
HAL Id: hal-03199937
https://hal.science/hal-03199937

Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining label-free and label-based accurate
quantifications with SWATH-MS: Comparison with

SRM and PRM for the evaluation of bovine muscle type
effects

Joanna Bons, Gauthier Husson, Marie Chion, Muriel Bonnet, Myriam
Maumy-Bertrand, François Delalande, Sarah Cianférani, Frédéric Bertrand,

Brigitte Picard, Christine Carapito

To cite this version:
Joanna Bons, Gauthier Husson, Marie Chion, Muriel Bonnet, Myriam Maumy-Bertrand, et al.. Com-
bining label-free and label-based accurate quantifications with SWATH-MS: Comparison with SRM
and PRM for the evaluation of bovine muscle type effects. Proteomics, 2021, 21 (10), pp.2000214.
�10.1002/pmic.202000214�. �hal-03199937�

https://hal.science/hal-03199937
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 

Combining label-free and label-based accurate quantifications with SWATH-

MS: comparison with SRM and PRM for the evaluation of bovine muscle type 

effects 

Joanna Bons1, Gauthier Husson1, Marie Chion1,2, Muriel Bonnet3, Myriam Maumy-Bertrand2, François 

Delalande1, Sarah Cianférani1, Frédéric Bertrand4, Brigitte Picard3, Christine Carapito1 

1Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), IPHC UMR 7178, CNRS, Université de Strasbourg, 

67000 Strasbourg, France. 

2Institut de Recherche Mathématique Avancée, UMR CNRS 7501, Université de Strasbourg, 67000 Strasbourg, 

France.

3Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France. 

4Laboratoire de Modélisation et Sûreté des Systèmes, Institut Charles Delaunay, UMR CNRS 6281, Université de 

Technologie de Troyes, 12 Rue Marie Curie, 42060 Troyes, France. 

Correspondence: Dr. Christine Carapito, 

Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, 25 rue Becquerel, 67087 

Strasbourg, France. E-mail: ccarapito@unistra.fr. Fax: +33 3 68 85 27 30 

Abbreviations: DDA, data-dependent acquisition; DIA, data-independent acquisition; FA, formic acid; 

HR/AM, high resolution/accurate mass; LLOQ; lower LOQ; LT, Longissimus thoracis muscle; QQQ, triple 

quadrupole; RMSE, root mean square errors; RT, retention time; SM, Semimembranosus muscle; SIL, 

stable isotope-labelled; ST, Semitendinosus muscle; SWATH-MS, sequential windowed acquisition of 

theoretical mass spectra; ULOQ, upper LOQ. 

Published in Proteomics 21(10): e2000214.



2 
 

Keywords (max 5, alphabetical order): Beef meat quality; Data-Independent Acquisition (DIA); 

Quantitative MS; SWATH-MS; Targeted proteomics. 

 

Total number of words:  5 966 words  



3 
 

Abstract 

Mass spectrometry has proven to be a valuable tool for the accurate quantification of proteins. In this 

study, the performances of three targeted approaches, namely Selected Reaction Monitoring (SRM), 

Parallel Reaction Monitoring (PRM) and Sequential Windowed Acquisition of Theoretical Mass Spectra 

(SWATH-MS), to accurately quantify ten potential biomarkers of beef meat tenderness or marbling in 

a cohort of 64 muscle samples were evaluated. Besides and so as to get the most benefit out of the 

complete M2 maps that are acquired in SWATH-MS, an original label-free quantification method to 

estimate protein amounts using an I-spline regression model was developed. Overall, SWATH-MS 

outperformed SRM in terms of sensitivity and dynamic range, while PRM still performed the best, and 

all three strategies showed similar quantification accuracies and precisions for the absolute 

quantification of targets of interest. This targeted picture was extended by 585 additional proteins for 

which amounts were estimated using the label-free approach on SWATH-MS, thus offering a more 

global profiling of muscle proteomes and further insights into muscle type effect on candidate 

biomarkers of beef meat qualities as well as muscle metabolism. 

 

  



4 
 

Significance of the study 

Grouped together under the terms of targeted proteomics quantification methods, SRM, PRM and 

SWATH-MS perform however differently in terms of data acquisition, analysis, multiplexing and 

performances. Notably, SWATH-MS generates comprehensive maps of the biological samples by 

acquiring MS2 information for all detectable precursors, while SRM and PRM targets predefined 

precursors. In this study, the performances of the three approaches for the absolute quantification of 

candidate biomarkers of beef meat tenderness or marbling were benchmarked. An original method to 

derive protein amount estimations for all other analytes present in the samples was also proposed, 

taking advantage of the exhaustive MS2 information recording in SWATH-MS mode. Hence, this 

demonstrates the capability of SWATH-MS to offer both label-free and label-based accurate 

quantifications of proteins in a single analysis. Altogether, this study also evidences that targeted 

proteomics is a valuable tool for finely investigating beef meat quality and bovine muscle metabolism. 
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1. Introduction 

LC-MS/MS-based quantitative proteomics has become a valuable tool to explore proteomes and gain 

insights into the biological systems [1]. Among the panel of available strategies, targeted approaches 

are preferred to accurately quantify proteins, thus enabling potential biomarker validation [2,3] or 

providing fine views of system dynamics [4,5]. 

