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Abstract

In philosophical studies regarding mathematical models of dynamical sys-
tems, instability due to sensitive dependence on initial conditions, on the
one side, and instability due to sensitive dependence on model structure,
on the other, have by now been extensively discussed. Yet there is a
third kind of instability, which by contrast has thus far been rather over-
looked, that is also a challenge for model predictions about dynamical
systems. This is the numerical instability due to the employment of nu-
merical methods involving a discretization process, where discretization
is required to solve the differential equations of dynamical systems on
a computer. We argue that the criteria for numerical stability, as usu-
ally provided by numerical analysis textbooks, are insufficient, and, after
mentioning the promising development of backward analysis, we discuss
to what extent, in practice, numerical instability can be controlled or
avoided.
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1 Introduction

Mathematical models of dynamical systems are sometimes prone to instability.
Instability is a serious issue in applied mathematics in that it poses problems for
model predictions about dynamical systems. Informally, a model of a dynamical
system is said to be unstable with respect to a given variable or property if
small changes in the specification of the system entail significant changes in
the predicted dynamical behavior with respect to that variable or property.
Conversely, a model of a dynamical system is stable with respect to a given
variable or property if small changes in the specification of the system entail
similarly small changes in the predicted dynamical behavior with respect to
that variable or property.1

Two kinds of instability have tended to be the focus of investigation in the
philosophy of science. On the one hand, sensitive dependence on initial condi-
tions makes dynamical systems unstable with respect to small changes in the
initial conditions. This generates instability in some non-linear mathematical
models, and is what leads to the famous “Butterfly effect” with its prejudicial
impacts on model predictions, extensively studied (e.g. Batterman 1993; Kellert
1993; Smith 1998; Werndl 2009). On the other hand, philosophers of science
interested in climate science modeling have more recently focused on sensitive
dependence on model structure. In this case, structural instability is generated

1A model of a dynamical system can be stable under some respects, and unstable under
others. For example, as Corless and Fillion (2013, 554) show, the Lorenz attractor is unstable
with respect to the position, but stable with respect to the dimensions of the attractor. In
the paper, the (in)stability in models of dynamical systems we discuss mainly concerns the
systems’ trajectories, and, for the sake of readability, this specification will remain implicit.
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by an error in the model structure, and the resulting uncertainty, i.e. struc-
tural uncertainty, is the discrepancy between the model’s predicted trajectories
and the observations. The “Hawkmoth effect”, so named to indicate it is the
cousin of the “Butterfly effect”, results from the amplification of this structural
uncertainty over time; see Mayo-Wilson (2015), for example, for insights into
the notion of structural chaos. In particular, this effect lies at the heart of a
philosophical debate between, on one side, Frigg and co-authors who argue that
structural instability in regional climate models places in-principle limits on our
confidence in model predictions (e.g. Frigg, Bradley, Du, and Smith 2014; Frigg,
Smith, and Stainforth 2015), and, on the other side, Winsberg and co-authors
who put forward objections (e.g. Winsberg and Goodwin 2016).

Yet there is a third kind of instability which also presents challenges for
model predictions about dynamical systems. This numerical instability, on
which we will focus here, stems from the use of numerical methods involving a
discretization process, where such discretization is required to solve the differ-
ential equations of dynamical systems on a computer. Numerical instability is a
frequent and important matter of concern in scientific practice, since numerical
methods are ubiquitous in scientific modeling and are required to make predic-
tions in computer-assisted sciences; yet this form of instability has not yet been
subject to anywhere near the same level of philosophical investigation as the
Butterfly and Hawkmoth effects. The time is now ripe, however, for the philos-
ophy of applied mathematics to develop an analysis of numerical instability of
dynamical systems for its own sake; it is this project that this paper encourages
and to which it contributes.

The state-of-the-art philosophy of applied mathematics indeed provides am-
ple resources for such an analysis. For instance, it investigates the various
kinds of numerical errors affecting computer simulations (e.g. Humphreys 2004;
Lenhard 2019); proposes to interpret numerical errors as modeling errors through
the perspective of backward numerical analysis (Fillion and Corless 2014; Fil-
lion and Moir 2018); puts forward definitions of the concepts of exact solutions
(Fillion and Bangu 2015; Fillion and Corless 2019); explains why approximate
numerical solutions are sometimes preferred to exact analytical solutions (Ar-
dourel and Jebeile 2017); and discusses the available methods – e.g. pertur-
bation methods, backward error analysis (Corless and Fillion 2019) or effective
validity for inferences (Moir 2019) – used to produce satisfactory approximate
solutions.2

Our aim here is to investigate numerical instability and the way in which it
can hamper model predictions. We begin by offering a brief overview of the two
above-mentioned kinds of instability affecting models of dynamical systems and
their predictive capacity, and then provide a definition of numerical instability
(Section 2). We go on to investigate cases of numerical instability occurring in a
wide range of non-linear mathematical models (Section 3), and then argue that
the criteria for stability of numerical methods, as usually provided by numerical
analysis textbooks, are not always sufficient (Section 4). We finally discuss

2See also Moir (2013) for discussions on errors and stability in mathematical modeling.
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to what extent, in practice, numerical instability can be controlled or avoided
(Section 5).

