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SPECTRAL ASYMPTOTICS FOR METROPOLIS
ALGORITHM ON SINGULAR DOMAINS

L. MICHEL

ABSTRACT. We study the Metropolis algorithm on a bounded connected
domain € of the euclidean space with proposal kernel localized at a small
scale h > 0. We consider the case of a domain {2 that may have cusp
singularities. For small values of the parameter h we prove the existence
of a spectral gap g(h) and study the behavior of g(h) when h goes to zero.
As a consequence, we obtain exponentially fast return to equilibrium in
total variation distance.
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1. INTRODUCTION

Let € be a bounded connected open subset of R? and let p(x) be a positive
measurable function on €2 such that

(1.1) Ve e Q, m<plx) <M

for some constants m,M > 0. We denote p, = p(x)dx the associated
measure on { and we assume that 1,(Q) = [, p(x)dz = 1. We consider the
Metropolis algorithm associated to the density p defined as follows. For all
h €]0,1], we define the distribution kernel

(12 bl ) = -0 min( 420, 1)

where ¢(z) = i]lB(Ogl)(z), B(0,1) denotes the open unit ball in R? and %
).

d
is the volume of B(0,1). The Metropolis kernel, is then given by

(1.3) thp(x, dy) = mp p(2)0y=¢ + knp(z,y)dy
1
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where mp,(x) = 1 — [ knp(z,y)dy. The kernel tj, ,(x,dy) is clearly a
Markov kernel on the state space {2 and the associated operator

(1.4) Ty () () = mn p(@)u(z) + /Q oy (2, 9) () dy

is a Markov operator. Throughout the paper, we sometimes omit the de-
pendance of this operator with respect to p and write T}, instead of T} ,
when there is no ambiguity. A straightforward computation shows that T}, ,
is self-adjoint on L?(€2, p(x)dx) which implies in particular that the measure
W, is stationary for the kernel ¢, ,(x,dy). As a consequence, the iterated
kernel tj; p(x, dy) converges to the measure p, as n — oo, which explains the
use of this kernel to sample the measure f,,.

Introduced in [8] to compute thermodynamical functionals by Monte-
Carlo method, this algorithm has shown an impressive efficiency and is now
used as a routine in many domains of science. From a theoretical point of
view, the computation of the speed of convergence of the algorithm aroused
many works in the setting of discrete state spaces (see [1], [4] for introduction
to this topic and references). In [2], we obtained first results on a continuous
state space in the limit h — 0. More precisely, given a bounded domain {2
of R? with Lipschitz boundary we proved that the operator T, admits a
spectral gap g(h) of order h? and for smooth densities p, we did compute
the limit of A=2g(h). Eventually, we obtained some total variation estimates

(1.5) sup |15 (. dy) = dpso(y) v < Ce 9
TE

for some constant C' > 0 independent of h. In this approach the fact that 92
has Lipschitz regularity plays a fundamental role at several stages. A natural
question is then to explore situations where this regularity assumption on
0N fails to be true. In the present paper, we consider the case where 02
may have cuspidal singularities. More precisely we introduce the following
assumption:

Assumption 1. There exist a finite collection of open subsets of R%, (w;)ier,u1.
such that 0Q C (User,urwi) and

i) for alli € I, OQ Nw; has Lipschitz reqularity,

ii) for all i € I., there exists a closed submanifold S; of R with di-
mension d, and there exist o > 1,7; > 0,¢; > 0 such that in the
neighbourhood of every point p € S; there exists a coordinate system

(z1,2/,2") € R* = R x R% x R%', in which p = (0,0,0) and
(1.6) QNw; ={(z1,2,2"),0 < 21 < ¢, ]w'|d;< z1", ]x"]dg/< i}
where ||, stands for the euclidean norm on R¥.

Throughout the paper we will denote

1. = . —1)d.
(1.7) ¥ rirg}f(a )d;

In our main results we need the cusp singularities to be not too sharp. We
then introduce the following

Assumption 2. The constant v defined by (1.7) satisfies 0 < v < 2.
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Observe that as soon as I, is non empty (that is there exists some cusps
on the boundary), one has v > 0. Under the above assumption one has the
following rough localization of the spectrum of T}. The proof of this result
will be given in the next section.

Proposition 1.1. Assume that Assumption 1 holds true. Then there exist
91,02 > 0 and ho > 0 such that for all h €]0, hol, o(Ty) C [-1+461h7,1] and
Oess(Th) C [—1+ 01hY, 1 — 62h™] where ~ is defined by (1.7).

From the above result, it is clear that the spectrum of T}, in the interval
[1 — Ch",1] is made of eigenvalues of finite multiplicity. Our first main
result will provide precise informations on the spectrum of T} in a box
[1—Ch?,1] under smoothness assumptions on the density p. For p € C1(Q),
we introduce the associated diffusion operator L, defined in a weak sense as
follows. Given u € HY(Q), let £, : H' () — C be defined by

0y (v) :/QVqudup—i—/qud,up

where we recall that du, = p(z)dx. We define the domain of L, as the set
of functions u € H' such that £, is continuous for the L? topology:

D(L,) = {u € HY(Q), 3C, > 0, Vv € H(Q), [lu(v)] < Culv| 12}

Observe that D(L,) is not empty since it contains C;°(€2) (here we use the
fact that p is C'). Since H!(f) is dense in L?(Q) then for any u € D(L,), £,
can be extended as a continuous linear form on L?(Q2) and by Riesz Theorem,
there exists a unique f € L?(f2) such that

Cu(v) = (f,0) 12(p), YV € HY(Q).

