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a b s t r a c t

We present a new parametric model for the angular measure of a multivariate extreme
valuedistribution. Unlikemanyparametricmodels that are limited to the bivariate case, the
flexiblemodel can describe the extremes of random vectors of dimension greater than two.
The novel construction method relies on a geometric interpretation of the requirements of
a valid angular measure. An advantage of this model is that its parameters directly affect
the level of dependence between each pair of components of the random vector, and as
such the parameters of the model are more interpretable than those of earlier parametric
models for multivariate extremes. The model is applied to air quality data and simulated
spatial data.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Fig. 1 shows three scatterplots of air pollutant measurements taken in the city centre of Leeds, UK. These data were
analyzed in a discussion paper of Heffernan and Tawn [18] and were again recently analyzed by Boldi and Davison [2]. Since
it is likely that the compound effects of high levels of multiple pollutants have more severe health consequences than the
effects resulting from high levels of the individual pollutants, there is a need to model the data’s joint upper tail. Interest in
modeling multivariate extremes extends to many disciplines such as hydrology, finance, and engineering. There is a critical
need to develop statisticalmethodologies formultivariate extremes for disciplines inwhich the assessment of risk associated
with high levels of multiple components is of importance.
The probability theory which underlies the statistical practice for studying multivariate extremes is well developed. A

classical work in multivariate extremes is [30], and the recent books by Beirlant et al. [1], de Haan and Ferreira [10] and
Resnick [31] have large portions devoted to the multivariate case. Although the theory is well developed, there is still much
room for work in developing statistical methodologies for analyzing and modeling multivariate extremes. In this paper we
present a new and flexible parametric model for multivariate extremes of any order.
There are a number of flexible parametric models that exist for bivariate data such as the Gaussian model [19,35],

bilogistic [21], and polynomial [26]. There are fewer models for higher-dimensional data, and many of these models have
weaknesses such as a lack of flexibility, or conversely over-parametrization; these models are discussed in more depth in
Section 3.
The parametric models mostly appeared in the literature in the late 1980s and early 1990s, and since then attention

seems to have turned to other aspects of the study multivariate extremes. One area of interest has been in developing non-
parametric and semi-parametric models for multivariate extremes. Much of this work has focused on the bivariate case.
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Fig. 1. Scatterplots of NO vs. PM10 (left), SO2 vs. PM10 (center), and SO2 vs. NO (right). The extremes of PM10 and NO appear to have relatively strong
dependence, while the extremes of SO2 and the other two pollutants appear to have much weaker dependence.

Early non-parametric work [14] did not attempt to meet the required moment conditions of a multivariate extreme value
model which are discussed in Section 2. In more recent work, Einmahl and Segers [15] use a non-parametric maximum
empirical likelihood approach to fit an angular density to bivariate data which doesmeet the requirements of a multivariate
extreme value distribution. The only semi- or non-parametric work done for dimension greater than 2 is that of [2]. Using
a semi-parametric approach, they create a model for the angular density of a multivariate extreme value distribution by
applying mixtures of Dirichlet distributions that meet the required moment conditions. Boldi and Davison describe two
different fitting procedures for their model: the first is a Bayesian approach in which posterior draws are obtained via a
reversible jump Markov chain Monte Carlo algorithm, and the second is an EM approach with AIC-based model selection.
Either approach requires considerable effort to fit the model.
There has been separatework in describing the levels of dependence found inmultivariate extremes. Severalmetrics that

quantify the level of dependence in traditional max-stable random vectors have been suggested: the extremal coefficient
studied extensively by Schlather and Tawn [33], the dependencemeasure χ(u) that appears in [5], the dependencemeasure
d(u, v) in [9], and the madogram, a first-order variogram, in [8]. With the exception of the extremal coefficient, these
measures all quantify bivariate dependence. The complete bivariate dependence structure can be described by the Pickands
dependence function, and estimators of this function have been proposed by Deheuvels [12], Capéraà and Fougéres [3] and
Hall and Tajvidi [17], and an equivalent function, the λ-madogram has been studied by Naveau et al. [27]. Estimation of
the Pickands dependence function is closely related to the bivariate non-parametric angular density estimation described
above.
There has also been interest in developing models for max-stable processes, particularly for spatial problems. In a now

famous unpublishedmanuscript, Smith [35] created amodel formax-stable randomprocesses using a point process to locate
‘‘storm centres’’ and ‘‘storm intensities’’. Schlather [32] extended Smith’s point process idea to create a different spatial
model, and we use Schlather’s model to simulate fields in Section 5.2. Most recently, de Haan and Pereira [11] provided
severalmodels for spatial extremes.While all these aremodels formax-stable processes, only the bivariate joint distribution
is known in closed form.
Others have turned their attention to modeling dependence under the class of asymptotic independence. A bivariate

couple (X1, X2) is termed asymptotically independent if limx→∞ P(X2 > x|X1 > x) = 0. Papers by Ledford and Tawn
[23–25] spurred interest in describing and modeling dependence under the class of asymptotic independence. Ledford and
Tawn [25], Peng [28] and Draisma et al. [13] all developed measures for the coefficient of tail dependence which describes
the amount of dependence under the case of asymptotic independence for the bivariate case. A paper byHeffernan and Tawn
[18] provided models for extremes which included the case of asymptotic independence, but the models were developed
via bivariate conditional relationships, and higher-dimensional relationships have not been made explicit. A recent paper
by Ramos and Ledford [29] offers a parametric model which captures both asymptotic dependence and independence again
in the bivariate case.
The work presented here extends the early work done in modeling multivariate extremes. We believe that developing

useful multivariate models that can readily be applied by practitioners in various fields is important work, and that a need
exists for new parametric models for multivariate extremes of dimension greater than two. An advantage of a parametric
approach is that it allows for easymodel fitting procedures that do not require advanced computational techniques. Another
advantage is that often the parameters lend themselves to interpretation, and this is the case for the pairwise beta model.
The model is classical in the sense that it is a model under the case of asymptotic dependence. The constructive approach
we use for model formulation is novel.
The remainder of the article is organized as follows. In Section 2 we briefly summarize the necessary background in

multivariate extreme value theory. Section 3 first reviews the parametric models for dimension p > 2 that have previously
appeared in the literature, and then introduces a new parametric model, the pairwise beta. Section 4 details how the model
can be fit to high observations and tests the procedure on data simulated from themodel. Section 5 applies the model to the
air quality data referenced above and also to simulated spatial data. The paper concludes with a summary section.
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2. Multivariate extreme values and the angular measure

The aim of a multivariate extreme value analysis is to characterize the joint upper tail of a distribution. It is common
practice to analyze only the data which are considered to be extreme. Two approaches for choosing the subset of the
data to be analyzed are to extract block (e.g., annual) maximum values or alternatively, to retain only observations which
exceed some threshold. In both cases, asymptotic results from probability theory provide a framework for modeling the
selected data. One way of characterizing the dependence for the limiting distributions of both block maxima and threshold
exceedances is via an angular (or spectral) measure.

