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ABSTRACT: Nighttime oxidation of biogenic volatile organic
compounds (BVOCs) by nitrate radicals (NO3·) represents one of
the most important interactions between anthropogenic and
natural emissions, leading to substantial secondary organic aerosol
(SOA) formation. The direct climatic effect of such SOA cannot
be quantified because its optical properties and atmospheric fate
are poorly understood. In this study, we generated SOA from the
NO3· oxidation of a series BVOCs including isoprene, mono-
terpenes, and sesquiterpenes. The SOA were subjected to
comprehensive online and offline chemical composition analysis
using high-resolution mass spectrometry and optical properties
measurements using a novel broadband (315−650 nm) cavity-
enhanced spectrometer, which covers the wavelength range needed
to understand the potential contribution of the SOA to direct radiative forcing. The SOA contained a significant fraction of
oxygenated organic nitrates (ONs), consisting of monomers and oligomers that are responsible for the detected light absorption in
the 315−400 nm range. The SOA created from β-pinene and α-humulene was further photochemically aged in an oxidation flow
reactor. The SOA has an atmospheric photochemical bleaching lifetime of >6.2 h, indicating that some of the ONs in the SOA may
serve as atmosphere-stable nitrogen oxide sinks or reservoirs and will absorb and scatter incoming solar radiation during the daytime.

1. INTRODUCTION

Atmospheric secondary organic aerosols (SOAs) affect
radiative forcing by aerosol−radiation interactions and through
aerosol−cloud interactions.1,2 Specifically, SOAs contain light-
absorbing compounds, also called brown carbon (BrC), and
play a significant role in the direct climate forcing on regional
and local scales.3,4 Owing to the high emission rates and high
reactivities with primary atmospheric oxidants, such as ozone,
the hydroxyl radical (OH·), and the nitrate radical (NO3·),
vegetation-emitted biogenic volatile organic compounds
(BVOCs), such as isoprene (C5H8), monoterpenes (C10H16),
and sesquiterpenes (C15H24), are the major contributors to the
global SOA burden.5−9

Whereas OH· and ozone (O3) play a key role during
daytime atmospheric oxidation, NO3· is a dominant oxidant at
night, especially in environments affected by anthropogenic
emissions.10 NO3· is formed by the reaction of nitrogen
dioxide and O3 and reaches atmospheric concentrations up to
hundreds of parts per trillion (ppt).11,12 Field studies have
shown that under conditions with moderate to high BVOC
levels, NO3· predominantly reacts with BVOCs12 to produce
multifunctional compounds such as organic nitrates
(ONs).13−16 Because of their semivolatile/low-volatility
nature, ONs can partition in the particle phase either by

condensing onto pre-existing particles or by forming new SOA
particles.13,17,18 Chamber studies have shown that the SOA
mass yields from BVOC + NO3· reactions vary between 0.2
and 146% and that the ON molar yields range between 10 and
78%.7 The results from field measurements have also shown
that the nocturnal NO3-initiated oxidation of BVOCs
contributes a significant fraction to ambient particulate
nitrates19−22 and organic aerosols23−26 that influence the air
quality, human health, and the climate. Moreover, particle-
phase ONs can either release nitrogen oxides (NOx = NO +
NO2) back into the atmosphere via further oxidation reactions
and photolysis or act as terminal NOx sinks through hydrolysis
and particle deposition. Therefore, ONs play essential roles in
the atmosphere and biosphere because they affect tropospheric
O3 production and the global nitrogen cycle.
Although the oxidation of BVOCs by NO3· represents a

critical interaction between anthropogenic and biogenic
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emissions, the direct radiative effects of the SOA from this
process are not well constrained, in part because their optical
properties are not yet insufficiently described.27 Whereas most
of the existing literature on the optical properties of BVOC-
derived SOAs has mainly focused on OH· oxidation or
ozonolysis,27−33 studies on the optical properties of the
biogenic SOA formed by NO3· oxidation (BSOANO3

) are

rare. The few studies that examined the BSOANO3
reached

partially contradictory conclusions.34−37 For instance, the real
part of the refractive index (RI) for the SOA from the NO3·
oxidation of β-pinene and limonene was higher than those
observed following OH- and ozone-initiated terpene oxida-
tion.35,37 However, the real part of the RI for the SOA from the
NO3· oxidation of isoprene seems to be similar to that of OH·
and ozone-initiated oxidation.34 Moreover, absorption was not
detected for the SOA from the NO3· oxidation of isoprene, β-
pinene, and limonene, but significant light absorption at 355
and 405 nm was detected for the SOA formed by NO3·+ α-
pinene.36 Washenfelder et al.38 measured aerosol optical
properties at a forest site in rural Alabama during the 2013
Southern Oxidant and Aerosol Study (SOAS) campaign. They
reported that ∼7% of BrC absorption could be attributed to
the less oxidized oxygenated organic aerosol (LO-OOA) that
reached a diel maximum at night and was correlated with
particle-phase ONs, formed by nighttime reactions between
monoterpenes and NO3·.