 

Selected reaction monitoring (SRM) [6,7], performed on triple-quadrupole (QQQ) instruments, has been 

considered as the gold standard for absolute quantification thanks to its high performances in terms 

of sensitivity, accuracy and reproducibility. With the introduction of high resolution/accurate mass 

(HR/AM) instruments – Q-Orbitrap and Q-TOF hybrids, additional targeted approaches have emerged, 

including parallel reaction monitoring (PRM) [8,9] and sequential windowed acquisition of all theoretical 

fragment ion spectra-mass spectrometry (SWATH-MS) based on data-independent acquisition (DIA) 

[10]. SWATH-MS relies on the MS2 acquisition of all precursors across wide m/z windows covering the 

entire desired m/z range. Contrary to SRM and PRM, peptides of interest are actually targeted post-

acquisition during data extraction, generally however at the expense of ease of data processing [4,10-12]. 

In other words, as SWATH-MS is not a targeted acquisition method [11], multiplexing capabilities are 

improved. This offers the possibility to obtain accurate quantification of beforehand selected proteins 

using stable isotope-labelled (SIL) standards [4,5,10,13-16] , as with SRM and PRM, but also to estimate 

proteome-wide absolute quantification in a label-free manner [14,17,18]. 

 

Tenderness and marbling, associated with intramuscular fat content, constitute the main quality traits 

for beef meat conditioning consumer satisfaction and economic performances of beef production. 

These traits are highly variable depending on muscle type, animal (breed, gender, age) and rearing 

management [19]. Currently these qualities can be measured only after the slaughter of the animal by 

chemical quantification of intramuscular lipids (marbling), by mechanical measurements of tenderness 
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or by sensory evaluation of meat perception. For several years, a strategy for biomarker discovery has 

been developed to identify proteins associated with tenderness or/and marbling [20-22]. The goal is to 

ultimately develop a prognosis tool for the evaluation and prediction of tenderness and marbling of 

carcasses or living animals, which could be used by the professionals of the beef sector. A list of 

candidate biomarkers of tenderness and/or marbling has been proposed [22,23]. In order to validate the 

relationships between some candidate proteins and the two quality traits on a large scale, it is 

necessary to be able to quantify the abundance of the proteins. 

 

In this study, the performances of label-based SWATH-MS, SRM and PRM to accurately quantify ten 

candidate biomarkers of beef meat tenderness or marbling were evaluated, in a cohort of 64 bovine 

muscle tissues expected to cover a wide biological range of these traits. Limits of quantification, 

dynamic range and quantification performances were assessed. Moreover, a novel method to estimate 

protein amounts from SWATH-MS data in a label-free manner was introduced. The combination of this 

quantitative information enabled gaining insights into muscle type effect on the candidate biomarkers 

of beef meat qualities and muscle metabolism. 

 

2. Materials and methods 

2.1. Sample preparation 

Sixty-four muscle samples from previous experiments were used [24-26]. They consist of 23 samples of 

Semimembranosus (SM, fast oxido-glycolytic with intermediate intramuscular fat content), 33 samples 

of Longissimus thoracis (LT, mixt oxidative muscle with high intramuscular fat content), and 8 samples 

of Semitendinosus (ST, fast glycolytic with low intramuscular fat content) muscles. These muscle 

samples were collected on cows and young bulls from several breeds (Rouge des Prés, Limousine, 

Blonde d’Aquitaine) to be representative of cattle used in the French beef production. In addition, they 

have been chosen to represent a wide variety of tenderness and marbling. Proteins were extracted 
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and samples were prepared as described in Bonnet et al. [2]. Briefly, 30 µg proteins were prepared in 

triplicate using a tube-gel protocol slightly adapted from Muller et al. [27].  

 

Eleven samples were randomly chosen as representative matrix for method development, external 

quality control and generating a spectral library necessary for SWATH-MS data interpretation. The 

matrix pool was prepared in tube-gel and fractionated by SDS-PAGE as described in Supporting 

Information. 

 

For absolute quantification, a concentration-balanced mixture of 20 accurately quantified SIL peptides 

(Spike Tides™ TL, JPT Peptide Technologies, Berlin, Germany) was spiked in each sample. Retention 

time standards (iRT; Biognosys, Schlieren, Switzerland) were additionally spiked in samples analysed 

in DDA and SWATH-MS modes. 

2.2. Liquid chromatography and mass spectrometry  

PRM analyses were performed on a nanoAcquity UPLC device (Waters, Milford, MA) coupled to a Q-

Exactive Plus mass spectrometer (Thermo Fisher Scientific, Bremen, Germany). Five hundred ng 

peptides were separated on an Acquity UPLC BEH130 C18 column (250 mm × 75 µm, 1.7 µm particles; 

Waters) at 0.45 µL/min coupled to a Symmetry C18 precolumn (20 mm × 180 µm, 5 µm diameter 

particles; Waters ) in a trap-elute configuration, using the following gradient of solvent B (0.1% FA in 

ACN): linear from 1% to 3% in 0.5 min, linear from 3% to 26% in 54.5 min, linear from 26% to 35% in 5 

min, and up to 90% in 1 min. A scheduled PRM method consisting of one full MS scan and 16 targeted 

MS2 scans was developed. The full MS scan was collected from 300-1800 m/z at a resolution of 17,500 

at 200 m/z (AGC target: 3e6, maximum IT: 50 ms). Targeted MS2 scans were collected at a resolution 

of 35,000 at 200 m/z (AGC target: 1e6, maximum IT: 128 ms) and scheduled for 3 min around the 

expected retention time (RT).  
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SRM analyses were performed on a Dionex UltiMate 3000 system coupled with a TSQ Vantage (both 

from Thermo Fisher Scientific). Six µg peptides were separated on a Zorbax 300SB-C18 column (150 

mm × 0.3 mm, 3.5 µm diameter particles; Agilent, Santa Clara, CA) at 5 µL/min using the same gradient 

of solvent B (98% ACN, 0.1% FA): linear from 5% to 25% in 47 min, linear from 25% to 35% in 10 min, 

and up to 70% in 2 min. A scheduled SRM method with 6-min time windows, 3s cycle time and 376 

transitions was developed using crude stable isotope-labelled peptides (PEPotec SRM Peptides, 

Thermo Fisher Scientific) (Supporting Information Table S1).  