2.1. Regular variation and threshold exceedances

An approach used to characterize threshold exceedances is via the concept of regular variation. Let Z = (Z1, . . . , Zp)T ≥ 0
be a random vector with distribution F , and define C to be the set [0,∞] \ 0. Then Z is regularly varying if

P(t−1Z ∈ ·)
P(‖Z‖ > t)

v
→ ν(·), (1)

where v denotes vague convergence [31] and ‖ · ‖ is any norm on C1. The measure ν has the scaling property

ν(sA) = s−αν(A) (2)

for all Borel sets A ∈ C, and α is called the tail index. Choosing the sequence {an} such that P(‖Z‖ > an) ∼ n−1, we have
the sequential relation of (1)

nP
(

Z
an
∈ ·

)
v
→ ν(·). (3)

The scaling property (2) suggests a transformation to polar coordinates. Define R = ‖Z‖ and W = Z‖Z‖−1, and let
Sp−1 = {z ∈ C : ‖z‖ = 1} be the unit sphere in p-dimensional space under the chosen norm. Then there exists a probability
measure H on Sp−1 such that

nP
(
R
an
> r,W ∈ B

)
→ r−αH(B), (4)

for all H-continuity sets B. Conceptually, it is often helpful to view the angular measure H as the limiting distribution ofW
for R large, i.e.,

P(W ∈ ·|R > t) d
→ H(·)

as t →∞. If H is absolutely continuous on Sp−1, then we denote its density by h(w).
There is a link betweenmultivariate regular variation andpoint process convergence. Specifically, if {Zn} is an iid sequence

then (4) is equivalent to convergence in distribution of the point process with points at Z1/an, . . . , Zn/an to a Poisson
randommeasure (PRM)with intensitymeasure ν(·). Transforming to polar coordinates, we have {(a−1n Ri,Wi), i = 1, . . . , n}
converges to a PRM(r−(α+1)dr×dH(w)). It is via this point process representation thatwewill fit our angularmeasuremodel
to threshold exceedances in Section 4
We aim to construct a parametric model for H . For the general case of multivariate regular variation described above, H

can be any probability measure, and thus constructing a parametric model for the angular measure is infeasible. However,
it is common practice in multivariate extremes to assume that the components Zi, i = 1, . . . , p of the random vector have a
commonmarginal distribution, not just the common tail index that is required under the general conditions of multivariate
regular variation. We assume that Zi, i = 1, . . . , p have a common marginal distribution F1 which is regularly varying with
indexα = 1. If the datawe intend tomodel arise froma randomvectorY forwhich this is not the case,we assumeprobability
integral transforms Ti are applied so that Ti(Yi) = Zi and Zi has themarginal F1. In [2] itwas assumed that F1(z) = exp(−z−1),
the standard unit Fréchet distribution.
Assuming α = 1, then we have for the ith marginal component,

nP
(
Zi
an
> z

)
→ ν{x ∈ C : xi > z}

=

∫
Sp−1

∫
∞

z
wi

r−2drdH(w)

=
1
z

∫
Sp−1

widH(w).

1 Others choose to normalize by P(Z1 > t), see [31, p. 174].
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Since we have assumed a common marginal, this implies that∫
Sp−1

w1dH(w) =
∫
Sp−1

wjdH(w) (5)

for all j = 2, . . . , p. The moment conditions in (5) are the only requirements for a valid angular measure model with
identically distributed marginals.
When α = 1 it is particularly useful to choose the L1 norm: ‖z‖ = z1+ · · · + zp, for which the unit sphere is the simplex

Sp−1 = {w ∈ C : w1 + · · · + wp = 1}. With this norm, 1 =
∫
Sp−1
dH(w) =

∫
Sp−1

(w1 + · · · + wp)dH(w) and hence∫
Sp−1

widH(w) = p−1.
Using the L1 norm, the moment conditions (5) on the angular measure have a helpful geometric interpretation. They

imply that the center-of-mass (
∫
Sp−1

widH(w) for i = 1, . . . , p) of H must be at the pointw = (1/p, . . . , 1/p). Dependence
increases between all components as the mass of H moves to the center of the simplex, the components become less
dependent as the mass increases near the vertices of the simplex. This geometric interpretation leads to our constructive
approach in Section 3.2.

2.2. Multivariate extreme value distributions and block maxima

Rather than modeling threshold exceedances, the more classical approach to studying extremes is to model block
maximum data. In the multivariate case, the definition of maximum is ambiguous. Classical multivariate extreme value
theory describes the behavior of the vector constructed from the componentwise maxima. The family of multivariate
extreme value distributions (MEVDs) are the limiting distributions of componentwise block maxima, and the MEVDs can
again be characterized by the angular measure.
We first characterize the MEVD which corresponds to the random vector Z described in the previous section. Let

Zm = (Zm,1, . . . , Zm,p)T , m = 1, 2, . . . be independent and identically distributed copies of Z , and let the vector of
componentwise maxima be denoted by Mn =

(∨
m=1,...,n Zm,1, . . . ,

∨
m=1,...,n Zm,p

)T , where ∨ denotes max. We assume
there exists a distribution function G such that

P
(
Mn
an
≤ z

)
= Pn

(
Z
an
≤ z

)
d
→ G(z), (6)

where {an} is defined as above. Taking logarithms and applying Taylor series approximations to (6), we obtain

n log
[
1− P

(
Z
an
> z

)]
≈ −nP

(
Z
an
∈ [0, z]c

)
≈ logG(z), (7)

which combined with (3) gives us

G(z) = exp(−ν[0, z]c) = exp

(
−

∫
Sp−1

max
i=1,...,p

(
wi

zi

)
dH(w)

)
, (8)

relating the MEVD to the angular measure H .
Eq. (8) differs slightly from the representation of the family of MEVDs given by Coles and Tawn [6]. The representations’

marginals differ by a constant, and this difference can be attributed to how thenormalizing sequence {an} is chosen. Choosing
to have standard unit Fréchet marginals, Coles and Tawn [6] characterize the family of MEVDs as

G∗(z) = exp(−V (z)), (9)

where V (z) is termed the exponent measure function. In terms of our choice of {an} above, the exponent measure function
is

V (z) = p
∫
Sp−1

max
i=1,...,p

(
wi

zi

)
dH(w). (10)

The exponent measure function is simply a way of relating the angular measure, which is best understood in polar
coordinates, to the distribution function, which requires Cartesian coordinates. Rather than via the regular variation
argument described in the previous section, it is via this representation of the family of MEVDs that Coles and Tawn [6]
and others have described the moment conditions (5) of the angular measure.
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3. Parametric models for multivariate extremes

It is not possible to construct a parametric family ofmodels that exhausts the entire class of angularmeasuresH satisfying
(5). Nevertheless, there have been some parametric subfamilies suggestedwhich can capture important behavior andwhich
have beenused successfully inmanymodeling applications. The book byKotz andNadarajah [22] gives a collection ofmodels
for MEVDs. As mentioned in the introduction, several models have been suggested for the bivariate case, in this section we
concentrate on models which can handle any finite dimension. In what follows, we use θ generically to denote the vector of
parameters associated with a model.