Numerical analysis is an important method by which to tackle numerical
instability, and hence in this paper numerical analysis plays an important role.
As a field of applied mathematics, numerical analysis has been brought to bear
on the study of numerical (in)stability in relation to floating-point arithmetic,
numerical linear algebra, and differential equations (e.g., Corless and Fillion
2013; Hairer and Wanner 1991; Higham 1996; Wilkinson 1971). While numer-
ical analysis considers forms of numerical instability generated by the broad
class of numerical methods, in this paper we focus on the numerical instability
that occurs more particularly in time-evolving trajectories of dynamical sys-
tems, described with differential equations and solved with discretization-based
methods. Consequently, in this paper we are strictly interested in that part of
numerical analysis which deals with differential equations, including the math-
ematical discussions on stiff problems, corresponding to instability in non-linear
differential equations (e.g. Hairer, Nørsett, and Wanner 1987).

2 Three sources of instability

In this section we provide a brief overview of the three main kinds of instability
that can affect model projections about dynamical systems. Sensitive depen-
dence on initial conditions (SDIC) and sensitive dependence on model structure
(SDMS) are at the origin of two kinds of instability that have been extensively
discussed in the philosophy of science. We first briefly define these kinds of
instability, before turning to the notion of numerical instability on which we
focus in this paper.

The three cases have in common the general way instability manifests. In-
deed, in all three cases instability is characterized by significant changes in the
predicted dynamical behavior induced by only small changes in the specifica-
tion of the system. The three cases differ in what is changed, namely: (i) initial
conditions, (ii) model structure, and (iii) model by discretization.

In the three cases, we consider a dynamical system with time evolution
x(t) = ϕt(x(0)) and initial condition x(0).3 We suppose that this flow is the
solution to the following differential equation with initial condition x(0):

dx

dt
= f(x) (1)

2.1 Initial conditions

The dynamical system is sensitive to initial conditions if, for any initial condition
x(0) = a and every small arbitrary distance ε, there exists an initial condition
b close to a within ε, and an instant t, such that the difference between the
two corresponding solutions of the dynamical system becomes greater than a

3We can define the dynamical system as < R, S, ϕ > with S the state space.
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quantity ∆, i.e. that d(ϕt(a), ϕt(b)) > ∆, with d the distance between the
solutions (e.g., Mayo-Wilson 2015, 1238; Nabergall, Navas, and Winsberg 2019,
6).

Informally, the dynamical system is said to be unstable if small changes
in the initial conditions entail significant changes in the dynamical solution
over time. Of course, how significant is a vague notion, and in fact depends
on the magnitude of ∆.4 Thus, a system will be more or less sensitive to
initial conditions depending on the rate of change. An exponential rate is often
considered as a typical rate of change in philosophical discussions, although it
is not considered part of the definition of sensitivity on initial conditions. Not
only the rate of change but also the time scale are important considerations
in the philosophical discussions which seek to assess the consequences of such
instability on predictions.

2.2 Model structure

Let us now keep the initial conditions fixed, and consider a change in the model
structure, i.e. a change in the formulation of the equations. Roughly speaking, a
dynamical system would be said to be sensitive to model structure or structurally
unstable if small changes in the function f involve significant changes in the
dynamical evolution.

More precisely, let us borrow the definition provided by Nabergall et al.
(2019, 9). They define a space of time-evolution functions (or flows) Φ with a
metric δ, the flow ϕ ∈ Φ, and they introduce a metric d in state space. In that
case, Φ is sensitively dependent on model structure to degree ∆ at ϕ if for any
initial state, there is a time t such that for almost all ϕ̃ ∈ Φ with δ(ϕ, ϕ̃)) < ε,
one has d(ϕt, ϕ̃t) > ∆.5

In the example developed in (Bradley, Frigg, Du, and Smith 2014; Frigg et
al. 2014), not only do the nearby trajectories diverge under model error, but the
whole distribution of trajectories – whose initial conditions are within a certain
distance – also diverge over time. The authors thus define a probability distri-
bution p0(x) around x supposed to represent uncertainty on initial conditions,
and examine the time evolution of the probability distribution pt(x) = ϕt[p0(x)]
where ϕt is the dynamics of the model.

2.3 Discretization

Let us now keep the initial conditions and the model structure fixed, and focus
on equation 1 that needs to be numerically solved on a computer. One numerical
method is chosen, among several options, to discretize the differential equation.

4Practitioners may find the idea of relative error more useful than absolute error. Although
the definition of sensitivity to initial conditions usually involves absolute error, it could cer-
tainly be revised.

5The definition of the structural instability is a question in itself, which is discussed in
Frigg et al. (2014), Nabergall et al. (2019), Winsberg (2018, 232). It is out of the scope of
this paper to address this question.
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Like initial conditions and model structure, discretization, we argue, is itself a
source of instability.

In this context, a model of a dynamical system – implemented and solved
on a computer – will be said to be numerically unstable with respect to a
given numerical method if the small differences between the original differential
equation and its discretized version to be implemented on the computer entail
significant changes in the numerical solution over time with respect to the exact
solution.6 For example, let us consider the basic numerical method, the forward
Euler numerical method. This numerical method transforms the differential
equation 1 into the following discrete equation :

(xk+1 − xk)/h = f(xk) (2)

where h is the time step. This discrete equation can be written as xk+1 =
hf(xk) + xk , which is an algorithm enabling one to successively calculate the
value x1 from x0, x2 from x1, x3 from x2, and so on, xn from xn−1. This
leads to a discrete sequence (xk) for every integers k from 0 to n, which is
the numerical solution of the differential equation 1 with the forward Euler
discretizing method.

