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Abstract

We solve the St.Venant torsion problem for an infinite cylindrical rod whose behaviour is described by
a family of isotropic generalized continua, including the relaxed micromorphic and classical micromorphic
model. The results can be used to determine the material parameters of these models. Special attention
is given to the possible nonphysical stiffness singularity for a vanishing rod diameter, since slender
specimens are in general described as stiffer.
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1 Introduction

In this paper we continue our endeavour to find analytical solutions to simple boundary value problems for
families of generalized continua [3, 60, 61]. The focus is on non-homogeneous solutions that on one side
activate the additional deformations modes offered by generalized continua (curvature terms) and which
may be used, on the other side, in calibrating the additional (many) material parameters. The renewed
interest in models of generalized continua comes in part from the fact that for small specimens one may
observe size-effects, not accounted for by linear Cauchy elasticity. On the other hand, the description of
man-made architecture materials/meta-materials need generalized continua to capture frequency band-gaps
in the dynamic range, a prominent example being given by the relaxed micromorphic model [1, 2, 40, 59, 62].

Here, we consider the static St. Venant torsion problem. Since we aim at identifying material parameters,
let us first review what can be said for isotropic linear elasticity.

1.1 Material parameters in linear elasticity vs. generalized continua

The determination of the two constitutive material parameters in isotropic linear elasticity can be achieved
in several different ways. For example the Young’s modulus and Poisson’s ratio

Emacro =
9κmacro µmacro

3κmacro + µmacro

, νmacro =
3κmacro − 2µmacro

2(3κmacro + µmacro)
, (1)

λmacro =
3κmacro − 2µmacro

3
, κmacro =

2µmacro + 3λmacro

3
, (2)

can be uniquely determined from a homogeneous macroscopic tension-compression test. Moreover, the shear
modulus µmacro and the Young’s modulus Emacro can also be identified from the inhomogeneous torsion and
bending test, respectively. Indeed, the classical torsional stiffness (per unit length) of a circular rod is given
by

Tmacro = µmacro Ip = µmacro

πR4

2
, (3)
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and the bending stiffness (per unit length and per unit thickness) in cylindrical bending [61] is equivalent to

Dmacro =
h3

12

Emacro

(1− ν2
macro)

=
h3

12

4µmacro (3κmacro + µmacro)

3κmacro + 4µmacro

. (4)
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Figure 1: Geometry of the torsion problem: according to the St.Venant principle, we do not consider how
the resultant end torque is applied. Furthermore, we assume that each cross-section (orthogonal to x3)
rotates as a rigid body with a constant rate of twist ∂Θ

∂x3
= ϑ. Since there is no warping, every cross-section

remains in the same plane before and after the deformation. Note that the final solution for linear elasticity
satisfies this ansatz only to within first order in the rate of twist ϑ, see Fig. 2.

A third independent identification can be achieved with dynamic measurements, determining the shear
wave speed (cs) and the pressure wave speed (cp)

cs =

√
µmacro

ρ
, cp =

√
2µmacro + λmacro

ρ
. (5)

In reality, all these three methods may lead to slightly different values when used to fit real experi-
ments due to the experimental set up. Nevertheless, they all are useful in complementing the identification
procedure. We note that all mentioned tests convey a precise physical meaning to the appearing material
parameters and this greatly helps in the mechanical application of linear elasticity to real world structures.

The situation is much more involved when trying to determine material parameters for generalized
continua. Even when restricting the attention to linear and isotropic response, the number of additional
parameters increase significantly and it is also not clear a priori what the physical meaning of the additional
parameters really is. Lakes [34, 35] has prominently investigated the fitting procedure for isotropic Cosserat
solids. In the linear isotropic Cosserat model (Section 6) there appear already six independent parameters
and a series of experiments with differently sized materials allows to determine the Cosserat constants. A
decisive tool for that purpose is the analytical solution for torsion and bending, which is already available
in the literature [33, 39, 61]. The Cosserat model allows to describe size-effects in the sense that more
slender specimen have an increased apparent stiffness’ in bending and torsion. However, it is observed
that the Cosserat model does have an unphysical stiffness singularity in bending [61] for a zero slenderness
limit, the same appears in general in torsion (Section 6) but can be avoided upon setting to zero some
curvature parameters (Sec 6.1). The mentioned stiffness singularity is not only an academic issue, but it
concerns the stable identification of the material parameters [53]. Yet, in the Cosserat theory, the Young’s
modulus Emacro and the Poisson’s ratio νmacro can still be determined in a size-independent manner with a
homogeneous tension-compression test. In question are the so-called Cosserat couple modulus µc ≥ 0 and
the three curvature parameters.

A first extension of the Cosserat model is the so-called micro-stretch model, which allows for infinitesimal
rotation and volume stretch as independent kinematic fields. For the micro-stretch model we show that the
additional kinematic degree of freedom is not activated in the torsion problem.

Another extension of the Cosserat model is given by the recently introduced relaxed micromorphic model
[44, 47, 67] (Section 4). In its static isotropic version it features only 8 independent material parameters
comparing favourably to the large number of constitutive parameters in the classical micromorphic model.
While the kinematics of the relaxed micromorphic model coincides with the classical micromorphic model
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(9 additional degrees of freedom: stretch, shrink, shear, rotations) the curvature term is a direct extension
of the Cosserat curvature written in terms of CurlP . An important advantage of the model compared to
the Cosserat model is that there is no stiffness singularity in whatsoever situation and four of the eight
constants (µmacro, λmacro, µe, and λe) can be determined ab initio from size-independent homogeneous tests
[46]. There remains to fit three curvature parameters and the Cosserat couple modulus µc ≥ 0 (which in
some situations may be chosen to be zero since the model remains well-posed) [6, 36, 37, 38, 56].

Another advantage of the isotropic relaxed micromorphic model is given by the fact that it can replace
the isotropic Cosserat model in a straightforward manner without additional costs. Indeed, the Cosserat
curvature parameters can be taken as such as well as the Cosserat couple modulus µc. The only new
parameter set is µmicro, λmicro, an estimate of which can be inferred from the small-scale response [46].
Regularity and continuous dependence results for the relaxed micromorphic model have been obtained in
[15, 20, 47, 57] and first FEM-implementations in H(Curl)-space are presented in [46].

Next, the micro-strain model [13] is in a sense complementary to the Cosserat model: it assumes an
additional strain like symmetric field S as extra degree of freedom. Here, we recover a simplified micro-
strain model without mixed terms and a choice for the curvature parameters, see also [66] who considers
a degenerate micro-strain model in disguise. We recover the analytical solution given by Hütter [24] for
the micro-strain torsion problem. It turns out that for bending [61], simple shear [60] and torsion (Section
10) the micro-strain solution does not show a stiffness singularity either. However, this is not a general
feature of the micro-strain model, but only related to the restricted kinematic possibilities: bending and
torsion activate prominently rotations, but these are “filtered out” in the micro-strain model. Therefore,
bounded stiffness in bending and torsion should come as no surprise. Next, we combine the Cosserat and
the micro-strain ansatz in a novel ad-hoc model whose response is nevertheless governed by the Cosserat
kinematics.

Lastly, we have the full micromorphic model [12, 42]. The kinematics is augmented with a non-symmetric
micro-distortion tensor P (as for the relaxed micromorphic model, too) but the curvature energy depends
on the full gradient DP of the micro-distortion. For simplicity and for comparison, we consider a subclass
without mixed terms and simplified curvature expression. In general, the bending and torsion responses
show a stiffness singularity, which can be avoided in torsion by a very special ansatz for the curvature
energy. However, nonphysical stiffness singularities cannot, in general, be avoided. Our investigation is
complemented by considering the strain-gradient models and its couple-stress subclass. The reason for the
singular stiffening behaviour in the other generalized continuum models (except the relaxed micromorphic
one) can be connected to their non-redundant formulation of the curvature measure [63].

An alternative method to study the deformation of (finite) elastic cylinders is the semi-inverse method
introduced by Ieşan in [26, 27], see also [18]. This method was also successfully used to study the deformation
of elastic cylinders with microstructures, see [7, 16, 17] and the book [28], in which many of Ieşan’s results
were unified. Regarding the semi-inverse method, all the results obtained in the classical micromorphic
theory and all its subclasses (Cosserat, micro-stretch, micro-voids) are obtained by assuming that the
internal energy is positive definite in terms of DP . To the contrary, in the framework of the relaxed
micromorphic model, the present results are valid also for internal energies which are not positive definite
in terms of DP , but rather in terms of CurlP . We recall that an internal energy which is positive definite
in terms of CurlP is only semi-positive definite in terms of DP .

The paper is now structured as follows. After fixing our notation in Section 1.2 we shortly dwell on
the formulation of the torsion problem in adapted variables, making it clear that we do not revert to
express stresses and moments in cylindrical coordinate but we always use a Cartesian expression written in
suitable variables. To set the stage we recall the linear isotropic torsion problem, which will then be suitably
generalized.

1.2 Notation

For vectors a, b ∈ Rn, we define the scalar product 〈a, b〉 :=
∑n
i=1 ai bi ∈ R, the euclidean norm ‖a‖2 :=

〈a,a〉 and the dyadic product a⊗b := (ai bj)i,j=1,...,n ∈ Rn×n. In the same way, for tensors P ,Q ∈ Rn×n, we

define the scalar product 〈P ,Q〉 :=
∑n
i,j=1 Pij Qij ∈ R and the Frobenius-norm ‖P ‖2 := 〈P ,P 〉. Moreover,

P T := (Pji)i,j=1,...,n denotes the transposition of the matrix P = (Pij)i,j=1,...,n, which decomposes orthog-

onally into the skew-symmetric part skewP := 1
2 (P − P T ) and the symmetric part symP := 1

2 (P + P T ).
The identity matrix is denoted by 1, so that the trace of a matrix P is given by trP := 〈P ,1〉, while

the deviatoric component of a matrix is given by devP := P − tr(P )
3 1. Given this, the orthogonal decom-

position possible for a matrix is P = dev symP + skewP + tr(P )
3 1. The Lie-Algebra of skew-symmetric

matrices is denoted by so(3) := {A ∈ R3×3 | AT = −A}, while the vector space of symmetric matrices
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Sym(3) := {S ∈ R3×3 | ST = S}. Using the one-to-one map axl : so(3)→ R3 we have

Ab = axl(A)× b ∀A ∈ so(3) , b ∈ R3. (6)

where × denotes the cross product in R3. The inverse of axl is denoted by Anti: R3 → so(3). The Jacobian
matrix Du and the curl for a vector field u are defined as

Du =

 u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

u3,1 u3,2 u3,3

 , curlu =∇× u =

 u3,2 − u2,3

u1,3 − u3,1

u2,1 − u1,2

 . (7)

We also introduce the Curl and the Div operators of the 3× 3 matrix field P as

CurlP =

 (curl (P11, P12, P13)
T

)T

(curl (P21, P22, P23)
T

)T

(curl (P31, P32, P33)
T

)T

, DivP =

 div (P11, P12, P13)
T

div (P21, P22, P23)
T

div (P31, P32, P33)
T

 . (8)

The cross product between a second order tensor and a vector is also needed and is defined row-wise as
follow

m× b =

 (b× (m11,m12,m13)T )T

(b× (m21,m22,m23)T )T

(b× (m31,m32,m33)T )T

 = m · ε · b = mik εkjh bh , (9)

where m ∈ R3×3, b ∈ R3, and ε is the Levi-Civita tensor. The two indices contraction : is intended as

B :∇m = Bipmijk,p = Njk , B : m = Bij mijk = bk , (10)

where B and N are second order tensors, m is a third order tensor, and b is a vector.

1.3 Cartesian variables expressed through cylindrical variables

To address the torsional problem in its natural environment but with the comfort of the classical Cartesian
coordinate system, we introduce the cylindrical set of coordinates which allows us to express the classic
Cartesian orthogonal set of coordinates x = {x1, x2, x3} through a more suitable set of variables r = {r, ϕ, z},
without switching completely to a cylindrical coordinate system, i.e., without expressing all the quantities
(strains, stresses etc.) in the basis corresponding to the cylindrical coordinates

er =

 cosϕ
sinϕ

0

 , eϕ =

 − sinϕ
cosϕ

0

 , ez =

 0
0
1

 . (11)

The relations for the coordinates are

x1 = r cosϕ , x2 = r sinϕ , x3 = z , (12)

while the relations between the first and the second derivative of a generic vector field f are

∂ fi(r, ϕ, z)

∂ rj
=
∂ fi(r, ϕ, z)

∂ xk

∂ xk
∂ rj

,
∂2 fi(r, ϕ, z)

∂ rj∂ rk
=
∂2 fi(r, ϕ, z)

∂ xm∂ xn

∂ xm
∂ rj

∂ xn
∂ rk

+
∂ fi(r, ϕ, z)

∂ xm

∂2 xm
∂ rj∂ rk

. (13)

The quantities we want to obtain are ∂ fi(r,ϕ,z)
∂ xk

and ∂2 fi(r,ϕ,z)
∂ xm∂ xn

, which are obtainable thanks to (13) (see

Appendix A for full calculations).
It is emphasized again that we will not represent the torsional problem in cylindrical coordi-

nates (namely all the differential operators, the equilibrium equation, and the kinematic fields), but we will
use the classical Cartesian coordinates {x1, x2, x3} parameterized in cylindrical variables {r, ϕ, z}.

1.4 Structure of the higher-order ansatz

The ansatz for the displacement field for the cylindrical torsion problem, regardless of the treated model, is
always given by

u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 . (14)
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Here, ϑ is the rate of twist per unit length. It is highlighted that the displacement field has the third
component equal to zero since we are studying a cylindrical rod, whose cross-section is not subjected to
warping. The most general ansatz for the micro-distortion tensor, which will be used for the full and the
relaxed micromorphic model, is

P (r, ϕ, z) = ϑ

 0 −x3(z) −g2(r)x2(r, ϕ)
x3(z) 0 g2(r)x1(r, ϕ)

g1(r)x2(r, ϕ) −g1(r)x1(r, ϕ) 0

 , (15)

where g1, g2 : [0,∞) → R. Starting from the form (15) of the ansatz for P , it is possible to obtain the
ansatz for the micro-stretch model (A = skewP and ω1 = tr(P )1), the Cosserat model (A = skewP ), the
micro-void model (ω1 = tr(P )1), and the micro-strain model (S = symP ), by taking the skew-symmetric
part, the trace of P , or the symmetric part depending on what is needed. Here are reported the symmetric
part, the skew-symmetric part and the trace of P

S(r, ϕ, z) = symP (r, ϕ, z) =
ϑ

2

 0 0 gm(r)x2(r, ϕ)
0 0 −gm(r)x1(r, ϕ)

gm(r)x2(r, ϕ) −gm(r)x1(r, ϕ) 0

 , (16)

A(r, ϕ, z) = skewP (r, ϕ, z) =
ϑ

2

 0 −2x3(z) −gp(r)x2(r, ϕ)
2x3(z) 0 gp(r)x1(r, ϕ)

gp(r)x2(r, ϕ) −gp(r)x1(r, ϕ) 0

 , (17)

were gp(r) = g1(r) + g2(r), gm(r) = g1(r) − g2(r), and ω is not reported since the ansatz (15) has a zero
trace.