3.1. Previous parametric models

The parametric models can be divided into two classes. The first class gives a parametric model for the exponent
measure function, V (z; θ), which provides closed-form expression for the joint distribution of the MEVD. The second class
parametrically models the angular density h(w; θ) directly.
Defining a multivariate extreme value distribution via a parametric exponential measure function is challenging, and

few models for dimension p > 2 have been suggested. The most widely known MEVD is the logistic [16] which has
exponent measure function V (z; γ ) = (

∑p
i=1 z

−1/γ
i )γ for 0 < γ ≤ 1. Dependence between the components increases

as γ decreases. The logistic is easy to work with because its exponential measure function is relatively simple and leads to
an easy representation for its angular measure which (if γ 6= 1) exists entirely on the interior of Sp−1. However, because
it is characterized by a single parameter γ , in higher dimensions it is inadequate to model situations where dependence
between components differs. As such, it has primarily been used in bivariate applications (e.g. [36]).
The asymmetric logistic [37] and the negative logistic [20] are similar models which extend the logistic model to allow

different levels of dependence between the components. Both models give explicit definitions for the exponent measure
function V (z, θ). One difficulty of these models is that they have a large number of parameters; in the three-dimensional
case the asymmetric logistic has sixteen parameters, twelve of which can be freely chosen. Another potential limitation of
these models is that both achieve the center-of-mass condition by putting mass on the edges and vertices of the simplex
Sp−1, resulting in a discontinuous angular measure. No asymmetric parametric model for V (z, θ) has been proposed with a
continuous angular measure.
Rather than defining a parametric model for V (z; θ), one can alternatively define parametric models for the angular

density h(w; θ). Coles and Tawn [6] describe one method of obtaining a model for h(w; θ). They show that if h∗ is a positive
function on Sp−1 with finite first momentsmi =

∫
Sp−1

wih∗(w; θ)d(w), then

h(w; θ) =
1
p
(m ·w)−(p+1)

p∏
j=1

mjh∗
(m1w1
m ·w

, . . . ,
mpwp
m ·w

; θ
)

(11)

is a valid angular densitywhich has all itsmass on the interior of Sp−1. In effect, if one thinks of h∗ as a (perhaps unnormalized)
density on Sp−1, then (11) alters the density so that it has center-of-mass at (1/p, . . . , 1/p) and total mass of 1. Coles and
Tawn [6] used their technique to create amultivariate extreme valuemodel from theDirichlet density, awell-knowndensity
on the unit simplex which in p-dimensions is parameterized by α = (α1, . . . , αp)

T and whose pdf is given by

h∗(w;α) =
Γ (α · 1)
p∏
j=1
Γ (αj)

p∏
j=1

w
αj−1
j , αj > 0, j = 1, . . . , p.

As the Dirichlet density has momentsmi = αi/
(∑p

j=1 αj
)−1, applying (11) one obtains the angular density

h(w;α) =
1
p

p∏
j=1

αj

Γ (αj)

Γ (α · 1+ 1)
(α ·w)p+1

p∏
j=1

( αjwj
α ·w

)αj−1
which can be asymmetric. This angular densitymodel has been termed the tilted Dirichlet to distinguish it from the Dirichlet
density above.
Compared to the parametric models for V (z, θ), modeling h(w; θ) directly allows for more flexibility in how the angular

measure behaves in the interior of the simplex. Consequently, Coles [4] found the tilted Dirichlet model preferable to the
logistic and negative logisticmodels when fitting spatial rainfall extreme data. A disadvantage of the tilted Dirichletmodel is
that after application of (11), the angular density’s parameters become largely uninterpretable. Given anymodel for h(w; θ),
one must perform the integration in (8) to obtain an expression for the extreme value distribution. Since this integration
must generally be done numerically, models for h(w; θ) aremore useful for describing threshold exceedances than for block
maxima. To date, the tilted Dirichlet is the only parametric model for h(w, θ)which has appeared in the literature.
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3.2. A constructive approach for angular density models

The center-of-mass interpretation of condition (5) provides us with inspiration for directly constructing models for the
angular density h(w; θ). Our approach for constructing an angular density model is geometric and differs from that of Coles
and Tawn [6].
Consider the function

hi,j(w;βi,j) =
Γ (2βi,j)
Γ 2(βi,j)

(
wi

wi + wj

)βi,j−1 ( wj

wi + wj

)βi,j−1
wherew ∈ Sp−1 and βi,j > 0. We refer to hi,j(w;βi,j) as the pairwise beta function as it is simply a symmetric beta density
between two components on the simplex. By following reasoning similar to Theorem 1 in the Appendix, it can be shown
that for any parameter βi,j, the pairwise beta function has center-of-mass at (1/p, . . . , 1/p).
The pairwise beta function provides a foundation for constructing angular density functions. An obvious method for

constructing a valid angular density is to sum each of the
( p
2

)
pairwise beta functions for each pair of components in our

random vector. However, a simple sum of pairwise beta functions yields a model which is not entirely satisfying. Using a
simple sum, if just one of the pairwise beta functions has relatively strong dependence, this will create mass at the center of
the simplex, which in turn causes all of the components to have someminimum level of dependence. To alleviate this issue,
in the model below we add an additional global parameter α to help control the overall dependence in the model.
Let

h(w;α,β) = Kp(α)
∑

1≤i<j≤p

hi,j(w;α, βi,j), (12)

where hi,j(w;α, βi,j) = (wi + wj)2α−1(1− (wi + wj))α(p−2)−p+2
Γ (2βi,j)
Γ 2(βi,j)

(
wi

wi + wj

)βi,j−1 ( wj

wi + wj

)βi,j−1
,

and Kp(α) =
2(p− 3)!
p(p− 1)

√
p

Γ (αp+ 1)
Γ (2α + 1)Γ (α(p− 2))

be known as the pairwise beta model. It is shown in Theorem 1 in the Appendix that the pairwise beta meets (5) and thus
is a valid angular density.
The function hi,j in (12) consists of two pieces. The first piece of hi,j is determined by the parameter α > 0 which simply

draws themass of the density toward the center of the simplex as it increases. The second piece is the pairwise beta function
defined above. A feature of the model is that its parameters are easily interpretable; α is a global parameter which controls
the overall level of dependence in the model and each of the βi,j parameters controls the level of dependence between the
ith and jth components of the random vector. The factor Kp(α) is a normalizing constant.
Fig. 2 shows four examples of angular measures given by the three-dimensional pairwise beta model. The top left figure

has parameters α = 1 and β = (2, 4, 15), and the angular measure clearly shows strong dependence between the second
and third components due to the large value of β2,3. The top right figure increases the global parameter (α = 4) while
leaving the β values unchanged, and one can see how themass of the angular measure is pulled to the center of the simplex.
The lower left shows a plot where the global parameter is small (α = 7/12) but one still sees that there is still relatively
strong dependence between the second and third components, as the mass is either located near the point (1, 0, 0) or near
(0, 1/2, 1/2). The lower right plot has α = 1 and β = (2, 2, 1/2) and the low value for β2,3 drives the mass of the angular
measure to the boundaries indicating that large values of components two and three are unlikely to occur at the same time.
To fully describe the dependence in the extremes requires knowledge of H(w) or alternatively V (z). However, as

mentioned in Section 1, several related dependencemetrics have been proposed which describe the level of dependence for
max-stable random vectors. If Z is max-stable with unit Fréchet margins, the pairwise extremal coefficient [35,34] is given
by φi,j(Z) = V (ci,j), where ci,j is the p-dimensional vector with components ci = 1, cj = 1 and ck = ∞ for k 6= i or j. The
dependence metric can be understood via the relation