In this case, numerical instability is present when, however small the dis-
cretization step h is, a significant discrepancy between the exact solution x(t)
and the numerical solution (xk) appears at some point. More precisely, let
x(tk) be the value of the exact flow (or solution) at the time tk. The model of
a dynamical system is said to be numerically unstable with respect to numerical
method m and a quantity ∆, if, after discretization with the numerical scheme
m, for any arbitrarily small discretization step h, there exists a time tk such
that distance d(x(tk), xk) > ∆.

Unlike sensitive dependence on initial conditions and sensitive dependence
on model structure, numerical (in)stability does not stem directly and only
from certain properties of the dynamical system. It also stems partly from the
discretization method being used to solve the equation numerically. Numerical
(in)stability comes from the transformation of a continuous flow into a discrete
time evolution. Usually, in numerical analysis, numerical (in)stability is deemed
to be a property of the algorithms or numerical methods used to solve the
equations (Corless and Fillion 2013, 29, Fillion and Corless 2014, 1464); for
example, the forward Euler method is qualified as numerically stable or unstable
without any reference to a particular dynamical system. However, while the
use of an unstable numerical method likely leads to unstable trajectories of the
dynamical system, a stable numerical method can, under some criteria, also lead
to uncontrolled errors, as we will see (Section 3). There is therefore an important
sense of (in)stability, on which we focus, as being a property of the models of
dynamical systems – implemented and solved on computer – and relative to the
chosen numerical method. In what follows, we further investigate cases of the
numerical instability of dynamical systems.

6The small differences are non-eliminable since the discretization process changes the na-
ture of the model, in that the continuous differential equation is replaced by a discrete alge-
braic equation.
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3 Cases of numerical instability

Numerical instability due to discretization manifests in various cases of the nu-
merical resolution of differential equations, including ordinary differential equa-
tions and partial differential equations.

A notable historical example was reported by meteorologist Norman A.
Phillips (1959) who called it non-linear instability. When developing one of
the very first general circulation models (an atmospheric model over a large ge-
ographical space), he encountered this instability in a numerical solution of the
nonlinear barotropic vorticity equation. As illustrated in Figure 1, the numerical
computation breaks down abruptly after several days of simulation run.

Figure 1: Disturbance kinetic energy as a function of time. The solid curve
was obtained without smoothing, the computations breaking down at about 56
days. The dashed curve was obtained by periodically introducing a filtering
procedure. (Phillips 1959, 503)

In order to explain this instability, let us consider the following partial dif-
ferential equation which contains a nonlinear term of type “u · ∂u∂x”, such as
∂u
∂t + u · ∂u∂x = 0. This describes a simple configuration of one-dimensional ad-
vection, where u(x, t) is the fluid velocity.7 Suppose that the solution u is such
that u = sin (kx). The non-linear term then becomes u · ∂u∂x = 1

2k sin (2kx). This
corresponds to a wave whose length is half the length of the original wave. By
iteration, the non-linear term “generates” new waves of ever-smaller lengths;
this is called the aliasing effect. This process mirrors the natural phenomenon
of transfer of energy to the smaller scales. The transfer of energy to smaller

7Advection is the horizontal transport of properties such as heat, temperature, salinity or
polluting material, by displacement of a fluid such as water or air. u · ∂u

∂t
is the advected

quantity over time; in the context of fluid dynamics, it is the fluid velocity. ∂u
∂x

is its partial
derivative against the spatial coordinate x. The fluid velocity, like any quantity in climate
models, is decomposed into a Fourier series, i.e. into a sum of cosines and sines. In other
words, it is represented as a wave packet, each wave being a perturbation.
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scales goes on until the smallest wavelengths are produced and then eliminated
by viscous dissipation.

The instability occurs when the size of the wave becomes shorter than twice
the grid length, because now they can no longer be resolved in the model;
this is “the smallest resolvable wave”. As Phillips argued, “this instability
arises because the grid system cannot resolve wave lengths shorter than about
2 grid intervals; when such wave lengths are formed by the non-linear interac-
tion of longer waves, the grid system interprets them incorrectly as long waves”
(Phillips 1959, 501). Yet even if the size of the discretization is taken to be
arbitrarily small, there will always be new waves which could not be resolved,
since the non-linear term always generates new waves of ever-smaller length.
As Phillips emphasizes, “This “instability” cannot be eliminated by reducing ∆t
[the discrete time step]”(1959, 502). This example epitomizes the definition of
numerical instability we offered in Section 2.3): however small the discretization
step is, a significant discrepancy between the exact solution and the numerical
solution appears at some point. In Section 5 we will discuss how it is, neverthe-
less, possible to overcome such numerical instability.

This numerical instability is connected to the class of stiff problems, ex-
tensively studied in numerical analysis. Roughly speaking, stiff problems are
differential equations for which the typical time scale of the differential equa-
tion cannot be “resolved” by the numerical method. In other words, the size of
the discretization step is not sufficiently small to resolve the time evolution of
the differential equations. If the time-scale variation of the differential equation
is unknown, is very small or, even worse, decreases over time, then numerical
instability can occur at some point over the numerical resolution. There are
many examples of such issues that cannot be discussed in this paper (see e.g.
Bui and Bui 1970; Hairer and Wanner 1991; Krivine, Lesne, and Treiner 2007);
an example of stiff problem is given in Appendix 7.1.