We then set L,u = —u+ f. From Theorem 3.6 in [5], we know that D(L,) is
dense in H(Q) and that Id+L, : D(L,) — L*(2) is bijective with bounded
inverse. Now, it follows from Assumption 1 and the Theorem of section 8.3 in
[7] that the embedding H*(2) < L?(f2) is compact and hence the resolvent
(Id+L,)~ ! is compact. We introduce the sequence vy < v; < vy < ... of
the distinct eigenvalues of L, with associated multiplicities m;. Since, L,
is clearly non-negative and 0 is a simple eigenvalue, it follows vy = 0 and
mo = 1.

Theorem 1.2. Suppose that p € C*(Q) satisfies (1.1). Suppose that As-
sumptions 1 and 2 are verified. Let R > 0,e > 0 and J > 0 such that for all
Jj<J,vi <R and for all j < J, vjy1 —v; > 2¢. Then there exists hg > 0
such that for all h €]0, ho],

1-T,
(1.8) ol %
1-T}

and the number of eigenvalues of =z counted with multiplicities, in the
interval [v; — e, vj + €], is equal to m;.

)ﬁ]O, R] C Uj21[yj —& Vi + 6],

Observe that this theorem is the analogous of Theorem 1.2 in [2]. Here
we assume Assumption 2 to insure that there is no essential spectrum in
the interval [1 — Ch?,1]. The case where v > 2 seems more difficult to deal
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with since in this case the eigenvalues would be embedded in the essential
spectrum.

If we drop the smoothness assumption on the density p we get the follow-
ing results.

Theorem 1.3. Assume that p is a measurable function satisfying (1.1).
Suppose that Assumptions 1 and 2 are verified. Let 61,02 > 0 be as in Prop.
1.1. There exists C,hg > 0 such that for any h €0, hy|, the following hold
true:
i) The spectrum o(Ty,) of Ty, is contained in [—1+61h7, 1], 1 is a simple
eigenvalue of Ty, and o(Ty) N [1 — 62h7, 1] is discrete.
ii) The spectral gap g(h) :=dist(1,0(Ty) \ {1}) satisfies

(1.9) éhQ < g(h) < Ch?.

As we shall see later, using (1.1) and comparaison of Dirichlet forms, this
theorem is essentially a consequence of Theorem 1.2. From this spectral
result we deduce estimates on the speed of convergence of the iterated kernel
(ty ,(z,dy)) towards the stationary measure 1,. We recall that the total
variation distance between two probability measures p and v is defined by

Il e (A) — v(A)| where Z denotes the set of Borel set.
Moreover, one has the following
(1.10) ln=vlrv =5 swp | [ fau— [ san

feL>=|fI<1

Theorem 1.4. Assume that p is a measurable function satisfying (1.1).
Suppose that Assumptions 1 and 2 are is verified. There exists C,hg > 0
such that for any h €]0, hg] one has

L1 supgeallty (@, dy) — ppllry < Ch™1~2e 9WA+OW D),
h,p Y Mp
for all n € N.

Compare to Theorem 1.1 in [2], the estimate (1.10) above suffers a loss

of h~5~7 in front of the exponential. This loss is the natural loss when
you go from convergence in L? sense (which follows from the spectral gap)
to convergence in total variation. In [2], we used sophisticated tools (Nash
estimates, Weyl asymptotics) to absorb this loss. In the present case, this
strategy fails because of the cusp where nice estimates of eigenfunctions of
T}, can not be obtained from (see Lemma 3.1). However, let us emphasize
that this prefactor implies only a logarithmic loss in the time needed to
reach equilibrium (h=2log(h) instead of h=2).

The proof of the above theorems follows the general strategy of [2]. In
section 1, we prove Proposition 1.1. In order to prove Theorem 1.2 one uses
minimax principle and quasimodes built from the eigenfunctions of L, to
prove that h=2(1 —T},) has at least m; eigenvalue near vj. The proof of the
converse inequality is more difficult and requires to prove some regularity
property of eigenfunctions of 1 — 7T},. This is done by mean of a dyadic
decomposition of the cusp in section 3. Using these constructions we prove
the main theorems in section 4. In a separate appendix we prove a gluing
lemma of H' functions which is crucially used in the proof of the main result.
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We conclude this introduction with some notations used in the sequel.
On R¢, we will denote by |z|4 the euclidean norm of a vector z. When there
is no ambiguity we will drop the index d and simply write |z|. Given a
function f : x = (z1,2/,2") € R4+ 5 f(z1,2' 2") € R we will denote
by V/f(z) € RY (resp. V"f(z) € R?") the gradient of f in the 2’ variable
(resp. x” variable). Given two quantities us, v depending on a parameter t,
we denote u =< v if there exists C' > 0 such that %ut < vy < Cuy for all t.

Acknowledgment: The author would like to thank warmly G. Lebeau for
numerous fruitful discussions on this work. The author is member of the
ANR project QuAMProcs 19-CE40-0010-01.

