bresdip is the residual dipole momentum of the satellite. Bpds is the deviation standard of the
magnetic noise.

modified Rodrigues Parameters p from the quaternion system and the control part
has been adapted to the current case.
The Orbit propagator and disturbance sources block takes the time to calculate the
evolution of the spacecraft trajectory in its orbit. Thanks to the orbit parameters
evaluation it is possible to obtain the Earth magnetic field in the body frame Bbody
(here calculated by the IGRF11 model for a better precision) and all the considerable
disturbing torques ∆T, i.e. the magnetic and the gravity gradient ones. The block
Satellite dynamics and kinematics comprehends the Equations (22) and (23). The
Attitude Control System takes into account the control law and the reaction wheel
model in order to provide the control torque Ḣi and the angular momentum Hi.

For all the simulations two important hypothesis have been established:

• The Earth magnetic field model is the same in the block Orbit propagator and
disturbance sources and in the filter model. In the reality a simpler algorithm
than the IGRF11 is used in the embedded code for computational reasons. Thus
it introduces other uncertainties not considered here.

• The model of the orbit is not estimated but taken from the environment modelled
in the block Orbit propagator and disturbance sources. Thus a development of
this work would be the implementation of an algorithm which predicts the satel-
lite position in its orbit.

A set of parameters has been chosen to best produce the estimation. They are
listed in Table 1.

In the following graphs different simulation of the implemented methods are
presented. Particularly the variation of Euler’s angles with the time will present .
These angles represent the rotation needed to bring the body frame to the orbital
frame:
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• The angle ψ is the rotation around the axis Zbody, which brings the body frame
to an intermediate frame identified with X1body , Y1body and Z1body = Zbody. This
rotation is considered positive if it is an anti-clockwise rotation.

• The angle θ is the rotation around Y1body , which brings the F1body to another in-
termediate frame, X2body , Y2body = Y1body and Z2body . This rotation is considered
positive if it is an anti-clockwise rotation.

• The angle φ is the rotation around X2body = Xorbital , which aligns the two frames.
It is positive if it is an anti-clockwise rotation.

An algorithm permit us to compute these angles from the values of the Modi-
fied Rodrigues Parameters. The first step of this algorithm is the evaluation of the
quaternions:

q4 =
1−pT p
1+pT p

qi =
2pi

1+pT p
f or i = 1,2,3 (54)

With the values of the quaternions the Euler’s angles are equals to:

ψ = atan
(

2(q4q3 + q1 + q2)

1 − 2(q2
2 +q2

3)

)
(55)

θ = asin(2(q4q2 − q3q1)) (56)

φ = atan
(

2(q4q1 + q2q3)

1 − 2(q2
1 +q2

2)

)
(57)

The limitations of this algorithm implemented on Matlab is that the values of φ

and ψ are comprised between −180◦ and 180◦ and for θ the values are comprised
between −90 ◦ and 90◦.

3.1 Performances of Modified Rodrigues Parameters

In this section a simulations will be presented in order to evaluate the filter effi-
ciency.

Tacking as initial condition,

(ψ,θ ,φ) = (140◦,90◦,160◦) (58)

(r,q, p) = (1.3◦/s,1◦/s,0.85◦/s) (59)

the estimation of UKF with Modified Rodrigues Parameters is presented in Fig-
ure 2, Figure 3 and Figure 4 for a simulation time of 1000s and using the IGRF11
model for the Earth’s magnetic field.
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Fig. 2 Comparison between the estimate Euler angles and real value.
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Fig. 3 Comparison between the estimate Modified Rodrigues Parameters value and real value.
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Fig. 4 Comparison between the estimate Angular rates value and real value.
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3.2 Interest of the adaptive method

This section shows as the adaptive method for the noise covariance matrix guaran-
tees better results in terms of errors between the real system and the estimated one.
Tacking as initial condition,

(ψ,θ ,φ) = (140◦,90◦,160◦) (60)

(r,q, p) = (1.3◦/s,1◦/s,0.85◦/s) (61)

a comparison between normal UKF and its adaptive version is shown in Figure 5.
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Fig. 5 Error between classical and adaptive UKF

3.3 Attitude Control

This section provides the complete control attitude simulation. Both B-Dot and Slid-
ing Mode are applied: the first one in order to reduce the angular rates during the
detumbling phase and in case of the reaction wheels saturation (Rate-Reduction-
Mode). The second one is then used to reach the need attitude (Attitude-Acquisition-
Mode), which corresponds to the condition 0◦ for all three Euler’s angles.

For the simulation the magnetorquers provide a nominal magnetic momentum of
0.2Am2 and the reaction wheel have a saturation torque of 0.635mN m. The switch
from a control law to the other one consists in the condition suggested in [13]:
intervention of B-Dot if all the angular rates are bigger than 5◦/s. In case of switch
a little retard (0.05s) is introduced to permit the system a fluent passage from a
mode to the other one without discontinuities.