23 These findings suggest that the
SOA produced from reactions of NO3· with BVOCs may be a
nighttime source of BrC that may affect the direct radiative
effect of the SOA through the scattering and absorption of
solar radiation. The optical properties of the BSOANO3

and its
fate during daytime photooxidation remain unclear.
In this study, the representative BSOANO3

was produced by
reactions of the most common BVOCs, such as isoprene,
terpenes, and sesquiterpenes, with NO3·. We determined the
scattering and absorption optical properties of the BSOANO3

over a very broad wavelength range (315−650 nm) for the first
time. These optical properties are needed to understand their
potential contributions to direct radiative forcing. We
investigated the relationship between the SOA formation
mechanism, the SOA’s chemical composition, and the
measured optical properties. We show that the absorbing
particulate organic nitrates have a lifetime >6 h upon the
transition from nighttime to daytime oxidation. This study thus
emphasizes the role of this important chemistry in the climate,
air quality, and atmospheric nitrogen cycle.

2. METHODS
2.1. SOA Generation with NO3· Oxidation. BVOCs

(isoprene, monoterpenes (β-pinene and δ3-carene), and
sesquiterpenes (α-cedrene, β-caryophyllene, and α-humu-
lene)) were introduced into a glass oxidation flow reactor
(OFRNO3

, L: 70 cm, ID: 7 cm) from a temperature-controlled
glass reservoir. The target mixing ratio of the VOCs was
achieved by controlling the flow rate through the glass
reservoir and the bath temperature (−50 to +50 °C). The
NO3· radical was produced by the thermal decomposition of
synthetic N2O5 (Supporting Information (SI), Text S1). The
initial mixing ratio of N2O5 was measured by a cavity ring-
down system working at 662 nm (Text S2). Pure nitrogen that
had been passed through the N2O5 crystal cold trap was mixed
with dry synthetic air containing the BVOCs in the OFRNO3

to

produce BSOANO3
particles by homogeneous nucleation and

condensation following the NO3· oxidation. The produced
particles were then subjected to online and offline chemical−
physical analysis (Figure S1). The total laminar flow in the
reactor was 1.0 L min−1 (Reynolds number ≈ 20) with a
corresponding residence time of 162 s. The initial conditions,
including the BVOC mixing ratios and N2O5/VOC ratios, are
summarized in Table S1.

2.2. Photochemical Aging and Photolysis of the
BSOANO3

. The BSOANO3
produced in the OFRNO3

from β-
pinene and α-humulene was further aged by OH· and
photolysis in a potential aerosol mass (PAM) oxidation flow
reactor (OFR). Gas-phase species produced in the OFRNO3

were removed by a charcoal denuder before the PAM reactor.
OH· was generated by UV photolysis (at 254 nm) of 19.6
ppmv O3 under 37.5% relativ humidity (RH). The total flow
rate in the PAM was 3.2 L min−1, with a corresponding
residence time of 252 s. The operational details can be found
in our previous study.33 OH· exposure (the combination of
OH· concentration and residence time) was determined by
tracking the decay of SO2 in the PAM reactor. The equivalent
OH· aging time was 24 h (assuming a daily average OH·
concentration of 1.5 × 106 molecules cm−3). Although the O3
concentration is higher than that of OH·, the much higher
reactive uptake coefficient and reactivity of OH· ensure that
the OH· plays a major role in the chemical aging process in the
PAM reactor. Photolysis experiments were performed in the
PAM reactor in the absence of O3 for comparison with the
OH· aging experiments. Because the light emission spectrum
of the UV lamps inside the PAM reactor is different from the
ambient solar spectrum, the photolysis in the PAM reactor is
converted to effective photolysis under ambient conditions by
considering the actinic flux and the quantum yield of the SOA
products. The calculation of the effective photolysis time is
briefly described here with more information in the SI (Text
S3, Figure S2). The quantum yields for the photolysis reactions
of the SOA constitutes are unknown. In the generated SOA,
many carbonyl and nitrate groups were detected. Moreover,
the extracted absorption spectra (Figure S3) suggest the
presence of carbonyl nitrates. (See Section 3.3.) Thus we
assume a unified quantum yield of 0.9, as recommended for
carbonyl nitrates by previous studies.39,40 The photolysis rate
under the experimental conditions is then integrated over the
250−350 nm spectrum by considering the light absorption,
quantum yield, and photon flux in the PAM. In addition, solar
photolysis rates for the BSOANO3

, considering the daily
averaged actinic flux under cloudless ground-level conditions
(Rehovot, Israel on December 17, 2019, albedo of 0.19), were
also estimated. Dividing the photolysis effect (the combined
product of the photolysis time and the photolysis rate) in the
PAM by the solar photolysis rate yields the effective photolysis
time, which was ∼0.8 h.