2. ROUGH LOCALIZATION OF THE SPECTRUM

In this section, we give a proof of Proposition 1.1. We first show that the
operator Ky, : f — [o kno(z,y)f(y)p(y)dy is compact on L*(Q, p(y)dy).
Let (¢,) be a sequence of continuous functions such that ¢ < ¢, < 1 and
(¢n) converges to ¢ in L?(p(z)dxr) when n — oo. Consider the sequence

of kernels k, p, , = h*dgbn(x—;y) min(%, 1) and let K, p, , be the associated
operators. Then (K, ,) converges to K, , in £(L?, L?) when n — co. On
the other hand, since the kernels k,, j, , are continuous, the operators (K, ,)
are compact and hence Kj, , is compact.

Let us prove that oes5(Ty) C [—1,1—Ch?]. Thanks to Weyl criterium and
compactness of K}, , it is sufficient to prove that sup,cq mp p(x) < 1—ChY.
Since

mh
L —mpp(z) > EA /Q Lje—y|<ndy,

with m, M given by (1.1) the proof reduces to show that there exists C, hy >
0 such that

(2.1) Vh €]0, hol, Yz € Q, 0),(z) > Chdt

where 0j,(z) := [, Lj;—y|<ndy. Consider the family of subsets w; of Assump-
tion 1 and let O; = QNw;. By a compactness argument, we can assume that
there exists a family of open sets (@)), such that @] C w; for all i € I, U I,
and Assumption 1 holds true with the w]. It follows that Q = U2 ;O; with
O} = w; N Q where J = I, U I U{0}, and w( is an open subset of © such
that d(w(),d€) > 0. Let us now estimate the function 6, on each O..

We first observe that for 0 < hy < d(&j,09) and h €]0, ho], one has
B(z,h) C Q for any x € O} and hence 0),(z) = h?¥#; which establishes
the bound (2.1) on Of. Let us now study 6, on O}, i € I, U I.. Taking
ho > 0 sufficiently small, we can assume that for all h €]0, hg] one has
wi+ B(0,h) C w; for all i € I, U I.. Hence, if ¢ : U; — w; is a smooth local
change of coordinates then for any = € O, one has

On(x) = /Q Lpyj<ndy = / L1 (2))—yl<ndY
(2.2) O
= /Uf Jo (W)L p(p1(2)— () <Y
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where J,(y) denotes the Jacobian of ¢ and U = »~1(O;). On the other
hand, since ¢ is a smooth function, there exists C' > 0 such that for all
u,v € Uy, |p(u) — ¢(v)| < Clu — v|. Combined with (2.2), this implies

(23)  Ou(x) > /U , oW1 @) yi<njcdy 2 C /U o Vet @-vi<n/cdy

for some positive constant C' such that |Jo| > C on U;. This minoration
shows that in order to get some lower bound on 6}, we can suppose that we
are in any suitable system of coordinates.

Suppose that i € I,.. By a Lipschitz change of coordinates it is shown in
[2] that there exists some constants c1,ca > 0 such that

(2.4) Qh(fL‘) Z Cl/ ]l|m_y|<hdy Z Cth
x1>0

for all x € O). Combined with the definition of 6, this shows that (1 —
mp(x)) > e3 for some c¢3 > 0 independent of h.

Suppose now that i € I, and that w; is like in ii) of Assumption 1. Using
a suitable change of coordinates, we can assume that there exist a > 1,7 >
0,€e > 0 such that

O0; = QNw; = {(z1,2,2"),0 < 21 < e, [2|g< 2f, |2"|an< 7},

where d', d” are the local dimension appearing in Assumption 1 whose de-
pendance with respect to the index ¢ is omitted. Moreover, we can also
assume that O, = O, N {0 < z1 < ¢/2} N {|2"| < r/2}. Endowing O; with
the equivalent norm

‘(‘Tla $/7 $//)|OO: max{]:c1|, |x/|d’7 |x//|d"}7

it is sufficient to find a lower bound for [, 1}p—y|.c<ndz When z varies in O].
For such z, one has

/Q Lpylo<ndy = /Q L2y o )~ (. ") oo <h@Y1dY Ay

(2.5) =

/” , ]l|1‘”—y”|d//<h
|y |d//<7‘,|y |d/<y‘f‘,0<y1<e

Loy <n Ly g | <ndindy'dy”
> ch® Wi, (2, 2")

where c is a positive constant and
20)  Wies) = | Uy ey yu <ndy'dn.
[y | <y§,0<y1<e

Denoting
C={(ny) eRxRY, |y/|s <y, 0<y1 < ¢}
and
Dp(x1,2")={y €C, |y —2'|¢< h and |21 — y1|< h},
we have Wy (z1,2") = vol(Dp(z1,2")) and thanks to (2.5), one has to prove
that Wy, (x1,2") > ch®?+! for some uniform constant ¢ > 0. We first observe
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that it holds true for (z1,2") = (0,0), since one has (using a > 1)

h h
D) W00 = [ [ n0up@)sdn =S [ i = et

We now decompose the cusp into three zones that we treat differently: {0 <
21 < h/2}, {h/2 < 21 < (6h)a} and {(h)s < 21 < €}, where § > 0 will be
chosen sufficiently small.

e Suppose first that x; < %, then since o > 1, one has for h small

enough Dy (z1,2") D {(y1,¥'), |y1] < h/2}NC. Combined with (2.7),
this yields

Wh(z1,2") > / Ly, j<ny2dyrdy’ = W (0,0) = ch®¥*!
[y | ar <y 2
which is the required lower bound on Wj,.

e Suppose now that h/2 < z1 < (5h)é, then
Dh(xl,x/) D{z1 <y1 <z +h, \y'| < z{}.