 

DDA and SWATH-MS analyses were performed on an ekspert nanoLC 400 system coupled to a 

TripleTOF 6600 mass spectrometer (both from Sciex, Concord, Canada). Peptides (6 µg for SWATH-MS 

analyses) were separated as previously described for SRM analyses (except solvent B is composed of 

0.1% FA in ACN). A SWATH-MS method consisting of 100 variable windows (Supporting Information 

Table S2) covering the 200-1,600 m/z range with an overlap of 1 m/z was developed. MS1 spectra were 

collected for 150 ms, and MS2 spectra for 45 ms in high-sensitivity mode.  

 

Details about LC-MS/MS setups are given in Supporting Information. 

 

2.3. Data analysis 

Spectral library generation. Identifications were performed using Mascot (version 2.5.1; Matrix 

Science, London, UK). The spectral library (SL) was generated in Skyline [28] (version 3.7.1.11099) by 

importing Mascot result files and fixing a cut-off score of 0.95. Details are given in Supporting 

Information. 
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Selection of 10 candidate biomarkers and proteotypic peptides. Ten candidate biomarkers of 

tenderness or marbling were selected according to the criteria defined in Bonnet et al. [2]. The list of 

the targeted proteins and peptides is reported in Supporting Information Table S3.  

 

Label-based quantification data processing. PRM, SRM and SWATH-MS data were processed with 

Skyline using appropriate settings. Chromatographic peaks were investigated to manually adjust peak 

integration boundaries and remove interfered transitions (at least three transitions were kept for each 

precursor). For each method, peptides’ limit of detection (LOD) and limits of quantification (LOQ) were 

determined using 8-points calibration curves. After ensuring that peptides are within their linear range, 

the ratios between endogen and SIL peptides were used to determine the mol amount of endogenous 

peptides. Results are reported in fmol/µg of muscular protein hereafter to limit bias towards the 

chromatographic system. Details are given in Supporting Information. 

 

Label-free quantification data processing. SWATH-MS data was processed with Skyline using 

appropriate settings. Validated proteotypic peptides were extracted using the same parameters as for 

label-based quantification. Details are given in Supporting Information. Peaks were reintegrated using 

the target decoy approach of the mProphet peak-scoring model [29], and a q-value was assigned to each 

peak. Only precursors with a q-value below 0.01 were kept, and peptide intensity was obtained by 

summing all precursor intensities. Quantity prediction was performed using monotone spline 

smoothing [30]. Monotone spline smoothing combines I-spline regression analysis and non negative 

least squares estimation to ensure monotonicity. Parameters of the regression models were estimated 

using the Lawson-Hanson algorithm for non-negative least square estimation. I-spline analysis was 

conducted using iSpline function from the “splines2” package [31] and non negative least squares 

models were fitted using the nnls function from the “nnls” package [32] in R  3.6.2 software. In addition 

panel plots were created using the “lattice” package [33]. No prediction were computed nor derived for 

intensity values lying outside of the observed intensity range. Mol estimations of oxidized peptides 
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and their counterparts were summed, and the amount estimations of the two most abundant peptides 

were averaged to obtain individual protein mol estimations.  

 

Statistical analysis. Statistical analyses were carried out using R 3.6.2 software. For method 

comparison, the difference between the three groups was analysed using one-way ANOVA followed 

by Tukey’s post-hoc test using the “stats” package [34] (significance level set at p ≤ 0.05) or using Welch 

t-test (significance level adjusted for multiple corrections set at p ≤ 0.017). For muscle effect analysis, 

one-way ANOVA was performed for each protein abundance assayed by quantitative PRM to evaluate 

their dependence on the muscle. Then, a Tukey test was performed when the result of ANOVA was 

significant (p ≤ 0.05), using the “agricolae” package [35]. The same analysis was done on the semi-

quantitative protein abundance assayed by SWATH-MS, when the protein was identified in at least 

80% of the samples. 

 

3. Results and discussion 

In this study, we compared and evaluated the performances of SWATH-MS, SRM and PRM for the 

accurate quantification of 10 candidate biomarkers of beef meat tenderness or marbling in a cohort of 

various bovine muscle tissues, chosen to represent the biological variations of tenderness and marbling 

(Supporting Information Fig. S1). A concentration-balanced mixture of SIL peptides was set up and 

optimised to favour peptide response, and 20 peptides, representing the 10 proteins of interest, were 

selected to be synthetized as accurately quantified SIL peptides. Note that the same concentration-

balanced mixture was used for SRM, PRM and SWATH-MS analyses.  