It is highlighted that each section remains “rigid” is not really correct, since the deformation of a cylinder
section due to the displacement field (14) (which is a linear approximation of a rigid rotation) looks like

x+ u(x) =

 x1

x2

0

+

 0 −ϑx3 0
ϑx3 0 0

0 0 0

 x1

x2

0

 =

 x1 − x2 x3 ϑ
x2 + x1 x3 ϑ

0

 . (18)

(a)

x

x
+
u
(x
)

u(x)

ϑ

x2

x1

(b)

Figure 2: In the linear approximation, sections of the cylindrical rod are not only rotated, but also expanded
radially for non zero rate of twist ϑ. With (b) we see that the change of radius δR = R

cosϑ −R = 1−cosϑ
cosϑ R =(

ϑ2

2 + 5
24ϑ

4 + h.o.t.
)
R, being of second order in ϑ. Thus, the linear kinematics is correct to within first

order in ϑ, as is well-known.

Of course this radial expansion does not contribute energetically under the small displacement hypothesis,
and this can be seen from (23), in which it is clear that the symmetric strain tensor ε = sym Du does not
depend on x3 ≡ z.
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2 Overview of some generalized continuum models and their in-
terconnections

Considering the following notations for the involved quantities:

u : Ω ⊂ R3 → R3 , displacement ,

P : Ω ⊂ R3 → R3×3 , micro-distortion ,

A : Ω ⊂ R3 → so(3) , micro-rotation ,

S : Ω ⊂ R3 → Sym(3) , micro-strain ,

ω : Ω ⊂ R3 → R , micro-dilatation

and the orthogonal decomposition

P = dev symP + skewP +
1

3
tr(P )1 = devS +A+ ω1 (19)

we give the following genealogy tree of the generalized continuum models:

classical micromorphic

min
u,P

[
W (Du,P ,DP )

]

micro-strain (P = S)

min
u,S

[
W (Du,S,DS)

]

strain gradient (S = sym Du)

min
u

[
W (Du,D (sym Du))

]

relaxed micromorphic

min
u,P

[
W (Du,P ,CurlP )

]

micro-stretch (P = A+ ω1)

min
u,A,ω

[
W (Du,A, ω1,Curl (A+ ω1))

]

Cosserat (P = A)

min
u,A

[
W (Du,A,CurlA)

]

couple stress (A = skew Du)

min
u

[
W (Du,Curl (skew Du))

]
skew symmetric couple stress

min
u

[
W (Du, skew Curl (skew Du))

] modified couple stress

min
u

[
W (Du, sym Curl (skew Du))

]

micro-void (P = ω1)

min
u,ω

[
W (Du, ω,Curl (ω1))

]

ad-hoc model

min
u,A,S

[
W (Du,A,S,CurlA,DS)

]

second gradient (P = Du)

min
u

[
W
(
Du,D2u

) ]

The strain gradient theory and second gradient theory are equivalent [3, 42], and contain additionally
the couple stress theory as a special case. Using the Curl as primary differential operator for the curvature
terms allows a neat unification of concepts.

3 Torsional problem for the isotropic Cauchy continuum

In order to set up a comparison with the models we will present in the next sections, we start by presenting
the solution of the classical cylindrical torsional problem. The strain energy for a linear elastic isotropic
Cauchy continuum is

W (Du) = µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) , (20)

where λmacro and µmacro are the macroscopic Lamé constants.
In terms of the symmetric Cauchy stress tensor σ = 2µmacro sym Du+ λmacro tr (Du)1, where ε =

sym Du denotes the classical symmetric strain tensor, the equilibrium equation (in the absence of body
forces) and the Neumann lateral boundary conditions (at the free surface) are

Divσ = 0 , t(r = R) = σ(r = R) · er = 0 . (21)

6



Our aim is to study a state of uniform torsion ϑ for an infinitely extended cylindrical rod. According
to the cylindrical reference system shown in Fig. 1, the ansatz for the displacement is

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 = ϑ

 −z r sinϕ
z r cosϕ

0

 , (22)

where ϑ is the angle of twist per unit length. It is underlined that the third component of the displacement
is chosen equal to zero since the cross-section is circular and therefore no warping is expected. The gradient
of the displacement and its symmetric part are (the gradient is always taken with respect to the Cartesian
coordinate system and then rewritten in the variables {r, ϕ, z})

Du = ϑ

 0 −z −r sinϕ
z 0 r cosϕ
0 0 0

 , ε = sym Du =
ϑ

2

 0 0 −r sinϕ
0 0 r cosϕ

−r sinϕ r cosϕ 0

 . (23)

Substituting the ansatz (23) in the equilibrium equation (21), it is easy to verify that they are identically
satisfied.

In order to help the geometric interpretation of the torque, see Fig. 3, we present its expression in
Cartesian coordinates along with its representation in the cylindrical variables

Mc(ϑ) :=

∫∫
Γ

[
twisting force per unit area︷ ︸︸ ︷
〈
traction︷︸︸︷
σ e3 ,

 −x2

x1

0

 1√
x2

1 + x2
2

〉

length of
lever arm︷ ︸︸ ︷√
x2

1 + x2
2

]
dx1 dx2 (24)

=

∫∫
Γ

[
x1 σ23 − x2 σ13

]
dx1 dx2 =

∫ 2π

0

∫ R

0

[
〈σ ez, eϕ〉r

]
r dr dϕ , (25)

where e3 = eẑ = (0, 0, 1) is the unit vector aligned with the mid-axis of the cylindrical rod.

x1
x2
0

-x2
x1
0

1

x1
2 + x2

2

Γ

x2

x1

Figure 3: Calculation of the classical torque.

The torque (or moment of torsion) about the x3-axis and energy (per unit length dx3) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ ez, eϕ〉r

]
r dr dϕ = µmacro

πR4

2
ϑ = µmacro Ip ϑ = Tmacro ϑ , (26)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du) r dr dϕ =
1

2
µmacro

πR4

2
ϑ2 =

1

2
µmacro Ip ϑ

2 =
1

2
Tmacro ϑ

2 ,

where µmacro is the macroscopic shear modulus, Ip = πR4

2 is the polar moment of inertia, and Tmacro =
µmacro Ip is the torsional stiffness. It is also highlighted that

d

dϑ
Wtot(ϑ) = Mc(ϑ) = Tmacro ϑ ,

d2

dϑ2Wtot(ϑ) = Tmacro . (27)

Here and in the remainder of this work, the elastic coefficients µi, λi, κi are expressed in [MPa], the
coefficients ai are dimensionless, the characteristic lengths Lc and the radius R in meter [m], the rate of
twist ϑ in [1/m].
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4 Torsional problem for the isotropic relaxed micromorphic model

The relaxed micromorphic model, contrary to all the other proposals for generalized continua in the liter-
ature, lives on two well-defined and separated scales, each describing linear elastic response: the classical
macroscopic response (characteristic length Lc → 0, available for experiments with large specimens) is
described as usual by

Emacro =
9κmacro µmacro

3κmacro + µmacro

, νmacro =
3κmacro − 2µmacro

2(3κmacro + µmacro)
, (28)

λmacro =
3κmacro − 2µmacro

3
, κmacro =

2µmacro + 3λmacro

3
. (29)

The macroscopic parameters can be uniquely determined from a homogeneous macroscopic tension-compression
test. However, the shear modulus µmacro and the Young’s modulus Emacro can also be identified from the
inhomogeneous torsion and bending test, respectively. Indeed, the classical torsional stiffness of a circular
rod is given by

Tmacro = µmacro Ip = µmacro

πR4

2
. (30)

The microscopic scale (appearing for Lc → ∞), representing a surrogate stiffness connected to the
smallest meaningful scale of the material is described by the parameters

Emicro =
9κmicro µmicro

3κmicro + µmicro

, νmicro =
3κmicro − 2µmicro

2(3κmicro + µmicro)
, (31)

λmicro =
3κmicro − 2µmicro

3
, κmicro =

2µmicro + 3λmicro

3
, (32)

The macroscopic parameters µmacro and λmacro do not directly intervene in the formulation of the relaxed
micromorphic model (34), but the connection is necessarily given by the Reuss-like homogenization formula
[58]

µmacro =
µe µmicro

µe + µmicro

⇐⇒ µe =
µmacro µmicro

µmicro − µmacro

, (33)

κmacro =
κe κmicro

κe + κmicro

⇐⇒ κe =
κmacro κmicro

κmicro − κmacro

.

Figure 4: Macro and micro-scale stiffness governed by two springs in series. If µmicro → ∞, this implies
that µmacro = µe. In all suitable cases for our family of considered generalized continua (depending on the
kinematics), we use the same/similar lower order energy expression (the energy without curvature).

Note that the Cosserat couple modulus µc ≥ 0 is not appearing in the homogenization formulas (33).
As a consequence, both parameter sets (29)-(33) can be identified independently of the scale consideration
(being particularly careful with the techniques for the micro-parameters identification) and they uniquely
determine the meso-scale parameter set µe, λe appearing in (33)2.

The general expression of the strain energy for the isotropic relaxed micromorphic continuum is

W (Du,P ,CurlP ) =µe ‖sym (Du− P )‖2 +
λe
2

tr2 (Du− P ) + µc ‖skew (Du− P )‖2

+ µmicro ‖symP ‖2 +
λmicro

2
tr2 (P ) (34)

+
µL2

c

2

(
a1 ‖dev sym CurlP ‖2 + a2 ‖skew CurlP ‖2 +

a3

3
tr2 (CurlP )

)
,

where (µe,λe), (µmicro,λmicro), µc, Lc > 0, and (a1,a2,a3) are the parameters related to the meso-scale, the
parameters related to the micro-scale, the Cosserat couple modulus, the characteristic length, and the three
general isotropic curvature parameters, respectively. This energy expression represents the most general
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isotropic form possible for the relaxed micromorphic model. It is important to underline that, given the
subsequent ansatz (38), it holds that skew CurlP = 0. This reduces immediately the number of curvature
parameters appearing in the torsion solution. In the absence of body forces, the equilibrium equations are
then

Div

σ̃:=︷ ︸︸ ︷
[2µe sym (Du− P ) + λetr (Du− P )1+ 2µc skew (Du− P )] = 0,

σ̃ − 2µmicro symP − λmicrotr (P )1− µL2
c Curl

(
a1 dev sym CurlP +

a3

3
tr (CurlP )1

)
= 0. (35)

The boundary conditions at the lateral free surface are

t̃(r = R) = σ̃(r) · er = 0R3 , (traction free) , (36)

η(r = R) = m(r) · ε · er = m(r)× er = 0R3×3 , (moment free) ,

where
m = µL2

c

(
a1 dev sym CurlP +

a3

3
tr (CurlP )1

)
(37)

is a generalized non-symmetric second order moment tensor, the (non-symmetric) force-stress tensor σ̃ is
given in (35), er is the radial unit vector, and ε is the Levi-Civita tensor. The vector t̃(r) ∈ R3 is the
generalised traction and the tensor η(r) ∈ R3×3 is called the generalized double traction tensor. According
to the cylindrical reference system shown in Fig. 1, the ansatz for the displacement and for the micro-
distortion P is

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 ,

P (x1, x2, x3) = P (r, ϕ, z) = ϑ

 0 −x3(z) −g2(r)x2(r, ϕ)
x3(z) 0 g2(r)x1(r, ϕ)

g1(r)x2(r, ϕ) −g1(r)x1(r, ϕ) 0

 , (38)

where x1(r, ϕ) = r cosϕ, x2(r, ϕ) = r sinϕ, and x3(z) = z. The Cartesian Du and the Cartesian CurlP
expressed in the cylindrical variables (r, ϕ, z) are

Du(r, ϕ, z) = ϑ

 0 −z −r sinϕ
z 0 r cosϕ
0 0 0

 , (39)

CurlP (r, ϕ, z) = ϑ

 1− g2(r)− r g′2(r) sin2 ϕ r g′2(r) sinϕ cosϕ 0
r g′2(r) sinϕ cosϕ 1− g2(r)− r g′2(r) cos2 ϕ 0

0 0 − (2 g1(r) + r g′1(r))

 .

It can be remarked that CurlP is symmetric.
Inserting the ansatz (38)-(39) in (35), the 12 equilibrium equations are reduced to the following 4 ordinary

differential equilibrium equations

1

3
ϑ sinϕ

(
r
(
µL2

c ((a1 − a3) g′′1 (r)− (2a1 + a3) g′′2 (r)) + 3µc (g1(r) + g2(r)− 1)

−3 (µe + µmicro) (g1(r)− g2(r))− 3µe) + 3µL2
c ((a1 − a3) g′1(r)− (2a1 + a3) g′2(r))

)
= 0 ,

1

3
ϑ cosϕ

(
r
(
µL2

c ((a3 − a1) g′′1 (r) + (2a1 + a3) g′′2 (r))− 3µc(g1(r) + g2(r)− 1)

+3 (µe + µmicro) (g1(r)− g2(r)) + 3µe) + 3µL2
c ((a3 − a1) g′1(r) + (2a1 + a3) g′2(r))

)
= 0 , (40)

1

3
ϑ sinϕ

(
r
(
µL2

c ((2a1 + a3) g′′1 (r) + (a3 − a1) g′′2 (r))− 3 (µc (g1(r) + g2(r)− 1)

+ (µe + µmicro) (g1(r)− g2(r)))− 3µe) + 3µL2
c ((2a1 + a3) g′1(r) + (a3 − a1) g′2(r))

)
= 0 ,

1

3
ϑ cosϕ

(
r
(
µL2

c ((a1 − a3) g′′2 (r)− (2a1 + a3) g′′1 (r)) + 3 (µc (g1(r) + g2(r)− 1)

+ (µe + µmicro) (g1(r)− g2(r))) + 3µe) + 3µL2
c ((a1 − a3) g′2(r)− (2a1 + a3) g′1(r))

)
= 0 .

It is important to underline that (35)1 is identically satisfied, and that from the entire set of four equilibrium
equations (40) only two are not redundant since (40)1 = tanϕ (40)2 and (40)3 = tanϕ (40)4.
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It is also pointed out that the two remaining linearly independent equations (40)1,3 can be uncoupled
and are of the Bessel ODE type (see Appendix B). Indeed, if we take their sum and difference, while being
careful of substituting gp(r) = g1(r) + g2(r) and gm(r) = g1(r) − g2(r) along with their derivatives, we
deduce

ϑ sinϕ
(
a1 µL

2
c (3 g′m(r) + r g′′m(r))− 2 r µe(gm(r) + 1)− 2 r gm(r)µmicro

)
= 0 , (41)

1

3
ϑ sinϕ

(
6 r µc (gp(r)− 1)− µL2

c(a1 + 2a3)
(
3 g′p(r) + r g′′p (r)

))
= 0 .