Tacking as initial conditions:

(ψ,θ ,φ) = (−100◦,30◦,−100◦) (62)

(r,q, p) = (8.6◦/s,−8.6◦/s,14.3◦/s) (63)
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In Figure 6 the Euler’s angles evolution is presented for a simulation time of
9500s.

0 2000 4000 6000 8000
−100

0

100

200

time (s)

ψ 
(°

)

ψ

 

 

Real ψ
Estimated ψ

0 2000 4000 6000 8000
−50

0

50

100

time (s)

θ 
(°

)

θ

 

 

Real θ
Estimated θ

0 2000 4000 6000 8000
−200

0

200

time (s)

φ 
(°

)

φ

 

 

Real φ
Estimated φ

Fig. 6 Euler angles

3.4 Monte Carlo simulation

Monte Carlo simulations are computational algorithms that rely on repeated random
sampling to obtain numerical results, typically one runs simulations many times
over in order to obtain the distribution of an unknown entity.

The verification of our procedure, based on UKF algorithms and Modified Ro-
drigues Parameters, will be made with Monte Carlo Simulations of the SIMULINK
model with random sets of parameters. The goal is:

• to verify or dismiss the current estimation filter for actual implementation to the
space segment.

• to obtain an estimation on the performance of the algorithm.

The assumptions for the Monte Carlo methods are:

• Each simulation has a duration of 3500s;
• The system is considered converged, if the filter provides an estimation of the

space segment attitude with an error of less than 5◦ around all three axes of the
local orbital frame in less than 2400s and maintains this limit for 900s

The error ε of Monte Carlo approach is defined as ε = 1√
N

, where N is the total
number of simulations. In order to provide a result with a 10% error, a number of
100 simulations are necessary.

For simulating the truth model of satellite a set of random parameters were cho-
sen, particularly the standard deviation value of the sensor σB and the bias value of
the sensor Bbias as the set of random parameters.

But the initial value of the angular rate and satellite attitude were also chosen as
random parameters . Particularly the bounds of these two parameters are:
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• The angular rate wz and wy are comprised between −8.6 ◦/s and 8.6 ◦/s, while
the wx between −14.3 ◦/s and 14.3 ◦/s.

• The attitude value of ψ and φ are comprised between −180 ◦ and 180 ◦, while
the angle θ is comprised between −90 ◦ and 90 ◦.

3.4.1 Results of Monte Carlo Simulation

The Monte Carlo simulation was run with the highest number of iterations possible
with the given limitation on time, 153 times. Among these 153 simulations, 144 lead
to success so:

Pconvergence =
144
153

= 94.12% (64)

The average time needed for the system to reach convergence is equal to:

taverageconv =
∑

Nconvergence
i=0 ticonv

Nconvergence
= 131.2s (65)

In the Figure 7 and 8, it is possible to see the variation of the convergence time
with different values of ψini, φini, θini, the norm of angular rate(

√
w2

x +w2
y +w2

z ),norm

of the sensor bias (
√

B2
biasx

+B2
biasy

+B2
biasz

) and norm of the sensor deviation stan-

dard (
√

B2
psdx

+B2
psdy

+B2
psdz

). These simulations prove that the Adaptive Unscented
Kalman filter, using Modified Rodrigues Parameters, is stable for various initial
states.
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Fig. 7 Resulte of Monte Carlo simulation for Euler’s angles.
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Fig. 8 Results of Monte Carlo simulation for the angular rate norm, the Earth’s magnetic bias
norm and the Earth’s magnetic deviation standard norm.

4 Conclusions

In this paper the UKF advantage in spacecraft attitude estimation were presented
and discussed . It was explored the possibility to apply the Modified Rodrigues
Parameters and it was verified the efficiency of the estimation algorithm. In order to
verify the reliability for future embedded applications a Monte Carlo simulation has
been made by changing all the unknown parameters. A large set of initial condition
after the orbit injection has been speculated in order to manage to control the satellite
in each situation.

At this step of project development some hypothesis have been taken into account
to simplify the problem. Future extensions consist as said before in developing also
an estimation for the orbit propagator and testing two types of Earth’s magnetic field:
one more precise (e.g. IGRF11) for the real model and a simplified version for the
estimator. This operation results compulsory because of the impossibility to charge
the on-board computer with a complex model. Another thing here neglected is the
influence of Aerodynamic disturbance torque. Its effect has to be considerate signif-
icant especially in detumbling phase, when spacecraft surfaces are largely exposed
to the density of the low atmosphere in their rotation. Thus the implementation of a
model for this disturbance torque has to be carried out.
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