 

3.1. Sensitivity and dynamic range of targeted assays 

Calibration curves were generated to determine LOD and LOQ for the 20 peptides (Supporting 

Information. Fig. S2-4). To note, the peptide LAPEFAK (PRDX6) was absent from the spectral library, 
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and thus could not be queried in the SWATH-MS data. Hereafter are qualified as quantifiable, peptides 

for which calibration curves were successfully established. 

Figure 1A displays the LOD of the targeted peptides in the assays. Values ranged from 0.013 to 1,250 

fmol/µg of muscular proteins in SRM, 0.26 to 625 fmol/ µg in PRM and 6.25 to 6,250 fmol/µg in SWATH-

MS (Supporting Information Table S4). LOD values were the lowest in SRM for 16 out of 19 peptides 

confirming the unequalled sensitivity of the double isolation in QQQ instruments. However, 

observations differ regarding the lower LOQ (LLOQ) ranging from 12.5 to 1,250 fmol/µg of muscular 

protein in SRM, from 0.25 to 1,250 fmol/µg in PRM, and from 6.25 to 625 fmol/µg in SWATH-MS (Fig. 

1B and Supporting Information Table S4). The lowest LLOQ were always achieved in PRM. Indeed, 

among the 15 common quantifiable peptides, 87% (13) of the LLOQ were lower in PRM only, and 13% 

(2) in both PRM and SWATH-MS.  

Although SWATH-MS is reported in the literature to be generally less sensitive than SRM and PRM 

[3,4,10,12,13], especially for low-abundant peptides, it appeared more sensitive than SRM in this study, 

with a median 3-fold increase. In line with this, Nakamura et al. observed that SWATH-MS was more 

sensitive than SRM [5]. PRM exhibited the best performances regarding sensitivity, both by the number 

of quantifiable peptides and by reaching a sensitivity down to 250 amol/µg of muscular protein, i.e. 

125 amol injected. Gallien et al. obtained better performances of PRM regarding LLOQ than SRM as 

well [36]. It is worth noting that this remains peptide- and sample-dependent. 

 

This highlights that technical improvement related to HR/AM instruments compared to QQQ 

instruments, both operating in a pure targeted mode, increases selectivity and hence allows better 

discriminating true signal from interferences. This gain in selectivity improves in fine sensitivity [36]. 

Moreover, one should point out the benefit of strategies relying on post-acquisition transition 

refinement, as PRM and SWATH-MS; improving sensitivity in SRM would contrarily require designing 

a new assay. 
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Upper LOQ (ULOQ) values ranged from 625 to 6,250 fmol/µg of muscular proteins in SRM and in PRM, 

and 3,125 to 6,250 in SWATH-MS (Fig. 1D and Supporting Information Table S4). The dynamic ranges 

obtained for the quantifiable peptides covered 0.7 to 2 orders of magnitude in SRM, and 0.7 to 3.7 

orders of magnitude in PRM and 1 to 2.7 orders of magnitude in SWATH-MS (Fig. 1E and Supporting 

Information Table S4). The widest dynamic ranges were obtained in PRM for 13 of 16 peptides, when 

compared to SRM and/or SWATH-MS. Concerning the 15 common quantifiable peptides, 80% (12) of 

the dynamic ranges were wider in PRM only, and 20% (3) in both PRM and SWATH-MS. 

This demonstrates that PRM covered wider dynamic ranges than SRM and SWATH-MS, and that PRM 

and SWATH-MS outperformed SRM performances. This is explained by the sensitivity performances of 

the three strategies, since the same ULOQ – except for QAFQIGSPWR (ALDH1A1) – were reached in 

PRM, SRM and SWATH-MS (Fig. 1D).  

 

3.2. Quantification linearity and accuracy  

Using the accurately quantified SIL peptides, peptide mol amounts were determined in the samples if 

(i) the peptide is quantifiable and (ii) the determined amount falls within the peptide linear range. Out 

of the 20 targeted peptides, 16 were finally quantified in PRM, 11 in SRM, and 13 in SWATH-MS, in at 

least one sample of the whole cohort, that is in line with the sensitivity performances discussed above 

(Supporting Information Table S5). Indeed, all peptides from ALDH1A1, QAFQIGSPWR and 

LECGGGPWGNK, were below the LLOQ in the whole cohort, as determined by PRM, SRM and SWATH-

MS. Three other peptides, VIVVGNPANTNCLTASK and LGVTSDDVK from MDH1 and 

VVLAYEPVWAIGTGK from TPI1, were also below the LLOQ in all samples in the SRM assay, and 

VIISLQLTAEK from PRDX6 in the SWATH-MS one. Besides this, 2, 10 and 6 additional peptides were 

below the LLOQ in PRM, SRM and SWATH-MS respectively, and 3 others were above the ULOQ in PRM, 

in some samples. To note, 3 and 1 peptide(s) presented some interfered signals in PRM and SWATH-

MS respectively, and corresponding values were excluded from the quantification assay. 
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The comparisons of the quantification values are displayed in Fig. 2A-C. Only values measured by all 

three methods were used, representing a total of 329 values. The comparison of SRM and SWATH-MS 

showed very high correlation (R² = 0.99). SRM and PRM on the one hand, and SWATH-MS and PRM on 

the other hand appeared to be less correlated (R² = 0.83 for both when the peptide NNLGELINTLNAAK 

(TPI1) is excluded from the assay (Fig. 2A-B); R² = 0.75 and 0.74 resp. while considering it (Supporting 

Information Figure S5)). 