2.3. Chemical Box Modeling and Photolysis Time
Estimation. To track the oxidation process in the OFR, a
chemical-box model that includes gas-phase reactions of
BVOCs + NO3,

41 conversions between NO3· and N2O5, the
heterogeneous reactive uptake of NO3· and N2O5,

42,43 and wall
losses of NO3· and N2O5 was used to investigate the fates of
BVOCs, NO3·, and N2O5 in the OFR (Text S4, Tables S2−S4,
and Figure S4). Because of the high reaction rates of BVOCs
with NO3·, the BVOCs were completely (>99%) consumed in
the OFR, except for isoprene (60%), which has a much slower
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rate constant with NO3 as compared with the other studied
BVOCs. The N2O5 loss was dominated by wall loss (34−84%),
whereas the thermal dissociation of N2O5 to produce NO3· was
also significant (13−64%), as shown in Table S3. For
experiments run at a N2O5/VOC ratio of <3, the amount of
NO3· or N2O5 taken up by the particles was negligible
compared with the consumption of NO3· by VOCs. However,
at a high N2O5/VOC ratio (>3), the NO3· and N2O5 uptake by
particles became considerable, indicating the importance of the
heterogeneous reaction in the reactor. Moreover, the
integrated NO3· exposures (NO3 exposure = ∑0

t [NO3] dt)
throughout the OFR ranged between 5.4 and 64.9 × 1011

molecules cm−3 s, which equals 0.3−3.5 h of ambient exposure
by NO3·, assuming a typical concentration of 20 pptv at
night.44,45

2.4. Online and Offline Chemical−Physical Character-
ization of the BSOANO3

. The particle size distribution was
continuously monitored with a scanning mobility particle sizer
(SMPS, TSI) and an aerosol aerodynamic classifier (AAC,
Cambustion, U.K.). The ratio of the aerodynamic and mobility
size was then used to determine the particle effective density. A
high-resolution time-of-flight aerosol mass spectrometer (HR-
Tof-AMS, Aerodyne) was employed to measure the non-
refractory components (e.g., organics, nitrate) of the SOA in
alternating V and W mode. Elemental ratios (e.g., H/C, O/C,
N/C) and the fragment composition were extracted and
corrected.46,47 The detected ions in the mass spectra were
classified into five categories based on their elemental
compositions, namely, hydrocarbon-like (CxHy

+), less oxy-
genated (CxHyO

+), more oxygenated (CxHyOz
+), nitrogen-

containing (CxHyOiNj
+) organic components, and nitrogen

oxides (NOy
+), where x, y, i, and j ≥ 1 and z > 1.

SOA particles were collected on PTFE filters (0.45 μm
porosity, 47 mm diameter, Whatman). Filters were stored at
−20 °C before analysis. The filters were extracted, and the
filtrate was concentrated and analyzed by ultra-high-perform-
ance liquid chromatography (UPLC) equipped with a
photodiode array (PDA) detector (spectra detection range of
200−800 nm) followed by a Q-Exactive hybrid quadrupole−
Orbitrap mass spectrometer (Orbitrap MS) with a standard
heated electrospray ionization48 source. The raw data were
acquired using Xcalibur (Thermal Scientific) software. The
data were then processed with an open-source software
toolbox, MZmine 2.39 (http://mzmine.github.io/), to perform
peak deconvolution and chromatogram construction. Formula
assignments were completed using the following constraints: C
≤ 50, H ≤ 100, N ≤ 4, O ≤ 50, and Na ≤ 1. (The latter is for
positive mode only.) Details of the sample preparation, column
separation, instrument configurations, and settings of MZmine
2.39 are provided in Text S5.
2.5. Optical Properties Measurement and RI Retriev-

al. The light extinction by size-selected SOA particles in the
solar spectral region (315−650 nm) was measured by a two-
channel broadband cavity-enhanced spectrometer (BBCES).
The UV channel measures the light extinction between 315
and 350 nm (BBCESUV),

49,50 and the visible channel works
between 380 and 650 nm (BBCESvis).

33 High-reflectivity
mirrors (FiveNine Optics, U.S.) were installed in the BBCESvis.
The mirror loss measured using N2 and He ranged from 86 to
494 ppm in the wavelength range of 380−650 nm. The low
mirror loss ensures high sensitivity and low uncertainty in the
aerosol light extinction measurements. The complex refractive

index (RI = n + ik) is an intrinsic optical property of a particle.
The real (n) and imaginary (k) parts of the complex RI are
indicative of scattering and absorption, respectively. The
complex RI of the aerosols was retrieved by extinction
measurements of several particle sizes (175 to 325 nm with
25 nm steps), assuming sphericity and similar composition for
each selected diameter, and by fitting a Mie curve to the
measured extinction cross sections at each specific wave-
length.28,51−55 In brief, dried particles from the OFR were
sampled after a VOC denuder. Particles were size-selected with
an AAC, thus yielding a monodispersed particle size
distribution. The monodispersed particles were directed into
a photoacoustic (404 nm)−cavity ring-down spectrometer
(404 nm)−broadband cavity-enhanced spectrometer (PAS-
CRDS-BBCES) system and counted by a condensation particle
counter (CPC, model 3752, TSI). The retrieval algorithm was
limited to searching for n ≥ 1 and k ≥ 0.

3. RESULTS AND DISCUSSION

3.1. Bulk Characterization of the BSOANO3
Using HR-

Tof-AMS. The oxidation reactions of isoprene and terpenes
with NO3· occur almost exclusively by the addition of the
NO3· to the CC double bond to form the most substituted
nitrooxyalkyl radical.56,57 This nitrooxyalkyl radical reacts with
O2 to create β-nitrooxyperoxy radical (RO2·) that further
reacts with NO3·, hydroperoxyl radical (HO2·), and another
RO2· to produce hydroxyl nitrate, carbonyl nitrate, and
nitrooxyperoxide.41 Large RO2· species can undergo autox-
idation to produce highly oxidized molecules58−61 or produce
dimers through bimolecular reactions with another RO2·.

