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SUMMARY

We investigate the representation of the radiated energy, Eg, in earthquakes. In seismology
ER is estimated from either far-field seismic waves or the stress and displacement on the
fault plane. Although Er comes from the entire volume of the Earth, it can be expressed as
an integral over the fault plane. However, the integrand cannot be given a simple physical
meaning such as the radiated energy density on the fault plane. The stress on the fault plane
changes rapidly during a seismic rupture. Although the energy radiated by this process is not
included in the estimate of E in a simplified practice in seismology, it is correctly included
in the expression of E'y in standard seismological practice. Using the representation theorem,
we can express ER as a surface integral over the fault plane, with the integrand containing the
slip function on the fault plane. However, the integrand at a point depends not only on the slip
function at the point but also on the slip functions everywhere on the fault plane. Thus, the
simple method in which Eg is estimated by summation of the local energy flux on the fault
plane does not yield a correct estimate.

Key words: energy balance, fracture energy, friction energy, radiated energy, seismic energy,
seismic source.

1 INTRODUCTION

The potential energy (mainly elastic strain energy and gravitational energy) stored inside the Earth is released during an earthquake and part
of it is radiated as seismic waves (Kostrov 1974; Dahlen 1977). The radiated energy, Er, is estimated in seismology from either far-field
seismic waves (this has been done since the early days of seismology; Galitzin 1915; Jeffreys 1923) or the stress and displacement on the fault
plane (Ide 2002; Favreau & Archuleta 2003). The radiated energy comes from the entire volume of the Earth, yet with either method it can
be expressed as an integral over the fault plane and, because of this, it is sometimes implied that the radiated energy is distributed on the fault
plane and radiated from there.

The stress on the fault plane changes rapidly during a seismic rupture. In a simplified practice in seismology, the energy radiated by this
process is not included in the estimate of £, with the implication that £ is underestimated in seismology. However, in standard seismological
practice this energy is correctly included in the expression of Eg.

The far-field displacements can be uniquely determined by slip on the fault plane using the representation theorem. Then, E can be
expressed as a surface integral over the fault plane, with the integrand containing the slip function on the fault plane. However, the integrand
at a point depends not only on the slip function at the point but also on the slip functions everywhere on the fault plane. The different parts of
the fault plane contribute to the far-field velocity either constructively or destructively, and the energy flux at far field which is proportional
to the square of the velocity depends on the slip function over the entire fault plane. Thus, the simple method in which Ey is estimated by
summation of the local energy flux on the fault plane (e.g. McGarr & Fletcher 2002) does not yield a correct estimate.

In view of occasional confusion about these issues in the literature, we address in this paper the physical meaning of the surface integral
in the expression of Eg, the effect of rapid changes in stress on the fault plane on the seismological estimate of Er and the difficulty in
estimating Er using a local energy flux on the fault plane.

2 RADIATED ENERGY

We recapitulate below some results concerning the energy budget of an earthquake without going into the details, which can be found elsewhere
(e.g. Kostrov 1974; Dahlen 1977; Rudnicki & Freund 1981; Kostrov & Das 1988; Dahlen & Tromp 1998).

The radiated energy, Eg, is defined as the amount of energy that would be carried to the far field in the form of seismic waves if an
earthquake occurred in an infinite and non-attenuating medium (Kostrov 1974). To estimate it, we take a closed surface S, embedded in the
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The radiated energy in earthquakes 149

Figure 1. Schematic figure showing the surface S, volume V" and the fault plane ¥ surrounded by a closed surface made of = and ™.

medium and around the earthquake source at a distance, », much larger than the source dimension, and calculate the work done by the stress
perturbation across S (Fig. 1) :

f
Ep = _/ dl/ (01 — 0 )ttin; dS. .
) So

Here, o ;; represents the stress at any time, a?]. is the initial stress, u; is the displacement, u; is the particle velocity and #; is the unit vector
normal to S, pointing outwards. 7, is a reference time before the earthquake and ¢, is a time after the earthquake when any movement has
ceased within S.