 

Then, the ratios of quantification values were calculated (N = 339 for SRM/PRM, 720 for SWATH-

MS/PRM and 344 for SWATH-MS/SRM) (Fig. 2D-F). They ranged from 0.27 to 5.21 for SRM/PRM, from 

0.21 to 5.82 for SWATH-MS/PRM, and from 0.84 to 1.30 for SWATH-MS/SRM. Medians equalled 0.89, 

0.88 and 1.01, and means 1.20, 1.05 and 1.01 for SRM/PRM, SWATH-MS/PRM and SWATH-MS/SRM 

respectively. SRM/PRM ratios were significantly higher than SWATH-MS/SRM ratios (p < 0.005) and 

SWATH-MS/PRM ones (p < 0.005). But, the difference between SWATH-MS/PRM and SWATH-MS/SRM 

ratios was not significant (p ~ 0.74). 

Overall, 83% (282) ratios were accurate within a factor 2.5 between SRM and PRM, and 89% (638) 

between SWATH-MS and PRM, highlighting a good quantification accuracy of the three methods. It is 

worth noting that all values above 2.5 were obtained for the peptide YEINVLYNR (TNNT1) (values 

ranging between 1.69-5.21 for SRM/PRM and 1.45-5.82 for SWATH-MS/PRM more specifically), even 

though very high ratio dot-p values were obtained in the three different assays (rdot-p ≥ 0.97). Values 

below 0.4 were shared between two peptides in SRM and four peptides – among which the two found 

in SRM – in SWATH-MS. All ratio values were accurate within a factor 1.3 between SWATH-MS and 

SRM, representing an excellent quantification accuracy of SWATH-MS and SRM in line with the linearity 

performances achieved with both methods. 

PRM showed a trend to over-estimate peptide amounts, evidenced by the 25th and 75th percentiles 

equalling 0.71 and 1.05 for SRM/PRM, and 0.68 and 1.05 for SWATH-MS/PRM. This can be justified by 

the various instrument geometries used here. Indeed, contrary to QQQ (SRM) and Q-TOF (SWATH-MS) 
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instruments based on a linear configuration, Q-Orbitrap (PRM) instruments are equipped with a 

trapping device, the HCD cell, in which fragment ions’ are accumulated and stored, before being 

transferred to the C-trap with limited capacity, and eventually injected into the Orbitrap. 

 

3.3. Precision and reproducibility of the strategies and platforms 

A quality control sample corresponding to the spike-in of the concentration-balanced mixture of SIL 

peptides in a matrix representative of the cohort was daily injected onto the different couplings. 

Boxplots of the coefficients of variation (CV) of the light/heavy peptide area ratios are displayed in Fig. 

3A. No significant differences were observed when comparing CVs obtained in PRM, SRM and SWATH-

MS (as determined by one-way ANOVA analysis (Fig. 3A) and by Welch t-test (Supporting Information 

Fig. S6)). All values were below 20%, except for AQELSDWIHQLESEK (TNNT1) in PRM and SWATH-MS 

(42.6% and 28.4% resp.) and LECGGGPWGNK (ALDH1A1) in SRM (25.7%), which is explained by 

peptides’ detection issue. The 25th and 75th percentiles equalled 1.86% and 3.22% in PRM, 2.72% and 

4.89% in SRM, and 5.34% and 12.44% in SWATH-MS, showing a higher dispersion of CV values with the 

latter method. This was mostly due to the Q-TOF mass spectrometer soiling. The fact that the same LC 

conditions were used in SRM shows that QQQ instruments are more robust for large cohort analysis. 

 

RT stability of the different couplings are reported in Fig. 3B. RT shift represented less than 2.6 min for 

all peptides, regardless of the method used. The boxplots of CV of peptide RTs showed medians of 

0.64% in PRM, 0.96% in SRM and 0.56% in SWATH-MS, with a maximal value of 3.0%. This 

demonstrates the excellent RT reproducibility achievable in targeted MS analyses, a crucial parameter 

for time-scheduled acquisition strategies. 
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3.4. Added value of SWATH-MS for accurate label-free quantification 

In order to take advantage of the exhaustive nature of the SWATH-MS acquisition mode, quantification 

values were estimated for all proteins present in the samples, and not only for the 10 proteins of 

interest. In this regard, Schubert et al. [17] and He et al. [18] proposed strategies to estimate proteome-

wide accurate quantification on SWATH-MS/DIA, namely by assuming a linear correlation between 

summed MS2 intensities and accurate concentrations of anchor proteins, and by relying on the TPA 

algorithm [37,38]. Here, an I-spline regression model was fitted for each sample using data from label-

based quantification. The log-transformed peptide quantity was chosen as the dependant variable and 

the log-transformed peptide intensity as the predictor (Fig. 4 and Supporting Information Fig. S7 and 

Table S6). As expected, strong non-linear relation between both variables was observed and all fitted 

models were increasing. The monotone spline models outperform the linear regression models in 

terms of root mean square errors (RMSE) for 63 out of the 64 considered samples (Supporting 