62,63

The HR-Tof-AMS data of the SOA generated in this study
show a high intensity (4.1−24.7%) at m/z 43 (C2H3O

+,
characteristic fragment of carbonyl compounds) and contain a
considerable fraction (1.8−3.9%) of nitrogen-containing frag-
ments (CxHyOiN

+) (Figure 1 and Table S1), indicating that
the production of carbonyls and ONs is favored during the
NO3· oxidation of BVOCs, which is consistent with the known
oxidation mechanism.41 Weak mass peaks at m/z 44 (CO2

+)
from carboxyl/acyl peroxide groups64 were detected (0.6−
4.0%, Figure 1 and Table S1). These mass spectra of the SOA
from the NO3· oxidation of BVOCs consist of a prominent
CxHy

+ ion signal (an indication of the hydrocarbon-like organic
aerosol (HOA)) and CxHyO

+ ion signals (a sign of carbonyl
compounds), whereas the signature of higher-generation
oxidation products (indicated by CxHyOz

+ ions) is observed
at trace levels. These features are common in the ambient
semivolatile oxygenated organic aerosols (SV-OOAs) or LO-
OOAs.23,64−67

Nitrogen-containing ions (CxHyOiNj
+, NO+, and NO2

+)
comprise ∼17% (11−25%) of the combined organic and
nitrate signals and are detected mainly as NO+ and NO2

+ ions
(7−23%) with a small amount of CxHyOiNj

+ ions (2−4%) for
all of the generated BSOANO3

. In this study, the reactions were
performed under dry conditions (RH < 5%), and no
ammonium was detected in the SOA; therefore, nitrogen-
containing fragments are predominantly from ONs. The
characteristic fragment intensity ratio of NO+/NO2

+ has
been frequently used as an indicator of particulate organic
nitrate, as this ratio is much higher for organic nitrates (usually
assumed to be 10) than the ratio measured for inorganic
nitrates, as determined by measuring it for NH4NO3.

19,68−70

The NO+/NO2
+ ratios in the mass spectra of the SOA ranged
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from 4.0 to 9.6 in this study, comparable to those observed for
the SOA from the NO3· oxidation of isoprene, β-pinene, δ3-
carene, and limonene.15,70−74 These ratios are higher than
those of inorganic nitrates (2.2 for NH4NO3), further
supporting the formation of ON products. The N/C ratio of
the SOA formed from the β-pinene + NO3 reaction averaged
0.077, which is in good agreement with the reported values of
0.070 to 0.076 in previous studies.15,74,75

3.2. Complex Refractive Index of the Generated
BSOANO3

. Only a few previous studies have investigated the RI
of the SOA produced from NO3· oxidation.35−37 Figure 2
shows the RI of the BSOANO3

across most of the solar
wavelength range (315−650 nm). A comparison of our results
and the literature data is shown in Figure S5. To the best of
our knowledge, this is the first set of wavelength-resolved RI
results for the BSOANO3

over such a wide wavelength range
based on online measurements. The real part of the RI (n) of
the BSOANO3

in this study varied between 1.43 and 1.55. The
real RI for the generated SOA exhibits a slight spectral
dependence with n values that decrease with increasing
wavelength. This weak wavelength dependence is similar to
that observed for the SOA from the OH· oxidation of β-
pinene33 and the ozonolysis of monoterpenes.31 Moreover, the
results from the BBCES are consistent with those from an
independent CRD measurement. The value of n at 404 nm for

the SOA of isoprene + NO3 (1.472 ± 0.007) from our study is
similar to those (1.455−0.023

+0.023 to 1.468−0.027
+0.025) measured for the

SOA from isoprene + O3 + NOx in the presence/absence of
sulfur dioxides.34 However, the values of n at 532 nm for the
SOA from β-pinene + NO3 (1.486 ± 0.001) and δ3-carene +
NO3 (1.493 ± 0.001) are much lower than that (1.578) of
limonene + NO3,

35 indicating that the real RI of the BSOANO3

highly depends on the VOC precursor. Varma et al.37 studied
the NO3-initiated oxidation of β-pinene under dry conditions
using the BBCES at the SAPHIR atmospheric simulation
chamber. They determined an n value of 1.61 ± 0.03 between
655 and 687 nm, assuming no absorption. In our study, the
wavelength range was limited to 650.7 nm. The n value for the
BSOANO3

from β-pinene at this wavelength is 1.474 (±0.001),
which is substantially lower than those from the SAPHIR
experiments. The SAPHIR experiments were conducted at
much lower VOC levels (<18 ppbv) and for a longer period
(∼1 h) compared with this study (>40 ppbv, 162 s). These
differences in the experimental conditions may lead to a
differences in the SOA formation that will further affect the
real RI.
Previous studies determined a near-zero imaginary part of

the RI (imaginary RI, k) of the SOA produced by the
photooxidation/ozonolysis/OH oxidation of BVOCs under
NOx-free conditions for the atmospherically relevant wave-
length region (λ > 300 nm), especially in the visible
range.3,27,32,33,51 In this study, we determined the optical
properties of the BSOANO3

in the short UV wavelength range
(315−350 nm) using our unique UV channel (BBCESUV).
Most of the generated SOA absorbs slightly in the deep UVA
wavelength range, and k decreases with increasing wavelength
(Figure 2 and Table S5), which is the typical behavior of BrC.
The k values obtained from all of the oxidation experiments are
0.003 to 0.046 at 316 nm and 0.001 to 0.039 at 330 nm. Above
390 nm, very weak light absorption was detected, in line with