It can be shown (e.g. Rudnicki & Freund 1981) that (1), in the far field where it is defined, is equivalent to

Eszl/; p [ai;n, ) + BGi; —ijn;n:)*] dSdt Q)

where p is the density and « and § are the P- and S-wave speeds. The ‘radiated energy’ means the energy carried by seismic waves through
So which is embedded in the medium. This expression was used by Haskell (1964). In the case of a finite medium, like the Earth, we cannot
define the radiated energy in this way. The elastic waves would remain trapped inside the Earth, bouncing back and forth on the free surface
producing surface waves, reflected waves, etc. An alternative definition is ‘seismic energy’ which is the total amount of energy dissipated due
to anelasticity within the whole Earth after an earthquake (McCowan & Dziewonski 1977; Dahlen 1977; Dahlen & Tromp 1998).

Expression (2) has been used in seismology for decades to measure Er (Galitzin 1915; Jeffreys 1923; Singh & Ordaz 1994; Choy
& Boatwright 1995; Venkataraman & Kanamori 2004) by removing any free surface and attenuation effects from the data. An alternative
approach (Vassiliou & Kanamori 1982; Kikuchi & Fukao 1988) is first to solve for the seismic source model of the earthquake, then to compute
the elastic field generated by the same model within an infinite elastic medium at the far field and, finally, apply (1) or (2) to estimate Eg.

A completely different way to express E can be obtained from the energy budget (Kostrov 1974). We consider the same medium
as above and model an earthquake as a stress release process on a surface (i.e. fault plane) ¥ inside Sy. Let V' be the volume inside Sj.
The released potential energy (strain energy + gravitational energy + kinetic-rotational energy) in /" associated with an earthquake can be
estimated as follows.

Let us consider a pre-stressed elastic medium, undergoing an infinitesimal elastic deformation, de;;, and let us ignore gravitation and
rotation effects for the time being. The released elastic energy density is proportional to the total stress and is given by

dw = _O'ijdgij

= —(0) + cijuen) dei;

1
0
_U[jdgij - E{Cijklgkldsij + Cijklsijdskl}

1
—d {agei,- + Ecijklekl‘?ij} :

where the strain ¢;; is measured from the initial state (i.e. e?j =0).

© 2005 RAS, GJI, 162, 148-155
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150 L. Rivera and H. Kanamori

Integrating between the initial and the final states we have

Aw = — 1ol —|—lc-- el el
w = ijij T 5 CijkEp®i;

== { 9ij t/ + (Jt/ - Uu)‘gu}
= % (o +o0; ) el.lj
= %(a +0)u1/ “
Using further the elastic equilibrium equations with zero body forces, both in the initial and final states, we have
Aw =3 (@} +oul] . 5)
Finally, integrating through the whole volume we can write the total released potential energy as
AW:—%/V{(ai(}—f—oi})u}}vjdl/. (6)

If gravitational and kinetic rotational effects are included in the analysis (Dahlen 1977) then (4) should be modified to include the
corresponding energy contributions, but the equilibrium equations for the initial and final states should also be completed with the gravitational
and centrifugal forces. It is remarkable that, by the end, eqs (5) and (6) remain unchanged and are then quite general including pre-stress,
gravitation and kinetic-rotation effects in the energy balance.

The particular shape of (6) suggests the use of the Gauss theorem, leading to three surface integrals:

AW———[{U —|—0’ }}deV:—%{/; (0 +o; )u n]dS—I-/ (0i3+0,}.)u}n7dS+/ (a + o, )un dS} (7)

where u!