Information Fig. S8). An exact binomial test was performed: with a 95% confidence level, there is a 

probability of at least 93% that monotone spline provides a lower RMSE than linear regression. A Top2 

strategy was finally applied on predicted peptide amounts to estimate protein amounts. The accuracy 

between the label-based and label-free accurate quantifications was assessed on the candidate 

biomarkers: 53% of the amount estimations were consistent within a factor 2 with the absolute label-

based quantification (Supporting Information Fig. S9). More particularly, high consistency (R² ≥ 0.70) 

between both approaches was obtained for 33% of the samples, and even 83% of them while excluding 

the previously highlighted TNNT1 (Supporting Information Fig. S10-11). To note, the label-free 

approach uses the Top2 peptides, but not necessarily the label-based one, which can explain the small 

discrepancy between the two quantification strategies. Amounts were estimated for 585 additional 

proteins (296 proteins per sample in average), and ranged between 6.36 and 2,074 fmol/µg 

(Supporting Information Fig. S12 and Table S7). Hence, the established accurate label-free 
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quantification strategy offers a global profiling of the bovine muscle proteomes, and thus allows 

gaining insights into muscle metabolism. 

 

3.5. Muscle type effect of candidate biomarkers of beef tenderness or marbling 

The analysis of muscle type (SM, LT, ST) effect on the abundance of the proteins was performed on a 

subset of 51 samples including only Rouge des Prés cows to overcome the effects of animal type and 

rearing practices.  

A first differential analysis was conducted using exclusively absolute quantification values obtained on 

the 10 proteins of interest thanks to the PRM assay (Table 1). The most important differences were 

observed between LT muscle (a slow oxidative muscle) and the two others: SM (mixt oxido-glycolytic) 

and ST (fast glycolytic). Protein FHL1 (Four and a half LIM domains protein 1) was more abundant in LT 

than in SM and ST. As FHL1 has been described to be positively related to intramuscular fat content 

[22], the highest abundance observed in the LT muscle with higher lipids content than the two other 

muscles, is logical. HSPB1 (HSP27, from small HSP family) was significantly less abundant in SM muscle. 

ENO3 (Enolase 3, glycolytic enzyme) was less abundant (only for peptide 2) in LT and more abundant 

in SM, the ST being intermediate. As the LT muscle from Rouge des Prés breed contains few or nor 

type IIX fibres (fast glycolytic) [19], it is logical to observe the lowest abundance of ENO3 in this muscle. 

In coherence with that, TPI1 (Triose phosphate isomerase, glycolytic enzyme) and MyH1 (Myosin heavy 

chain IIx expressed in fast glycolytic fibres) were the most abundant in ST muscle, while MDH1 

(oxidative enzyme) was less abundant in this glycolytic muscle. These results are coherent with the 

contractile properties of these three muscles and are in accordance with the results of Picard et al. [25] 

obtained by a semi-quantitative method of Reverse Phase Protein Array on cows from the same 

breeds. Moreover, although the differences among muscles did not reach significance for three 

proteins: CRYAB (alphaBcrystalin from small HSP family), PRDX6 (peroxiredoxin 6 anti-oxidant enzyme) 

and TNNT1 (Troponin T slow), the ranking of their abundance among muscles is consistent with Picard 
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et al. [25]. Indeed, PRDX6 was less abundant in LT than in SM and ST; TNNT1 was less abundant in ST in 

accordance with the low abundance of slow fibres in this muscle and CRYAB was more abundant in LT 

muscle in accordance with the higher proportion of slow fibres expressing CRYAB in LT muscle.  

To extent the differential analysis, the quantity estimates extracted for all proteins detected in the 

SWATH-MS assay were considered. This analysis revealed that the abundance of proteins related to 

glycolytic and oxidative pathways according to the three muscles were consistent with the metabolic 

and contractile properties of the LT, SM and ST muscles (Table 1). Indeed, of the 585 proteins 

quantified in the three muscles, six (GAPDHS, GAPDH, ENO1, PKM, GPI, PGK1) were annotated by the 

related GO term, GO:0006096 glycolytic process. Of these, phosphoglycerate kinase 1 (PGK1), pyruvate 

kinase (PKM), and  glucose-6-phosphate isomerase (GPI), were quantified in more than 80% of the 51 

muscles, and as expected were less abundant in less glycolytic muscle LT and higher abundant in the 

glycolytic ST and SM muscles. The low abundance of PKM, GPI and PGK1 in the oxidative high marbled 

LT muscle was also consistent with the negative correlation between the abundance of these proteins 

and the IMF values reported by Bazile et al. [22]. Among proteins annotated by the GO term 

(GO:0006099) involved in tricarboxylic acid cycle, FH, DLST and MDH2 were less abundant in the ST 

muscle, LT and SM being equal in accordance with the contractile and metabolic properties of these 

muscles described in the literature [39].  

Higher abundances of proteins involved in additional oxidative metabolisms such as fatty acid beta-

oxidation (GO:0006635), mitochondrial electron transport, ubiquinol to cytochrome c (complex 2 of 

the respiratory chain, GO:0006122) and mitochondrial electron transport, cytochrome c to oxygen 

(complex 3 of the respiratory chain, GO:0006123) were quantified in LT than in ST or SM muscles, 

which is in accordance with the oxidative properties of this muscle.  

Consistently, the contractile protein TNNT3 (fast isoform) was, as expected, significantly higher in ST 

containing higher proportion of fast glycolytic fibres, and lower in LT muscle containing few or no fast 

glycolytic fibres, the SM being intermediate [39]. 



18 
 

In summary, the differences observed between the three muscles for the 11 proteins mentioned in 

Table 1 are all consistent with the contractile and metabolic properties of the muscles: the ST 

contained the fewest proteins associated with the slow oxidative type and the most proteins linked to 

the rapid glycolytic type, the opposite is observed in the LT, the SM being intermediate. 

