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At nanometer separation, the dominant interaction between an atom and a material surface is the
fluctuation-induced Casimir–Polder potential. We demonstrate that slow atoms crossing a silicon ni-
tride transmission nanograting are a remarkably sensitive probe for that potential. A 15% difference
between nonretarded (van der Waals) and retarded Casimir–Polder potentials is discernible at dis-
tances smaller than 51 nm. We discuss the relative influence of various theoretical and experimental
parameters on the potential in detail. Our work paves the way to high-precision measurement of the
Casimir–Polder potential as a prerequisite for understanding fundamental physics and its relevance
to applications in quantum-enhanced sensing.

The Casimir–Polder (CP) interaction between an atom
or molecule and polarizable matter [1] has been inten-
sively studied theoretically as a fundamental electromag-
netic dispersion force [2, 3]. It originates from quan-
tum fluctuations of the electromagnetic field that spon-
taneously polarizes otherwise neutral objects. Interac-
tion strength and spatial dependence are the result of a
unique combination of atom species, internal atomic state
and material properties and geometry. The Casimir–
Polder interaction is part of a larger family of fluctuation-
induced electromagnetic forces that also include the well-
known Casimir force [4] that has been studied, e.g. be-
tween a metallic sphere and a nanostructured surface
[5, 6]. Historically, and rather confusingly, the non-
retarded regime with Uvdw(z) = −C3/z

3 is sometimes
called the van der Waals (vdW) potential in order to
distinguish it from retarded (or Casimir-Polder) regime,
which asymptotically converges to Uret(z) = −C4/z

4 at
large distance from the surface z.

Pioneering work with Rydberg atoms [7] predomi-
nantly probed the non-retarded regime even at atom-
surfaces distance as large as 1 µm due to major contribu-
tions from atomic transitions in the mid-IR. On the other
hand, when the atomic transitions are in visible or near
UV regions – such as for atoms in their ground states –
the atom-surface interaction will be in the CP regime.
This scenario is relevant for ground-state atomic beams
[8], cold atoms near atomic mirrors [9] and quantum re-
flection [10]. Very few experiments thus far have studied
the cross-over regime where neither limit holds, typically
using an adjustable repulsive dipolar force [11]. Study-
ing atom-surface interactions with reasonable accuracy
is of major importance as these fundamental fluctuation-
induced interactions have not been yet measured with an
accuracy better than 5-10% whatever the experimental
approach.

In this Letter, we present our experimental and
theoretical investigations of matter-wave diffraction of
metastable argon atoms by a transmission nanograting
at atom-surface distances below 51 nm. The geomet-

ric constraint on the atom-surface distance provided by
the two adjacent walls is a major asset that eliminates
the quasi-infinite open space over a single surface, sim-
ilar to an ultrathin vapor cell [14]. Atom-surface inter-
actions have previously been studied using transmission
nanogratings with atoms at thermal velocities [12, 13].
Our work shows that, lowering the atomic beam velocity
below 26 ms−1 opens up new experimental opportunities
due to larger interaction times, and produces diffraction
spectra dominated by the atom-surface interaction [15].
The precise control of nanograting geometry and experi-
mental parameters related to the atom beam leads us to
observe the minute influence of retardation. This paves
the way to accurate CP potential measurements that can
be compared against detailed theoretical models.

Transmission gratings etched into a 100 nm thick sili-
con nitride (Si3N4) membrane are commonly made using
achromatic interferometric lithography (AIL) [16] using
UV light, resulting in gratings with pitch down to 100
nm covering areas of several mm2. For its versatility
in nanograting design, we chose electron beam lithog-
raphy to pattern a new generation of resists with high
selectivity during etching and low line edge roughness
[17]. A 200 nm-period transmission nanograting has been
fabricated on a 100 nm thick membrane of 1 × 1 mm2

size. The combination of 100 keV e-beam lithography
and anisotropic reactive ion etching ensures parallel walls
with deviations smaller than 0.5 degrees from the verti-
cal (see Supp. Mat. for details). The SEM image of
a cleaved nanograting shows smooth and anisotropically
etched walls, rounded with a 21 nm radius of curvature
along the atom propagation axis x (Fig. 1(a) and inset).
Statistical analysis of MEB images reveals a slotted hole
geometry of the slits (with straight section along 90% of
the total slit length), with a main width W = 102.7±0.3
nm and a FWHM distribution of 7 nm (Fig. 1(b)).