is the final displacement. This expression can be further simplified by defining Au; = u]” — u;, which is the displacement
discontinuity from one side of the fault to the other, and letting ¥ and £~ collapse to a single open surface X, on which we choose a unit

normal vector definedasv; =n; = —nf. With these definitions, the final expression for the total released potential energy within 7 becomes:
1 0 1,1 1 0 1,1
AW = -5 /;/ {(c) +0))uj }‘j dVv = 31 (o) + o)) uin;dS — g (o) +0}) Auyv; dS (8)
On the other hand, Kostrov (1974) shows that part of the potential energy is expended on X and another part goes out through Sy, and
derived the expression

t f
= 1o (1) 1o So

where X () is the ruptured fault surface at time 7, and y ¢ is the effective fracture energy. All the singular terms related to the stress concentration
ahead of the crack tip have been collected in y o (Kostrov 1974).
Equating (8) and (9), and using the definition of the radiated energy (1) leads to

1 1
Eg = 5/ (o) + o) Aujv; dS—/ 2Yered S — / dt/ 01 Auiv;dS + = / (o) — o)) uln;dS (10)
= So

The last term vanishes if Sy is taken far enough from the fault, because u; and o - cr - decrease as 1/r2, and 1/r3, respectively. Then the
final expression forEg is given by

1 f
Er = —/ (Ul.(]). +O’ilj-) Auivde—/ ZVeﬁdS—/ dt/ o Att;v; dS (11)
2 Js = 10 (1)

as an integral of the expression that contains only the displacement and stress on the fault surface.
It may appear at first sight from (11) that £ depends on the absolute value of the stresses, but a closer inspection shows that the pre-stress,

o; ], is present both in the first and the third terms of the right-hand side of (11) and cancels out. Writing it explicitly, we have:

1
Eg = —/ (o, —af) Au[vde—/ 2VeidS — / dt/ (01 — 0)) Adijv; dS. (12)
2 s 200
An alternative expression is obtained after integrating (12) by parts:
1 i
Er = —/ (Ul.(]). —O’ilj-) Au;v; dS—/ 2yeﬁcdS+/ dt/ GijAu;v; dS. (13)
2 s ) 200

This is the same as eq. (2.26) of Kostrov (1974). Expressions (12) and (13) share two remarkable properties: first, they allow us to estimate
E'r from the stresses and displacements only on the fault plane; second, it is not necessary to know the absolute value of stress on the fault.
That is, £ » depends only on the stress perturbation on the fault caused by fracture and is independent of the pre-stress within the medium.

We then have two independent ways of estimating £, either with its original definition (1) or (2) which is given as an integral on S, or,
indirectly, by using (12) or (13) as an integral over the fault surface X.

© 2005 RAS, GJI, 162, 148-155
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The radiated energy in earthquakes 151

Eqgs (12) and (13) above are derived for an infinite medium. However, exactly the same expressions can be obtained for a bounded
medium like the Earth. In this case, Sy is the free surface bounding the medium and, as discussed earlier, the energy attenuated in the body
of the medium (i.e. seismic energy) is interpreted asEr in eqs (12) and (13). Also, the first term of the right-hand side of (8) vanishes, and
the first term of the right-hand side of (11) represents the change in the potential energy in the medium. This expression can be written in the
form frequently used in seismology as

ERZAW—E(]—E]: (14)
where

1
AW = 5/2 (o) +0)) Aujv; dS

Eg =/2)/erde
>

and
i

EFI/ dl/ OijAlJ,'Ude.
10 (1)

3 RADIATED ENERGY EXPRESSED AS A SURFACE INTEGRAL

As mentioned above, the term y . in eqs (9)—(13) contains all the stress and velocity singularities related to rupture propagation, and the
integral over X(¢) has no singularities. Under these circumstances, we can exchange the order of integration. If we take, for example, the last
term in (11) we can write

1 1
/ d[/ a,-,-ALi,-V,»dSz/dS/ a,-,-Au’,-v/»th/ FFdS (15)
o 0 ' P @ p

where
il
FF :/ G'iin{,‘Vj dt (16)
G
and £, (E ) is the rupture starting time at E € X. We can now rewrite (11) as
tv= [ R@as- [ Fras- [ Réas= [ Aéas an
b b b T
where
1
Fr = 3 (ai(j). + Ui}) Au;v;, Fo =2y (18)
and
Fr@) = Fe®) = Fo ) - Fr(). (19)