Indeed, if |¢/| < z§ and y1 > x; one gets immediately (y1,y’) € C
and since |2'| < x§ < dh then |2/ — /| < |2/| + |y/| < 26h < h for
0<o< % From the above inclusion, it follows

Wh(a1,2') > Vga§@h > 2704 fy hod 1,

e Eventually, suppose that (5h)é < x1 < €. We observe that the appli-
cation ' — Wp(z1,2') is radial. Hence, it suffices to estimate from
below the application ¢ € [0, 2] — Wj(x1,2}) with 2} = (¢,0,...,0).

- If |[t| < 0h/2 then the inclusion

Dh(:vl,x;) D {1131 <y <z +h, |:L‘2 — y’| < 5h/2}

implies W,(z1,2}) > h(6h/2)¢ = ch®+1.
- If 60h/2 < |t| < x then

{ly — i, | <oh/4} C {ly'| <t} < {ly'] < 27}
where t, =t — 6h/4 and x;, = (t4,0,...,0). Hence
Dp(21,24) D {x1 <y <1+ h, |2}, — | < h/4}

which implies again that Wj,(z1, z}) > ch® !,

Summing up the above discussion, we have proved that for any ¢ € I,

Wi (z1,2") > ch®¥+1 uniformly on O). Combined with (2.5), this

proves that 6, (x) > ch(®~D% uniformly on O,
Since the boundary of 2 is compact, it follows from the above computations
that there exists ¢ > 0 such that for all z € Q and all h < hg, mp(z) <
1 — ChY with v given by (1.7). This proves that oess(Th) C [—1,1 — Ch7].

We now prove that o(7,) C [-1 4+ Ch?,1] which is equivalent to show

that

<u + Thu, U>L2(p) > Ch’yHu”%Q(p)
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for all u € L?(f2). For this purpose, we observe that thanks to [2], eq. (2.7),
one has

1
(et Ty = 5 [ Fnplop)lula) + u(o)Pp(a)dady.
X

Hence, it is sufficient to prove that there exist Cp, hg > 0 such that the
following inequality holds true for all h €]0, ho] and all u € L%(Q):

/Q gl luta) + uy)Ppla)dody = O [ula,
X

Since p is bounded from below, we can assume without loss of generality
that p = 1. Following [2], we introduce a covering (v;); of Q with v; C Q
such that diam(v;) < h and for some C; > 0 independent of h, the number
of indices k such that v; Ny # 0 is less than C;. Moreover, since infg 6, >
Ch™7, we can also assume that there exists a constant Cy > 0 such that
Vol(vj) > C2h@*7 for any j. Then, we get as in [2]

2 /Q o uta) + u(w)Pdedy
> Z/ dcb(

j I/jXVJ
> h—dl/ [u(z) + u(y) Pdedy
/yd I/jXVJ

This implies, (u + Thu,u) > ChY||u||? and finally o(T},) C [-1 + Ch?,1].
The proof of Proposition 1.1 is complete.

3. REGULARITY OF EIGENFUNCTIONS

The aim of this section is to prove regularity properties on families of
eigenfunctions of T}, associated to eigenvalues in [1 — Ch?,1]. Let us intro-
duce the Dirichlet form of T},

(3.1) Bhp(f,9) == (1 = Th) [, 9) 12(¢p)
and &, ,(f) = Bnp(f, f). One has

Bho(f,9) = % /M knp(@,y)(f(2) = f(y))(9(x) = g(y))p(x)dzdy
and denoting d,u% = min(p(x), p(y))dzdy we get

Buoll0) = gz || Bmspen @) = F) o) = @i o)

In particular, one has

62 El) = gpazz | Vemsnlf@) = F) i)
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As mentioned before, we will sometimes drop index p in the notations when
it is unambiguous. The following decomposition lemma is the key point in
our analysis.

Lemma 3.1. Let (fn)nep,1) be a family of function in L?(Q) such that
Ifulle < 1 and En(frn) < h2. Then, there exists C,Co,hg > 0 such that
for all h €]0, ho|, one has a decomposition fy, = fac + fnr + fou with

- Supp(fh’c) C th with Fh = Uie[c{l' S Q, d(x,Si) < Chéi}, Ozi,Si
given by Assumption 1
- for and fu g are supported in Q\ 'y, and

|V fnLll2 < Co and || fn,ml|2 < Coh

This lemma is inspired from Lemma 2.2 in [2]. However, due to the
presence of cusps there is an additional term in the decomposition of f;, for
which we do not have nice estimates. Moreover, we have to face important
complications in the proof. The next section is devoted to the proof of this
lemma in the particular case where €2 is a model cusp.

3.1. A model case. In this section we consider the case where the domain
Q) is an exact cusp

(3.3) Q= {(z1,2",2"), 0 < 21 < 1, |2 |g< 2%, |2" |4 < 1}

Since there is no ambiguity, €2 denotes the above domain in this section and
a general domain in the rest of the paper. Since p is bounded from below and
above by positive constant, we can assume that p = 1 without modifying
the assumption &,(f,) = O(h?). One defines a dyadic partition (Q)g>0 of
Q in the following way:

1

Qk :QQ{W

1
<x1<2—k},k:eN.

For every k > 0, we define a change of variables

Tk - Qk — Qo

(3‘4) (1'1, l’l, 38”) — (le'l, 2kal‘,, :L‘H)

whose jacobian is jj, := det drj, = 25+ We also introduce the change of

variable
Tk : Qk — O
(3‘5) (5517 z, 33”) — (Qk_lxl, Q(k—l)o%/’ SU”)

and we observe that 7, = 7 o 7.