Since g1(r) :=
gp(r)+gm(r)

2 and g2(r) :=
gp(r)−gm(r)

2 , the solution in terms of g1(r) and g2(r) of (41) is

g1(r) =
1

2

1−
iA1 I1

(
r f2
Lc

)
−A2 Y1

(
−i r f2Lc

)
+ iB1 I1

(
r f1
Lc

)
−B2 Y1

(
−i r f1Lc

)
r

− µe
µe + µmicro

 ,

g2(r) =
1

2

1 +
iA1 I1

(
r f2
Lc

)
−A2 Y1

(
−i r f2Lc

)
− iB1 I1

(
r f1
Lc

)
+B2 Y1

(
−i r f1Lc

)
r

+
µe

µe + µmicro

 , (42)

f1 :=

√
6µc

(a1 + 2a3)µ
, f2 :=

√
2(µe + µmicro)

a1 µ
,

where In (·) is the modified Bessel function of the first kind, Yn (·) is the Bessel function of the second kind
(see appendix B for the formal definitions), and A1, B1, A2, B2 are integration constants.

The values of A1, B1 are determined from the boundary conditions (36), while, due to the divergent
behaviour of the Bessel function of the second kind at r = 0, we have to set A2 = 0 and B2 = 0 in order to
have a continuous solution. The fulfilment of the boundary conditions (36) allows us to find the expressions
of the integration constants

A1 =
i Lc

(
3f1Rz1 I0

(
Rf1
Lc

)
− 2Lc I1

(
Rf1
Lc

))
f2 Lc I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
+ f1 z1 I0

(
Rf1
Lc

)(
Lc I1

(
Rf2
Lc

)
− 2f2RI0

(
Rf2
Lc

)) µmicro

µe + µmicro

, (43)

B1 =
i Lc

(
f2RI0

(
Rf2
Lc

)
− 2Lc I1

(
Rf2
Lc

))
f2 Lc I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
+ f1 z1 I0

(
Rf1
Lc

)(
Lc I1

(
Rf2
Lc

)
− 2f2RI0

(
Rf2
Lc

)) µmicro

µe + µmicro

,

z1 :=
a1 + 2a3

3a1
.

The classical torque, the higher-order torque, and energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ

=

 4µc f2 I2

(
Rf1
Lc

)
I2

(
Rf2
Lc

) (
Lc
R

)2
µe f1

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
Lc
R

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
Lc
R

)

+
f1 z1 I0

(
Rf1
Lc

)(
24I1

(
Rf2
Lc

) (
Lc
R

)3 − 12f2 I0

(
Rf2
Lc

) (
Lc
R

)2 − f2
2 I1

(
Rf2
Lc

)
Lc
R + 2f3

2 I0

(
Rf2
Lc

))
f2

2

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
R
Lc

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
R
Lc

)

−
I1

(
Rf1
Lc

)(
16I1

(
Rf2
Lc

) (
Lc
R

)4 − 8f2 I0

(
Rf2
Lc

) (
Lc
R

)3
+ f3

2 I0

(
Rf2
Lc

)
Lc
R

)
f2

2

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
R
Lc

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
R
Lc

)
 µe µmicro

µe + µmicro

 Ip ϑ
=Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈(m× ez) eϕ, er〉 − 〈(m× ez) er, eϕ〉

]
r dr dϕ (44)

=

 I2

(
Rf2
Lc

)(
q1 I0

(
Rf1
Lc

) (
Lc
R

)2 − q2 I1

(
Rf1
Lc

) (
Lc
R3

)3)
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
Lc
R

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
Lc
R

4µµmicro

3 (µe + µmicro)

 Ip ϑ
=Tm ϑ ,
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Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,P ,CurlP ) r dr dϕ

=
1

2

 4µc f2 I2

(
Rf1
Lc

)
I2

(
Rf2
Lc

) (
Lc
R

)2
µe f1

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
Lc
R

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
Lc
R

)

+
f1 z1 I0

(
Rf1
Lc

)(
24I1

(
Rf2
Lc

) (
Lc
R

)3 − 12f2 I0

(
Rf2
Lc

) (
Lc
R

)2 − f2
2 I1

(
Rf2
Lc

)
Lc
R + 2f3

2 I0

(
Rf2
Lc

))
f2

2

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
R
Lc

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
R
Lc

)

−
I1

(
Rf1
Lc

)(
16I1

(
Rf2
Lc

) (
Lc
R

)4 − 8f2 I0

(
Rf2
Lc

) (
Lc
R

)3
+ f3

2 I0

(
Rf2
Lc

)
Lc
R

)
f2

2

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
R
Lc

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
R
Lc

)

+
4µ I2

(
Rf2
Lc

)(
q1 I0

(
Rf1
Lc

) (
Lc
R

)2 − q2 I1

(
Rf1
Lc

) (
Lc
R3

)3)
3µe

(
f1 z1 I0

(
Rf1
Lc

)(
2f2 I0

(
Rf2
Lc

)
− I1

(
Rf2
Lc

)
Lc
R

)
− f2 I0

(
Rf2
Lc

)
I1

(
Rf1
Lc

)
Lc
R

)
 µe µmicro

µe + µmicro

 Ip ϑ2

=
1

2
Tw ϑ

2 ,

q1 := 3a1 f1 f2 z1 , q2 := 2f2(a1 − a3) .

Again it holds

d

dϑ
Wtot(ϑ) = Mc(ϑ) +Mm(ϑ) ,

d2

dϑ2Wtot(ϑ) = Tc + Tm = Tw . (45)

Both quantities Mc and Wtot are immediately accessible in any higher order generalized continuum model.
However, the precise form of Mm is difficult to guess. The latter identity can, therefore, also be seen as an
implicit definition of the higher order moment Mm. In the Appendix we will provide an independent way
of obtaining the notation for Mm starting form considerations done on the Cosserat model (see Appendix
C). We provide again the homogenization relations between the macro-parameters, the meso- (with index
(·)e), and the micro-parameters [11, 46, 49]

µmacro = µe µmicro

µe+µmicro
, κmacro = κe κmicro

κe+κmicro
, with

{
κi = 2µi+3λi

3 ,
i = {e, micro, macro} , (46)

which can be used to define the following torsional stiffnesses

Tmacro = µmacro Ip =
µmicro µe
µmicro + µe

Ip , Tmicro = µmicro Ip , Te = µe Ip . (47)

The plots of the torsional stiffness for the classical torque (light blue), the higher-order torque (red), and
the torque energy (green) for µc = {0, 1/2,∞} while varying Lc is shown in Fig. 5.

0 2.5 5

Tmacro

Tmicro

0

R/Lc

T
c
,
T
m

,T
w

Tc

Tm

Tw

(a)

0 2.5 5

Tmacro

Tmicro

0

R/Lc

T
c
,
T
m

,T
w

Tc

Tm

Tw

(b)

0 2.5 5

Tmacro

Tmicro

0

R/Lc

T
c
,
T
m

,T
w

Tc

Tm

Tw

(c)

Figure 5: (Relaxed micromorphic model) Torsional stiffness for the classical torque Tc, the higher-order
torque Tm, and the torque energy Tw while varying Lc for (a) µc → 0, (b) µc = 1/2, and (c) µc →∞. The
torsional stiffness remains bounded as Lc → ∞ (R → 0). The values of the parameters used are: µ = 1,
µe = 1/10, µmicro = 1/4, a1 = 1/5, a2 = 1/6, a3 = 1/7, R = 1.

It is here highlighted that the torsional stiffness obtainable from the energy Tw is the only stiffness
available experimentally.

11



4.1 Limits

4.1.1 The relaxed micromorphic model with symmetric force stresses (µc → 0)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,P ,CurlP ) r dr dϕ

=
1

2

f2I0

(
Rf2
Lc

)(
v2 µmicro

L2
c

R2 + µe (µe + µmicro)
)

f2I0

(
Rf2
Lc

)
− 2v1I1

(
Rf2
Lc

)
Lc
R

(48)

−
2I1

(
Rf2
Lc

)(
v2 µmicro

L2
c

R2 + v1µe (µe + µmicro)
)
Lc
R

f2I0

(
Rf2
Lc

)
− 2v1I1

(
Rf2
Lc

)
Lc
R

 µmicro

(µe + µmicro)
2 Ip ϑ

2 ,

v1 :=
a1 + 2a3

a1 + 8a3
, v2 :=

24a1 a3 µ

a1 + 8a3
.

0 2.5 5

Tmacro

Tmicro

R/Lc

T
w

0

∞

μc

Figure 6: (Relaxed micromorphic model) Torsional stiffness for the torque energy while varying Lc,
for different values of µc = {0, 1/30, 1/10, 1/5, 1,∞}. The torsional stiffness remains bounded as Lc → ∞
(R→ 0) and the model does not collapse into a linear elastic one. The values of the other parameters used
are: µ = 1, µe = 1/3, µmicro = 1/4, a1 = 10, a3 = 1/50, R = 1. Here, varying µc does not intervene with
Tmacro and Tmicro.

Note that the torsional stiffness at the micro-scale Tmicro is here independent of the Cosserat couple
modulus µc, see (47).

4.1.2 The relaxed micromorphic model with conformal curvature energy (a3 = 0) while vary-
ing the Cosserat couple modulus µc

In the particular case for which the parameter a3 is equal to zero the elastic energy turns into

W (Du,P ,CurlP ) =µe ‖sym (Du− P )‖2 +
λe
2

tr2 (Du− P ) + µc ‖skew (Du− P )‖2 (49)

+ µmicro ‖symP ‖2 +
λmicro

2
tr2 (P ) +

µL2
c

2
a1 ‖dev sym CurlP ‖2 .

In this case, the torsional stiffness at the micro scale, namely for Lc →∞ (R→ 0) 1 , depends also on µc

T̃ := lim
Lc→∞

Tw =
µmicro (9µc + µe)

(9µc + µe) + µmicro

Ip . (50)

For µc → 0 we obtain a linear elastic model with stiffness Tmacro, for µc → ∞ it is recovered a model that
has Tmicro at the micro-scale, while for intermediate values of 0 < µc <∞ a torsional stiffness between Tmacro

and Tmicro appears.

1Looking at the analytical solution obtained in (40) we see that the expression R
Lc

solely determines the response. Therefore, we can

either fix R > 0 and send Lc →∞, or fix Lc and send R→ 0, having the same effect.
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Figure 7: (Relaxed micromorphic model with conformal curvature energy) Torsional stiffness for
the torque energy while varying Lc, for different values of µc = {0, 1/30, 1/10, 1/5, 1,∞}. The torsional
stiffness remains bounded as Lc →∞ (R→ 0) and the model does not collapse in a linear elastic one beside
the case µc = 0. The values of the other parameters used are: µ = 1, µe = 1/3, µmicro = 1/4, a1 = 2, R = 1.
In this case, varying µc influences the torsional stiffness also for small specimen size.

We may consider a further limit in (50). It holds

T := lim
µmicro→∞

T̃ = (9µc + µe) Ip = (9µc + µmacro) Ip , (51)

where the last relation for which we have µe = µmacro is obtained from (33)2 taking µmicro →∞.

4.1.3 The Cosserat model as a limit of the relaxed micromorphic model (µmicro →∞)

The Cosserat model can be obtained from the relaxed micromorphic model by formally letting µmicro →∞
and κmicro → ∞. 2 From the homogenization formula (46) it is possible to see that for µmicro → µmacro we
have µe → ∞, while µmacro = µe for µmicro → ∞, which is the stiffness at the macro-scale for the Cosserat
model.

0 2.5 5

Tmacro

R/Lc

T
w

∞

μmicro
Cosserat model

(a)

0 2.5 5

Tmacro

T=T


R/Lc

T
w

T
w

relax

T
w

Coss

(b)

Figure 8: (a) (Relaxed micromorphic model with full curvature) Torsional stiffness for the torque
energy while varying Lc, for different values of µmicro = {0, 1/20, 1/7, 1/4, 1/2,∞}. The torsional stiffness
becomes unbounded as Lc → ∞ (R → 0) when µmicro → ∞. The values of the other parameters used
are: µ = 1, µmacro = 1/10, µc = 1/2, a1 = 1/5, a3 = 1/7, R = 1. The Cosserat solution appears for
µmicro → ∞. (b) (Cosserat model and relaxed micromorphic model with conformal curvature).
Torsional stiffness for the torque energy while varying Lc. The torsional stiffness is bounded as Lc → ∞
(R → 0). For the Cosserat model we chose µc = 1/9 while for the relaxed micromorphic model µc = 1/2

and µmicro = 3 in order to have the same upper bound T = T̃ . The values of the other parameters used are:
µ = 1, µmacro = 1, a1 = 5, R = 1.

2For the torsion problem, κmicro does not intervene.
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4.1.4 Sensitivity of the relaxed micromorphic model with respect to the curvature parameters
a1 and a3.

Sensitivity study for the relaxed micromorphic model while varying a1 and a3 independently.
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Figure 9: (Relaxed micromorphic model) Response of the relaxed micromorphic model while varying
(a) the curvature parameter a1 having a3 = 20 and (b) the curvature parameter a3 having a1 = 20. The
values of the other parameters are µ = 1, µc = 1/5, µe = 1, µmicro = 1/9, R = 1.

The parametric study represented in Fig. 9 has not been carried out for the limit a1 → 0 and a3 → 0
since we would have had an indeterminate form for Lc →∞, and that is why we used the symbol ∼ 0. The
solution of the problem while having a3 = 0 a priori is analyzed carefully in Section 4.1.2, and the solution
of the problem while having a1 = 0 a priori make the relaxed model collapse into a classical linear elastic
model with torsional stiffness Tmacro.

4.2 Finite element simulations

Using finite element analysis as a tool of comparison, in this section we will

i) test the validity of the solution in terms of the hypothesis of small deformations (i.e., small twist rate);

ii) discuss the validity of the St.Venant principle for the relaxed micromorphic model.

In this analysis we take a finite-size cylindrical rod and we apply opposite and equal finite-rotation at
both of its ends (z = ±L/2). Accordingly, the boundary conditions are

u(z = ±L/2) =

 cos ±Θ sin ±Θ 0
− sin ±Θ cos ±Θ 0

0 0 1

 x1

x2

L

−
 x1

x2

L

 , (52)

P (z = ±L/2)× e1 =

 −P12 P11 0
−P22 P21 0
−P32 P31 0

 =

 sin ±Θ cos ±Θ− 1 0
1− cos ±Θ sin ±Θ 0

0 0 0

 = Du(z = ±L/2)× e1 ,

where P (z) × e1 = Du(z) × e1 are the consistent boundary conditions on the tangential part for the
micro-distortion tensor P .

14



(a)

(b)

Figure 10: (a) boundary conditions scheme for a cylindrical rod of length L = 10 and radius R = 1; (b)
deformed rod from the finite-element simulation on which it is mapped how the component of the gradient
of the displacement u1,3 changes.