Moreover, numerical instability can occur even for problems which are not
identified as stiff. Even very simple and apparently unproblematic dynamical
systems can lead to numerical instability if the computer simulation is suffi-
ciently long. An example comes with the use of another basic numerical method,
namely the backward Euler method. This method transforms the differential
equation 1 into the discrete equation:

(xk+1 − xk)/h = f(xk+1) (3)

Figure 2 represents the numerical resolutions of the simple pendulum by us-
ing this method, for different initial conditions. The differential equation is
d2θ/dt2 = −g/l sin (θ), where θ is the angle. Stern and Desbrun (2008) show
that numerical instability occurs in this one-dimensional dynamical system. The
exact solutions of the dynamical system are known: they are ellipsoids in the
phase space. Yet unlike the exact solutions, the numerical resolutions of the dy-
namical system with the numerical method significantly deviate from the exact
trajectories; we will come back to this problem in Section 5. The explanation of
this numerical instability is very basic: discretization errors accumulate at each
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Figure 2: Numerical computations of the simple pendulum equation with backward
Euler method. The trajectories are decreasing spirals because of numerical instabili-
ties. (Stern and Desbrun 2008).

step of the numerical resolutions. It is noteworthy that numerical instability
can occur in dynamical systems that are not sensitive to initial conditions: as
the example illustrates, the simple pendulum is a non-linear problem, but is not
sensitive to initial conditions since it has periodic solutions. Furthermore the
example shows that numerical instability may occur due to the use of numerical
methods, even if the methods are supposed to be stable – under some criteria
that we will discuss in Section 4.

Given that, usually, the exact solutions to the models of dynamical sys-
tems are unavailable, how can scientists know that the models are numerically
(un)stable? Criteria for stability are provided by numerical analysis textbooks,
and it is to these we now turn.

4 Criteria for stability in numerical analysis

Numerical stability of differential equations is a crucial property for predictions
requiring numerical computation. This notion attracts much attention in ap-
plied mathematics. We now review the main criteria for numerical stability
usually provided by numerical analysis textbooks. We argue that, despite their
importance, they are not sufficient to avoid the numerical instability of dynam-
ical systems defined in Section 2.3 and illustrated in Section 3.
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4.1 Zero-stability

In numerical analysis, a first important criterion for stability is zero-stability.8

Roughly speaking, a numerical method is zero-stable if a small difference be-
tween two initial conditions, does not entail significant change to the numerical
solution. More precisely, let us consider a numerical method (such as the for-
ward Euler method introduced in Section 2.3) with two initial conditions x0 and
x̃0. The method is said to be zero-stable if there exists a quantity S (named the
constant of stability) such that, for any integer k of the two numerical solutions
(x̃k) and (xk) built from the two initial conditions satisfy:

|x̃k − xk| ≤ S|x̃0 − x0| (4)

when time step h tends to zero. In other words, the distance between the two
numerical solutions based on two distinct initial conditions remains bounded
by a certain quantity. This first notion of stability refers to “the ‘stability’
of the numerical method with respect to ‘small perturbations’ in the starting
conditions” (Süli and Mayers 2003, 332).9

Zero-stability is a crucial property that a numerical method has to meet. An
example illustrating the importance of zero-stability is given in Appendix 7.2.
However, there are numerical methods, which are zero-stable, and yet lead to
numerical instabilities in the sense defined in Section 2.3. Our point is that a
zero-stable numerical method can lead to numerical instabilities depending on
the dynamical system to which it is applied. For instance, whereas both cases
discussed in Section 3 use zero-stable numerical methods, they exhibit numeri-
cal instabilities. In particular, numerical instabilities can occur with a periodic
dynamical system, such as the one-dimension simple pendulum system. Such
examples reveal that this first criterion is not sufficient to avoid numerical insta-
bilities. Thus, given a dynamical system, it is hard to know in advance whether
numerical instabilities will occur despite the use of a zero-stable method. There-
fore, a case-by-case analysis is needed.

4.2 Absolute stability

A second important criterion for stability is absolute stability. In order to define
it, let us consider a numerical method, with a finite time step h, which provides
the discrete sequence (xk) for the numerical solution (such as the forward Euler
method introduced in Section 2.3). The numerical method is said to be absolute
stable if there exists a quantity C > 0 such that, for any value of xk:

|xk| ≤ C (5)

8So-named because, for the multi-step methods of ordinary differential equations, “zero-
stability” can be determined by considering only the differential equation y′ = 0 (Süli and
Mayers 2003, 332). It is also sometimes called D-stability in honor of Dalquist (Hairer et al.
1987, 380), or just stability.

9This presentation is simplified. In particular, it leaves aside small roundoff errors. For
more details, see e.g., (Bréhier n.d., 14; Palais and Palais 2009, 137). Moreover, for linear
multi-step methods, one needs to take into account the initial values at the different steps (see
Süli and Mayers 2003, 332).
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In other words, the numerical method is said to be absolute stable if the numeri-
cal solution (xk) is asymptotically bounded (Palais and Palais 2009, 137; see also
Hairer and Wanner 1991, 40; Süli and Mayers 2003, 348). Unlike zero-stability,
absolute stability concerns the behavior of a numerical method as time t tends
to infinity, with a fixed step size h. Absolute stability assesses to which extent
the numerical solution to a stable problem can diverge, i.e. tends to infinity.
Absolute stability does not concern small changes in the initial conditions. It
only concerns the asymptotic behavior of the numerical solution, specifically
whether this solution is likely to tend to infinity.