3.1.1. Sobolev space and dyadic decomposition of cusps. Throughout the pa-
per we will use the following notation. Given a set B a function f € H'(B),
and some parameters h, h, h > 0, we denote

1
(3:6)  NypgnlF:B) = (1h00F () + 1AV Iz + 1DV F 22 )

In order to lighten the notation we introduce the parameter h = (h,h,h)
and we will often write

Nh(fv B) = Nﬁﬁﬁ(f’ B)
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The following lemma gives an expression of Sobolev norms for dyadic de-
composition of the domain 2.

Lemma 3.2. Let f € L*(Q), then
11720 = D 27 VN f o 1 20
keN
If one assume additionally that f € H(Q), then
IV 1220y = D 274D (1280 (f 0 7 )30
keN

125V (f o DBy + I"(F 0 7 ) 2(00))

= Z 2_k(ad/+1)N2k,2ka,1(f © Tk_l, Q0)2
keN

Proof. Use the partition ) = Upen§d;, the change of variable 73, and the

chain rule. O
Let
57 §: R: xRY xRY — R xRY x R
(z1,2',2") = (21, 27", 2")
and consider the open sets B; := {2]% < < %, l2’| < 1,|2"| < 1}.

Observe that 0 is a C! diffeomorphism from 2; onto B;. Hence, the maps

(3.8) O‘kZGOTk:Qk%BO
and
(39) 5’k:90%klﬂk—)Bl

are also C! diffeomorphisms. Moreover, one has o}, = & o 63, where
(3.10) 61 = B1 — By, FGr=0100 ' =0or o007t

The following lemma express L? and H' norm in terms of the dyadic de-
composition.

Lemma 3.3. One has the following estimates

(3.11) 1F 1720y = Y 27V f 0 03 M 72y
keN
for any f € L*(Q) and
(3.12) IV A2 = > 2 HOT ) Ny a1 (f 0 0, Bo)?
keN

for any f € H(Q). Conversely, assume that (fi)ren 5 a sequence of func-
tions of H'(By) such that

(313) > 27N iR ) + Nokgra 1 (fi Bo)?) < 00
keN
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and (fk)m:; = (fk+1)|z1=1, where (fi)z,—q denotes the trace of the H!

2

function fi, on {x1 = a}. Then the function f =3 7> 1, fr o o belongs
to HY(2). Moreover, for such functions, one has

117 0 = > 27k(ad/+1)(’\fk||%2(30) + Nk gk 1 (f, Bo)?)-
keN

Proof. For any j > 0, 6 defines a change of variable from €2; onto B;. A
standard computation shows that there exists C' > 1 such that

1 _ _
6Hf09 280y < I L2c00) < ClLE 007 L2(30)

and
%Hvl(f 0‘971)”L2(BO) < |V fll2) < CIIV'(f o 971)HL2(BO)
SV 067 iz < IV Flzzgeny < CIT"(F 00~ aay
101 067 Lz2qsy < 101 ll 2@ + IV l(eny
101y < 191(F 0 07 o + IV'(F 067 lLz2 s

Combining these estimates with Lemma 3.2, we obtain (3.11) and (3.12).
Conversely, assume that f € L?(f2) is such that (3.13) holds true. In order
to prove that f € H'(Q), it suffices to show that f has no jump at z; = 27
This exactly the condition (fk)|x1=$ = (fr+1)|z1=1- O

Remark 3.4. If one splits the sums in the above lemma into even and odd
terms, one gets

||f||i2(@) = 24_k(ad/+1)||f © U;k1||%2(30)
keN

—k(ad’ 1
+Z4 (e +1)||f002k:+1”%2(B0)
keN

Using the identity oopy1 = 010071 0Gop 11 with o1 defined by (3.9), (3.5)
and the fact that 0 o 01_1 is a diffeomorphism from By onto Bi, we get

Hf”iz(ﬁ) = 24_k(adl+l)"f © UQ_kIH%%BO)
keN

—k(ad’ -~
+Z4 @ +1)||f002k1+1”%2(31)
keN

Similarly, we get the following identity for the norm of the gradient

||Vf\|iz(g) = 24_k(ad,+1)N4k,4ka,1(f ° 0-27@17 By)?
keN

4 Z 4ik(ad/+1)N4k74ka71(f o &2_k1+1; Bl)2~
keN



12 L. MICHEL

3.1.2. Extension of the operator and comparison of Dirichlet forms. Let f €
L*(Q) be such that ||f|lz2 = 1 and &,(f) = O(h?). We observe that since
the norms |.| and |.|oc are equivalent, there exists a constant C' > 0 such
that

(3.14) Eoo, 2 (f) < En(f) < Eoo.on(f)
where
615 Ennll) = gz | Vel (@) = S Pdady.