P(max(Zi, Zj) ≤ z) = exp[−V (zci,j)] = exp[−z−1V (ci,j)] = (exp[−z−1])φi,j = (P(Z1 ≤ z))φi,j;

that is, the pairwise extremal coefficient is the effective number of independent random variables in the bivariate couple.
Hence φi,j ∈ [1, 2] and as φi,j increases, the amount of dependence decreases. Schlather and Tawn [34,33] describe higher-
order extremal coefficients, but below we focus only on pairwise dependence.
Theorem 2 in the Appendix more clearly illustrates how the parameter βi,j affects the pairwise dependence between the

ith and jth components. Let Z be a max-stable random vector with angular measure described by the pairwise beta model
with parameters (α,β), and let Z∗ be another pairwise beta max-stable random vector with parameters (α,β∗), where
β∗i,j > βi,j and β∗k,l = βk,l for (k, l) 6= (i, j). Theorem 2 shows that φi,j(Z

∗) < φi,j(Z); that is, the dependence between the ith
and jth components of the random vectors as measured by the extremal coefficient is stronger for Z∗ than for Z .
Several comments should be made regarding the dependence in the pairwise beta model. The existing extremal

dependencemetrics such as the extremal coefficient are all defined in terms ofmax-stable randomvectors and the exponent
measure function and are only indirectly related to the angular measure. Consequently, the proof of Theorem 2 is somewhat
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Fig. 2. Four examples of the pairwise beta density. The lower right corner of the triangle in each panel corresponds to an event where the first element of
the random vector is large while the other two are small. The upper and lower left corners correspond to the second and third elements being large. The
parameter values for the top left panel are α = 1, β = (2, 4, 15). One sees in the plot that the second and third components are likely to be large at the
same time, due to parameter β2,3 = 15. The parameters for the other plots are α = 4, β = (2, 4, 15) (top right), α = 7/12, β = (2, 4, 15) (bottom left),
and α = 1, β = (2, 2, 1/2) (bottom right).

circuitous. Second, the additive nature of the pairwise beta model implies that the βi,j parameters do not act independently.
It would be very satisfying to find an parametric angular measuremodel where the ith and jth components were completely
controlled by a single parameter and unaffected by the others. Despite the fact that the βi,j’s do not act independently, the
pairwise beta has a flexibility not found in other existing models. The α parameter sets a level of overall dependence which
can then be adjusted either up or down by the βi,j parameters allowing one to achieve an appropriate dependence level for
each pair of components.

4. Estimation procedure

Fitting a model for an angular density is a relatively straightforward exercise. Given a set of iid observations ym,
m = 1, . . . , n, one first fits distributions to the marginals, and then transforms zm = T (ym) to have a common marginal
with tail index α = 1. One then makes a further transformation to pseudo-polar coordinates yielding points (rm,wm)
where rm = ‖zm‖ and wm = zm‖zm‖−1. A high threshold t0 is selected and the points {(rm,wm),m = 1, . . . , n : rm > t0}
are retained. Let (r(m),w(m)),m = 1, . . . ,Nt0 denote the reindexed threshold exceedances. Given that t0 is large enough, we
assume that the points (r(m),w(m)) approximately follow a Poisson process with intensity measure ν given in (3). Letting
A = {(r,w) : r > t0} the approximate likelihood [1, pp. 170–171] of the points (r(m),w(m)),m = 1, . . . ,Nt0 is given by

L(θ; (r(m),w(m)),m = 1, . . . ,Nt0) ≈ exp(−ν(A))
Nt0∏
m=1

dν(r(m),w(m)) = exp(−t−10 )
Nt0∏
m=1

r−2(m)h(w(m), θ),

where h(w; θ) is any parametric model for the angular measure. To find θ which maximizes this likelihood, we need to
only note that L(θ; (r(m),w(m)),m = 1, . . . ,Nt0) ∝

∏Nt0
m=1 h(w(m), θ). The estimate θ̂ can then be found via numerical

optimization. This estimation procedure was used by both [7] and [2]. Since the pairwise beta angular measure is a smooth
function of α ∈ (0,∞) and β ∈ (0,∞)(

p
2 ) and has bounded support on the unit simplex Sp−1, if one assumes the marginal

distributions are known, standard asymptotics hold for the maximum likelihood estimators α̂, β̂.
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Fig. 3. Density estimates from 1000 simulations, each consisting of 200 realizations of the pairwise beta angular measure with parameters α = 1, and
β = (2, 4, 15). All figures show that the maximum likelihood estimators for Nt0 = 200 appear to have a distribution with mean and mode near the actual
parameter value and are approaching normality, although all appear to be slightly positively skewed. Dashed line is the (numerically obtained) normal
distribution suggested by the asymptotics for MLEs with Nt0 = 200.

Table 1
Summary of the pairwise beta simulation results. Table gives the true values of the parameters, the mean of the MLE estimates for the 1000 simulations,
the standard error of the estimates suggested by the asymptotics, and the sample standard error of the estimates. The means of the estimates are slightly
larger than the actual parameter values and the sample standard errors are slightly larger than the asymptotic estimates; both results are presumably due
to the skewness seen in Fig. 3.

α β1,2 β1,3 β2,3

Value 1 2 4 15
Mean 1.018 2.119 4.233 15.707
Asymp SE 0.091 0.428 1.196 4.699
SD of ests 0.103 0.586 1.380 5.023

To test the estimation procedure for this model, a simulation exercise was performed. For each simulation, two hundred
realizations of angular componentswm were generated according to the pairwise beta angular measure via an accept–reject
algorithm. For the simulation, the parameters of the pairwise beta were set at α = 1,β = (2, 4, 15). These realizations of
the angular componentswmwere assumed to correspondwith realizations of zmwith large radial components. The pairwise
beta model was then fit via the method described above. This experiment was repeated 1000 times and the maximum like-
lihood estimates were recorded. Typically, the angular measure only describes the angular component in the limit as rm →
∞; however, for these simulated points, all observations (rm,wm) such that rm > t0 follow the pairwise beta model exactly.
Fig. 3 shows density estimates formed from the maximum likelihood estimates of these 1000 simulations. The

information matrix associated with this likelihood is analytically intractable but is easily numerically approximated for this
three-dimensional case, and the dashed lines show the normal distribution suggested by the asymptotics. All panels show
that the distribution of the estimators appears to have amean andmode near the actual parameter values and that, although
slightly positively skewed, the distributions are approaching normality for Nt0 = 200. Table 1 summarizes the results of the
simulations and indicates that the standard deviations of the estimates are slightly greater than the asymptotics suggest,
presumably due to the skewness seen in Fig. 3. The coverage probabilities for the asymptotic 95% confidence intervals for
these 1000 simulations were 0.967 for α and (0.934, 0.935, 0.937) for (β1,2, β1,3, β2,3).
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Fig. 4. Left plot shows the angular components of the largest 100 observations of the trivariate air quality data. The lower right corner corresponds to
large values of PM10 and small values of NO and SO2. The upper corner corresponds to large values of NO, and the lower left corresponds to large values
of SO2. As points tend to lie along the hypotenuse of the triangle and in the lower left corner, this indicates that large values of PM10 and NO tend to occur
together, while large values of SO2 occur independently. The center plot shows the log density of the fitted pairwise beta model, while right plot shows
the log density of the fitted Dirichlet model.