The condition of absolute stability is particularly important for stiff prob-
lems. We discuss this notion in Appendix 7.3, which requires some mathematical
details. Here, we contend that, despite its importance, absolute stability is not
a sufficient condition for numerical stability based on an example. The sim-
ple pendulum problem, as presented in Section 3, can be affected by numerical
instability even while it makes use of an absolute stable method, namely the
backward Euler method that we defined in Section 3. In long-run numerical
computations, the use of absolute stable methods can even lead to discrete so-
lutions that significantly depart from the exact solution. The reason is that
absolute stability guarantees that numerical solutions will not diverge. How-
ever, numerical solutions can still deviate to exact solutions without diverging,
such as in the case of the simple pendulum where the numerical solutions are
decreasing spirals (see Figure 2).

In a nutshell, the main criteria traditionally provided by numerical analysis
textbooks, namely zero-stability and absolute stability, are insufficient condi-
tions for numerical stability. However, a promising alternative approach called
backward error analysis has recently attracted philosophical attention, and will
be briefly presented in what follows.

4.3 Backward error analysis

We have so far discussed the predominant approach in numerical analysis text-
books, which can be called “forward error analysis”. However, another ap-
proach, developed notably by Wilkinson (1971) and later by Corless and Fillion
(2013), called “backward error analysis”, provides the conditions for an a poste-
riori assessment of the numerical stability of the model of a dynamical system.
Two concepts play an important in this approach: the backward error and the
conditioning. An assessment of both is required to study whether the trajecto-
ries of the model of a dynamical system remain sufficiently close to the exact
solution.

In the predominant forward error analysis, the main error to estimate – the
forward error – is the discrepancy between the exact solution and the numerical
(approximate) solution. By contrast, backward error analysis focusses on the
backward error, which corresponds to the forward error being reflected back
into a perturbation error in the initial conditions, and can thus be estimated
more easily (see Fig. 3). In other words, within the backward perspective,
the numerical solution is viewed as “the exact solution of a nearby problem”

11



(Corless and Fillion 2013, 52). Accordingly, the approach aims to answer the
question: “how much error in the input would be required to explain all output
error?” (Fillion and Corless 2014, 1462).

Figure 3: Backward error and forward error. (Fillion and Corless 2014, 1462).

Conditioning is the other important notion in this approach. According to
Corless and Fillion, “a problem is well-conditioned if small changes in the prob-
lem lead to small changes in the solution” (2013, 507). Thus, the conditioning
of an initial value problem is related to the sensitive dependence of differen-
tial equations (see Sections 2.1 and 2.2): it is even “called ‘stability’ in the
differential equations literature” (Ibid.).

In the approach, the backward error and the forward error are linked by
a quantity termed the condition number κ. This number measures the sensi-
tive dependence of the dynamical system in changes of its specification.10 In
practice, if one can estimate the condition number, one can also work out the
relationship between the forward error and the backward error. This turns out
to be possible, for example, using Matlab software (Corless and Fillion 2013,
chap. 12). In the same way, the backward error can be evaluated a posteri-
ori through the computation of the residual, a key quantity. In the case of
dynamical systems, the residual corresponds to the error in the velocity of the
trajectories (Corless and Fillion 2013, 519). One can thus in turn calculate
the forward error, and evaluate how close to the exact solution the computed
trajectories of a dynamical system are (e.g., see (Corless and Fillion 2013, 533).

While a detailed discussion of this approach is out of the scope of this paper,
we should nonetheless mention that it comes with a number of advantages (see
e.g. Moir 2010 for ordinary differential equations). In particular, it is a general
approach which is not restricted to dynamical systems (Fillion and Corless 2014,
2019; Fillion and Moir 2018). But, despite its incentives, backward analysis, to
our knowledge, is yet not widely used in practice. It is therefore not easy to

10Roughly speaking, the relative forward error (δy = ∆y/y) is bounded by the product of
condition number with the relative backward error (δx = ∆x/x), so that:

δy ≤ κ · δx (6)

A problem, or a dynamical system, is called ill-conditioned if κ > 1, and well-conditioned if
κ ≤ 1.
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assess the exact extent to which backward analysis is and can be implemented to
overcome numerical instability in dynamical systems. That said, in the scientific
practice, besides these mentioned methods, other strategies are currently being
developed by practitioners and are more often employed. We now turn to some
of these strategies.

5 Dealing with the risk of numerical instability

There is a risk of numerical instability in non-linear mathematical models of
dynamical systems that are being solved by computer. In some cases, like
the simple pendulum, the instability can be easily identified because the exact
behavior of the dynamical system is well known. But, more often, the exact
solutions for dynamical systems are not known.11 In non-linear mathematical
models, even the mere detection of numerical instability is sometimes not an
easy task. How then to deal with the risk of numerical instability?

It seems reasonable, given the risk of numerical instability, to ask scientists
to gather evidence supporting the reliability of their non-linear models. How-
ever, the criteria for numerical stability, discussed in Sections 4.1 and 4.2 (i.e.
zero-stability and absolute stability), are insufficient to guarantee a priori the
absence of numerical instability. Backward analysis, presented in Section 4.3,
constitutes a new and promising a posteriori method to overcome numerical
instability, however. Besides the methods mentioned above, scientists have in
practice also developed certain specific strategies. In this section, we will out-
line some of the strategies that scientists may adopt on a case-by-case basis,
depending on the problem they are facing.