Thanks to (3.14), one has

Ecn(f) > Eonlf) = 2”//ihd /QXQ]llxyoo<h|f(x) — f(y)|Pdady

1
= ZW/Q o Ljo—ylocnlf(2) = f(y)[Pdady

(316) - kz>[) 2%hd /Q N |171 —y1 | <2k b, |z’ —y |<2kah, |/ —y' | <h
|fo7’l~; (m)_foTk (y)[%3 71( )ik Y(y)dzdy
Q—k(l-i-ozd’)

- W /QOXQO ]l\fﬂ1—y1\<7Lk,lﬂf’—y’|<ﬁk7\fﬂ”—y"|<h
k>0
—1 —1 2
‘foTk (v) _fOTk (y)|"dzdy

where hy, = 2%h, ﬁk = 2k} Given any domain A C R?, one then introduces
the Dirichlet form defined on L?(A) by

g’éﬁ,h(g) - W /AxA Ly o<yt | <oy <nl9(2) = 9(y) Pdzdy.
Then the last inequality in (3.16) reads
(3.17) Ecn(f) 2 Y 27 Miredgd,  (for ).

k>0
The next step in the computation is to compare the Dirichlet form 5}?;%7 L
and EP°.  associated respectively to the domains Qg and By. As a prelim-

hk: k>
inary step, we need the following result.

Lemma 3.5. Let A be any open subset of R® with Lipschitz boundary. For
all a,b,c > 1, there exists Co, hg > 0 such that for any f € L?*(A)

gfh bh, ch(f) Co 5h hh(f)
for all h €]0, ho].

Proof. This is similar to the proof of Lemma 2.1 in [2]. We leave it to the
reader. 0

_As for the Sobolev norm, we introduce the vectorial parameter h =
(h,h,h) and we denote by h - z := (hxy, ha', ha”") the inhomogenous action
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of h on z € R%. We will also denote h™! = (A=, b1, A1), h? = hhad p?"
and &f(g) = 5}_’:‘% ,(9). With these notations, one has
1
A o B 5 _ 2
n(9) = 27, hd /AXA]llm—leh,x’—y'<h7|x/'_y//|<h‘g($) 9(y)|"dzdy
1 2
= sy [ sl ailota) = o) dedy

Lemma 3.6. There exists some constants C > 1 and hg > 0 such that for
any f € L*(Qo), one has
1
C
for allh = (h,h,h) such that 0 < h,h < ho and 0 < h < h.

g <&P(fon ) < cEN(f)

Proof. Since the jacobian of #~! is bounded one has

Q _ 1 5
gho(f) - W 0% ]l|m1—y1|<7L,\x’—y’|<fz,|m”—y”\<h’f(x) - f(y)’ dl'dy

1
= 2/h? /BoxBo L g1 <hifagar—ygy <o —y|<h
[f 007 (x) — f o6 (y)|*dxdy.

On the other hand, since a > 1 then for z, y € By such that |z —y1|< h < h,
one has

e’ —yiy' |2 |21 |2’ =y | = et —yRlly'| 2 272" —y/| = Cah
for some constant C,, > 0. This implies that
1
Qo - -
&' (f) = 2%, hd /BMBD]IIMy1|<h,x’y’|<Mah,|z”y“<h
|[f 007 (x) = f o6 (y)|*dxdy

with M, = 2%(1 + C,). Since 0By is Lipschitz, it follows from Lemma 3.5
that 51?0 (f) < Cagfo (f 0 671), which proves the left inequality. The right
inequality is proved similarly. O

Since for any k > 0, one has h; = 2Fh < 2F*p = ﬁk, it follows from
Lemma 3.6 and (3.17), that

2y = 1 —k(14ad') ¢ B -1
(3.18) Oh?) = & (f) > C;Og g (fooph).

Let @ :=]0,1[¢ and define the change of variable
(3.19) B:By—Q

given by B(x1,2’,2") = (221 — 1,2', 2”"). Working as in Lemma 3.6, we show
that there exists a constant C' > 1 such that
1

FEnlgo BT < &1 () < C&(go 7).

(3.20)
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Combined with (3.18) this implies that there exists Cp, hg > 0 such that for
0<h<hy

(3.21) OR?) = Eu(f) > — Z 9~ k(+ad) 5ﬁ,h Wfoatop ™).
0 x>0
Let us now study the Dirichlet form on the cube ). For any : =1,....,d
let s; denote the symmetry with respect to the hyperplane {z; = 1} and let
G be the abelian group generated by the s;. The group G acts on |0, 2[¢
and for every function f € L?(Q), one can then define g € L2(]0,2]¢) by
9o = fand for all s € G, gos =g (we do not specify the value of
g on the hyperplanes {z; = 1} since they are negligible sets). Eventually,
this permits to extend the function g (by means of translations) to a (27Z)%-
periodic function on R?. We then denote
E: L*(Q) — L*(TY)
f=yg
where T? = (R/2Z)?. From the preceding discussion, E is continuous from
L%(]0,1[¢) into L?(T%) and from H'(]0,1[%) into H(T¢). Given 0 < a < b <
1, we denote
I =Ja, o<1,
We can perform a partial periodization by using only symmetries with re-
spect to hyperplanes {z; = 1} with ¢ > 2. We obtain an extension map

Epopy : L2(1a,bx]0, 1) — LI,
We also introduce the following restriction operators
R: L*(11%) — L2(]0,1[%)

Rjq : L2 (I17) — L2(Ja, b[x]0, 1[*1),

22
(3:22) R}y L*(117) —>L2(H]da bl[)
Ry : LI 0) — L2(Ja,b[x]0, 1[71),

which satisfy the following relations:
(3:23)  RE =1d, RqpiEjap = 1d, Riay = Riap Ry sy BlapiE = By

Eventually, we observe that all these operators are continuous on H' and
L? spaces. In order to get rid of boundary problems, the general idea is now
to compare the Dirichlet form Egﬁ N with a suitable Dirichlet form on the

sty

torus. We first introduce the Metropolis operator on I1¢, defined by

_ 1
(3.24) Th(9)(z) = Vb /T i<~y <o~y <n9 (Y)Y

for any g € L?(T¢), where %o 4 = Jpa Ly 1<1,ly1<1,ly|<1dy- The associated
Dirichlet form is