5. Applications

5.1. Air quality data

Weexamine a set of air quality datawhich has been analyzed by Heffernan and Tawn [18] andmore recently by Boldi and
Davison [2]. The data were taken in the city centre of Leeds, UK and are daily maximummeasurements for five different air
pollutants: particulate matter (PM10), nitrogen oxide (NO), nitrogen dioxide (NO2), ozone (O3), and sulfur dioxide (SO2).
The data were downloaded from http://www.airquality.co.uk. We focus on the data collected during the winter season
(November–February) and to be consistent with the previous studies, we examine data for the years 1994–1998.
For illustrative purposes, we restrict our attention to the trivariate data of PM10, NO, and SO2. The scatterplots in Fig. 1

indicate that PM10 and NO exhibit relatively strong extremal dependence, while SO2 has much weaker dependence with
the other two pollutants. Heffernan and Tawn [18] used a conditional approach tomodel the dependence found in each pair
of pollutants. Like [2], we approach this data in the manner of a traditional extreme value problem and fit both the pairwise
beta and tilted Dirichlet models to the trivariate observations. Similar to [18], we transform each marginal distribution by
fitting a generalized Pareto distribution to the exceedances of the empirical 0.7 quantile, and using the empirical distribution
function below the threshold; however, we transform to a unit Fréchetmarginals whereas Heffernan and Tawn transform to
Gumbelmarginals. The 100 trivariate observations with the largest radial components were then selected, and their angular
components were used to fit the two models. The plot of the angular components can be seen in Fig. 4. Many of the points
lie along the hypotenuse of the triangle, indicating large simultaneous values of PM10 and NO and a small value for SO2;
conversely, the cluster of points at the lower left corner indicates large values of SO2 and small values of PM10 and NO.
When fit to the data, the pairwise beta model yields a log-likelihood of 41.02 and an AIC value of−74.04. Its parameter

estimates are α̂ = 0.68, and β̂ = (3.21, 0.47, 0.45), with the large β̂1,2 value indicating the stronger dependence between
PM10 and NO as expected. The estimated standard errors of these estimates are respectively 0.009, 0.101, 0.010, and 0.010.
We note that these standard errors account only for uncertainty due to estimation of the parameters of the angular measure
model and do not reflect the uncertainty generated by first estimating the marginals, the use of a limiting angular measure
to fit threshold exceedances, or the assumption of the parametric model choice. The middle panel of Fig. 4 shows the fitted
pairwise beta angularmeasure, which has increasedmass along the hypotenuse and in the lower left vertex as expected. The
tilted Dirichlet model yields a log-likelihood of 34.84 and an AIC value of −63.68, indicating that the pairwise beta model
yielded a better fit. The tilted Dirichlet model parameter estimates are α̂ = (1.20, 0.67, 0.42), and while these parameters
have the same ranks and the β̂’s above, it is not clear what these parameters represent. The right panel of Fig. 4 shows
the fitted tilted Dirichlet angular measure which, while exhibiting similar behavior to the pairwise beta model, has some
asymmetries in the dependence between PM10 and NO which do not appear to be reflected in the data.
An aim of a multivariate extreme model is to appropriately estimate probabilities of jointly large events. Given a

p-dimensional angular measure model h(w),

P(T1(Y1) > z1, . . . , Tp(Yp) > zp) ≈
∫
Sp−1

∫
r= max
i=1,...,p

wiz
−1
i

r−2h(w)drdw

=

∫
Sp−1

min
i=1,...,p

wiz−1i h(w)dw.

For known angularmeasuremodels such as the tilted Dirichlet and the pairwise beta, this integralmust be done numerically
or with Monte Carlo methods. A straightforward approach to estimating this integral is to use importance sampling.

http://www.airquality.co.uk
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Fig. 5. Shows a realization of the Schlather method for simulating max-stable random fields along with the five locations, labeled 1–5, for which we want
to construct a multivariate extreme model.

Table 2
Summary of the estimates of the three events that appear in Section 5.1. In all three cases the probability of the event as calculated from the fitted pairwise
beta model falls well within the 95% confidence interval associated with the empirical estimates.

Event 1 Event 2 Event 3
PM10> 100, NO> 400 PM10> 85, NO> 230, SO2> 120 PM10> 185, NO> 600

n 543 528 543
Exceedances 32 16 2
Emp. Pt. Est. 0.0589 0.0303 0.0037
95% CI (0.0391, 0.0787) (0.0157, 0.0449) (0.0004, 0.0132)
Model Pt. Est. 0.0465 0.0411 0.0064

We assess the pairwise beta’s ability to model days which have large amounts of air pollution in more than one
component. We look at three different events: (1) PM10 > 100, NO > 400; (2) PM10 > 85, NO > 230, SO2 > 120; and
(3) PM10 > 185, NO > 600. The first and third events answer questions about the joint behavior of PM10 and NO, and we
have seen evidence that these components are frequently large together. In the first event, both PM10 and NO are relatively
large: a measurement of 100 corresponds to roughly the 0.86 empirical quantile of PM10 and 400 corresponds to roughly
the 0.94 quantile of NO. The third event corresponds to a very large event in both components: the marginal quantiles are
roughly 0.99 and 0.98 for PM10 and NO respectively. The second event answers a question that might be posed about the
joint behavior of all three components, namelywhat is the probability that SO2 is large (120 roughly corresponds to the 0.90
quantile) when both PM10 and NO are relatively large (both at roughly their 0.80 quantiles)?
Table 2 summarizes the results for both the empirical estimates of these three events as well as the probabilities of these

three events as estimated by the fitted pairwise beta model. The 95% confidence intervals are generated by the normal
approximation to the binomial for the first two events and the exact binomial confidence interval is given for the third
event because its estimate was near 0. The model point estimates were calculated via importance sampling with 10000
points from a uniform density on S2. The uncertainty of the importance sampling estimates (not including uncertainty due
to the earlier parameter estimation) is not reported in the table to avoid confusion, but it was much smaller than that of
the empirical estimates. In all three cases, the point estimate given by the model is well inside the 95% confidence intervals
indicating that the pairwise beta model has sufficient flexibility to model these three large joint events.
Although it is possible to fit the pairwise beta to the five-dimensional air quality data, since themodel assumes asymptotic

dependence, it is probably inappropriate to include the O3 data as Heffernan and Tawn [18] found that O3 was negatively
correlated with all the other winter pollutants. Rather, to illustrate that the pairwise beta can be fit to data of higher
dimension, we instead model simulated spatial data.