In Fig. 11 it is possible to see how the non identically zero components of the micro-distortion P vary
across the diameter aligned to the x1-axis (ϕ = π/2) of the cross-section placed in the middle of the
cylindrical rod (z = 0). We chose the middle section in order to study the solution far away enough from
the disturbance region on which the boundary conditions have been applied. The values of the components
of P of Fig. 11 (twist rate ϑ = π/50) are perfectly in agreement with the analytical solution, confirming
the validity of the small-deformation solution obtained in Section 4.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ρ/R

P12

ϑ=
π

50

(a)

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
x

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxx

xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxxx
xxx

-1.0 -0.5 0.0 0.5 1.0

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

ρ/R

P13

ϑ=
π

50

(b)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ρ/R

P21

ϑ=
π

50

(c)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

-1.0 -0.5 0.0 0.5 1.0

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

ρ/R

P31

ϑ=
π

50

(d)

Figure 11: Plots of the components (a) P12, (b) P13, (c) P21, and (d) P31 of the micro-distortion tensor P
at the cross-section z = 0. The purple line corresponds to Lc = 0, the gray one to Lc = 1, and the green
one to Lc = ∞. The values of the other parameters used are µ = 1, µc = 1, µe = 1, µmicro = 1, a1 = 1,
a3 = 1, R = 1, ϑ = π/50, L = 10.

Furthermore, in Fig. 12 we show how the solution obtained while applying consistent boundary conditions
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converges to the one obtained analytically in a distance from the boundary which is more or less between
one radius and one diameter. This is the pinnacle expression of the Saint Venant principle: we have applied
not only a finite-rotation instead of a linearized one, but we have also used consistent boundary conditions
for P which we know are different from the correct values that the tangential part of P should have, and
we obtained nevertheless the analytical linearized solution after a rather small boundary layer.

We describe in particular the component P31 (other than the component P13) since, due to the consistent
boundary conditions, it is forced to start from zero at the lateral boundary. In Fig. 12 we plot this component
which are evaluated for the length of the rod on the external surface (ϕ = π/2 and r = R).
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Figure 12: (a) Plot of how the component P13; (b) and P31 vary along a line on the external boundary
(ϕ = π/2 and r = R): the solid lines are the analytical solution while the marker are the numerical values
obtained thanks to a finite-element analysis. The purple line has been obtained for Lc = 0, the gray one for
Lc = 1, and the green one for Lc =∞. The values of the other parameters used are µ = 1, µc = 1, µe = 1,
µmicro = 1, a1 = 1, a3 = 1, R = 1, ϕ = π/2. As it can be seen, the solution does not converge stably and
not perfectly symmetrically (the mesh is not symmetric) to the analytical one, but nevertheless it converges
rapidly.

In Fig. 13 is reported how the component P13 vary on the cross section centered in the origin of the
reference system (z = 0).
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Figure 13: Plots of the component P13 across the section placed at z = 0 obtained (a) analytically and
(b) with the finite-element analysis. The two results are in perfect agreement. The values of the other
parameters used are µ = 1, µc = 1, µe = 1, µmicro = 1, a1 = 1, a3 = 1, R = 1, ϕ = π/2, Lc = 1.

The implications of this results are of great value in the context of the identification of the elastic material
parameters: it is clear how to apply consistent boundary conditions on a real sample in a laboratory (Dirichlet
hard), and thanks to this results, we now know that our analytical solution is taking place far away enough
from the boundary layer.
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5 Torsional problem for the isotropic micro-stretch model in dis-
location format

In the micro-stretch model in dislocation format [10, 31, 49, 52, 65], contrary to the relaxed micromorphic
model, the micro-distortion tensor is devoid from the deviatoric component dev symP = 0⇔ P = A+ω1,
A ∈ so(3), ω ∈ R. The expression of the strain energy for this model in dislocation format can be written
as [49]:

W (Du,A, ω,Curl (A− ω1))

=µmacro ‖dev sym Du‖2 +
κe
2

tr2 (Du− ω1) + µc ‖skew (Du−A)‖2 +
9

2
κmicro ω

2 (53)

+
µL2

c

2

(
a1 ‖dev sym CurlA‖2 + a2 ‖skew Curl (A+ ω1)‖2 +

a3

3
tr2 (CurlA)

)
,

since Curl (ω1) ∈ so(3). The equilibrium equations, in the absence of body forces, are then

Div

σ̃:=︷ ︸︸ ︷
[2µmacro dev sym Du+ κetr (Du− ω1)1+ 2µc skew (Du−A)] = 0 ,

2µc skew (Du−A)

−µL2
c skew Curl

(
a1 dev sym CurlA + a2 skew Curl (A+ ω1) +

a3

3
tr (CurlA)1

)
= 0 , (54)

tr

[
2µmacro dev sym Du

+κetr (Du− ω1)1− κmicrotr (ω1)1− µL2
c a2 Curl skew Curl (ω1+A)

]
= 0 .

The boundary conditions at the free surface are

t̃(r = R) = σ̃(r) · er = 0R3 ,

η(r = R) = skew (m(r) · ε · er) = skew (m(r)× er) = 0R3×3 , (55)

γ(r = R) =
1

3
tr (m(r) · ε · er) =

1

3
tr (m(r)× er) = 0 .

According with the reference system shown in Fig. 1, the ansatz for the displacement and micro-distortion
fields is

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 , ω = 0 ,

A(x1, x2, x3) = A(r, ϕ, z) =
ϑ

2

 0 −2x3(z) −gp(r)x2(r, ϕ)
2x3(z) 0 gp(r)x1(r, ϕ)

gp(r)x2(r, ϕ) −gp(r)x1(r, ϕ) 0

 . (56)

Since the ansatz requires ω = 0, the micro-stretch model coincides with the Cosserat model which will be
presented in the next section.

6 Torsional problem for the isotropic Cosserat continuum

The strain energy for the isotropic Cosserat continuum in dislocation tensor format (curvature expressed in
term of CurlA) can be written as [8, 29, 30, 45, 50, 60, 61, 64]

W (Du,A,CurlA) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) + µc ‖skew (Du−A)‖2 (57)

+
µL2

c

2

(
a1 ‖dev sym CurlA‖2 + a2 ‖skew CurlA‖2 +

a3

3
tr2 (CurlA)

)
,

where A ∈ so(3). It is underlined that for the ansatz (61), which will be presented later in this section,
it holds that skew (CurlA) = 0 (see calculation (39)2). The equilibrium equations, in the absence of body
forces, are therefore the following
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Div

σ̃:=︷ ︸︸ ︷
[2µmacro sym Du+ λmacrotr (Du)1+ 2µc skew (Du−A)] = 0 ,

2µc skew (Du−A)− µL2
c skew Curl

(
a1 dev sym CurlA +

a3

3
tr (CurlA)1

)
= 0 . (58)

The boundary conditions at the free surface are

t̃(r = R) = σ̃(r) · er = 0R3 , (59)

η(r = R) = skew (m(r) · ε · er) = skew (m(r)× er) = 0R3×3 ,

where the second order moment stress tensor is now given by

m = µL2
c

(
a1 dev sym CurlA +

a3

3
tr (CurlA)1

)
, (60)

the expression of σ̃ is in (58), er is the radial unit vector, and ε is the Levi-Civita tensor.
According to the reference system shown in Fig. 1, the ansatz for the displacement field and the micro-

rotation is

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 ,

A(x1, x2, x3) = A(r, ϕ, z) =
ϑ

2

 0 −2x3(z) −gp(r)x2(r, ϕ)
2x3(z) 0 gp(r)x1(r, ϕ)

gp(r)x2(r, ϕ) −gp(r)x1(r, ϕ) 0

 , (61)

where, in relation to the ansatz (38), we define gp(r) := g1(r) + g2(r), so that there is only one unknown
function to be determined. Substituting the ansatz (61) in (58) the 6 equilibrium equations are equivalent
to

1

6
ϑ sinϕ

(
6r µc(gp(r)− 1)− µL2

c (a1 + 2a3)
(
3g′p(r) + r g′′p (r)

))
= 0 , (62)

1

6
ϑ cosϕ

(
6r µc(gp(r)− 1)− µL2

c (a1 + 2a3)
(
3g′p(r) + r g′′p (r)

))
= 0 .

It is important to underline that (58)1 is identically satisfied, and that between the two equilibrium equations
(62) there is only one independent equation since (62)1 = tanϕ (62)2. The solution of (62) is

gp(r) = 1−
i A1I1

(
r f1
Lc

)
r

+
A2Y1

(
− i r f1Lc

)
r

, f1 :=

√
6µc

(a1 + 2a3)µ
, (63)

where In (·) is the modified Bessel function of the first kind, Yn (·) is the Bessel function of the second kind
(see appendix B for the formal definitions), and A1, A2 are integration constants.

The value of A1 is determined from to the boundary conditions (59), where, due to the divergent
behaviour of the Bessel function of the second kind at r = 0, we have to set A2 = 0 in order to have a
continuous solution. The fulfilment of the boundary conditions (59) allows us to find the expressions of the
integration constants

A1 = − i RLc

f1Rz1

(
I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

))
+ z2 Lc I1

(
Rf1
Lc

) , z1 :=
a1 + 2a3

3a1
, z2 :=

4a3 − a1

3a1
. (64)

The classical torque, the higher-order torque, and energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ

=

µmacro +
4µc I2

(
Rf1
Lc

)
L2
c

R2

f1

(
2 f1 z1 I0

(
Rf1
Lc

)
+ (z2 − 2z1) I1

(
Rf1
Lc

)
Lc
R

)
 Ip ϑ = Tc ϑ ,
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Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈skew(m× ez)eϕ, er〉 − 〈skew(m× ez)er, eϕ〉

]
r dr dϕ

=

2µ
(

3a1 f1 z1 I0

(
Rf1
Lc

)
L2
c

R2 − 2(a1 − a3) I1

(
Rf1
Lc

)
L3
c

R3

)
6f1 z1 I0

(
Rf1
Lc

)
− 3I1

(
Rf1
Lc

)
Lc
R

 Ip ϑ = Tm ϑ , (65)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,A,CurlA) r dr dϕ

=
1

2

µmacro +
4µc I2

(
Rf1
Lc

)
L2
c

R2

f1

(
2 f1 z1 I0

(
Rf1
Lc

)
+ (z2 − 2z1) I1

(
Rf1
Lc

)
Lc
R

)
+

2µ
(

3a1 f1 z1 I0

(
Rf1
Lc

)
L2
c

R2 − 2(a1 − a3) I1

(
Rf1
Lc

)
L3
c

R3

)
6f1 z1 I0

(
Rf1
Lc

)
− 3I1

(
Rf1
Lc

)
Lc
R

 Ip ϑ2

=
1

2
Tw ϑ

2 .

The validity of (65)2 for Mm will be shown in the Appendix C. The plot of the torsional stiffness for the
classical torque (light blue), the higher-order torque (red), and the torque energy (green) while varying Lc
is shown in Fig. 14.
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Figure 14: (a)(Cosserat model with full curvature) Torsional stiffness for the classical torque Tc, the
higher-order torque Tm, and the torque energy Tw while varying Lc. The torsional stiffness is unbounded
as Lc → ∞ (R → 0). (b)(Cosserat model with full curvature vs relaxed micromorphic model)
Torsional stiffness for the torque energy (Tw) while varying Lc. Observe that the torsional stiffness remains
bounded for the relaxed micromorphic model while it blows up for the Cosserat model as Lc →∞ (R→ 0).

For best comparison, the characteristic length scale of the Cosserat model has been chosen LCoss
c :=

Lrelax
c√

2
.

The values of the parameters used are: µ = 1, µc = 1/2, µmacro = 1/14, µmicro = 2 (just for the relaxed
micromorphic model), a1 = 1/5, a3 = 1/7, R = 1.

6.1 Cosserat conformal curvature case - bounded stiffness in torsion

In the particular case for which the parameter a3 is equal to zero the elastic energy turns into

W (Du,A,CurlA) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) + µc ‖skew (Du−A)‖2 (66)

+
µL2

c

2
a1 ‖dev sym CurlA‖2 .

In terms of φ = axl(A), the curvature energy can be written as
µL2

c

2 a1 ‖dev sym D axl (A)‖2 which is the
conformal curvature case [51]. In this special case, the torsional stiffness remains bounded as Lc → ∞
(R→ 0), namely T := (9µc + µmacro) Ip, which is consistent with the results in (51).
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Figure 15: (Cosserat model with conformal curvature) Torsional stiffness for the classical torque Tc,
the higher-order torque Tm, and the torque energy Tw while varying Lc. The torsional stiffness is bounded
as Lc →∞ (R→ 0). The values of the parameters used are: µ = 1, µc = 1/2, µmacro = 1/2, a1 = 5, R = 1.
Here, the Cosserat couple modulus µc is clearly related to the value of the stiffness for small specimen size.

6.2 Cosserat limit case µc →∞ (indeterminate couple stress model)

lim
µc→∞

Mc(ϑ) =

[
µmacro + a1µ

L2
c

R2

]
Ip ϑ = Tc ϑ , lim

µc→∞
Mm(ϑ) = 2a1 µ

L2
c

R2
Ip ϑ = Tm ϑ , (67)

lim
µc→∞

Wtot(ϑ) =
1

2

[
µmacro + 3a1µ

L2
c

R2

]
Ip ϑ

2 =
1

2
Tw ϑ

2 .

It is highlighted that there is not a one to one correspondence between the torque obtained as a limit from the
Cosserat model (67) and the one obtained using the indeterminate couple stress model from the beginning
(78), but of course the energy (or the sum of the two torques) coincides and thus the total torque stiffness
Tw coincides as well.
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Figure 16: (Cosserat model vs indeterminate couple stress model) Comparison of the torsional
stiffness for the classical torque Tc, the higher-order torque Tm, and the torque energy Tw while varying Lc
for (a) the Cosserat model with µc →∞ and for (b) the indeterminate couple stress model. There is not a
one to one correspondence between the respective torque but the energy coincides.

6.3 Cosserat limit case µc → 0.

lim
µc→0

Mc(ϑ) = µmacroIp ϑ = Tc ϑ , lim
µc→0

Mm(ϑ) =
24µa1a3

a1 + 8a3

L2
c

R2
Ip ϑ = Tm ϑ , (68)

lim
µc→0

Wtot(ϑ) =
1

2

[
µmacro +

24µa1a3

a1 + 8a3

L2
c

R2

]
Ip ϑ

2 =
1

2
Tw ϑ

2 .
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It is highlighted that the Cosserat model does not collapse into a classical linear elastic model for µc → 0,
but it remains proportional to (Lc/R)2 eq.(68). In this case, the Cosserat model behaves similarly to the
indeterminate couple stress model eq.(67) or eq.(78), and it collapses into this model (both the energy and
the torques) by formally letting a3 →∞ as it can be seen from equations (67) and (68).
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Figure 17: (Cosserat model) (a) Torsional stiffness for the classical torque Tc, the higher-order torque
Tm, and the torque energy Tw while varying Lc for the limit µc → 0. The model does not collapse into
a classical linear elastic one. The values of the material parameter used are µ = 1, µe = 1/10, a1 = 1/5,
a3 = 1/7, R = 1. (b) Sensitivity study on how the Cosserat model behaves while varying µc = {0, 1/3, 1,∞}:
for µc → ∞ we recover the indeterminate couple stress model, while for µc → 0 we still have a non linear
relation between Tw and R/Lc since a classical linear elastic model is not attained (see eq.(68)). The values
of the material parameter used are µ = 1, µe = 1/10, a1 = 12, a3 = 1/20, R = 1.