Hybrid experiments at the interface between atomic
physics and nanoscience often use alkali atoms for con-
venient laser cooling and manipulation. However, nanos-
tructures chemically react with residual vapor that alters
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the CP potential unpredictably [18]. Using noble gas
atoms in a metastable state prevents chemical damage
on nanostructures while retaining the ability for laser ma-
nipulation. The 3P2 metastable state of argon is used for
an efficient and accurate time-position detection by mi-
crochannel plates with 80 mm diameter in front of a delay
line detector (DLD80 from RoentDek Handels GmbH).
The experiment starts with a supersonic beam of argon
followed by a counterpropagating electron gun, which
provides a flux of 108 Ar∗ atoms per second. The cycling
transition 3P2 ←→ 3D3 (Γ = 2π× 5.8 MHz, λ = 811.531
nm) is used by a Zeeman decelerator to trap atoms in a
magneto-optical trap (MOT). The trap consists of anti-
Helmholtz coils providing the magnetic field and 3 retro-
reflected laser beams, red-detuned by 2Γ, with 7 mW
total power and 2.54 cm beam diameter. Approximately
107 atoms are trapped at a temperature of ≈ 20 mK.

An initial pulse sequence pushes an atom cloud at a
chosen velocity orthogonally to the incoming supersonic
beam at 13 Hz repetition rate [19]. During this time, the
magnetic field remains constant and the molasses laser
beams are switched off. Simultaneously, a second laser
(5 mW frequency-adjustable laser on the same cycling
transition) is turned on for 0.4 ms towards the detector
and focussed to 20 cm after the MOT position. Atoms
remain in the mF = +2 state without any influence on
the diffraction process. A time-of-flight (TOF) measure-
ment is then performed, with the time-position detector
88.5 cm away from the MOT. With this pushing tech-
nique, the relative spread of the atomic velocity distribu-
tion, ∆v/v, is already less than 10%. Moreover, a time
selection of 1 ms is applied to obtain an even narrower
velocity distribution. Additionally, for an absolute ve-
locity determination, we used a light chopper with two
resonant lasers of 1 mm diameter perpendicular to the
atomic beam axis, separated by ∆x = 266.5 ± 1.3 mm
and time triggered with a time sequence accuracy below
50 µs. We obtained mean velocities and respective un-
certainties of 19.1±0.2 ms−1 and 26.2±0.1 ms−1 for both
recorded spectra.

The vertical y-axis (see Fig. 1(c)) has been chosen for
the slit alignment in order to impose a diffraction ex-
pansion perpendicular to the earth’s gravitational field.
At 56 cm from the MOT, the atomic beam diameter is
much larger (≈ 5 cm) than the entire nanograting sur-
face and all slits along the y-axis contribute equally to
the signal. This is not the case along the z-axis (diffrac-
tion axis) where the angular beam distribution acts as
an incoherent source and smears the signal out, in par-
ticular interference orders that are separated by more
than 2.6 (1.9) mrad for 19.1 (26.2) ms−1 . A compro-
mise between atomic flux through the nanograting and
fringe visibility (smearing) is achieved with a free open-
ing of Lg = 306± 5 µm between the vertical edge of the
plate and the nanograting boundary. The atomic beam
divergence, ∆beam

θ , through the 306 µm slit at a distance

L1 from the MOT fits a Gaussian profile with 1.4 mrad
FWHM. As a consequence, the beam divergence alters
perceptibly the measured diffraction spectra, but in a
controlled way. The nanograting is fixed on a 6D piezo
system (SmarPod 11.45 from SmarAct GmbH) to ensure
a 90.0 ± 0.1 degree angle between the atomic beam and
the z-axis on the nanograting. An angular deviation as
small as 0.2 degrees introduces noticeable asymmetry of
the intensities of the diffraction orders.
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FIG. 1. SEM images of (a) a cleaved nanograting on a sub-
strate and (b) a free standing membrane. (c) Experimental
set-up. An atomic cloud is periodically pushed from a MOT
at a chosen velocity through a nanograting L1 = 56 cm away.
A time-position detector is located L2 = 308 mm behind the
nanograting.