5.1 Developing new numerical methods

In order to avoid instability occurring in long numerical computations, a first
important strategy is to develop new numerical methods. Several options are
usually available. One option is to use variable discretization steps: instead
of choosing a constant time step parameter h, one can choose a variable time
step hk with respect to computation step k; or one can choose a technique to
distribute mesh points (e.g., see Söderlind 2006), such as spectral methods for
partial differential equations (e.g., Trefethen 1994, chap. 7). We also mention
the defect-controlled methods, which are another dynamic approach to manag-
ing numerical stability (see, e.g., Corless 1992).12

A second option, on which we will focus in the remainder of this section, is
to turn to geometric integration and symplectic methods. Such methods have
been proven to be efficient for long-run computations, and for some other kinds

11There are, however, cases where the use of numerical solutions is preferred although
scientists know the exact solutions (Ardourel and Jebeile 2017).

12We are in debt to an anonymous reviewer for providing such insights.
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of problems, and in particular for dynamical systems.13 This is a lively topic
within the field of numerical analysis. For example, although the two first
textbooks by Hairer et al. are dedicated to numerical methods for non-stiff and
stiff problems, the third is entirely devoted to Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations. The au-
thors emphasize the importance and the specific character of these methods:

In the last few decades, the theory of numerical methods for general
(non-stiff and stiff) ordinary differential equations has reached a cer-
tain maturity, and excellent general-purpose codes, mainly based on
Runge–Kutta methods or linear multistep methods, have become
available. [...] It turned out that the preservation of geometric
properties of the flow not only produces an improved qualitative
behaviour, but also allows for a more accurate long-time integration
than with general-purpose methods.

An important shift of view-point came about by ceasing to concen-
trate on the numerical approximation of a single solution trajectory
and instead to consider a numerical method as a discrete dynamical
system which approximates the flow of the differential equation –
and so the geometry of phase space comes back again through the
window. (Hairer, Lubich, and Wanner 2002, v)

The main idea of this approach is the following: for some kinds of dynamical
systems, such as Hamiltonian systems, numerical methods, which preserve – in
a discrete sense – some invariants, e.g. momenta or symplectic forms, will lead
to more stable numerical resolutions.

Let us take an example discussed by Hairer et al. (2002). This is the nu-
merical resolution of the equations of a reduced solar system with the five outer
planets relative to the Sun. Different numerical resolutions performed over a
time period of 200,000 days are carried out with four numerical methods (Figure
4). Unlike the two first methods, the last two methods are symplectic numerical
methods and lead to very stable long-run numerical computations. Moreover,
according to Hairer et al. (2002):

An integration over a much longer time of say several million years
does not deteriorate this behaviour. (Hairer et al. 2002, 15)

This long-time numerical stability is explained by the preservation of the
symplectic form of the Hamiltonian system when the symplectic Euler method
or the Störmer–Verlet scheme are used (see Ardourel and Barberousse (2017)).
This strategy can, in principle, be applied to any Hamiltonian system. For
example, we have seen previously that the numerical resolution of the simple
pendulum is not stable with the backward Euler method (see Figure 2). By
contrast, Hairer et al. show that the numerical resolutions become stable if a
symplectic Euler method is used (2002, 5; see also Stern and Desbrun (2008)).

13Having recourse to adaptive time steps is compatible with resorting to geometric integra-
tion (e.g., see Ardourel and Barberousse 2017, 180).
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Figure 4: The trajectories of the planets of a reduced solar system computed with four
numerical methods: forward Euler scheme, backward Euler scheme, symplectic Euler
scheme, and Störmer–Verlet scheme. A 10-days time step is used with the forward and
backward Euler integrators while a 100-days step is used with the symplectic Euler and
a 200-days step with the Störmer–Verlet scheme. For each numerical computation, the
initial conditions correspond to the positions of planets on September 5, 1994 at 0h00,
and numerical resolutions are performed over a time period of 200,000 days (Hairer et
al. 2002, 14).

5.2 Tuning, parameterizing and tinkering

Another approach is to consider models as autonomous mediators standing be-
tween experimentation and theoretical activity. Understood in this sense, mod-
els are not entirely grounded on theories but should also be shaped by data.
Hence, matching the data becomes as high a priority as solving the equations in
the most exact way, and may even be of higher priority, as claimed by Lenhard.

Lenhard and his co-author (Lenhard 2007; Lenhard and Küster 2019) high-
light that the discretization process is a part of simulation modeling. The steps
of simulation modeling encompass the design of an initial continuous mathe-
matical model, the transformation of this model into a discrete version by a
discretization process, the implementation of this discrete version on computer,
the simulation, and finally the evaluation, which can require iterative loops of the
transformation of the continuous model into the discrete version (see Lenhard
and Küster 2019, Fig. 2). Each step – the different operations and the resulting
transformations – aims to fix specific possible problems at the different stages
of the model build.

Importantly, in his 2007, Lenhard argues that the discretization process,
which he considers to be an important task in scientific modeling, is not just
a mathematical problem concerning the resolution of the equations and the
obtaining of acceptable approximate solutions to the initial equations. For him,
the discretization process should also be oriented toward fitting the data. In
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this context, fitting the data requires tuning the model parameters accordingly,
making adequate parameterizations, and/or choosing an appropriate numerical
scheme.

In other terms, the results of the discrete version should not be taken strictly
as the “numerical solutions” to the continuous version, or “in any case, [they]
correspond to these with an arbitrary precision” (Lenhard 2007, 189). On the
contrary, taking the example of Arakawa’s simulation of the atmosphere, he
claims that “imitating the phenomena of the atmosphere is more important
than solving the primitive equations” (Lenhard 2007, 184).