Figure 1. Chemical composition of the BSOANO3
measured by HR-

Tof-AMS. The pie charts show the bulk chemical information,
including organic-related fragments (grouped as CxHy

+, CxHyO
+,

CxHyOz
+, CxHyOiNj

+, and NOy
+, where x, y, z, and j ≥ 1, i ≥ 0). Large

portions of hydrocarbon-like (indicated by CxHy
+), less oxygenated

fragments (indicated by CxHyO
+), and nitrogen-containing fractions

(indicated by CxHyOiNj
+ and NOy

+) are observed. The boxed legend
is for the mass spectra, whereas the bold legend belongs to the pie
chart. Ions of CxHyN, CxHyON, and CxHyOzN in the mass spectra are
categorized to CxHyOiNj

+ in the pie chart.

Figure 2. Wavelength-dependent optical properties of the BSOANO3
.

The real part (a) and imaginary part (b) decrease with increasing
wavelength. The k is observed only at the deep UV wavelength range.
(c) Single scattering albedo (SSA) values were calculated for 200 nm
spherical particles. Data for β-pinene, β-caryophyllene, and the α-
humulene-derived SOA are taken from experiments with a N2O5/
VOC ratio of 1.2, 10.7, and 8.8, respectively. The results of isoprene,
δ3-carene, and α-cedrene are obtained under a N2O5/VOC ratio of
1.3, 1.9, and 5.8, respectively.

Environmental Science & Technology pubs.acs.org/est Article

https://dx.doi.org/10.1021/acs.est.0c06838
Environ. Sci. Technol. 2021, 55, 2878−2889

2881

http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c06838/suppl_file/es0c06838_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.est.0c06838/suppl_file/es0c06838_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.0c06838?fig=fig2&ref=pdf
pubs.acs.org/est?ref=pdf
https://dx.doi.org/10.1021/acs.est.0c06838?ref=pdf


previous findings for the BSOANO3
.34,35,37 The retrieved k in

the UV range is similar to that observed for the SOA produced
by the photooxidation of aromatic compounds (e.g., toluene
and m-xylene) and higher than that of the SOA generated by
the ozonolysis of α/β-pinene.31,76 The k of the BSOANO3

obtained in this study is much lower than that for the
ammonia-aged biogenic SOA51 and biomass burning aerosols
(Figure S5).38,77−80 Recently, the optical properties of the
SOA from the NO3· oxidation of unsaturated heterocyclic
VOCs were studied.81 The values of k for pyrrole and the
thiophene-derived SOA range between 0.002 and 0.017 at 375
nm. These values are higher than those measured for the
BSOANO3

in this study. Previous studies for isoprene + NO3

have reported an k value of 0.0001 at 375 nm when sulfur
dioxide is added during the oxidation process.34 In this study,
the k value of the SOA from isoprene + NO3 is 0.005 (±0.006)
at 349.4 nm, and it is essentially zero in the longer wavelength
range (380−650 nm). The imaginary RI of the BSOANO3

from
α-humulene is the largest among all of the studied systems. As
discussed in Sections 3.3−3.5, the absorption is controlled by
the ONs in the SOA, and ONs that have a carbonyl-adjacent
nitrate group exhibit stronger absorption compared with other
types of ONs. The high N2O5/VOC ratio in the α-humulene +
NO3· experiment (8.8) favors the formation of ONs.
Moreover, α-humulene has three substituted CC bonds
(two, one, one, one, and two for isoprene, β-pinene, δ3-carene,
α-cedrene, β-caryophyllene, respectively) that can form stable
(and do not favor cyclize reactions) ONs with a carbonyl
adjacent to the nitrate group. This results in a stronger
absorption in the BSOANO3

from α-humulene as compared

with the other types of BSOANO3
.

The single scattering albedo (SSA) (SSA = scattering/
extinction) is frequently used in climate models. The SSA data
for the BSOANO3

in this study were calculated for 200 nm
particles based on the Mie theory using the retrieved refractive
index. The SSA is 1 for all BSOANO3

above 425 nm. In the UV
ranges, the SSA increases from 0.80 to 1 with increasing
wavelength. These values are higher than those obtained for
the SOA produced from aromatics32,76,82 and the aerosol
derived from biomass burning.80,83 Overall, the BSOANO3

is
not a significant BrC contributor. However, it does absorb
substantially between 280 and 300 nm, meaning it is
photochemically active in the UVA range, which likely induces
condensed-phase photochemistry.
3.3. Linking Light Absorption with Chromophores.