&n(g) = ((1 = Tu)(9), 9) 12(19)
1
- 27/dhd/W Tdﬂlh—l-(z—ynmqlg(fﬂ) — g(y)|*dzdy.
o0, X
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Lemma 3.7. There exists C, hg > 0 such that for all 0 < h, h,h < hg and
all f € L*(Q)
EL(f) < En(B(f)) < CEL ().
Proof. For any f € L*(Q), one has

- 1
EEUN = g5 [ s calol@) = ow)Pdzdy

Lin-1.(ay)|<1l9(z) — g(y)[Pdady
QdedZ/(QXS(Q | (z=y)|oo<

= oy dhd Z / Ln1.(s(e)—3(w)) <119 © 5(2) — g 0 3(y)[*dady
and by definition of g it follows

. 1
En(E(f) = 57— / Ljn—1.(s(2) —3(y) oo <1
24//007dhd87§Z€G g IBHE@ =Wl

|f(z) = fy)Pdwdy.

Moreover, for all s,5 € G and any z,y € (), one has
(3.26) h™! - (s(z) = 3(y))|eo < 1= h7" - (2 — 9)]c < 2.
Indeed, since the elements of G are isometries of R? for the norm | - |so, it
suffices to prove (3.26) with s = Id. If § = Id, there is nothing to prove. Let
us assume that § # Id. Then, there exists a € {0,1}¢ such that 5 = Hf 1S3
Let us denote I = {z a; = 1} and let D = Njer{x; = 1}. Since z €]0, 1[

5(y) ¢]0,1[? and |h~! - (2 — 3(y))|sc < 1 then there exists z € D such that
lh™!. (2 — 2)|o < 1 and |h™!: (2 — 3(y))|eo < 1. Since 3(z) = 2, this last
inequality implies that |h™' - (2 — y)|oo < 1 and hence

W™ (2 =)l < hTH (@ = 2)|oo + 0T (2~ y)loe < 2

which proves (3.26). Now, using (3.25) and (3.26), we obtain

_ 1
En(E(f)) < 2a,/m’dhdSﬁszezc/QXQ]1|h—1-(ac—y)|oo<2|f(97«“) — f(y)|2dxdy

and thanks to Lemma 3.5, there exists C, hg > 0 such that for all 0 < A < hy,
one has

(3.25)

En(E(f)) < CEL(S).
This proves the right inequality. The left one is immediate. O

Remark 3.8. The above proof can be easily adapted to show that given

0<a<b<1, there exists C > 0 such that for all 0 < h,h,h < hy and all
feI2(Q) b
E N Bap () < CEX(S)
where
cla,b 1
&'l(g) =

27/oo,dhd /Hd L i1 Iﬂfl—yl|<7l,|06/—y’\<ﬁ7|x”—y”|<h

Ja b[ Ja,b[
lg(z) — g(y)|*dzdy.
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3.1.3. Fourier analysis of the Metropolis operator on the torus. The follow-
ing lemma gives an expression of the operator Ty, as a Fourier multiplier.

Lemma 3.9. For 0 < B,ﬁ, h <1, one has
Ty = D1 (R20?)T g (W2 Ay )T g (B2 Ay
with
La(e) 1= Gule) = 5 [ Tpare™ds

Proof. First, observe that since 7,4 = 7174 Vq, one has Tﬁﬁh =
M, My 5 Mgy p where for any i > 0 we set

1
Mons@) = o | Vamspeas()dy.
On the other hand, if one denotes e := Qn%ei”'k for all kK € Z"™, then (ey)

is an orthonormal basis of L?((R/2Z)"). Moreover, for 0 < i < 1, the map
y — = + hy is a change of variable on II"” and we get

1 itk-(y—x
M) = @)y [ Bamyare™ 0y = Guber.
Since the function G,, is radial, this proves the announced result. O

From the discussion below (1.6) in [6] one knows that G, is a smooth
functions on R” such that |G,| <1, |Gp(§)| =1 iff € =0 and

(3.27) Gn(§) =1- €17+ O(lel).

2(n+2)
With the notation (3.6), we have the following

Lemma 3.10. There exists C,hg > 0 such that for all 0 < h,h,h < hg
and all g € L*(TI?%) such that ||g|2 < 1 and En(g) < h2, there exists a
decomposition g = g, + gg such that

lgzl72 ey + h > Nu(gr, 11 < C
and
lgr1| B ey < CH2.
Remark 3.11. Let A\; = h/h, Ao = h/h. One has
2 -2 d 2
922210y + B2 Nalors T = gz o
where the semiclassical Sobolev spaces H/{h)%l are defined in appendiz.

Proof. Denote ), = m and let 1/T1 = § min(aq, ag, agr) > 0. Let
g € L?(I1%) be such that &, ; ,(g) < h% From Lemma 3.9, one knows that

for any 0 < h, h, h < 1, one has

h? > Q- Th)979>L2(Hd)

(3.28) > (1 — G1(hdy) G (V') Gar (V")) g, 9) 120y
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On the other hand, it follows from (3.27) that for all n € N, there exists
dn > 0 such that for all [£| < 6, one has

0< Ga(§) < 1- el

Hence, for all £ = (&1,¢,¢") € R? such that |¢| < & := min(dy, 64, dgr), one
has

1= GL(E)Ga(€)Gar(€) 2 Tl + 1P + 1€ + 0(gl*)
2 2 4
> o l€* + Oel).