5.2. Simulated spatial fields

Our exploration into multivariate extreme value models was originally motivated by spatial problems. Dependence in
spatial data is usually modeled to decrease as distance between the observations increases, thus it is natural to describe the
dependence betweenpairs of observations. Fig. 5 shows a random field generated by theprocess developedby Schlather [32].
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Table 3
The log-likelihood (`(θ)), the number of parameters (k), and AIC values for the pairwise beta and Dirichlet models as fit to the five locations of simulated
spatial fields. Results are for 750, 500, and 250 exceedances which correspond to the empirical 85%, 90%, and 95% quantiles of the radial components for
the five locations of the 5000 simulated fields. The AIC shows that the pairwise beta model outperforms the Dirichlet model for this spatial data.

Pairwise Beta Dirichlet
`(θ) k AIC `(θ) k AIC

Nt0 = 750 2127.2904 11 −4232.581 1829.3867 5 −3648.773
Nt0 = 500 1425.2265 11 −2828.453 1200.0731 5 −2390.146
Nt0 = 250 726.2325 11 −1430.465 602.8029 5 −1195.606

Table 4
Gives the maximum likelihood parameter estimates for the pairwise beta model as fit to the five observed locations from the simulated fields. Standard
errors are in parentheses. To more clearly show that larger values of βi,j correspond to pairs of points with shorter distances, the βi,j parameters have been
listed in increasing order of distance between locations.

Parameter α β4,5 β1,2 β2,3 β1,3 β1,4 β1,5 β3,4 β2,4 β2,5 β3,5
Distance – 3.00 3.61 5.83 7.00 7.00 7.62 9.90 10.20 11.18 12.21

Nt0 = 750 1.15 88.58 40.45 35.88 26.87 31.43 18.53 0.54 0.55 0.47 0.41
0.00 0.83 0.35 0.45 0.49 0.47 0.25 0.00 0.00 0.00 0.00

Nt0 = 500 0.94 68.14 32.85 30.83 21.38 51.30 20.77 0.49 0.47 0.40 0.36
0.00 1.02 0.44 0.62 0.51 1.72 0.37 0.01 0.01 0.00 0.00

Nt0 = 250 0.84 81.20 34.87 24.33 40.07 16.89 17.48 0.39 0.38 0.32 0.29
0.01 2.47 0.98 1.06 2.98 0.65 0.71 0.01 0.01 0.01 0.01

The field is max-stable with unit Fréchet marginal distributions and all finite-dimensional distributions are regular varying.
The field is created bymultiplying Gaussian fields by realizations from a point processes with specific intensities to yield the
desired marginal distribution, and then taking the pointwise maxima of these fields. The bivariate distribution of the field
is given by

P(Z(x) ≤ y1, Z(x+ h) ≤ y2) = exp
[
−
1
2

(
1
y1
+
1
y2

)(
1+

√
1− 2(ρ(h)+ 1)

y1y2
(y1 + y2)2

)]
,

where ρ(h) gives the spatial covariance function of the Gaussian field. The fields we simulate have ρ(h) = exp(−h/20).
A closed-form expression for the multivariate joint distribution for p > 2 is not known. These fields are known to be
asymptotically dependent for all distances h.
We wish to model the joint distribution of the five locations marked in Fig. 5. Five-thousand fields are simulated and,

using the sum of the observations at the five observed locations, the largest 750, 500, and 250 are selected; that is, we set the
threshold at the 0.85, 0.90, and 0.95 empirical quantiles of the norm of the observations at the five locations.We fit the tilted
Dirichlet and pairwise beta models to these realizations as before. With p = 5, the pairwise beta model has 11 parameters
and the tilted Dirichlet model has only five. Table 3 gives the log-likelihood and AIC values of the twomodels for each of the
three thresholds. In all cases the pairwise beta has a lower AIC value indicating that even when penalized for its additional
complexity, the pairwise beta outperforms the tilted Dirichlet. Table 4 gives the parameter estimates for the pairwise beta
model and it is clear that the parameters βi,j which correspond to points closer together have larger estimated values. The
estimated parameters for the tilted Dirichlet model were α̂ = (1.52, 1.28, 1.04, 1.27, 1.08) but again these estimates yield
no interpretation as to the relative dependence between the pairs of locations.
As with the air pollution data, we assess the fit by comparing the estimated probabilities of rare joint events from the

fitted pairwise beta model to the actual probabilities from Schlather’s model. We again test three events. The first event is
Z(x1) > 100, Z(x2) > 100, corresponding to a large event at two locations in close proximity. The probability of this event
according to Schlather’s model is 0.0071 and the estimated probability according to the fitted pairwise betamodel is 0.0058.
The second event we test is Z(x3) > 100, Z(x5) > 100, corresponding to a large event at the two locations farthest apart.
The exact and estimated probabilities are 0.0056 and 0.0050. The third event we test is Z(xi) > 100, for i = 1, . . . , 5. The
probability of this event cannot be calculated directly for Schlather’s model, however an empirical estimate based on 50000
simulated fields was 0.0029. The estimated probability from the fitted pairwise beta model was 0.0022.

6. Discussion

A current challenge of modeling multivariate extremes is finding an adequate model for either the exponent measure
function, or alternatively, the angular measure. In this work we have introduced a new parametric model for angular
measure, the pairwise beta model. An advantage of this model is that it is largely specified by parameters that relate to
the amount of dependence between pairs of components in the random vector, which allows for easier interpretation of
the parameter estimates. The constructive approach of this model is novel. In both the air quality and spatial examples, the
pairwise beta model proved useful and the parameter estimates agreed with the known relative dependence between the
components of the data. In both applications, estimated probabilities of jointly large events compared well to either the
empirical or true probabilities of these events.
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Although the pairwise beta model seems to be more flexible than the tilted Dirichlet model of Coles and Tawn [6], its
additive nature does not give it the complete flexibility we had initially hoped to achieve. The global α parameter sets an
overall level of dependence and the βi,j parameters allow the model to increase or decrease the pairwise dependence level.
However, the model’s additive nature means that these βi,j parameters do not work independently: adjusting a single βi,j
parameter affects the level of dependence among all pairs of components in the random vector. Consequently, the model
is unable to achieve complete independence between a pair of components if other βi,j parameters are non-zero. This
implies that the pairwise beta, like the tilted Dirichlet, should be used when a level of dependence is assumed between
all components.
Another desirable property of a multivariate model is for it to be closed over dimensions. A parametric family of

p-dimensional multivariate extreme value distributions is closed if its exponent measure function Vp(z, θ) is closed. Only
some of the existing parametric models for an exponent measure function exhibit this property. The negative logistic
model [20] can be shown to be closed, whereas the asymmetric logistic model [37] is not closed.
There are two ways one can think of closure for angular density models. Since angular density models are probability

distributions on the simplex Sp−1, one can ascertain if these probability densities are closed on Sp−1. That is, letting h∗p(w;αp)

be a density on Sp−1, then it is closed if
∫ 1−∑i=1,...,p−2 wi
0 h∗p(w;αp)dwp−1 = h