The function Fg (2: ) is the integrand of the radiated energy, £ g, and is often interpreted as the ‘radiated energy density’ or ‘seismic energy
density’ on the fault plane (Ide 2002; Favreau & Archuleta 2003). However, this interpretation does not accurately represent the physics
involved. In eq. (17), FG(g ) and FF(g) are, respectively, the local fracture and frictional energy, and represent the physical processes which
are actually taking place on the fault; they can be computed point-wise for the fault element dS. In contrast, although FE(g ) is written in terms
of stress and displacement on %, it does not represent the local process on the fault. When integrated over ¥ it represents the change in the
potential energy in the entire volume, as shown by (7) with the Gauss theorem. In other words, the often used energy balance relation such as
(14) does not hold for the fault element dS. As a result, £ R(§ ) given by (19), though similar to (14), cannot be regarded as the energy released
locally from dS.

This point can be more precisely stated as follows. We write the vector field (a?j + 0o }j)Au} /2ineq. (7) by Fj, ie.

F;= (o) +0)) Au} /2 (20)
which is defined at every point in V. We define its ‘integral lines’ by connecting the tangents to F; at every point in V. Only one integral line
passes through every point in V. (For example, if F; is an electric field, then the integral lines are the lines of force; Stratton 1941, p. 161). We

take a surface element d.S on the fault plane, and consider the integral lines I' passing through dS. Let V' be the tubular volume defined by
I's coming from d .S, and St be the cross sectional area normal to I' (Fig. 2). Then,

r r

where the property that I' is tangent to F; is used. The term F ;n; dS|o s, vanishes because Sy is the free surface. In other words, (21) is
the result of applying the Gauss theorem to the tubular volume V1. Since F; ; is the volume density of the released energy, eq. (21) means
that F(§) d S represents the total energy released from the tubular volume coming from d.S, not the energy released from the surface element
ds | onx-

© 2005 RAS, GJI, 162, 148-155
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152 L. Rivera and H. Kanamori

Figure 2. The tubular volume formed by integral lines passing through a surface element dS.
Stress Stress

Tp

Go

D i !
O Au Slip O e Au Slip

Figure 3. Graphical representation of the energy budget: (a) general case, (b) slip-weakening model.

4 SIMPLE MODEL

The interpretation of the energy budget can be facilitated using a simple model illustrated in the following. Combining (11) and (15), we
obtain

1 n
ER= —/ (O’;}-'-O’l-;) Auiv,-dS—/ 2yegdS—de-/ O','/'Al:livjdt. (22)
2 Js ) b ) hx) )

0

If we consider a simple shear fault for which o7},

o; and Au; are uniform on the fault with area S and given by scalars 0, o' and Au,
respectively, (22) can be written as

1 Au
Ex = 5(00 +oHAuS — / 2y dS — S/ od(Au). (23)
x 0

The second term on the right-hand side of (23) is the fracture energy £ . For the time being, we ignore this term. The first term is the
total change in the potential energy and the third term, the frictional energy. Fig. 3(a) shows a graphic representation of these energies per
unit area. The potential energy change is given by the trapezoidal area AODC, and the frictional energy is given by the area under the curve
labelled as o (u). Thus, the radiated energy E' is given by the dark area.

Eq. (23) can be also written as

1
Eg = 5(00 —oHAuS — /

Au
2Ver d S — <S/ od(Au) — alAuS> . (24)
P 0

© 2005 RAS, GJI, 162, 148-155
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The radiated energy in earthquakes 153

The first term corresponds to the triangular area ABC, and the last term in the bracket gives the difference between the areas labelled by +
and —, which Kostrov (1974) called the ‘radiation friction’. In some simplified seismological practice, the triangular area, % o’ —ohAuS,
is taken as the radiated energy. Thus, in such a practice, as Kostrov (1974) pointed out, the term corresponding to the radiation friction is
ignored in the estimation of £ . However, in many other modern practices, E is measured from either far-field displacements using (2), or
integration of (12) on the fault plane (Ide 2002; Favreau & Archuleta 2003). Thus, in principle, the term corresponding to the radiation friction
is correctly included in estimation of E'r, though, in practice, it is always difficult to accurately include the contributions from high-frequency
seismic waves. This point is often confused in the literature (e.g. Husseini 1977).