In this respect, the problem of instability has a different degree of episte-
mological difficulty: “The problem of the instability of long-term integrations
could only be overcome when the construction of a discrete simulation model
was seen as a task in its own right, oriented more at the imitation of phenomena
than at solving the equations of the theoretical model” (Lenhard 2007, 177). As
Lenhard highlights, Arakawa in his approach to the atmosphere makes an as-
sumption that is inconsistent with our best knowledge in physics, i.e. he posits
the conservation of kinetic energy in the atmosphere. Yet by doing so he is
able to overcome numerical instability. “In terms of physics, one can say that
Arakawa artificially limited the growth of instability by conserving kinetic en-
ergy” (Lenhard 2007, 185). In the same vein, Hollingsworth, K̊allberg, Renner,
and Burridge (1983) suggest a modification of the numerical scheme in order
to overcome a problem of instability due to linear terms of definite difference
equations not conserving momentum.

As Lenhard finally concludes:

The key point is that the consequences of a model, its properties,
can be observed in experiments, and through this, by implementing
different discretization schemes or by introducing, tuning, and ad-
justing parameters, one can obtain, in turn, a further change in the
model that is driven directly by the phenomena or the data. The
model becomes the object of a recursive process that runs repeat-
edly through numerical experiments, observations, and parameter
adjustments. (Lenhard 2007, 191)

We want to highlight that tinkering with the numerical scheme, i.e. develop-
ing ad hoc solutions, can indeed be a strategy to overcome numerical instability.
This is the case when dealing with non-linear instability and the aliasing effect
(see Section 3). Solutions to aliasing due to nonlinear terms have been de-
veloped to eliminate aliasing errors and are available to scientists. Examples
include filtering wave components whose wavelengths are less than four grid
intervals, as suggested by Phillips (1959) himself but also by Platzman (1961)
and Baer (1961); filtering out all waves whose wavelengths are between 2∆x and
3∆x as shown by Orszag (1971); and using a different difference scheme, e.g.
a quadratic conserving scheme or a staggered-grids-based scheme (cf. Arakawa
1977, 48-51).

We agree with Lenhard that matching the data, possibly via tuning the
model parameters, parameterizations, and tinkering with the numerical scheme,
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is an important aspect of dealing with numerical instability. That said, we
are also aware that there is a risk of overfitting the data, which makes the
model incapable of providing genuine novel predictions outside the range of the
benchmark data. We believe that more work needs to be done to explore the
tension between the capacity of the tuning of model parameters to fix numerical
instability, and the risk of overfitting the data.14

6 Conclusion

In philosophical studies regarding mathematical models of dynamical systems,
instability due to sensitive dependence on initial conditions, on the one side,
and instability due to sensitive dependence on model structure, on the other,
have by now been extensively discussed. Yet there is a third kind of instability,
which by contrast has so far been overlooked, which also poses challenges for
model predictions about dynamical systems: this is numerical instability due
to numerical methods involving a discretization process, where discretization is
required to solve the equations of dynamical systems on a computer.

After providing some definitions, our discussion in this paper turned to the
question of how scientists can know that their models are numerically (un)stable.
To this end, we first considered the criteria for numerical stability, as usually
provided by numerical analysis textbooks, and we argued that they are insuf-
ficient. After having briefly presented backward analysis, an approach which
shows promise, we then outlined practical strategies that scientists might adopt
to avoid numerical instability in practice.

We hope this contribution might encourage further investigation by philoso-
phers of this important kind of instability, rooted in applied mathematics, which
has so far been rather overlooked compared to the Butterfly effect and the Hawk-
moth effect.

7 Appendix

This Appendix provides examples and mathematical details on some notions
discussed in the paper, viz. stiff problems, zero-stability and absolute stability.

7.1 Stiff problems

Here is an one-dimensional example of stiff problem provided by Hairer and
Wanner (1991):15

dy

dx
= −50(y − cosx) (7)

On the left of Figure 5 are the solution curves of the equation. They show a
smooth solution, close to y = cosx, as well as a bunch of solutions that reach

14For a recent attempt at showing how tuning the parameters can fix structural instability,
see Baldissera Pacchetti (2020).

15They borrow this example from Curtiss and Hirschfelder (1952).
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this smooth solution after a transient phase. However, some other numerical
solutions do not behave the same way. On the right of Figure 5 are two solu-
tions with initial value y(0) = 1, and respectively step sizes h = 1.974/50 and
1.875/50. These solutions have no transient phase, and enable us to infer that,
as soon as the step size is larger than 2/50, the numerical solution goes too
far beyond the equilibrium and violent oscillations occur (Hairer and Wanner
1991, 2). Specific numerical methods have been developed in order to solve stiff

Figure 5: On the left, solution curves with implicit Euler solution. On the right,
explicit Euler solution for y(0) = 0, h = 1.974/50 and 1.875/50. (Hairer and Wanner
1991, 2)

problems (see Section 7.3).