∗

p−1(w;αp−1). It is well known that the Dirichlet
density exhibits this type of closure; howeverwithout a restriction of being completely symmetric, theDirichlet density does
not meet the moment conditions (5) required of an angular density model. With regards to valid angular density models,
neither the tilted Dirichlet of [6] nor the pairwise beta model are closed on Sp−1.
In terms of describing extremes, closure on Sp−1 is probably not the property of interest, as it does not correspond

to closure of a multivariate extreme value distribution. If an angular density model hp(w; θ) corresponds to a closed
multivariate extreme value distribution, then

lim
ζ→∞

Vp(z1, . . . , zp−1, ζ ; θ) = p
∫
Sp−1

max
i=1,...,p−1

(
wi

zi

)
hp(w; θ)d(w) = Vp−1(z1, . . . , zp−1, ; θ).

The integrand in themiddle expression above is intractable for both the tilted Dirichlet and pairwise betamodels. Therefore,
like other extremesmodels, the pairwise beta is dimension-specific, which is indeed a shortcoming, especially if one wishes
to model data with missing observations.
Finally, while the pairwise beta model could theoretically be fit to data of any finite dimension, it is clear that the model

is most useful for problems of modest dimension.
Obviously the pairwise beta model does not answer all questions about modeling multivariate extremes. Nevertheless,

the model should prove quite useful to people who need to model the joint extremal behavior of a random vector in a
parsimonious manner. Angular measure models such as the pairwise beta are well suited for fitting threshold exceedance
data, and thus practitioners do not have to construct and work with vectors of componentwise block maxima which are
difficult to understand and explain. The model can be fit via the straightforward approach in Section 4. The model has all
its mass on the interior of the simplex and thus does not have the discontinuities seen in models for the exponent measure
function. As demonstrated, the pairwise beta model achieves a level of flexibility and an interpretability not before seen in
parametric angularmeasuremodels. Perhapsmost importantly, the pairwise betamodel represents a step in a newdirection
of creating more useful models for multivariate extremes.
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Appendix

Theorem 1. The pairwise beta model, h(w;α,β) as defined (12), is a valid angular measure.

It suffices to show that
∫
Sp−1

wkh(w;α,β)dw = 1/p for all k = 1, . . . , p. Without loss of generality, we only consider
the case k = 1. From (12) we have∫

Sp−1
w1h(w;α,β)dw (13)

=

∫
Sp−1

w1 Kp(α)
∑

1≤i<j≤p

hi,j(w;α, βi,j)dw
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= Kp(α)
∑

1≤i<j≤p

∫
Sp−1

w1hi,j(w;α, βi,j)dw

= Kp(α)

[
p∑
j=2

∫
Sp−1

w1h1,j(w;α, β1,j)dw +
∑

2≤i<j≤p

∫
Sp−1

w1hi,j(w;α, βi,j)dw

]

= Kp(α)

[
p∑
j=2

I1,1,j +
∑

2≤i<j≤p

I1,i,j

]
, (14)

where I1,1,j =
∫
Sp−1

w1h1,j(w1, wj;α, β1,j)dw and I1,i,j =
∫
Sp−1

w1hi,j(w;α, βi,j)dw. We first examine I1,1,j and consider the
case j = 2. Suppressing the dependence of h1,2 on α and β1,2, we have

I1,1,2 =
√
p
∫ 1

w1=0

∫ 1−w1

w2=0

∫ 1−(w1+w2)

w3=0
. . .

∫ 1−(w1+w2+···wp−2)

wp−1=0
w1h1,2(w)dwp−1 . . . dw2dw1

=
√
p
∫ 1

w1=0

∫ 1−w1

w2=0
w1h1,2(w)

∫ 1−(w1+w2)

w3=0
. . .

∫ 1−(w1+w2+···wp−2)

wp−1=0
dwp−1 . . . dw2dw1

=
√
p
∫ 1

w1=0

∫ 1−w1

w2=0
w1(w1 + w2)

2α−1(1− (w1 + w2))α(p−2)−p+2

×
Γ (2β1,2)
Γ 2(β1,2)

(
w1

w1 + w2

)β1,2−1 ( w2

w1 + w2

)β1,2−1 (1− (w1 + w2))p−3
(p− 3)!

dw2dw1.

After the change of variables θ = w1/(w1+w2) and r = w1+w2, which has Jacobian |J| =
∣∣∣∂w1/∂θ ∂w1/∂r
∂w2/∂θ ∂w2/∂r

∣∣∣ = r , we obtain
I1,1,2 =

√
p
∫ 1

θ=0

∫ 1

r=0
rθr2α−1(1− r)α(p−2)−p+2

Γ (2β1,2)
Γ 2(β1,2)

θβ1,2−1 (1− θ)β1,2−1
(1− r)p−3

(p− 3)!
rdrdθ

=

√
p

(p− 3)!

∫ 1

θ=0

Γ (2β1,2)
Γ 2(β1,2)

θβ1,2 (1− θ)β1,2−1 dθ
∫ 1

r=0
r2α+1(1− r)α(p−2)−1dr

=

√
p

(p− 3)!
Γ (2β1,2)
Γ 2(β1,2)

Γ (β1,2)Γ (β1,2 + 1)
Γ (2β1,2 + 1)

Γ (2α + 2)Γ (α(p− 2))
Γ (αp+ 2)

=

√
p

2(p− 3)!
Γ (2α + 2)Γ (α(p− 2))

Γ (αp+ 2)
. (15)

Similarly, for the case where i = 2 and j = 3,

I1,2,3 =
√
p
∫ 1

w2=0

∫ 1−w2

w3=0

∫ 1−(w2+w3)

w4=0
. . .

∫ 1−(w2+w3+···wp−2)

wp−1=0

∫ 1−(w2+w3+···wp−1)

w1=0
w1h2,3(w)dw1dwp−1 . . . dw3dw2

=
√
p
∫ 1

w2=0

∫ 1−w2

w3=0
h2,3(w)

∫ 1−(w2+w3)

w4=0
. . .

∫ 1−(w2+w3+···wp−2)

wp−1=0

∫ 1−(w2+w3+···wp−1)

w1=0
w1dw1dwp−1 . . . dw3dw2

=
√
p
∫ 1

w2=0

∫ 1−w2

w3=0
(w2 + w3)

2α−1(1− (w2 + w3))α(p−2)−p+2
Γ (2β2,3)
Γ 2(β2,3)

(
w2

w2 + w3

)β2,3−1 ( w3

w2 + w3

)β2,3−1
×
(1− (w2 + w3))p−2

(p− 2)!
dw3dw2

=

√
p

(p− 2)!