6.4 Sensitivity of the Cosserat model with respect to the curvature parameters
a1 and a3.

Here, we study the sensitivity for the Cosserat model while varying a1 and a3 independently.
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Figure 18: (Cosserat model) Response of the Cosserat model while varying (a) the curvature parameter
a1 having a3 = 20 and (b) the curvature parameter a3 having a1 = 20. The values of the other parameters
are µ = 1, µc = 1/5, µmacro = 1/10, R = 1.

The parametric study represented in Fig. 18 has not been carried out for the limit a1 → 0 and a3 → 0
since we would have had an indeterminate form for Lc → ∞, and that is why we used the symbol ∼ 0.
The solution of the problem while having a3 = 0 a priori is analyzed carefully in Section 6.1, and the
solution of the problem while having a1 = 0 a priori makes the relaxed micromorphic model collapse into
a classical linear elastic model with torsional stiffness Tmacro. It is also highlighted that the Cosserat model
collapses into the indeterminate couple stress model for a3 →∞ also in this more general case for which µc
is arbitrary.
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7 Torsional problem for the isotropic micro-void model in dislo-
cation tensor format

The strain energy for the isotropic micro-void continuum in dislocation tensor format can be written as
[9, 60]

W (Du, ω,Curl (ω1)) =µmacro ‖dev sym Du‖2 +
κe
2

tr2 (Du− ω1) +
κmicro

2
tr2 (ω1) (69)

+
µL2

c

2
a2 ‖Curl (ω1)‖2 .

Here, ω : R3 → R is the additional scalar micro-void degree of freedom [9]. The equilibrium equations, in
the absence of body forces, are3

Div

σ̃:=︷ ︸︸ ︷
[2µmacro dev sym Du+ κetr (Du− ω1)1] = 0, (70)

1

3
tr
[
σ̃ − κmicrotr (ω1)1− µL2

c a2 Curl Curl (ω1)
]

= 0.

The boundary conditions at the free surface are

t̃(r = R) = σ̃(r) · er = 0R3 , (71)

η(r = R) =
1

3
tr (m(r) · ε · er) =

1

3
tr (m(r)× er) = 0 .

According with the reference system shown in Fig. 1, the ansatz for the displacement field and the function
ω have to be

u(x1, x2) =

 −x2 x3

x1 x3

0

 , ω (x2)1 =

 0 0 0
0 0 0
0 0 0

 . (72)

which clearly reduce the model to a classical linear elastic one. No further calculation will be carried on and
the reader is referred to Section 3.

8 Torsional problem for the isotropic couple stress continuum

The indeterminate couple stress model [19, 22, 32, 48, 55, 68, 69] appears by letting formally the Cosserat
couple modulus µc → ∞. This implies the constraint A = skew Du ∈ so(3). It is highlighted that for the
torsional problem, we do not have any unknown fields in this model since the displacement u is known a
priori.4

Since tr(Curl skew Du) = ‖skew Curl skew Du‖2 = 0 in terms of the ansatz (77), the indeterminate couple
stress elastic energy for the torsion can be written as

W (Du,Curl skew Du) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) +

µL2
c

2
a1 ‖sym Curl skew Du‖2 . (73)

The equilibrium equations, in the absence of body forces, are 5

Div
[
2µmacrosym Du+ λmacrotr (Du)1+ µL2

c skew Curl (a1 dev sym Curl skew Du )
]

= 0 , (74)

while the (highly non-trivial) boundary traction conditions on the free surface are (for more details see
[22, 48])

t̃(r = R) = ±
{(

σ̃ − 1

2
Anti (Divm)

)
· er −

1

2
er ×D [〈er, symm · er〉]

−1

2
D [Anti ((1− er ⊗ er) ·m · er) · (1− er ⊗ er)] : (1− er ⊗ er)

}
= 0 , (75)

(1− er ⊗ er) · η(r = R) = ± (1− er ⊗ er) ·Anti [(1− er ⊗ er) ·m · er] · er = 0 ,

π(r = R) = ±
(

Anti [(1− er ⊗ er) ·m · er]+ −Anti [(1− er ⊗ er) ·m · er]−
)
· eϕ = 0 ,

3Where κe = 2µe+3λe
3 and κmicro =

2µmicro+3λmicro
3 are the meso- and the micro-scale 3D bulk modulus.

4Since we can show that the classical torsion displacement solution satisfies the external balance equation (74) as well as the higher
order traction boundary conditions (75).

5Using Nye’s formula [19] CurlA = tr
[
(D axlA)T

]
− (D axlA)T for A ∈ so(3) we can rewrite Curl skew Du = − (D axl (skew Du))T =

1
2 D curlu, since tr (Curl skew Du) = 0.
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where σ̃ = 2µe sym Du+ λe tr (Du)1 is the symmetric force stress tensor, er is the radial unit vector, and
the non-symmetric second order moment stress is

m = µL2
c (a1 dev sym Curl skew Du + a2 skew Curl skew Du) . (76)

The term (Anti [(1− er ⊗ er) ·m · er]+−Anti [(1− er ⊗ er) ·m · er]−) is the measure of the discontinuity
of Anti [(1− er ⊗ er) ·m · er] across the boundary.

According to the reference system shown in Fig. 1, the ansatz for the displacement field and consequently
the skew-symmetric part of the gradient of the displacement are

u(x1, x2) = ϑ

 −x2 x3

x1 x3

0

 ⇒ skew Du =
ϑ

2

 0 −2x3 −x2

2x3 0 x1

x2 −x1 0

 . (77)

Since the ansatz is completely known, it is possible to check that both the equilibrium equations (74) and the
boundary conditions (75) are identically satisfied6, and it is possible then to evaluate directly the classical
torque, the higher-order torque, and the energy.

The classical torque, the higher-order torque, and energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ = µeIp ϑ = Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈(m× ez) eϕ, er〉 − 〈(m× ez) er, eϕ〉+ 〈(m× er) eϕ, ez〉 − 〈(m× er) ez, eϕ〉

]
r dr dϕ

= 3a1 µ
L2
c

R2
Ip ϑ = Tm ϑ , (78)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,Curl skew Du) r dr dϕ =
1

2

[
µmacro + 3a1 µ

L2
c

R2

]
Ip ϑ

2 =
1

2
Tw ϑ

2 .

The plot of the torsional stiffness for the classical torque, the higher-order torque, and the torque energy
while varying Lc is shown in Fig. 19.
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Figure 19: (Indeterminate couple stress model) Torsional stiffness for the classical torque Tc, the
higher-order torque Tm, and the torque energy Tw while varying Lc. The torsional stiffness is unbounded
as Lc →∞ (R→ 0). The values of the parameters used are: µ = 1, µe = 1/3, a1 = 1/5, R = 1.

8.1 Torsional problem for the modified and the “pseudo”-consistent isotropic
couple stress model

The modified couple stress model [19, 41, 43, 48, 54] consists in choosing a1 > 0, a2 = 0 and leads to a
symmetric couple stress tensor while the (“pseudo”)-consistent couple stress model [21] appears for
a1 = 0, a2 > 0 and leads to a skew symmetric stress tensor m.

6In Hadjesfandiari and Dargush [22] the discussion of higher traction boundary conditions seems to be missing some terms in (75),
letting the authors erroneously conclude that the classical displacement pure torsion solution does not satisfy the higher order
boundary conditions.
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Since tr(Curl skew Du) = ‖skew Curl skew Du‖2 = 0, the term ‖dev sym Curl skew Du‖2 is the only non
zero component in the curvature energy, the form of the energy remains the same. This implies that, for the
torsion problem, the modified couple stress model coincides with the indeterminate couple stress
model, and that the (“pseudo”)-consistent couple stress model reduces to a classical linear elastic
model without size-effects. According to the notation [21], the constitutive law can be written as 7

σ̃ = 2µmacro sym Du+ λmacro tr (Du)1 , m = η (D curlu)
T

+ η′D curlu . (79)

where according to the classical Cosserat notation (see Appendix C)

η = β = µmacro

L2
c

2

a1 − a2

2
, η′ = γ = µmacro

L2
c

2

a1 + a2

2
. (80)

In this notation, the modified couple stress model appears for η = η′ and the “pseudo”-consistent couple
stress model appears for η = −η′.

9 Torsional problem for the classical isotropic micromorphic con-
tinuum without mixed terms

The strain energy for the isotropic micromorphic continuum without mixed terms (〈symP , sym (Du− P )〉,
etc.) and simplified isotropic curvature can be written as

W (Du,P ,DP ) =µe ‖dev sym (Du− P )‖2 +
κe
2

tr2 (Du− P ) + µc ‖skew (Du− P )‖2 (81)

+ µmicro ‖dev symP ‖2 +
κmicro

2
tr2 (P )

+
µL2

c

2

(
a1 ‖D (dev symP )‖2 + a2 ‖D (skewP )‖2 +

2

9
a3 ‖D (tr (P )1)‖2

))
.

The equilibrium equations, in the absence of body forces, are the following

Div

σ̃:=︷ ︸︸ ︷
[2µe dev sym (Du− P ) + κetr (Du− P )1+ 2µc skew (Du− P )] = 0 ,

σ̃ − 2µmicro dev symP − κmicrotr (P )1 (82)

+µL2
c

[
a1 dev sym ∆P + a2 skew ∆P +

2

9
a3 tr (∆P )1

]
= 0 ,

where ∆P ∈ R3×3 is taken component-wise. The boundary conditions at the external surfaces are

t̃(r = R) = σ̃(r) · er = 0R3 , η(r = R) = m(r) · er = 0R3×3 , (83)

where

m = µL2
c

[
a1 D (dev symP ) + a2 D (skewP ) +

2

9
a3 D (tr (S)1)

]
(84)

is the third order moment stress tensor, the expression of σ̃ is given in (82), and er is the radial unit
vector. According with the reference system shown in Fig. 1, the ansatz for the displacement field and the
micro-distortion is

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 ,

P (x1, x2, x3) = P (r, ϕ, z) = ϑ

 0 −x3(z) −g2(r)x2(r, ϕ)
x3(z) 0 g2(r)x1(r, ϕ)

g1(r)x2(r, ϕ) −g1(r)x1(r, ϕ) 0

 . (85)

7Setting a1 µmacro L
2
c = 8η we obtain the rigidity as Tw := d2

dϑ2Wtot(ϑ) = µmacro

(
1 + 24 η

µmacro
1
R2

)
Ip. In (44) of Hadjesfan-

diari and Dargush [22] we have the relation `2 = η
µmacro

, while in (55) we have the formula Tw = µmacro

(
1 + 24

(
`
R

)2)
Ip =

µmacro

(
1 + 24 η

µmacro
1
R2

)
Ip.
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Substituting the ansatz (85) in (82) the 12 equilibrium equations are equivalent to

1

2
ϑ sinϕ

(
ρ
(
µL2

c ((a1 − a2)g′′1 (ρ)− (a1 + a2)g′′2 (ρ)) + 2µc(g1(ρ) + g2(ρ)− 1)

−2 (µe + µmicro) (g1(ρ)− g2(ρ))− 2µe) + 3µL2
c ((a1 − a2)g′1(ρ)− (a1 + a2)g′2(ρ))

)
= 0 ,

1

2
ϑ cosϕ

(
ρ
(
µL2

c ((a2 − a1)g′′1 (ρ) + (a1 + a2)g′′2 (ρ))− 2µc(g1(ρ) + g2(ρ)− 1)

+2 (µe + µmicro) (g1(ρ)− g2(ρ)) + 2µe) + 3µL2
c ((a2 − a1)g′1(ρ) + (a1 + a2)g′2(ρ))

)
= 0 , (86)

1

2
ϑ sinϕ

(
ρ
(
µL2

c ((a1 + a2)g′′1 (ρ) + (a2 − a1)g′′2 (ρ))− 2 (µc(g1(ρ) + g2(ρ)− 1)

+ (µe + µmicro) (g1(ρ)− g2(ρ)))− 2µe) + 3µL2
c ((a1 + a2)g′1(ρ) + (a2 − a1)g′2(ρ))

)
= 0 ,

1

2
ϑ cosϕ

(
ρ
(
µL2

c ((a1 − a2)g′′2 (ρ)− (a1 + a2)g′′1 (ρ)) + 2 (µc(g1(ρ) + g2(ρ)− 1)

+ (µe + µmicro) (g1(ρ)− g2(ρ))) + 2µe) + 3µL2
c ((a1 − a2)g′2(ρ)− (a1 + a2)g′1(ρ))

)
= 0 .

It is important to underline that (82)1 is identically satisfied, and that between the four equilibrium equations
(86) there are only two that are linearly independent since: (86)1 = tanϕ (86)2 and (86)3 = tanϕ (86)4.

It is also pointed out that the two remaining linearly independent equations (86)1,3 can be uncoupled8

and have the form of the Bessel ODE if we take their sum and difference, while being careful of substituting
gp(r) := g1(r) + g2(r) and gm(r) := g1(r)− g2(r) along with their derivatives:

ϑ sinϕ
(
a1µL

2
c (3g′m(ρ) + ρ g′′m(ρ))− 2ρµe(gm(ρ) + 1)− 2ρ gm(ρ)µmicro

)
= 0 , (87)

ϑ sinϕ
(
2ρµc(gp(ρ)− 1)− a2µL

2
c

(
3g′p(ρ) + ρ g′′p (ρ)

))
= 0 .

Since g1(r) :=
gp(r)+gm(r)

2 and g2(r) :=
gp(r)−gm(r)

2 , the solution in terms of g1(r) and g2(r) of (87) is

g1(r) =
1

2

1−
iA1 I1

(
r f2
Lc

)
−A2 Y1

(
−i r f2Lc

)
+ iB1 I1

(
r f1
Lc

)
−B2 Y1

(
−i r f1Lc

)
r

− µe
µe + µmicro

 ,

g2(r) =
1

2

1 +
iA1 I1

(
r f2
Lc

)
−A2 Y1

(
−i r f2Lc

)
− iB1 I1

(
r f1
Lc

)
+B2 Y1

(
−i r f1Lc

)
r

+
µe

µe + µmicro

 , (88)

f1 :=

√
2µc
a2 µ

, f2 :=

√
2(µe + µmicro)

a1 µ
,

where In (·) is the modified Bessel function of the first kind, Yn (·) is the Bessel function of the second kind
(see appendix B for the formal definitions), and A1, B1, A2, B2 are integration constants.