7.2 Zero-stability

In order to understand the importance of a numerical method being zero-stable,
let us take the example of a dynamical system defined by the following partial
differential equation:

∂u

∂t
=
∂u

∂x
(8)

with u(x, 0) = cos2 x if |x| ≤ π/2, u(x, 0) = 0 otherwise.
Let us take the leap frog numerical method, viz. the discretization un+1

j =

un−1
j + λ(unj+1 − unj−1), with the space step h = 0.04π and time step k = λh,

where λ is the mesh ratio (see Trefethen 1994, 148). Figure 6 shows the two
numerical solutions with respectively λ = 0.9 and λ = 1.1. As we can see, for
λ < 1 there is a propagation of the wave as predicted by the theory. This is the
regime where the numerical method is zero-stable. On the contrary, for λ > 1
numerical artefacts appear in the propagation of the wave. This is the regime
where the numerical method is not zero-stable.

As emphasized by Trefethen (1994), in the case where λ > 1: “The errors
introduced at each step are not much bigger than before [i.e. for λ < 1] but
they grow exponentially in subsequent time steps [...]. This rapid blow up of a
sawtooth mode is typical of unstable finite difference formulas” (1994, chap 4,
148).
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Figure 6: Stable and unstable leap frog approximations to ∂u
∂t

= ∂u
∂x

. (Trefethen 1994,
149, Fig. 4.1.1)

It is important to emphasize that the instability is not generated by round-
off errors; it is generated by discretization errors which accumulate in the regime
where the numerical method is not zero-stable. In both cases (λ < 1 and λ > 1)
the numerical method is consistent. Nevertheless, the numerical solution to
equation 8 would converge to the exact solution when h and k tend to zero in
the regime of zero-stability, i.e. when λ < 1.16 Thus, as we have just seen, in
order to avoid numerical instability, it can be crucial to investigate whether a
numerical method is zero-stable.

Zero-stability can be applied to numerical methods used for ordinary dif-
ferential equations. In those cases, it concerns the behavior of the numerical
method for a fixed time value t, as time step h tends to zero (see Hairer et
al. 1987, 378, and Fasshauer 2007, chap. 4). This is a particularly important
condition for multi-step methods (Süli and Mayers 2003, 332; Hairer et al. 1987,
398; Trefethen 1994, chap. 1, 40). Zero-stability also concerns the numerical
methods used for partial differential equations. In this case, it also concerns the
behavior of the numerical method for a fixed time value t, as time step k tends
to zero, but also as spatial step h tends to zero.

Consistency is a property required for a numerical method. A numerical
method is said to be consistent if the local errors introduced at each step tend
to zero when the discretization steps tend to zero. However, consistency is a
necessary but not sufficient condition for solution convergence, which means
that the discrete solution tends to the exact continuous one when the time step
tends to zero. Zero-stability is also required: if a numerical method is consistent
and zero-stable, then it is convergent. In other words, being zero-stable allows

16There are mathematical results that state the conditions for which a finite difference
formula can be zero-stable. This is for instance the case of the Courant-Friedrichs-Lewy
(CFL) condition. Informally, the CFL condition states that a finite difference formula can
be stable only if its numerical domain of dependence is at least as large as the mathematical
domain of dependence (Trefethen 1994, 162).
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a numerical method to be convergent.17

7.3 Absolute stability and stiffness

In order to better understand what absolute stability is, and how it is connected
with stiff problems, let us take the example of the initial value problem:

dx

dt
= −µx x(0) = a (9)

The solution is an exponential function such as x(t) = ae−µt with µ > 0.
The resolution of the initial value problem with the Euler forward method

leads to the following discrete equation:

xk+1 = xk − hµxk, x0 = a (10)

The exact discrete solution is: xk = a(1− µh)k. If h < 2
µ , both continuous and

discrete solutions tend to zero when t or k tends to infinity. Nevertheless, when
h > 2

µ , the discrete solution increases with k. This illustrates that the Euler
method is not absolutely stable for all values of h. It is a conditionally stable
numerical method.

Let us now use the Euler backward method in order to solve this same
problem. In that case, the discrete equation becomes:

xk+1 = xk − hµxk+1, x0 = a (11)

The exact discrete solution is: xk = x0/(1 + µh)k. Here, both continuous and
discrete equations tend to zero when t and k tend to infinity, whatever the value
of h is. This illustrates that the Euler backward method is an unconditionally
stable numerical method.

The Euler forward method is an explicit method: one just needs to know
the value xk to directly infer the value xk+1 at the next time step by applying
the discrete time evolution. On the contrary, the Euler backward method is
implicit : one cannot directly derive the value of xk+1 with xk, instead one gen-
erally has to solve a non-linear equation with xk+1. Generally, explicit methods
are not suitable to solve stiff problems – something which is sometimes part of
the definition of stiffness itself! Thus, Hairer et al. (1987) assert that “stiff equa-
tions are problems for which explicit methods don’t work” (1987, 2). Implicit
methods, on the contrary, are indeed generally suitable.18

17In the context of partial differential equations, this is linked to the main theorem of
numerical analysis, called the Lax Equivalence Theorem. Informally, the Lax Equivalence
Theorem says that, as soon as the numerical scheme is consistent and based on a linear finite
difference model, stability is a necessary and sufficient condition for convergence (Trefethen
1994, 157). The notion of convergence is connected to consistency (e.g. Trefethen 1994, chap.
1, 53) but also to conditionning (e.g. Corless and Fillion 2013, 598; see Section 4.3).

18There are mathematical results that state under which conditions a linear multistep nu-
merical method is absolute stable (see Fasshauer 2007, chap. 4, Hairer et al. 1987). The
notion of L-stability can be introduced to further elaborate the idea of absolute stability (Bui
and Bui 1970, 356).
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