The nighttime reactions of BVOCs with NO3· lead to the
formation of secondary BrC, which absorbs at short wave-
lengths. Therefore, it is essential to identify the compounds
that are responsible for the observed absorption. Figure 3
shows the UV−vis chromatograms at 290 nm (blank
corrected) as detected by the ultraperformance liquid
chromatography−photodiode array (UPLC-PDA) performed
in parallel with heated electrospray ionization/high-resolution
mass spectrometry (HESI/HRMS). We present absorption at
290 nm to provide a better signal-to-noise ratio. Significant
absorption was observed at a retention time (RT) of 9.0 min in
the BSOANO3

from β-pinene. High abundances of monomers
and dimers with formulas of C10H13−17O5,6 and
C19,20H28,31N1,2O10−12 were found in the HESI/HRMS
chromatograms. The UV−vis absorption peak at ∼290 nm,

which is the absorption feature of carbonyls or ONs,84,85 is
coincident with the result from HR-Tof-AMS in that large
amounts of carbonyls or ONs were produced in the BSOANO3

.
We extracted the wavelength-dependent absorption spectra for
the chromatograms shown in Figure 3 and compared them to
those of typical nitrate-containing organics and carbonyls
(Figure S3). The spectra obtained from the BSOANO3

showed
an absorption maximum at ∼290 nm within the wavelength
range of 240−340 nm, which is similar to that of carbonyls and
organic nitrates. This further supports the formula’s assign-
ment from the mass spectrometer and illustrates that carbonyl
ONs are responsible for light absorption, although it is not
possible to differentiate the contribution of each compound
due to their overlapping elution times in the UPLC. In the
other types of BSOANO3

studied, the light absorption was
attributed to the most abundant ON dimers and oligomers.
Interestingly, two C15H25NO6 isomers in the BSOANO3

from α-
humulene are potential light -absorbers, whereas only one of
the four isomers of C15H24N2O9, the dominant species in the
mass spectra, showed detectable light absorption (Figure S6).
This indicates that different isomers can have quite different
lifetimes regarding atmospheric photolysis. Only a few light-
absorbing species with weak absorption were identified in the
BSOANO3

from β-caryophyllene (Figure 3e), consistent with
the result from the online BBCES measurements.

3.4. Influence of the N2O5/VOC Ratio on the Chemical
Composition and RI. Faxon et al.14 measured the chemical
composition of the SOA from the NO3· oxidation of limonene
using a high-resolution time-of-flight chemical ionization mass
spectrometer combined with a filter inlet for gases and aerosols
to measure. They found that the chemical composition of the
SOA (e.g., thermally unstable dimers) changed dramatically
with the initial N2O5/limonene ratio. In this study, we
produced the SOA from β-pinene, β-caryophyllene, and α-
humulene at different N2O5/VOC ratios (Table S1). Under

Figure 3. Possible formulas of absorbing compounds detected in the
BSOANO3

by HPLC-PDA-HESI/HRMS. ONs are responsible for the
absorption peaks observed by the PDA. Data for the β-pinene-, β-
caryophyllene-, and α-humulene-derived SOAs are taken from
experiments with a N2O5/VOC ratio of 1.2, 10.7, and 8.8,
respectively.
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higher initial N2O5/VOC ratios, more NO3· was involved in
the reaction with BVOCs and intermediates or taken up by
particles to react with organic species (Table S4). Thus the
SOA contains more nitrate groups, as was observed by HR-
Tof-AMS (Figure 4a). This was also confirmed by the AMS

fragment analysis, where the contribution of NOy
+, which

originated from ONs in the SOA, increased with the initial
N2O5/VOC (Figure S7). The studied terpenes have CC
double bonds with more than one ring. Thus the first-
generation oxidation products from NO3·-initiated oxidation
may still contain a CC double bond that can further react
with NO3· to generate products with multiple nitrate groups.
The RI of the SOA also changed under different initial N2O5/
VOC ratios, with a higher real part and imaginary part of the
RI under higher N2O5/VOC ratios (Figure S8).
Both the H/C and O/C ratios, the particle effective density,

and the nitrate fraction ( fNO3
) in the SOA observed by HR-

Tof-AMS increased with increasing N2O5/VOC ratios, as
shown in Figure 4b−d, confirming the functionalization (e.g.,
−OH or −OOH addition to the CC bonds) during the
oxidation by NO3·. The Lorentz−Lorenz relationship (

= αρ−
+

n
n

( 1)
( 2) 3MW

2

2 ) correlates the real RI (n) to the mean

polarizability (α), the particle effective density (ρ), and the
average molecular weight (MW) of the SOA. The mean
polarizability can be estimated by the additive group
contribution method.86,87 The enhanced functionalization
under higher N2O5/VOC ratios significantly increases the
H/C and O/C ratios and the nitrate fraction and therefore
increases the mean polarizability of the SOA, in combination
with the increased effective density, causing an increase in the
real RI of the BSOANO3

under higher N2O5/VOC ratios.
HPLC-PDA-HESI/HRMS results have revealed that ONs are
responsible for the observed light absorption. Under higher

initial N2O5/BVOC ratio conditions, the f NO3
of the produced

SOA is higher, indicating more abundant ONs in the SOA. As
a result, a larger imaginary RI is expected. In urban conditions,
the NO3· production rate is enhanced, whereas BVOC
emissions can be relatively lower. Thus the produced BSOA
may show more light-absorbing ability over and downwind of
cities.88