The values of A1, B1 are determined thanks to the boundary conditions (83), while, due to the divergent
behaviour of the Bessel function of the second kind at r = 0, we have to set A2 = 0 and B2 = 0 in order to
have a continuous solution. The fulfilment of the boundary conditions (83) allows us to find the expressions
of the integration constants

A1 =
2iLcµe

f2 (µe + µmicro)
(
I0

(
Rf2
Lc

)
+ I2

(
Rf2
Lc

)) , B1 = − 2iLc

f1

(
I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

)) . (89)

The classical torque, the higher-order torque, and energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ

=

 8µcI2

(
Rf1
Lc

)
f2

1 I0

(
Rf1
Lc

)
+ f2

1 I2

(
Rf1
Lc

) +
8µ2

eI2

(
Rf2
Lc

)
(µe + µmicro)

(
f2

2 I0

(
Rf2
Lc

)
+ f2

2 I2

(
Rf2
Lc

))
 L2

c

R2
+

µe µmicro

µe + µmicro

 Ip ϑ
=Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈(m ez) eϕ, er〉 − 〈(m ez) er, eϕ〉

]
r dr dϕ = 4a2µ

L2
c

R2
Ip ϑ = Tm ϑ ,

8That this uncoupling takes place at all seems to be connected to the chosen form of the curvature energy. It remains unclear at
present whether this feature holds for the most general isotropic curvature expression as well.
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Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,P ,DP ) r dr dϕ

=
1

2

[(
8µcI2

(
Rf1
Lc

)
f2

1 I0

(
Rf1
Lc

)
+ f2

1 I2

(
Rf1
Lc

) +
8µ2

eI2

(
Rf2
Lc

)
(µe + µmicro)

(
f2

2 I0

(
Rf2
Lc

)
+ f2

2 I2

(
Rf2
Lc

)))L2
c

R2
(90)

+
µe µmicro

µe + µmicro︸ ︷︷ ︸
µmacro

+4a2µ
L2
c

R2

]
Ip ϑ

2 =
1

2
Tw ϑ

2 ,

and again it holds,

d

dϑ
Wtot(ϑ) = Mc(ϑ) +Mm(ϑ) ,

d2

dϑ2Wtot(ϑ) = Tc + Tm = Tw . (91)

It is underlined that the boundary conditions for the micromorphic model are consistent with the relaxed
micromorphic model’s one, being careful of changing m ez with m×ez. The plot of the torsional stiffness for
the classical torque (light blue), the higher-order torque (red), and the torque energy (green) while varying
Lc is shown in Fig. 20.
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Figure 20: (Micromorphic model, classical case) Torsional stiffness for the classical torque Tc, the higher-
order torque Tm, and the torque energy Tw while varying Lc. The torsional stiffness is unbounded as
Lc → ∞ (R → 0). The values of the parameters used are: µ = 1, µe = 1/3, µmicro = 1/4, µc = 1/5,
a1 = 1/5, a2 = 1/6, R = 1.
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9.1 Limits

9.1.1 The classical micromorphic model with symmetric forces stresses (µc → 0): nothing
special
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Figure 21: (Micromorphic model) Torsional stiffness for the torque energy while varying Lc, for different
values of µc = {0, 1/30, 1/10, 1/5, 1,∞}. The torsional stiffness remains bounded as Lc → ∞ (R → 0) and
the model does not collapse in a linear elastic one. The values of the other parameters used are: µ = 1,
µe = 1/3, µmicro = 1/4, a1 = 2, a3 = 1/20, R = 1.

9.1.2 The classical micromorphic model with reduced curvature energy (a2 = 0)

The classical micromorphic model with reduced curvature energy (a2 = 0) collapses into the micro-strain
model (Section 10 with symP ) thus becoming independent with respect to the Cosserat couple modulus µc
(see (47) for the different stiffnesses expressions).
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Figure 22: (Micromorphic model) Torsional stiffness for the torque energy while varying Lc, for different
values of µc = {0, 1/30, 1/10, 1/5, 1,∞}. The torsional stiffness remains bounded as Lc → ∞ (R → 0) and
the model does not collapse in a linear elastic one. The values of the other parameters used are: µ = 1,
µe = 1/3, µmicro = 1/4, a1 = 2, a3 = 1/20, R = 1. In this case, the stiffness for arbitrary small sample size
is governed by Te and not Tmicro. The reason for this is explained in Appendix D.

10 Torsional problem for the micro-strain model without mixed
terms

The micro-strain model [13, 25] is a particular case of the classical Mindlin-Eringen model, in which it is
assumed a priori that the micro-distortion remains symmetric, P = S ∈ Sym(3). 9

A torsion solution for a more general case with mixed terms has been derived in [24], but here we employ
a reduced isotropic curvature expression to make the calculations more manageable.

9Shaat [66] uses the micro-strain model with mixed terms and a degenerate curvature expression in DS, omitting S11,1, S22,2, and
S33,3.
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It is underlined that the micro-strain model cannot be obtained as a limit case of the relaxed micro-
morphic model and vice versa, although there are some similarities. The strain energy which we consider
is

W (Du,S,DS) =µe ‖dev (sym Du− S)‖2 +
κe
2

tr2 (Du− S) + µmicro ‖devS‖2 +
κmicro

2
tr2 (S) (92)

+
µL2

c

2

(
a1 ‖D (devS)‖2 +

2

9
a3 ‖D (tr (S)1)‖2

)
.

The chosen 2-parameter curvature expression represents a simplified isotropic curvature (the full isotropic
curvature for the micro-strain model would still counts 8 parameters [5]). In this form, the micro-strain
model can be obtained from the classical micromorphic model (Section 9), in general, by setting µc = 0 and
a2 = 0. For the torsion problem, the condition a2 = 0 alone is sufficient.

It is underlined that for the ansatz (96), which will be presented later in this section, it holds tr (S) = 0.
The equilibrium equations, in the absence of body forces, are therefore the following

Div

σ̃:=︷ ︸︸ ︷
[2µe dev (sym Du− S) + κe tr (Du− S)1] = 0,

2µe dev (sym Du− S) + κe tr (Du− S)1− 2µmicro devS − κmicro tr (S)1 (93)

+µL2
c sym Div

[
a1 D (devS) +

2

9
a3 D (tr (S)1)

]
= 0 .

The boundary conditions at the external free surfaces are

t̃(r = R) = σ̃(r) · er = 0R3 , η(r = R) = sym (m(r) · er) = 0R3×3 , (94)

where

m = µL2
c

[
a1 D (devS) +

2

9
a3 D (tr (S)1)

]
(95)

is the third order moment stress tensor, the expression of σ̃ is in (93), er is the radial unit vector. According
with the reference system shown in Fig. 1, the ansatz for the displacement field and the micro-distortion is

u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 , (96)

S(r, ϕ, z) =
ϑ

2

 0 0 gm(r)x2(r, ϕ)
0 0 −gm(r)x1(r, ϕ)

gm(r)x2(r, ϕ) −gm(r)x1(r, ϕ) 0

 ,

where, in relation to the ansatz (38), gm(r) := g1(r) − g2(r). Substituting the ansatz (96) in (93) the 9
equilibrium equation are equivalent to

1

2
ϑ sinϕ

(
a1 µL

2
c (3g′m(r) + r g′′m(r))− 2r µe (gm(r) + 1)− 2r gm(r)µmicro

)
= 0 , (97)

−1

2
ϑ cosϕ

(
a1 µL

2
c (3g′m(r) + r g′′m(r))− 2r µe(gm(r) + 1)− 2r gm(r)µmicro

)
= 0 .

Between the two equilibrium equations (97) there is only one independent equation since
(97)1 = − tanϕ (97)2. The solution of (97) is

gm(r) =
A2Y1

(
− irf1Lc

)
− iA1I1

(
rf1
Lc

)
r

− µe
µe + µmicro

, f1 :=

√
2(µe + µmicro)

a1µ
, (98)

where In (·) is the modified Bessel function of the first kind, Yn (·) is the Bessel function of the second kind
(see appendix B for the formal definitions), and A1, A2 are integration constants.

The value of A1 is determined thanks to the boundary conditions (94), while, due to the divergent
behaviour of the Bessel function of the second kind at r = 0, we have to set A2 = 0 in order to have a
continuous solution. The fulfilment of the boundary conditions (94) allows us to find the expressions of the
integration constants

A1 =
2i Lc

I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

) µe
f1(µe + µmicro)

. (99)
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The classical torque, the higher-order torque, and the energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ

=

 µe µmicro

µe + µmicro

+
µ2
e µa1

(µe + µmicro)
2

4 I2

(
Rf1
Lc

)
I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

) L2
c

R2

 Ip ϑ = Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈sym(mez)eϕ, er〉 − 〈sym(m ez)er, eϕ〉

]
r dr dϕ = 0 , (100)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,S,DS) r dr dϕ

=
1

2

 µe µmicro

µe + µmicro︸ ︷︷ ︸
µmacro

+
µ2
e µa1

(µe + µmicro)
2

4 I2

(
Rf1
Lc

)
I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

) L2
c

R2

 Ip ϑ2 =
1

2
Tw ϑ

2 .

The plot of the torsional stiffness for the classical torque, the higher-order torque, and the torque energy
while varying Lc is shown in Fig. 14. Since the higher-order torque is zero and the following relation holds

d

dϑ
Wtot(ϑ) = Mc(ϑ) +Mm(ϑ) = Mc(ϑ) ,

d2

dϑ2Wtot(ϑ) = Tc + Tm = Tc = Tw , (101)

only the plot of the energy (per unit length dz) while changing Lc is shown in Fig. 23
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Figure 23: (Micro-strain model) Torque energy Tw while varying Lc. Observe that the torsional stiffness
remains bounded as Lc → ∞ (R → 0). The values of the parameters used are: µe = 1/3, µmicro = 1/4,
µ = 1, a1 = 1/5. In this case, the stiffness for arbitrary small sample size is governed by Te and not Tmicro.

The energy of the model remains bounded, as for the shear and bending problem [60, 61], since for both
problems the higher-order moments are zero, and this does not create a conflict with the boundary condition
as Lc → ∞ (see (47) for the different stiffnesses expressions). Note that there is no simple way to a-priori
guess that the small size torsional response is given by Te since S ∈ Sym(3) is not easily seen to be zero.
In Appendix D we show that the variational limit for Lc →∞ is indeed realized by S(x) = S = 0 and this
shows that the limit stiffness is given by Te.

11 Torsional problem for the second gradient continuum

The expression of the most general isotropic strain energy for the second gradient continuum is [42, 54]

W
(
Du,D2u

)
=µmacro ‖sym Du‖2 +

λmacro

2
tr2 (Du) (102)

+ â1 χiik χkjj + â2 χijj χikk + â3 χiik χjjk + â4 χijk χijk + â5 χijk χkji ,
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where χ = D2u (χijk = ∂2uk
∂xi ∂xj

). The expression we are going to use in the following is a simplified isotropic

strain energy with three curvature parameters

W
(
Du,D2u

)
=µmacro ‖sym Du‖2 +

λmacro

2
tr2 (Du) (103)

+
µL2

c

2

(
a1

∥∥∥D
(

dev sym Du
)∥∥∥2

+ a2

∥∥∥D
(

skew Du
)∥∥∥2

+
2

9
a3

∥∥∥D
(

tr (Du) 1
)∥∥∥2

)
.

The equilibrium equation, in the absence of body forces, is

Div

[
2µmacro sym Du+ λmacrotr (Du)1 (104)

−µL2
c

(
a1 dev sym ∆ (Du) + a2 skew ∆ (Du) +

2

9
a3 tr (∆ (Du))1

)]
= 0 ,

where ∆ (Du) ∈ R3×3 is taken component-wise. The non-trivial boundary conditions at the free surface are

t̃(r = R) = σ̃ er + [(er ⊗ er) :∇m] er − 2 [(1− er ⊗ er) :∇m] er (105)

+
(

[(1− er ⊗ er) :∇er] (er ⊗ er)−
[
(1− er ⊗ er) (∇er)T

])
: m = 0R3 ,

η̃(r = R) = (er ⊗ er) : m = 0R3 , 10

where, since the boundary surface is smooth, one set of boundary condition is identically satisfied (see [41, 42]
for all the details). According to the reference system shown in Fig. 1, the ansatz for the displacement field
and consequently the gradient of the displacement are

u(x1, x2) = ϑ

 −x2 x3

x1 x3

0

 ⇒ Du =
ϑ

2

 0 −2x3 −2x2

2x3 0 2x1

0 0 0

 . (106)

Since the ansatz is completely known, it is possible to check that the equilibrium equation (104) and the
boundary conditions (106) are identically satisfied and it is possible to evaluate directly the classical torque,
the higher-order torque, and the energy.

The classical torque, the higher-order torque, and energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ = µmacroIp ϑ = Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[
〈(m ez) er, eϕ〉 − 〈(m ez) eϕ, er〉+ 〈(m er) ez, eϕ〉 − 〈(m eϕ) ez, er〉

]
r dr dϕ

= 2µ(a1 + 3a2)
L2
c

R2
Ip ϑ = Tm ϑ ,

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W
(
Du,D2u

)
r dr dϕ =

1

2

[
µmacro + 2µ(a1 + 3a2)

L2
c

R2

]
Ip ϑ

2 =
1

2
Tw ϑ

2 . (107)

The plot of the torsional stiffness for the classical torque (light blue), the higher-order torque (red), and the
torque energy (green) while varying Lc is shown in Fig. 24.

10In index notation (1− er ⊗ er) : ∇m = (δip − ninp)mijk,p.
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Figure 24: (Second gradient model) Torsional stiffness for the classical torque Tc, the higher-order torque
Tm, and the torque energy Tw while varying Lc. The torsional stiffness is unbounded as Lc →∞ (R→ 0).
The values of the parameters used are: µ = 1, µmacro = 1/4, a1 = 1/5, a3 = 1/6, R = 1.

11.1 The strain gradient continuum as a limit of the micro-strain model

If we let µe, κe →∞ in the micro-strain model, we obtain in the limit a strain gradient model with elastic
energy

W (Du,D sym Du) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) (108)

+
µL2

c

2

(
a1

∥∥∥D
(

dev sym Du
)∥∥∥2

+ a3

∥∥∥D
(

tr (Du)1
)∥∥∥2

)
.

Since tr (Du) = 0 for our ansatz (14), the equilibrium equations, in the absence of body forces, are

Div

[
2µmacro sym Du+ λmacrotr (Du)1− µL2

c a1 dev sym ∆ (Du)

]
= 0 , (109)

where ∆ (Du) ∈ R3×3 is taken component-wise.