Two experimental diffraction spectra are shown in
Fig. 2 for contributing velocities between 18.7 . . . 19.5
ms−1 and 25.5 . . . 26.9 ms−1 . Small electronic aberra-
tions in position have been corrected by the use of a
2600-hole grid pattern, and no intensity inhomogeneity
has been noticed at the experimental accuracy level. The
recording times were 40 and 13 hours for 1.006×105 and
1.512 × 105 atoms, respectively. In general, for matter
waves propagating through a transmission grating, the
diffraction spectrum envelope is determined by the wave-
length and the single slit width, while the interference
peak visibility stems from the transverse coherence length
of the source. In the present situation, the nanograting
slit width effectively narrows due to atoms that are close
enough to a surface being mechanically attracted and
deflected by the Casimir–Polder potential. Metastable
atoms colliding the surface at room temperature are scat-
tered randomly at high velocity, and will return to their
ground state [20].

For atoms at thermal velocities, the region near the
surfaces the atoms needed to avoid was assumed to be
a few nanometers [12, 13]. Using classical trajectories,
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we can estimate a lower limit for the distance at which
the atoms can pass the nanobars to be d0 = 16.2 (14.2)
nm at a beam velocity of 19.1 (26.2) ms−1 or, equva-
lently, an effective slit width of Weff = 70.3 (74.3) nm.
Such a major reduction cannot be neglected when ex-
plaining experimental diffraction spectra (λdB/Weff = 14
mrad at 19.1 ms−1 ). The fringe visibility depends only
on the transverse coherence length of the atomic beam,
Lc = λdBL1/a, with a the diameter of the incoher-
ent source, as given by the van Cittert–Zernike theo-
rem [22]. However, the quadratic dispersion relation
for matter waves suppresses the dephasing compared to
light [23], and hence enlarges Lc. From the cloud size
in the MOT, a = 330± 40 µm, followed by thermal ex-
pansion, one finds Lc = 560± 45 (380 ± 30) nm at 19.1
(26.2) ms−1 beam velocity.
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FIG. 2. Experimental diffraction spectra for beam velocities
of 26 ms−1 (top) and 19.1 ms−1 (bottom) in black. The red
curves are theoretical spectra with a single adjustable param-
eter (d0). The insets show individual diffraction orders. Black
dots result from experimental spectra averaged over positive
and negative diffraction orderes. Red (blue) curves are calcu-
lated with retarded CP (non-retarded vdW) potentials.

The Huygens-Kirchhoff principle can be utilized for
atoms propagating in a potential that is small compared
to their kinetic energy [24, 25]. This can be justified
with the help of the effective slit approximation, which

removes atoms with potential energies that are too large.
Additionally, the detection in the far field validates the
Fraunhofer approximation (x�W 2

eff/λdB), in which the
diffraction pattern results from the sum of wave path dif-
ferences at the nanograting output. The CP potential is
included in the wave propagation as an additional phase
ΦCP(z) that depends on the atom-surface distance inside
the nanograting slit z. In short, the total phase can be
written as F (z, θ) = kz sin θ+ΦCP(z) for an incidence an-
gle θ and a wave number k. The incoming Gaussian wave
packets have a standard deviation σcoh = Lc/2 [26, 27].
The experimental value for Lc covers up to 7 slits co-
herently and hence, the beam cannot be considered as a
plane wave. The diffraction intensity then reads as

I(θ) =

∣∣∣∣∣∑
slits

∫
Weff

exp [iF (z′, θ)] exp

[
− z′2

2σ2
coh

]
dz′

∣∣∣∣∣
2

. (1)

In eikonal approximation, the phase shift imprinted
by a potential UCP (z) is the integral of the potential
along the particle trajectory [28]. Neglecting the surface
potential outside the grating, one finds

ΦCP(z) = − 1

~v

∫ L

0

UCP (x, z)dx (2)

where L = 100 nm is the nanograting depth and v the
beam velocity. However, it is necessary to account for the
exact shape of the grating along the x-axis, because the
slit widths increase near the output. We incorporate this
effect by using a smaller slit thickness of Leff = 95 nm.