3.5. Optical Properties Evolution upon Photochem-
ical Aging. Chemical characterization shows that ONs
comprise a significant fraction of the light-absorbing BSOANO3.
Therefore, it is important to understand how the optical
properties change during daytime OH-dominated oxidation.
To address this important question, we exposed the
monoterpene (β-pinene) and sesquiterpene (α-humulene)
BSOANO3

to an equivalent of 1 day of aging by OH· in a

PAM OFR. As shown in Table S6, a slight decrease in the f NO3

was observed (0.201 to 0.196 and 0.206 to 0.192 for β-pinene
and α-humulene, respectively), indicating that the particulate
ONs are resistant to OH· aging, which is consistent with
previous findings for the BSOANO3

from β-pinene.15 For the

BSOANO3
from β-pinene, whereas the O/C ratio of the OH·-

aged SOA increased slightly, the H/C ratio decreased,
indicating the H-abstraction reaction during OH· aging.
Upon OH· aging of the BSOANO3

from α-humulene, a slight
increase in the H/C (∼0.005) and O/C ratios (by 0.022) was
observed, indicating functionalization (OH· addition), possibly
due to the remaining unsaturated CC bonds in the SOA,
which favors the addition of functional groups.
In Figure 5, we show the RI evolution from photochemical

aging. The real part at 315.3, 330.3, 349.3, 404.4, and 599.8 nm
and the imaginary part at 315.3, 330.3, and 349.3 nm are
highlighted. For the BSOANO3

from β-pinene, the real RI

Figure 4. Influence of the initial N2O5/VOC ratio on the chemical−
physical properties of the BSOANO3

from β-pinene (○), β-
caryophyllene (△), and α-humulene (□). The symbol’s color
indicates the initial N2O5/VOC ratio, and the symbol’s size in
panel a represents the effective particle density. With the increasing
initial N2O5/VOC ratio, the nitrate fraction ( f NO3

) and the particle’s
effective density (a), the elemental ratios (b), the real refractive index
at 404 nm (c), and the imaginary refractive index at 316 and 330 nm
(d) increased.

Figure 5.Modification of the RI and single scattering albedo (SSA) of
the BSOANO3

by OH· aging and photolysis. (A,B) Evolution of the
broadband RIs of the BSOA from the NO3· oxidation of β-pinene and
α-humulene after 24 h of equivalent ambient OH· exposure time or
1.7 × 1014 photons cm−2 photolysis at 254 nm. (C) SSA
transformations for 200 nm SOA particles at UV wavelengths
(315−349 nm). Changes in the RI and SSA at 315.3 (purple), 330.3
(light blue), 349.3 (blue), 404.4 (cyan), and 599.8 (red) are displayed
as lines.
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decreased slightly when the SOA was processed with
photolysis and photochemical aging, whereas no significant
change in the imaginary RI was observed. For the BSOANO3

from α-humulene, the real RI of the SOA increased during
OH· aging, and it is resilient to photolysis. The imaginary RI
decreased during both the photolysis and the OH· aging
process. Therefore, the SSA for 200 nm particles increased. For
the BSOANO3

from β-pinene, the real RI decreased slightly,
possibly due to the loss of ON moieties that efficiently scatter
light. The absorption of the SOA is linked to specific ONs
(e.g., C 10H13−17NO5,6 and C19,20H28,31N1,2O10−12), as shown in
Figure 3. Because of the deactivation of the C−H bonds by
adjacent functional groups, these highly functionalized ONs
have fewer H−C bonds available for H abstraction by OH·
oxidation, making them more resistant than less functionalized
compounds. Thus the imaginary RI does not significantly
change during the OH· aging experiments. Moreover, the
interaction between the carbonyl and the nitrate functional
groups will induce strong light absorption. A previous study by
Draper et al. has found that ONs with a carbonyl adjacent to
the nitrate group can be produced through left scission
reactions of nitroxyalkoxyl radicals that are produced by the
NO3· radical oxidation of unsaturated VOCs.13 The β-pinene
molecule has only one substituted CC double bond to form
products with a carbonyl adjacent to the nitrate group.
Moreover, these products rapidly cyclize and further react in
particles to form acetal heterodimers and heterotrimers,
leading to a loss of the carboxyl adjacent to the nitrate groups
(Figure S9).57 Thus no significant strong absorbing species will
be produced in the BSOANO3

from β-pinene. Moreover, in the
ON produced from the NO3· oxidation of β-pinene, the
carbonyl group is further away from the nitrate functional
group, or there is a hydroxyl functional group adjacent the
nitrate functional group.57,74 The lack of interaction between
carbonyl and nitrate functional groups seems to induce
negligible light absorption. This weak light-absorbing ability
of the BSOANO3

also suggests that its photolysis will be
insignificant, which is in line with the previous finding that the
ON fraction of the BSOANO3

from β-pinene was resistant to
photochemical aging.15 As a result of the significant decrease in
the real part and the small change in the imaginary part upon
OH· aging, the SSA decreased in the UVA range, indicating
that the aged SOA can have a relatively stronger warming
effect. The α-humulene molecule has three substituted CC
double bonds that form products with a carbonyl adjacent to
the nitrate group. The carbonyls adjacent to the nitrate groups
are further away from the hydroxyl group, which does not favor
the cyclize process, stabilizing in the particle phase. The
coupling of these two functional groups in the BSOANO3