0 2.5 5

Tmacro

R/Lc

T
c
,T
m
,T
w

μe

∞

a2

0

Figure 25: The purplish curves show how the micro-strain model particularises to the strain gradient
model for µe → ∞ (the following set has been used µe = {1/3, 1/2, 2/3,∞}). The greenish curves show
how the choice of a2 = 0 guarantees the formal equivalence (which is however always substantially true)
between the second gradient model and the strain gradient model [42] (the following set has been used
a2 = {1/4, 1/10, 0}). The values of the other parameters used are: µ = 1, µmacro = 1/7, a1 = 1/5, R = 1.
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12 Ad-hoc model containing Cosserat and micro-strain effects

Given S ∈ Sym(3) and A ∈ so(3), the strain energy which we consider now is

W (Du,A,S,CurlA,DS) =µe ‖sym Du− S‖2 +
λe
2

tr2 (Du− S) + µc ‖skew (Du−A)‖2

+ µmicro ‖devS‖2 +
κmicro

2
tr2 (S) (110)

+
µL2

c

2

(
a1 ‖dev sym CurlA‖2 +

a3

3
tr2 (CurlA) + a4 ‖D (devS)‖2

)
,

since ‖skew CurlA‖2 = ‖D (skewS)‖2 = ‖D (tr (S)1)‖2 = 0 in terms of the ansatz (114).
The equilibrium equations, in the absence of body forces, are the following

Div

σ̃:=︷ ︸︸ ︷
[2µe (sym Du− S) + λe tr (Du− S)1+ 2µc (skew Du−A)] = 0,

2µc skew (Du−A)− µL2
c skew Curl

(
a1 dev sym CurlA +

a3

3
tr (CurlA)1

)
= 0 (111)

2µe (sym Du− S) + λe tr (Du− S)1− 2µmicro S − λmicro tr (S)1+ µL2
c a4 sym ∆ (devS) = 0 .

The boundary conditions at the external free surfaces are

t̃(r = R) = σ̃(r) · er = 0R3 , (112)

ηb(r = R) = skew (m(r) · ε · er) = skew (m(r)× er) = 0R3×3 ,

ηa(r = R) = sym (m(r) · er) = 0R3×3 ,

where

m = µL2
c

(
a1 dev sym CurlA +

a3

3
tr (CurlA)1

)
, (113)

m = µL2
c a4 D (devS) ,

is the second and third order moment stress tensor respectively, the expression of σ̃ is in (111), er is the
radial unit vector. According with the reference system shown in Fig. 1, the ansatz for the displacement
field and the micro-distortion is

u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 ,

A(r, ϕ, z) =
ϑ

2

 0 −2x3(z) −gp(r)x2(r, ϕ)
2x3(z) 0 gp(r)x1(r, ϕ)

gp(r)x2(r, ϕ) −gp(r)x1(r, ϕ) 0

 , (114)

S(r, ϕ, z) =
ϑ

2

 0 0 gm(r)x2(r, ϕ)
0 0 −gm(r)x1(r, ϕ)

gm(r)x2(r, ϕ) −gm(r)x1(r, ϕ) 0

 ,

where, in relation to the ansatz (38), gm(r) := g1(r) − g2(r) and gp(r) := g1(r) + g2(r). Substituting the
ansatz (114) in (111) the 15 equilibrium equation are equivalent to

1

6
ϑ sinϕ

(
6r µc(gp(r)− 1)− µL2

c (a1 + 2a3)
(
3g′p(r) + r g′′p (r)

))
= 0 ,

1

6
ϑ cosϕ

(
6r µc(gp(r)− 1)− µL2

c (a1 + 2a3)
(
3g′p(r) + r g′′p (r)

))
= 0 , (115)

1

2
ϑ sinϕ

(
a4 µL

2
c (3g′m(r) + r g′′m(r))− 2r µe (gm(r) + 1)− 2r gm(r)µmicro

)
= 0 ,

−1

2
ϑ cosϕ

(
a4 µL

2
c (3g′m(r) + r g′′m(r))− 2r µe(gm(r) + 1)− 2r gm(r)µmicro

)
= 0 .

Between the two equilibrium equations (115) there are only two independent equation since (115)1 =
− tanϕ (115)2 and (115)3 = tanϕ (115)4. The solution of (115) is

gp(r) = 1−
i A1I1

(
r f1
Lc

)
r

+
A2Y1

(
− i r f1Lc

)
r

, f1 :=

√
6µc

(a1 + 2a3)µ
, (116)

gm(r) =
A2Y1

(
− irf2Lc

)
− iA1I1

(
rf2
Lc

)
r

− µe
µe + µmicro

, f2 :=

√
2(µe + µmicro)

a4µ
, (117)
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where In (·) is the modified Bessel function of the first kind, Yn (·) is the Bessel function of the second kind
(see appendix B for the formal definitions), and A1, A2, A3, A4 are integration constants.

The values of A1 and A2 are determined thanks to the boundary conditions (112), while, due to the
divergent behaviour of the Bessel function of the second kind at r = 0, we have to set A2 = A4 = 0 in
order to have a continuous solution. The fulfilment of the boundary conditions (112) allows us to find the
expressions of the integration constants

A1 = − i RLc

f1Rz1

(
I0

(
Rf1
Lc

)
+ I2

(
Rf1
Lc

))
+ z2 Lc I1

(
Rf1
Lc

) , z1 :=
a1 + 2a3

3a1
,

A3 =
2i Lc

I0

(
Rf2
Lc

)
+ I2

(
Rf2
Lc

) µe
f2(µe + µmicro)

, z2 :=
4a3 − a1

3a1
. (118)

The classical torque, the higher-order torque, and the energy (per unit length dz) expressions are

Mc(ϑ) :=

∫ 2π

0

∫ R

0

[
〈σ̃ ez, eϕ〉r

]
r dr dϕ

=

 4µc I2

(
Rf1
Lc

)
L2
c

R2

f1

(
2 f1 z1 I0

(
Rf1
Lc

)
+ (z2 − 2z1) I1

(
Rf1
Lc

)
Lc
R

)
+

µe µmicro

µe + µmicro

+
µ2
e µa4

(µe + µmicro)
2

4 I2

(
Rf2
Lc

)
I0

(
Rf2
Lc

)
+ I2

(
Rf2
Lc

) L2
c

R2

 Ip ϑ = Tc ϑ ,

Mm(ϑ) :=

∫ 2π

0

∫ R

0

[ micro-strain component︷ ︸︸ ︷
〈sym(m ez)eϕ, er〉 − 〈sym(m ez)er, eϕ〉

+ 〈skew(m× ez)eϕ, er〉 − 〈skew(m× ez)er, eϕ〉︸ ︷︷ ︸
Cosserat component

]
r dr dϕ

=

2µ
(

3a1 f1 z1 I0

(
Rf1
Lc

)
L2
c

R2 − 2(a1 − a3) I1

(
Rf1
Lc

)
L3
c

R3

)
6f1 z1 I0

(
Rf1
Lc

)
− 3I1

(
Rf1
Lc

)
Lc
R

 = Tm ϑ , (119)

Wtot(ϑ) :=

∫ 2π

0

∫ R

0

W (Du,A,S,CurlA,DS) r dr dϕ

=
1

2

 4µc I2

(
Rf1
Lc

)
L2
c

R2

f1

(
2 f1 z1 I0

(
Rf1
Lc

)
+ (z2 − 2z1) I1

(
Rf1
Lc

)
Lc
R

)
+

µe µmicro

µe + µmicro

+
µ2
e µa4

(µe + µmicro)
2

4 I2

(
Rf2
Lc

)
I0

(
Rf2
Lc

)
+ I2

(
Rf2
Lc

) L2
c

R2

+
2µ
(

3a1 f1 z1 I0

(
Rf1
Lc

)
L2
c

R2 − 2(a1 − a3) I1

(
Rf1
Lc

)
L3
c

R3

)
6f1 z1 I0

(
Rf1
Lc

)
− 3I1

(
Rf1
Lc

)
Lc
R

 Ip ϑ2 =
1

2
Tw ϑ

2 .

It is highlighted that, like for the micro-strain model (Section 10), the higher order torque contribution
〈(m ez) eϕ, eϕ〉 is equal to zero. The plot of the torsional stiffness for the classical torque, the higher-order
torque, and the torque energy while varying Lc is shown in Fig. 26. Again, it holds

d

dϑ
Wtot(ϑ) = Mc(ϑ) +Mm(ϑ) ,

d2

dϑ2Wtot(ϑ) = Tc + Tm = Tw . (120)
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Figure 26: (Ad-hoc model) Torsional stiffness for the classical torque Tc, the higher-order torque Tm, and
the torque energy Tw while varying Lc. The torsional stiffness is unbounded as Lc →∞ (R→ 0) due to the
Cosserat effects. The values of the parameters used are: µ = 1, µc = 1/2, µe = 1/3, µmicro = 1/4, a1 = 1/5,
a3 = 1/6, a4 = 1/7, R = 1.

13 Summary and conclusions

We have derived the analytical expressions of the torsional rigidity for a family of generalized continua
capable of modelling size-dependence in the sense that more slender specimens are comparatively stiffer. We
only consider (simplified) isotropic expressions so as to better compare the different models with each other.
For example, a strain gradient continuum, by construction, does not have mixed energy terms. Therefore,
we omitted these terms in all models. Excluding the mixed terms like 〈sym Du, sym Du−P 〉 also simplifies
considerably the investigation of positive definiteness. Indeed, all presented models are positive definite if
the usual relations

µmacro > 0 , κmacro =
2µmacro + 3λmacro

3
> 0 ,

µmicro > 0 , κmicro =
2µmicro + 3λmicro

3
> 0 , (121)

µmicro > µmacro =⇒ µe > 0 , κe =
2µe + 3λe

3
> 0 .

are satisfied together with individual positivity of all curvature parameters. In all cases, the displacement
follows the classical pure torsion solution. Despite the conceptual simplicity of the models, we observe
already a delicate interplay between the used kinematics and the assumed curvature energy expression.
For example, let us compare the relaxed micromorphic model with the micro-strain model (Section 10).
Both models have a similar looking lower order energy term (if the Cosserat couple modulus µc ≡ 0), but
different kinematics and different curvature energy. For arbitrary slender specimens, the torsional stiffness
of the micro-strain model is governed by µe, whereas the torsional stiffness of the relaxed micromorphic
model is determined by µmicro. Thus, the physical interpretation of the material parameters in both models
is completely different. This is surprising at first glance but the reason for this response is finally explained
in Appendix D.

In the end, the more restricted the used kinematics, the less viable a model may become. In this
respect, only the full micromorphic kinematics degree of freedom (12 DOFS) can be advised. In addition,
the curvature energy should not intervene too strongly. For example, penalizing a full gradient DP in the
curvature energy of the classical micromorphic model leads to a stiffness singularity for arbitrary slender
specimens, while penalizing only CurlP in the relaxed micromorphic model does not show the same singular
response. Moreover, in the relaxed micromorphic model the interpretation of the lower order material
parameters (µe, µmicro, µmicro, etc.) does not in principle change when different curvature energies are
considered. In the end, it is therefore the relaxed micromorphic model that produces sensible and consistent
response in all considered cases. It remains to be investigated if, together with the previously developed
solution for bending and shear [60, 61], the present analytical solution allows to identify the complete set
of micromorphic parameters of a material from bending, shear and torsion experiments at specimens with
different diameters.
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[56] P. Neff, D. Pauly, and K.J. Witsch. Poincaré meets Korn via Maxwell: extending Korn’s first inequality to incompatible tensor
fields. Journal of Differential Equations, 258(4):1267–1302, 2015.

[57] S. Owczarek, I. D. Ghiba, and P. Neff. A note on local higher regularity in the dynamic linear relaxed micromorphic model.
arXiv:2006.05448, to appear in Mathematical Methods in the Applied Sciences, 2021.

[58] A. Reuß. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Zeitschrift für
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A Cylindrical coordinates

The relation between the derivatives for a vector field u(x), û(r) and a second order tensor P (x), P̂ (r) with respect an
orthogonal set of coordinates x = {x1, x2, x3} and a cylindrical set of coordinates r = {r, ϕ, z} are the following
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∇xu(x) = (∇rû(r))Q(1) , ∇xP (x) =
(
∇rP̂ (r)

)
Q(1) , (122)

ui,j = ûi,αQ
(1)
αj , Pij,k = P̂ij,αQ

(1)
αk , (123)

where

Q(1) = (∇rx(r))−1 =

 cosϕ sinϕ 0

− sinϕ
r

cosϕ
r

0
0 0 1

 , (124)

and

∇2
xu(x) =

(
∇2

rû(r)
)

: Q(2) + (∇rû(r))Q(3) , ∇xP (x) =
(
∇2

rP̂ (r)
)

: Q(2) +
(
∇rP̂ (r)

)
Q(3) . (125)

ui,jk = ûi,αβQαβjk + ûi,αQαjk , Pij,kl = P̂ij,αβQαβkl + P̂ij,αQαkl . (126)

Q(2) =



 cos2 ϕ sinϕ cosϕ 0
sinϕ cosϕ sin2 ϕ 0

0 0 0
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2r
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2r

sinϕ cosϕ
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0 0 0
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sinϕ
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0 0 0


 sin2 ϕ

r2
− sinϕ cosϕ

r2
0

− sinϕ cosϕ
r2

cos2 ϕ
r2

0

0 0 0


 0 0 − sinϕ

2r
0 0 cosϕ

2r

− sinϕ
2r

cosϕ
2r

0


 0 0 cosϕ

2

0 0 sinϕ
2

cosϕ
2

sinϕ
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0 0 1


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,

Q(3) =



 sin2 ϕ
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− sinϕ cosϕ
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. (127)

B Bessel functions
The Bessel functions are the solutions y(x) of the Bessel differential equation [70]

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0 . (128)

For the particular case in which α = n is an integer, the solution of (128) can be expressed as a linear combination of the
Bessel function of the first Jn(x) and second Yn(x) kind

y(x) = A1 Jn(x) +A2 Yn(x) , (129)

whose definitions are

Jn(x) =

∫ π

0
cos(n τ − x sin(τ)) dτ , Yn(x) =

Jn(x) cos(nπ)− J−n(x)

sin(nπ)
. (130)

Moreover, the modified Bessel functions of the first kind is defined as In(x) = i−nJn(ix) .

C Classical Cosserat formulation in micro-rotation vector format
An overview of the different classical notations for the Cosserat model has been given in [23]. In [50] we have presented the
correspondence between the Cosserat model expressed in dislocation format (Curl of the skew symmetric micro-distortion
tensor) and in its classical formulation (gradient of the micro-rotation vector φ). The relation between the coefficients in the
two notations is

α =
µL2

c

2

1

3
(4a3 − a1) , β =

µL2
c

2

a1 − a2

2
, γ =

µL2
c

2

a1 + a2

2
, (131)

a1 =
γ + β

µL2
c

, a2 =
γ − β
µL2

c

, a3 =
3α+ β + γ

4µL2
c

.