 

4. Concluding remarks 

Only a handful of comparisons of three targeted proteomics methods can be found in the literature 

[5,40,41]. In this study, we have conducted a comparison of SRM, PRM and SWATH-MS assays developed 

and applied on a sample cohort of bovine muscle tissues. The first intention was to evaluate the 

performances of the three different assays for the accurate quantification of ten candidate biomarkers 

of beef meat tenderness or marbling using stable isotope-labelled standards.  

Targeted assays were performed on different couplings (microLC-TSQ Vantage for SRM, nanoLC-Q-

Exactive Plus for PRM, and microLC-TripleTOF 6600 for SWATH-MS). By normalising fmol amount by 

the quantity of injected material and performing data analysis with Skyline, we assumed to have 

reasonably limited bias toward instrumentation to perform a fair comparison of the three 

quantification methods. Nevertheless, the chromatographic scale (nano- vs. micro-) has inevitably 

influenced quantification performances, as exemplified for few peptides. Under the conditions of our 

study, PRM provided the best sensitivity and dynamic range performances, and SWATH-MS 

outperformed SRM regarding these metrics. However, all three strategies showed quite similar 

quantification precision and accuracy performances, although the linear correlation between SRM and 

SWATH-MS quantification was higher in this context. 

 

Then, we extended the proteome coverage by adding extracted protein amount estimates for all 

proteins detected in SWATH-MS using a universally applicable approach. This offered a proteome-wide 

quantitative repertoire of the samples. Of course, profiling comprehensiveness in SWATH-MS depends 
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on the SL used for data extraction. Its building is certainly time-consuming, fortunately some SL are 

publicly available, but not all organisms are represented – Bos taurus is not to mention.  

In conclusion, the valuable biological output of the study, demonstrated by the great coherence with 

previous data of the literature, validates both quantification approaches to further study, on a large 

scale, the relationships between the abundance of candidate biomarkers and some meat quality traits 

such as tenderness and marbling. 
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5. Associated data 

Complete DDA datasets have been deposited to the ProteomeXchange Consortium via the PRIDE [42] 

partner repository with the dataset identifier PXD020638 and 10.6019/PXD020638.  

The full Skyline data files and raw data are publicly available on Panorama public 

(https://panoramaweb.org/SWATH-MS_PRM_SRM_BovineMuscles.url, ProteomeXchange ID 

PXD020680). 
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Figures legends 

Figure 1: Comparison of the limit of detection, limits of quantification and dynamic range obtained in 

PRM, SRM and SWATH-MS. Eight-point calibration curves of 20 accurately quantified SIL peptides were 

established for each assay. (A) Limit of detection (LOD). (B) Lower limit of quantification (LLOQ). (C) 

Upper limit of quantification (ULOQ). (D) Dynamic range. 

 

Figure 2: Comparison of the accuracy and the linearity performances of PRM, SRM and SWATH-MS. 

(A-C) Comparison between SRM and PRM (A), SWATH-MS and PRM (B) and SWATH-MS and SRM (C) 

using the quantification values commonly obtained by the three strategies, while excluding the peptide 

NNLGELINTLNAAK (TPI1) from the assay (N = 310). The solid black line represents the identity line, and 

the red dotted line the linear regression obtained for the two compared methods. (D-F) Boxplots of 

the peptide mol amount per µg of muscular proteins obtained in SRM relative to those obtained in 

PRM (D; N = 339), those in SWATH-MS relative to those obtained in PRM (E; N = 720), and those in 

SWATH-MS relative to those in SRM (F; N = 344). The black diamond represents the mean, and the 

grey dotted line the expected value of 1. 

 

Figure 3: Comparison of the precision and reproducibility performances of PRM, SRM and SWATH-MS 

strategies and platforms. (A) Precision. Boxplots of the coefficients of variation (CV) on the light/heavy 

signal obtained for the targeted peptides in the periodically injected quality control sample in PRM (N 

= 20), SRM (N = 20) and SWATH-MS (N = 19). (B) Reproducibility. Boxplots of the CV on heavy peptide 

retention time in the samples’ cohort acquired in PRM on a nanoACQUITY UPLC-Q-Exactive Plus 

platform (N = 20), SRM on a Dionex Ultimate 3000-TSQ Vantage platform (N = 20), and SWATH-MS on 

a eksigent nanoLC 400-TripleTOF 6600 platform (N = 19).  
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Figure 4: Monotone spline smoothing and prediction for log-transformed peptide quantity according 

to log-transformed peptide intensity. One of the 64 samples is represented here. Red values are the 

predicted values for the observed data represented in black. All 64 graphs can be found in Supporting 

Information.
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Table 

Table 1: Protein abundances (ng/µg of proteins) assayed by PRM and SWATH-MS for the 51 samples composed of Longissimus thoracis (LT), Semimembranosus 

(SM) and Semitendinosus (ST) muscles. SD: Standard deviation. Values followed by different letters (a, b, c) are significantly different from each other at P ≤ 

0.05. Gene ontology annotations within the biological process category were identified using the PROTEINside werb service (https://www.proteinside.org/; 

[43]). 
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  SM (n = 23)  LT (n = 20)  ST (n = 8)  