from
α-humulene can enhance the light absorption, as confirmed by
the relatively high imaginary RI, resulting in the higher
photolysis efficiency of ONs. The photolysis proceeds by
releasing NO2 and forming compounds with fewer or even no
nitrate groups. Photolysis at UVA will also decompose
carbonyls, which would have an additional photobleaching
effect. Thus upon photolysis, both the real part and the
imaginary part of the RI decreased, resulting in an overall
increase in the SSA. On the basis of the change in absorption,
we calculated the photolysis lifetime of absorbing ON in the
BSOANO3

to be 6.2 h (Text S3), assuming no phase separation,
which may affect the aging. Assuming no synergetic effect

between photolysis and OH· aging and excluding the
photolysis-induced decrease in absorption, the OH· aging
also bleached the particles with a lifetime of 38.8 days. For the
α-humulene-derived BSOANO3

, bleaching by photochemical
aging (including OH· aging and photolysis) is governed by
photolysis, and the lifetime is ∼6 h. These results from the β-
pinene and α-humulene aging experiments indicate that the
effect of photochemical aging on the optical properties
(refractive index and SSA) of the BSOANO3

largely depends
on the specific chemical nature of the ONs and their
precursors, leading to a more complicated picture than just
“bleaching” or “browning”.

4. ATMOSPHERIC IMPLICATIONS

The study provides the chemical composition and optical
properties of the SOA produced during the NO3· oxidation of
terpenoids. The BBCES-CRD measurements show that the
nighttime reactions studied here form BrC, which weakly
absorbs light in the UVA range. According to the framework
recently introduced by Saleh et al.,89 the produced BSOANO3

falls into the category of very weakly absorptive BrC. The
UPLC-PDA-HRMS analysis confirmed that ONs are respon-
sible for light absorption. In urban and suburban areas that are
affected by anthropogenic pollution and high BVOC
emissions, the high NOx and O3 promote NO3· production.
This could also result in a high NO3·/VOC ratio, which favors
BrC that contains a high fraction of ONs. Although the light
absorption of the BSOANO3

is weak, the SOA formation from
the nighttime NO3· oxidation of BVOCs is efficient, especially
in regions where massive anthropogenic emissions mix with
BVOCs. Therefore, the BSOANO3

can have a measurable
impact on the aerosol UVA absorption, which could further
affect the climate and air quality on a regional scale.
The BSOANO3

from α-humulene has an equivalent
photolysis lifetime longer than 6.2 h (Text S3). Because of
their weak light-absorbing properties, the photolysis of the
ONs in the β-pinene BSOANO3

is negligible (Figure 5).
Previous studies have tested the bulk hydrolysis properties of
the BSOANO3

from α- and β-pinene.16,74 The hydrolysis
lifetime varies between 0.02 and 8.8 h, depending on the
precursor VOCs, oxidant type, aerosol acidity, relative
humidity, and more. Although the lifetime is short, the ON
from NO3· oxidation has a low hygroscopicity, and only a small
fraction (≤17%) can undergo hydrolysis.16 Taking all of these
factors into consideration, we suggest that the BSOANO3

generated from β-pinene and α-humulene at night would
survive into the morning hours or longer and would scatter and
absorb the incoming solar radiation and sequester NOx. These
results indicate that ONs produced from the NO3· oxidation of
β-pinene and α-humulene may serve as NOx reservoirs or
permanent NOx sinks in the atmosphere, which is consistent
with previous findings.15 We note that previous studies by Nah
et al. have found that the particle-phase ONs in the BSOANO3

from α-pinene evaporate during photochemical aging.15 The
significant photolysis of the α-pinene BSOANO3

could
dramatically change its optical properties, as it behaves
differently compared with the BSOANO3

from α-humulene

and β-pinene. These results indicate that ONs in the BSOANO3

produced from terpenes can serve as either temporary or
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permanent NOx sinks depending on the precursor. This
finding has significant implications for NOx and O3 budgets in
areas with high emissions of monoterpenes and sesquiterpenes,
such as the Southeastern United States, Northern Europe, and
Southeast Asia. We suggest incorporating these processes into
the current modeling strategies to improve NOx and O3
simulations.
This study focused on the ON production by the NO3·

oxidation of BVOCs, the optical properties of the resulting
BSOA, and the evolution of their chemical and physical
properties during the transition from night to day. The link
between the BSOANO3

formation mechanism, its chemical and
physical properties, and the dynamic evolution was illustrated
for both laboratory simulations and ambient aerosols.
Photolysis and OH· aging were studied here under low
relative humidity (37.5%) conditions, and the possible role of
the hydrolysis of the ONs was not investigated. It is also noted
that isomers with the same formula have different light-
absorbing properties and lifetimes. Therefore, isomer-specific
studies may be helpful for understanding the bulk chemical and
physical properties (e.g., hydrolysis and oxidation) of ONs and
the SOA. Obviously, RO2· chemistry plays a role in
determining the changes to the chemical and optical properties
of the SOA. In this study, we focused on one set of (extreme)
conditions. More detailed studies and additional modeling
efforts will be conducted to understand how different RO2·
regimes affect these changes and how these translate to
different atmospheric chemical regimes.
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