In pioneering experiments with nanogratings and su-
personic beams [12, 29], the CP potential is modelled
in the non-retarded regime as Uvdw(z) = −Cnr

3 /z3 for
the two adjacent surfaces. Semi-infinite surfaces are im-
plicitly considered everywhere inside the grating even if
though this is not correct near the edges. Further, the
effect of multiple reflection from the bar opposite has
been neglected [30]. These approximations are justified
for fast atoms or molecules as the overall phase shift re-
mains small on average [31]. In the non-retarded regime,
the coefficient Cnr

3 is given by the Lifshitz formula [34, 35]

Cnr
3 =

~
16π2ε0

∫ ∞
0

α(iξ)
ε(iξ)− 1

ε(iξ) + 1
dξ (3)

where α(iξ) denotes the atomic dynamic polarizability,
and ε(iξ) is the surface permittivity taken at imaginary
frequencies iξ. For metastable argon in the 3P2 state,
we obtain Cnr

3 = 1.25 a.u., or 5.04 meV nm3 in front of
a Si3N4 surface with spectral responses in the UV and
IR [33]. An estimate of the uncertainty of this value is
rather difficult to obtain. First, the material may show
imperfections with regard to its fabrication and size [32]
that alter the index of refraction. Second, the electronic
structure of argon in the 3P2 metastable state, due to its
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11.5 eV internal energy, makes the potential more sen-
sitive to the material optical response in the visible and
near-UV regions, where accurate optical response data
are difficult to obtain. Third, the electronic core contri-
bution has been estimated to be in the range of 0.03 a.u.
using the first ionic state. Such a small core contribution
is a clear theoretical advantage of metastable argon com-
pared to heavier (alkali) atoms [36]. The temperature
dependence of Cnr

3 can be safely neglected here, in con-
trast to situations in which dominant transitions appear
in the mid-IR region [21]. Altogether, we conservatively
estimate a 10% uncertainty that is similar to other CP
calculations.

The improvement in experimental accuracy allows us
to discern the non-retarded regime and the onset of retar-
dation effects, that arise due to the finite field propaga-
tion time between atom and surface. This effect becomes
relevant at distances larger than λopt/(2π). Without re-
sorting to a full calculation of the exact shape of the
potential, one can resort to sophisticated interpolations.
Here, we use a model derived in Ref. [37] that is built on
a single atomic transition (here, λopt = 811.5 nm for Ar
3P2), for which the effective coefficient Ceff

3 (z) reads as

Ceff
3 (z) = Cnr

3

[
ζ + (2− ζ2)f1(z) + 2ζf2(z)

]
/π (4)

with ζ(z) = 2z(2π)/λopt and fi(z) given in [38]. This
expression provides an interpolation between Uvdw ∝ z−3

at short distances and Uret ∝ z−4 for z � λopt. Inside the
grating, Ceff

3 (z) goes from Cnr
3 at z = 0 to Ceff

3 (51 nm) =
0.78 Cnr

3 (Fig. 3(a)). On average, the detected atoms will
have experienced 〈Ceff

3 〉 = 0.85 Cnr
3 , which corresponds

to a 15% deviation from the non-retarded regime. This
model is in very good agreement with the complete QED
calculation [2] to within a few percent for semi-infinite
surfaces, and arguably much faster to calculate.

As first shown in Ref. [13], the fitting procedure is ex-
tremely sensitive to the grating geometry, and there is
no unique relation between the experimental spectrum
and the set of possible theoretical parameters. A chi-
squared test is used with χ2 =

∑
θ(I

exp
θ − Itheo

θ )2/σ2
θ,exp,

where σθ,exp, Iexp
θ and Itheo

θ are the experimental noise
standard deviation, and the experimental and theoretical
intensities at the angle θ, respectively. Indeed, we find a
linear relation between potential strength and slit width
as well as nanograting thickness Lng to within 10% of
their nominal values: ∆W = ±1 nm → ∆Cnr

3 = ± 0.07
a.u. and ∆Lng = ±10 nm → ∆Cnr

3 = 0.16 a.u. On
the other hand, σcoh and ∆beam

θ are not linked to any
other parameters. The remaining important parameter,
Weff = W − 2d0 in Eq. (1), is the maximum additional
CP phase shift with Φmax

CP = ΦCP (d0). Note that Φmax
CP

is different for both models as d0 increases with larger
Cnr

3 . Also, at larger velocities this parameter was not
considered to be critical [11].