  Mean SD Min Max  Mean SD Min Max  Mean SD Min Max P 

Protein Name 
Peptide 

Name 
Protein abundances assayed by PRM (ng/µg of proteins) 

sp|P02510|CRYAB_BOVIN CRYAB_P1 1.06 0.38 0.39 1.62  1.22 0.46 0.60 2.05  0.87 0.33 0.47 1.47 0.12 

CRYAB_P2 43.33 15.05 25.05 80.72  42.92 16.29 25.05 74.18  56.88 39.58 25.05 132.55 0.24 

sp|Q3ZC09|ENOB_BOVIN ENO3_P1 36.34 7.31 23.24 55.34  33.86 7.31 16.08 50.64  39.89 7.30 30.33 50.42 0.14 

ENO3_P2 15.35a 3.53 7.26 24.34  12.71b 2.74 5.64 16.37  13.54ab 3.65 9.25 18.69 0.03 

tr|F1MR86|F1MR86_BOVIN FHL1_P1 1.56b 0.65 0.59 3.05  2.20a 0.81 0.67 3.88  1.23b 0.57 0.59 2.04 0.002 

FHL1_P2 4.03ab 1.81 1.69 7.77  5.14a 2.15 1.03 10.52  2.75b 1.52 0.97 4.86 0.01 

sp|Q3T149|HSPB1_BOVIN HSPB1_P1 0.97b 0.29 0.47 1.58  1.24a 0.38 0.65 2.13  1.19ab 0.36 0.88 1.90 0.04 

HSPB1_P2 10.24b 3.48 4.68 18.54  12.05b 4.65 5.79 24.32  21.69a 10.28 12.88 43.96 < 0.001 

sp|Q3T145|MDHC_BOVIN MDH1_P1 0.36a 0.14 0.12 0.55  0.26b 0.08 0.09 0.43  0.20b 0.14 0.09 0.52 0.002 

MDH1_P2 1.25a 0.33 0.74 1.72  0.97b 0.20 0.63 1.40  0.74b 0.39 0.46 1.65 < 0.001 

sp|Q9BE40|MYH1_BOVIN MYH1_P1 113.27b 43.97 60.25 252.54  90.76b 52.51 10.35 261.51  246.67a 54.01 201.00 353.48 < 0.001 

MYH1_P2 1516.60b 1078.53 359.30 4302.60  912.10b 703.31 278.70 2456.30  4268.56a 1784.81 2468.35 7373.90 < 0.001 

sp|O77834|PRDX6_BOVIN PRDX6_P2 0.22 0.05 0.15 0.32  0.19 0.04 0.11 0.26  0.23 0.06 0.17 0.33 0.15 

sp|Q8MKH6|TNNT1_BOVIN TNNT1_P1 0.85 0.47 0.22 2.04  0.85 0.22 0.48 1.27  0.61 0.49 0.23 1.78 0.31 

sp|Q5E956|TPIS_BOVIN TPI1_P1 7.79b 3.49 1.67 18.29  6.22b 2.60 1.67 13.63  19.17a 6.48 13.08 32.46 < 0.001 

TPI1_P2 97.24b 68.92 20.79 252.34  60.60b 50.96 22.05 193.56  291.51a 108.43 181.47 525.45 < 0.001 

Gene Ontology number 

and term 
Gene Name Protein abundances assayed by SWATH-MS (ng/µg of proteins) 

GO:0006099, tricarboxylic 

acid cycle 

FH 42.06ab 15.84 14.25 78.50  44.16a 15.05 17.70 73.52  28.88b 12.48 11.93 53.90 0.05 

DLST 36.81 16.03 16.91 81.81  36.63 14.59 17.53 62.95  22.80 9.23 14.43 40.91 0.08 

MDH2 70.59 32.16 23.84 127.91  69.19 31.79 23.54 134.42  38.20 25.15 10.86 86.62 0.06 

GO:000609, glycolytic 

process 

PKM 401.21ab 76.62 235.89 525.51  360.53b 112.74 84.41 543.05  490.87a 127.12 325.01 692.26 0.01 

GPI 575.80a 103.38 389.76 811.27  467.79b 126.87 125.35 653.44  574.66ab 103.57 430.94 788.27 0.007 

PGK1 751.60ab 164.79 381.34 1057.51  637.15b 207.03 139.82 958.69  914.26a 142.31 734.42 1097.47 0.002 

Not annotated TNNT3 60.19b 42.82 16.24 207.74  86.85b 46.31 27.22 213.30  137.29a 67.20 48.35 253.68 0.001 
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GO:0006635, fatty acid 

beta-oxidation 
ECHS1 47.27ab 19.01 16.53 84.17  59.92a 35.97 22.93 179.49  32.256b 15.21 11.47 63.29 0.05 

GO:0006122, mitochondrial 

electron transport, 

ubiquinol to cytochrome 

UQCRC2 32.20 11.48 16.61 59.92  37.42 14.36 16.96 64.07  23.72 9.52 10.89 35.34 0.08 

GO:0006123, mitochondrial 

electron transport, 

cytochrome c to oxygen 

COX5A 36.68a 13.25 15.12 60.79  36.01ab 14.02 16.05 63.61  22.20b 14.67 10.87 53.08 0.05 

MT_CO2 39.22 19.69 7.40 81.95  43.65 17.16 17.34 75.40  25.64 17.52 14.54 60.39 0.14 
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Figure 1  
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Figure 2 
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Figure 3 
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Figure 4 

 