In the widely used slip-weakening model (e.g. Li 1987), the stress increases from ¢° to a peak stress o¥ and drops to o' over slip D,
then the slip continues at a constant stress o = o ; (Fig. 3b). For simplicity, here we ignore the difference between 0¥ and . In this model,
the grey area is interpreted as the fracture energy, E g, and the rectangular area BODC is interpreted as the frictional energy, £¢. Usually,
the grey area implicitly includes the second term on the right-hand side of (22) or (23) through the slip-weakening interpretation of energy
dissipation in the crack-tip breakdown zone (e.g. Li 1987).

5 THE RADIATED ENERGY AND THE DISPLACEMENT HISTORY
ON THE FAULT (DISLOCATION)

The representation theorem (de Hoop 1958; Burridge & Knopoff 1964) provides an expression for the displacement field of a finite fault as an
integral on the fault surface. The integrand is particularly simple for the far field, and the expression for £ can be obtained if slip D(g , 1) is
given on the fault as a function of position 5 on the fault plane (i.e. E € X). In fact, the energy flowing out at every moment at any point on S,
is determined by interaction of the displacement due to all the patches on the fault. This result is valid regardless of the degree of complexity
of fault geometry and the slip time history. Here, for simplicity, we restrict ourselves to the case in which the fault strike, the slip direction and
the rupture direction do not vary on the fault. In this case, the far-field particle velocity components at X are given in a spherical coordinate
system (r, 0, ¢) with the origin at a corner of the fault (Haskell 1964) as:

3
- R -
i, (3, 1) = B —L 13,0
o) 4npr
R Rsp -
1) = (%t

(1) = L 2P0

g%, 1) = Rso 1P(3, 1) (25)
4 Br

where Rp, Ry and R g4 are the radiation patterns. In the following, c stands for either « or 8. I¢ is given by:

1%2,;):/ D(%,t— 'x_‘§|>d§. (26)
) C

Substituting (25) and (26) into (2), we obtain

Ex = Tor / fil 5 5 RE(6, ) Fu(X, 1)+ RAO, $)Fp(X, 1) | d1d (27)

16728 Js, Jiy a $

where RY =R3, 4R35, d2 is the solid angle dS/r?, and

F.(x,t)= ()= f/z . ﬁ(é, i f')ﬁ <7;,z— @) dEd. (28)

In the above, the double integration is over the same fault plane, X. F,.(X, ¢) is proportional to the energy flux at ¥ € S, and ¢. The integrand

of (28) gives the ‘contribution’ from a couple of patches on the fault at 5 and 7 to the energy propagating through S at (¥, 7). It depends
on the way the displacements at X € S, generated by a couple of patches at £ and 7, interact with each other. The patches can contribute
positively or negatively to the final amplitude and to the energy flux, depending on whether they interact constructively or destructively. In
this sense, the integrand of (28) can be regarded as ‘radiated energy density’ on ¥ x X. For example, we can explicitly write the S wave part
of (27), after changing the order of integration, as

s__P 2 "z &N\ F-il -
ER—I&TQI3 fZXEfSORS(G,di)/tO D(%,t 5 )D(n,t 5 )dtdszdgdn

- //” Frs(E, 7)dE di (29)

which can be reduced to a form similar to (17):

s_ P 2 L _|£_§| - _|;C—ﬁ| - >
ER‘16n2ﬂ/z{/soRs(9’¢)/,o D(‘g” 5 )UEDQ” 5 )d”}d”m}dg

|G (30)
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Figure 4. Integrands of the radiated energy Er given by the two representations (17) and (30) for the Sato & Hirasawa (1973) fault model with a rupture
velocity of 0.98 and a radius of 50 km. Only a quadrant of the fault is represented. Values in the colour scale are given in units of 10'? J km=2. Top: (a)
Fe(€) — 05 Auivjs (b) F(E); (¢) — (Fr(€) — o Au;v;) and (d) Fr(&). Bottom: (¢) Fx(€) for P waves; (f) Fx(€) for S waves; (g) sum of Fs (&) for P and S
waves; (h) the same as (g) shown with the same scale as (d). Note the very different patterns between (d) and (h); yet, when integrated, they give the same Eg.