∫ 1

θ=0

Γ (2β2,3)
Γ 2(β2,3)

θβ2,3−1(1− θ)β2,3−1dθ
∫ 1

r=0
r2α(1− r)α(p−2)dr

=

√
p

(p− 2)!
Γ (2α + 1)Γ (α(p− 2)+ 1)

Γ (αp+ 2)
. (16)

Putting (15) and (16) into (14) and substituting for Kp(α), we obtain∫
Sp−1

w1h(w;α,β)dw =
2(p− 3)!
p(p− 1)

√
p

Γ (αp+ 1)
Γ (2α + 1)Γ (α(p− 2))

[
(p− 1)

√
p

2(p− 3)!
Γ (2α + 2)Γ (α(p− 2))

Γ (αp+ 2)

+

((p
2

)
− (p− 1)

) √
p

(p− 2)!
Γ (2α + 1)Γ (α(p− 2)+ 1)

Γ (αp+ 2)

]
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=
1
p

(
2α + 1
αp+ 1

+
α(p− 2)
αp+ 1

)
= 1/p. (17)

Theorem 2. Let Z be a max-stable random vector with angular measure described by the pairwise beta model with parameters
(α,β), and let Z∗ be another pairwise beta max-stable random vector with parameters (α,β∗), where β∗i,j > βi,j and β∗k,l = βk,l
for (k, l) 6= (i, j). Then φi,j(Z∗) < φi,j(Z), implying that the bivariate dependence between the ith and jth elements is greater for
Z∗ than for Z .

Without loss of generality, we consider φ1,2(Z).

φ1,2(Z) = lim
z→∞

V (1, 1, z, . . . , z) = p
∫
Sp−1
max(w1, w2)h(w;α,β)dw

= p
∫
Sp−1

max(w1, w2)Kp(α)h1,2(w;α, β1,2)+ ∑
1≤i<j≤p
(i,j)6=(1,2)

max(w1, w2)Kp(α)hi,j(w;α, βi,j)

 dw
= p

∫
Sp−1
max(w1, w2)Kp(α)h1,2(w;α, β1,2)dw + C

(
α,β−(1,2)

)
,

where β−(1,2) denotes the vector β with the (1, 2) element removed and C
(
α,β−(1,2)

)
is constant by the assumptions.

Following in a similar manner to Theorem 1, one obtains

φ1,2(Z) =
2
p− 1

∫ 1

w1=0

∫ 1−w1

w2=0
max(w1, w2)

×
Γ (αp+ 1)

Γ (2α + 1)Γ (α(p− 2))
(w1 + w2)

2α−1(1− (w1 + w2))α(p−2)−1

×
Γ (2β1,2)
Γ 2(β1,2)

(
w1

w1 + w2

)β1,2−1 ( w2

w1 + w2

)β1,2−1
dw2dw1 + C

(
α,β−(1,2)

)
=

2
p− 1

∫ 1

θ=0

∫ 1

r=0
r max(θ, 1− θ)

Γ (αp+ 1)
Γ (2α + 1)Γ (α(p− 2))

r2α−1(1− r)α(p−2)−1

×
Γ (2β1,2)
Γ 2(β1,2)

θβ1,2−1(1− θ)β1,2−1rdrdθ + C
(
α,β−(1,2)

)
=

2
p− 1

2α + 1
αp+ 1

{∫ 1/2

θ=0
(1− θ)

Γ (2β1,2)
Γ 2(β1,2)

θβ1,2−1(1− θ)β1,2−1dθ +
∫ 1/2

θ=0
θ
Γ (2β1,2)
Γ 2(β1,2)

θβ1,2−1(1− θ)β1,2−1dθ
}

=
4
p− 1

2α + 1
αp+ 1

Γ (2β1,2)
Γ 2(β1,2)

∫ 1/2

θ=0
(1− θ)θβ1,2−1(1− θ)β1,2−1dθ. (18)

One recognizes the above integral as an incomplete beta function. Unfortunately, the extra (1 − θ) makes the integrand
asymmetric and the integral cannot be evaluated directly.
To proceed, let h1,2(θ, β1,2) =

Γ (2β1,2)
Γ 2(β1,2)

θβ1,2−1(1− θ)β1,2−1; that is, the symmetric beta density function with parameter
β1,2. By symmetry,∫ 1/2

0
h1,2(θ, β1,2)dθ = 1/2

∫ 1

0
h1,2(θ, β1,2)dθ = 1/2 (19)

for allβ1,2. Letβ∗1,2 > β1.2. Consider the continuous function h1,2(θ, β∗1,2)−h1,2(θ, β1,2) on θ ∈ (0, 1/2). It is straightforward
to show (see Lemma 1) that there exists a single θ∗ ∈ (0, 1/2) such that:

(1) h1,2(θ∗, β∗1,2)− h1,2(θ∗, β1,2) = 0,
(2) h1,2(θ, β∗1,2)− h1,2(θ, β1,2) < 0 for all θ ∈ (0, θ∗),
(3) h1,2(θ, β∗1,2)− h1,2(θ, β1,2) > 0 for all θ ∈ (θ∗, 1/2).

From (19),∫ 1/2

0

(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ = 0 (20)
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θ∗

(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ = −

∫ θ∗

0

(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ∫ 1/2

θ∗

(1− θ∗)
(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ = −

∫ θ∗

0
(1− θ∗)

(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ∫ 1/2

θ∗

(1− θ)
(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ < −

∫ θ∗

0
(1− θ)

(
h1,2(θ, β∗1,2)− h1,2(θ, β1,2)

)
dθ∫ 1/2

0
(1− θ)h1,2(θ, β∗1,2)dθ <

∫ 1/2

0
(1− θ)h1,2(θ, β1,2)dθ. (21)

Putting together (18) and (21) yields the result.

Lemma 1. Given β∗1,2 > β1,2, there exists a single θ∗ such that:

(1) h1,2(θ∗, β∗1,2)− h1,2(θ∗, β1,2) = 0,
(2) h1,2(θ, β∗1,2)− h1,2(θ, β1,2) < 0 for all θ ∈ (0, θ∗), and
(3) h1,2(θ, β∗1,2)− h1,2(θ, β1,2) > 0 for all θ ∈ (θ∗, 1/2).

From (20) and by the mean value theorem, there exists a θ ∈ (0, 1/2) such that h1,2(θ, β∗1,2) − h1,2(θ, β1,2) = 0 or
equivalently, f (θ) = 1 where f (θ) = h1,2(θ, β∗1,2)/h1,2(θ, β1,2). Since f

′(θ) > 0 for θ ∈ (0, 1/2) there exists a unique
solution to f (θ) = 1 which we denote by θ∗.
It follows by f being a strictly increasing function that f (θ) < f (θ∗) = 1 if θ ∈ (0, θ∗) and f (θ) > f (θ∗) = 1 if

θ ∈ (θ∗, 1/2)which proves (2) and (3).
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