Setting φ := axl(A) and taking into account (131), the expression of the strain energy for the isotropic Cosserat continuum
can be equivalently expressed as

W (Du,A,CurlA) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) + µc ‖skew Du−A‖2

+
µL2

c

2

(
a1 ‖dev sym CurlA‖2 + a2 ‖skew CurlA‖2 +

a3

3
tr2 (CurlA)

)
︸ ︷︷ ︸

dislocation tensor format

(132)

= W (Du,φ,Dφ) =µmacro ‖sym Du‖2 +
λmacro

2
tr2 (Du) +

µc

2
‖curlu− 2φ‖2

1

2

(
α tr2 (Dφ) + β 〈DφT ,Dφ〉+ γ ‖Dφ‖2

)
︸ ︷︷ ︸

classical micro-rotation vector format

,
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since

‖skew Du−A‖2 = 2 ‖axl(skew Du−Anti(φ))‖2 = 2‖
1

2
curlu− φ‖2 =

1

2
‖curlu− 2φ‖2 . (133)

The equilibrium equations, in the absence of body forces, in the classical notation are

Div [2µmacro sym Du+ λmacrotr (Du)1]− µc curl [curlu− 2φ] = 0 , (134)

Div
[
α tr (Dφ) 1+ β (Dφ)T + γDφ

]
+ 2µc (curlu− 2φ) = 0 .

The boundary conditions at the free surface are

t̃(r = R) = σ̃(r) · er = 0R3 , η(r = R) = m(r) · er = 0R3×3 , (135)

where

σ̃ = 2µmacro sym Du+ λmacrotr (Du)1+ 2µc (skew Du−Anti(φ)) , (136)

er is the radial unit vector, and the second-order moment stress tensor

m = α tr (Dφ) 1+ β (Dφ)T + γDφ . (137)

According to the reference system shown in Fig. 1, the ansatz for the displacement field and the micro-rotation vector
turns into

u(x1, x2, x3) = u(r, ϕ, z) = ϑ

 −x2(r, ϕ)x3(z)
x1(r, ϕ)x3(z)

0

 , φ(x1, x2, x3) = φ(r, ϕ, z) =
ϑ

2

 −gp(r)x1(r, ϕ)
−gp(r)x2(r, ϕ)

2x3(z)

 , (138)

Substituting the ansatz (138) in (134) the equilibrium equations are equivalent to

−
1

2
ϑ cosϕ

(
4ρµc (g(ρ)− 1)− (α+ β + γ)

(
3g′(ρ) + ρg′′(ρ)

))
= 0 , (139)

−
1

2
ϑ sinϕ

(
4ρµc (g(ρ)− 1)− (α+ β + γ)

(
3g′(ρ) + ρg′′(ρ)

))
= 0 ,

which are completely equivalent to (62) in Section 6 once used the relations (131). Since also the boundary conditions (135) are
equivalent to the boundary condition (59) in Section 6, further calculations are avoided. Here, we recall the relations between
the two moment stress tensors expressed in the classical format (m) and in the dislocation format (m)

dev symm = −dev symm , skewm = skewm , trm =
1

2
trm , (140)

where skewm = skewm = 0 for the torsional problem, and

m = µL2
c

(
a1 dev sym CurlA +

a3

3
tr (CurlA)1

)
, m = α tr (D(axl(A))) 1+ β (D(axl(A)))T + γD(axl(A)) , (141)

It is also interesting to show the relation between the two higher-order torques expressed in terms of m and m, respectively.
First, we observe

〈skew (m× ez) eϕ, er〉 − 〈skew(m× ez)er, eϕ〉 = 〈(m× ez) eϕ, er〉 − 〈(m× ez) er, eϕ〉 , (142)

which does not holds component-wise.11

Using that the cross product between two unit vectors gives the third one, and

(m× v)w = m (v ×w) ∀v,w ∈ R3 and ∀m ∈ R3×3 , (143)

it is possible to write

〈(m× ez) eϕ, er〉 − 〈(m× ez) er, eϕ〉 = 〈m (eϕ × ez) , er〉 − 〈m (er × ez) , eϕ〉 = − [〈mer, er〉+ 〈meϕ, eϕ〉] . (144)

Since (er ⊗ er + eϕ ⊗ eϕ + ez ⊗ ez) = 1 we may convert the double dot-product into a dyadic product as follows

− [〈mer, er〉+ 〈meϕ, eϕ〉] = −〈m, (er ⊗ er + eϕ ⊗ eϕ)〉 = −〈m, (1− ez ⊗ ez)〉 . (145)

Substituting the relation (140) between m and m we have

−〈m, (1− ez ⊗ ez)〉 = −〈
(
−devm+ skewm+

1

3

tr(m)

2
1

)
, (1− ez ⊗ ez)〉 . (146)

Since 〈1,1〉 = 3, 〈1, (ez ⊗ ez)〉 = 1, and m is decomposed into its three orthogonal components (except for multiplying
factors) we can write

− 〈
(
−devm+ skewm+

1

3

tr(m)

2
1

)
, (1− ez ⊗ ez)︸ ︷︷ ︸
∈Sym (3)

〉 = −〈
(
−devm+

1

3

tr(m)

2
1

)
, (1− ez ⊗ ez)︸ ︷︷ ︸
∈Sym (3)

〉 = (147)

〈devm, (1− ez ⊗ ez)〉 −
1

3

tr(m)

2
[3− 1] = −〈devm, ez ⊗ ez〉 −

1

3
tr(m) = (148)

− 〈devm, ez ⊗ ez〉 −
1

3
tr(m)〈1, ez ⊗ ez〉 = −〈devm+

1

3
tr(m)1, ez ⊗ ez〉 = 〈m, ez ⊗ ez〉 = −〈mez , ez〉 = −mzz . (149)

11The values of the four terms for a generic second order tensor m are: 〈skew(m×ez)eϕ, er〉 = 1
2 (m11 +m22) , 〈skew(m×ez)er, eϕ〉 =

− 1
2 (m11 +m22) , 〈(m× ez) eϕ, er〉 = m22 sin2 ϕ + m11 cos2 ϕ + (m12 + m21) sinϕ cosϕ , 〈(m× ez) er, eϕ〉 = −m22 cos2 ϕ −

m11 sin2 ϕ + (m12 + m21) sinϕ cos ϕ. Note that 〈skew (m× ez) eϕ, er〉 6= 〈(m× ez) eϕ, er〉 and 〈skew (m× ez) er, eϕ〉 6=
〈(m× ez) er, eϕ〉.
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The last relation is a pure algebraic relation valid for all m,m related by (138) and er, eϕ, ez are given in (11). Thus, we
have shown that

〈skew (m× ez) eϕ, er〉 − 〈skew (m× ez) er, eϕ〉 = mzz . (150)

This solution is valid for a generic second order tensor and for a generic vector triplet. Using (149), we finally see that∫
Γ
mzz r dr dϕ =

∫
Γ
−
[
〈skew (m× ez) eϕ, er〉 − 〈skew (m× ez) er, eϕ〉

]
r dr dϕ . (151)

The ratio Ω between the Cosserat torsional stiffness and the classical value that can be found e.g. in [4, 14, 35] is

Ω = 1 + 6

(
`t

R

)2 [1− 4/3Ψχ

1−Ψχ

]
, `2t =

β + γ

2µmacro

, Ψ =
β + γ

α+ β + γ
, (152)

χ =
I1(pR)

pR I0(pR)
, p2 =

4µc

α+ β + γ
, N2 =

µc

µmacro + µc
.

where `t is the characteristic length for torsion, Ψ is the polar ratio, N is the Cosserat coupling number, α, β, and γ are the
curvature coefficients in the classical Cosserat formulation, µmacro is the classical Cauchy shear modulus, µc is the Cosserat
couple modulus, and In is the modified Bessel function of the first kind of order n.

Figure 27: For comparison, the figure has been taken from Lakes [35]. Here, G = µmacro denotes the classical
shear modulus and N → 1 corresponds to µc →∞.

To go from (65) to (152) we have to use the relations (131), while remembering to incorporate the term µL2
c (the terms

not reported do not change between the two notations)

Ω = 1 + 6

(
`t

R

)2 [1− 4/3Ψχ

1−Ψχ

]
, `2t =

a1

2µmacro
, Ψ =

3a1

2a1 + 4a3
, p2 =

6µc

a1 + 2a3
. (153)
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Figure 28: (a) Cosserat model; (b) relaxed micromorphic model. The values of the coefficient used are:
µ = 1, µc = 1/2, µmacro = 1/14, µmicro = 1/4, a1 = 1/5, a3 = 1/37.

In Fig. 28 we report how the torsional stiffness divided by the radius of the cylindrical rod squared (T̂w/R2) vary with
respect to the radius squared R2 for the Cosserat model and the relaxed micromorphic model where

`a = µL2
c 12π

a1 a3

a1 + 8a3
=
π(β + γ)(3α+ β + γ)

2α+ β + γ
, `b = µL2

c

3

2
π a1 =

3

2
π(β + γ) . (154)
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It is highlighted that the Cosserat model do not tent to a classical linear elastic model for µc → 0 as it can bee seen from
eq.(153) or eq.(68).
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Figure 29: (a) Cosserat model; (b) relaxed micromorphic model. The values of the coefficient used are:
µ = 1, µmacro = 1/14, µmicro = 1/4, a1 = 2, a3 = 1/50, Lc = 3. In the Cosserat model, the solution for
µc →∞ (the indeterminate couple stress model) shows a jump.

It is underlined that for the relaxed micromorphic model the stiffness is bounded by the one obtained for Lc → 0 (macro)
and Lc → ∞ (micro): the macro-stiffness (Lc → 0) is the limit to which all curves with finite Lc tend asymptotically to for
R2 → ∞ (this limit has been cut in order make possible to distinguish all the curves), while the micro-stiffness (Lc → ∞) is
the limit to which all the curves tend asymptotically to for R2 → 0.

D Ad-hoc minimization for Lc → ∞ in the full micromorphic
model and in the micro-strain model

Looking at the curvature energy of the full micromorphic model (or the micro-strain model) it is clear that for Lc → ∞ the
micro-distortion tensor field P must be constant P = P , provided all curvature coefficients are strictly positive. We calculate
this constant in the following. Thus we consider

min
u,P

[∫
Ω
µe
∥∥dev sym

(
Du− P

)∥∥2
+
κe

2
tr2
(
Du− P

)
+ µc

∥∥skew
(
Du− P

)∥∥2
(155)

+µmicro

∥∥dev symP
∥∥2

+
κmicro

2
tr2
(
P
)

dV
]
.

The weak form is given by∫
Ω

2µe
〈
dev sym

(
Du− P

)
,−δP

〉
+ κe tr

(
Du− P

) 〈
1,−δP

〉
+ 2µc

〈
skew

(
P
)
,−δP

〉
(156)

+2µmicro

〈
dev sym

(
P
)
, δP

〉
+ κmicro tr

(
P
) 〈
1, δP

〉
dV = 0 ∀ δP .

∫
Ω

〈
2µe dev sym

(
Du− P

)
+ κe tr

(
Du− P

)
1+ 2µc skew

(
Du− P

)
(157)

−2µmicro dev sym
(
P
)
− κmicro tr

(
P
)
1, δP

〉
dV = 0 ∀ δP .

For constant δP this can be rewritten as〈∫
Ω

2µe dev sym
(
Du− P

)
+ κe tr

(
Du− P

)
1+ 2µc skew

(
Du− P

)
(158)

−2µmicro dev sym
(
P
)
− κmicro tr

(
P
)
1dV, δP

〉
= 0 ∀ δP .

Since δP is arbitrary, this implies that∫
Ω

2µe dev sym
(
Du− P

)
+ κe tr

(
Du− P

)
1+ 2µc skew

(
Du− P

)
− 2µmicro dev sym

(
P
)
− κmicro tr

(
P
)
1dV = 0 , (159)

or∫
Ω

2µe dev sym Du+ κe tr (Du)1+ 2µc skew Du dV = (160)

=

∫
Ω

2µe dev symP + κe tr
(
P
)
1+ 2µc skewP + 2µmicro dev symP + κmicro tr

(
P
)
1dV .

Using the orthogonality of dev sym·, skew· and tr(·)1 we obtain∫
Ω

2µe dev sym Du dV =

∫
Ω

2µe dev symP + 2µmicro dev symP dV , (161)
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∫
Ω
κe tr (Du) dV =

∫
Ω
κe tr

(
P
)

+ κmicro tr
(
P
)

dV ,

∫
Ω

2µc skew Du dV =

∫
Ω

2µc skewP dV ,

and since P is constant we can write

dev symP =
1

|Ω|

∫
Ω

µe

µe + µmicro

dev sym Du dV , tr
(
P
)

=
1

|Ω|

∫
Ω

κe

κe + κmicro

tr (Du) dV , (162)

skewP =
1

|Ω|

∫
Ω

skew Du dV .

Since dev sym, skew, and tr are linear operators, we obtain equivalently

dev symP =
µe

µe + µmicro

dev sym

(
1

|Ω|

∫
Ω

Du dV

)
, tr

(
P
)

=
κe

κe + κmicro

tr

(
1

|Ω|

∫
Ω

Du dV

)
, (163)

skewP = skew

(
1

|Ω|

∫
Ω

Du dV

)
.

Substituting the ansatz (85) into (163) we obtain P = 0. Analogous calculations can be carried out for the micro-strain
model for which skewP = 0 and µc = 0

devS =
µe

µe + µmicro

dev sym

(
1

|Ω|

∫
Ω

Du dV

)
, tr

(
S
)

=
κe

κe + κmicro

tr

(
1

|Ω|

∫
Ω

Du dV

)
. (164)

Substituting the ansatz (96) into (164) we obtain S = 0.
The integral on the circular cross-section Γ of the gradient of the displacement is∫

Γ
Du(x)dV =

∫ 2π

0

∫ R

0
Du(r, ϕ, z) r drdϕ =

 0 −πR2ϑz 0
πR2ϑz 0 0

0 0 0

 = πR2Θ(z)

 0 −1 0
1 0 0
0 0 0

 . (165)

From (165) it is possible to see that the symmetric part of the integral of Du on the circular cross-section is zero, while
the skew-symmetric part is zero only if the domain is symmetric with respect z.

For the Cosserat model, letting Lc →∞ still implies that A(x) = A = const. must be constant. The same calculations as
before yield

A = skew

(
1

|Ω|

∫
Ω

DudV

)
=

1

|Ω|

∫
Ω

Du dV , since Du ∈ so(3) . (166)

For Ω = [0, L]× Γ we have

1

|Ω|

∫
Ω

Du dV =
1

L (πR2)

∫ L

0

∫ 2π

0

∫ R

0
Du (r, ϕ, z) r drdϕdz =

1

L (πR2)

(
ϑπ R2 z

2

2

∣∣∣∣L
0

)
=
ϑ

2
L =

1

2
Θ(L) . (167)

We remark that the same limit Lc →∞ in the relaxed micromorphic model yields a linear elastic response with stiffness Cmicro

since CurlP = 0 does not imply that P = const. but P = ∇ζ for some ζ : Ω ∈ R3 → R3, see [46].
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