The main difference between (29) and (30) is that (29) is a point-wise relationship; Fgg(g , 17) relates in detail each couple of patches on &
to the flux at each point on Sy. In contrast, Fx, (E ) in (30) contains the contribution of the patch at e’,? , which interacts with the whole fault. In
other words, Fx, (5—‘ ) depends not only on the slip history at § but also on the slip distribution on the entire fault D(3, ).

Thus, the simple method used in several studies (e.g. McGarr & Fletcher 2002) in which the radiated energy is estimated by summation
of the local energy flux on the fault plane does not yield a correct estimate.

Fig. 4 (bottom) shows the integrand Fy (E) for the circular fault model of Sato & Hirasawa (1973). Since Fx (E ) is symmetrical with
respect to both the ¢ = 0 (the slip direction) and ¢ = 90° diameters, Fx, (é’ ) is shown only for a quadrant of the fault. For comparison, Fig. 4
(top) shows the integrands Fx(§) — o Au;v;, Fo(&), — (Fr(§)— ) Au;v)) and Fr(€) computed with eqs (16), (18) and (19). This computation
is the same as that made by Ide (2002). Note that Fr(¢) (Fig. 4d) and Fx (&) (Fig. 4h) are very different, yet the integrals of these integrands
over the entire fault plane yield exactly the same E . This example illustrates that the integrand of the radiated energy is not unique and cannot
be given a simple physical meaning like the radiated energy density.

Fig. 5 shows Fx, (5 ) for the Haskell (1964) model. For this computation, fault length L = 100 km, fault width W = 5 km, dislocation
D = 1 m, rise-time of dislocation 7 = 3.0 s and rupture speed V' = 3.58 km s~' are used. The P-wave speed, S-wave speed and the density
of the medium are 8.0 km s™!, 4.62 km s~! and 3.0 g cm, respectively. To avoid the singularity in D, the time function is smoothed over
0.1 s. Note that Fx (§ ) vanishes in the middle section of the fault, which is the result of the interaction of a pair of patches at g? and 7 discussed
earlier.

6 CONCLUSION

The radiated energy, Er, in earthquakes can be represented by a surface integral on the fault plane X. As shown by (11), the integrand of
the surface integral contains the term %(Ui(j). + cfi}.)Au,-v ;. This term cannot be interpreted as the local energy density at a point § (E € X)
on the fault plane. We can show that it represents the energy released from the tubular volume formed by the integral lines of the vector
F; = %(Ui(,)- —+ Ui})Aui passing through a unit area at 5 on the fault plane. Thus, this represents the energy coming from the volume of the
medium, rather than the fault plane.

The stress on the fault plane changes rapidly during a seismic rupture. In a simplified practice in seismology in which the radiated energy
is estimated by Er = %(00 — o")AuS, the energy radiated by this process is not included in the estimate of Er, with the implication that Er
is underestimated in seismology. However, in standard seismological practice, this energy is correctly included in the expression of Eg.

A simple method in which Ey is estimated by summation of the local energy flux on the fault plane is often used in seismology. Using
the representation theorem we showed that £ can be expressed as a surface integral over the fault plane, with the integrand containing the

© 2005 RAS, GJI, 162, 148-155
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Figure 5. The integrand Fx; (5 ) for the Haskell (1964) model. Only one half of the total fault length is shown.

slip function on the fault plane. However, the integrand at a point depends on not only the slip function at the point, but also the slip functions

everywhere on the fault plane. Thus, the simple method using the summation of energy flux computed for each point on the fault plane does

not yield a correct estimate for Eg.
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