With this, we can discuss the variations of Cnr
3 and

Φmax
CP . Figure 3(b) shows the (χ2

min + 40σ)-surfaces for
a beam velocity of 26.2 ms−1 , where σ = 6.2 is the
standard deviation for two parameters. The magnifi-
cation of 40σ has been chosen merely for clarity. The
dashed line is the calculated expected Cnr

3 . Four differ-
ent minima have been found: Φmax

CP = 4.5, 10.5, 17.5, 22
rad for z ≈ 17.5, 13.1, 11.0, 10.1 nm from the surface.
Φmax
CP = 10.5 rad gives the smallest χ2 for both models.

Figure 3(c) shows the (χ2
min + σ)-contours proving the

importance of the full CP potential (red) and rejecting
the nonretarded approximation (blue). For further clar-
ity, the insets in Fig. 2 emphasizes the influence of both
models on the spectra calculated at Φmax

CP = 10.5 rad with
the theoretically expected Cnr

3 . Note that our extracted
experimental value of Cnr

3 = 1.24±0.15 a.u. also corrects
the rather crude approximation given in Ref. [40].
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FIG. 3. (a): Ceff
3 /Cnr

3 as function of atom-surface distance.
(b),(c): χ2

min + nσ [n=40 (b), n =1, 3, 6, 9 (c)] as functions
of Cnr

3 and Φmax
CP at 26.2 ms−1 for nonretarded vdw (blue)

and retarded CP (red) potentials. The dashed line shows the
theoretical value for Cnr

3 .

The advantage of using a slow atomic beam with a
well-defined velocity rather than a thermal beam derives
from the fact that the atom-surface interaction poten-
tial can be probed to a much higher accuracy. However,
this presents another difficulty: the Kirchhoff approx-
imation stipulates that the (change of the) transverse
wavenumber has to be small compared to the longitu-
dinal wavenumber, kperp/k � 1 [41]. The slower the
atoms become, the more (relative) transverse momen-
tum they accumulate whilst traversing the grating. At
the cut-off that determines the effective slit width, we
can estimate the relative change in transverse wavenum-
ber to be roughly 5% for a beam velocity of 26.2 ms−1 ,
but already 10% for a velocity of 19.1 ms−1 . This implies
that the Kirchhoff approximation can no longer be relied
upon at slower beam velocities, at which a more detailed
theoretical description is required.

In conclusion, we have demonstrated the importance of
the retarded Casimir-Polder potential for the diffraction
of metastable Ar in a range of atom-surface distances
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as small as ≈ 15 . . . 51 nm with a Si3N4 transmission
nanograting. Due to atomic velocities as slow as 19.1
ms−1 as well as an accurate geometrical characterization
of the nanograting, we were able to discriminate a dif-
ference in the CP potential as small as 15%. For lower
velocities or smaller slit widths, the semiclassical model
utilized for the simulations should be replaced by a quan-
tum mechanical model. Such a theoretical refinement will
introduce quantum reflexion at the slit walls and may
produce, in some geometry, gravity Q-bounces as found
for neutrons [42]. This work opens the opportunity for
unprecedented and accurate CP potential measurements
by controlling the tilt of the nanograting, which, com-
bined with tomography methods, would lead to a thor-
ough understanding of atom-surface interactions with im-
plications for theoretical physics as well as nano metrol-
ogy. For example, the hypothetical non-Newtonian fifth
force [43] could be constrained by an atomic physics ex-
periment. Atomic quantum random walks [44] based on
multi-path beam splitters can be simply realized with
two or more nanogratings, and closed-loop interferome-
ters can be made extraordinary compact.
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