Decreasing § as much as necessary, we obtain
1
(3.29) 1-G1(&)Ga(§)Gar (€") = ?1!5|2

for any || < 6. On the other hand, since G,, is bounded by 1 and goes to
zero at infinity and 1 — GG, vanishes only at the origin, there exists To > 0
such that for all [£] > 0,

1

(3.30) 1-G1(&)Ga(§)Gar (&) = T,

Let us decompose g in the Fourier basis (ex), g = > ,cz 9(k)ex and let
gL = > g(k)ek, gn=1-gp = > g(k)ex.
|(hky k! hk"")| <6 |(hky1,hk’ hK")|>6
From (3.28), (3.29) and (3.30), one deduces

h? >y (1= Gi(hk1)Ga (hK)Gar (hE")) g ()|
kezd

= ) (1= Gi(hk1)Ga (hE )Gy (hE"))|g(k)
|(hky,hk! RE")| <6
+ ) (1= Gi(hk)Ga (hK)G g (")) (k)[?
|(Rk1,hk! hE")|>6
1 - ~ .
> > (kP (R o [ a(k) 2
! |(hk1,hk! hE")| <8

2

b Yl

|(hky1,hk! hE')|>6

From standard Fourier analysis, we deduce
1 . ~ 1
B2 = = (Ihorge |2 + AV ge | + 1AV gz ]?) + =g
Tl TQ

Taking C' = max (Y1, Y2) we get the announced result. (]
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3.1.4. Decomposition Lemma in the cusp. The main result of this section is
the following

Lemma 3.12. Assume that Q has the particular form (3.3), then the con-
clusion of Lemma 3.1 holds true.

Proof. Throughout, C' denotes a positive constant independent of f and h
that may change from line to line and h > 0 is supposed sufficiently small in
order that the conclusions of the preceding lemmas hold true. Let f € L*(Q)
be such that &,(f) < h? and ||f||z2 < 1. Tt follows from (3.21) that

22 k(14+ad) S}Zh h(foak OB ) (h2)

k>0
where f is defined by (3.19). Denoting
(3.31) G = B(footof™),
it follows from Lemma 3.7 that
(3.32) En oo (O6) S CEL - (fooyt o)
and hence
(3.33) > otiredg o (Gk) = O(h?).

k>0

From now, given D C R? x 14, p,q € N*, g € L?(D) and h = (h, h, h) we
denote

(3.34) Vi (9) = Vi (9) = llglliz(py + 288 (9)

and for shortness we denote Vi(f,h) = V}} i (fo o;'). We also denote
~ kyltk,
hy, = (hg, hg, h). Thanks to (3.11) and (3.33), one has

(3.35) 22 KUty (f,h) = O(1),

and (3.20) and (3.32) 1mphes
1981172 (rray + h ™ *En, (1) < CVi(f, h).

This estimate combined with Lemma 3.10 shows that there exists hg > 0
such that for any £k € N and h > 0 such that hj < hg, there exists g, 1 €
HY(11%) and gg gy € L*(11%) such that gx = Gk.1, + gkx With

1k, 2117 2114y + B~ Ny (G £, TI)? < CVi(f, h)
and

G112 < CH2VL(£. )

for some new constant C. Since the restriction operator R]O 1 (defined in
(3.22)) is continuous, it follows from the above estimates that

(3:36) | Rjo.1 (@.)II7 5 iy + B2 Nuny (Rjo 1(Gk,), TG 1) < CVi(f, h)

and

(3.37) ‘|R]10,1[(§k,H)||iz(1—[]dofll[) < Ch*Vi(f, h)
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Combined with (3.35), this implies

(3.38) > KD Bl () ) < OF?
>0 ’

and

Z 2_k?(1+04d ) (“R}l071[(§k,L) Hiz(nldo—ll[) + h_2Nhk (R]loyl[(gk,[/), Hﬁ)jll[)2) S C
k>0 ’

Since Ny, (-;-) = hNak gka 1 (., ), this later equation implies

_k(1+ad,) 1 _ 9
. 252 (I

+ Nzk,2ka,1(R]lo,1[(§k,L)7Hflojll[)z) =O(1).

In view of Lemma 3.3, estimates (3.38) and (3.39) almost imply the conclu-
sion by considering the restriction of R(g) to By. The main issue to get the
conclusion is that nothing insures that the no-jump condition of the lemma
R}l071[(gk,L)|m1:% = R]10,1[(gk+1,L)|:c1=1 holds true (observe here that the in-

terface 1 = 275! in the orginial variable corresponds to z; = % for g 1,

and to x1 = 1 for gry1,1,). The end of the proof consists to modify slightly
the above decomposition in order to satisfy the assumptions of Lemma 3.3.

Let us explain briefly the idea of this modification before entering into
technical details. As already said, it follows from the above estimates that
we can decompose the functions fq,, and fq,, , asthe sumofa H ! function
and a small function in L?. The idea is that we can do an analogous decom-
position with quadriadic decomposition so that the function f restricted to
Qo U ok 11 admits also a decomposition. Then we can apply Lemma 5.2 of
the appendix to glue smoothly f|€22k and f|€22k+1 up to a small error in L2.
In order to get a global estimate, we need to prove estimates uniform with
respect to the dyadic parameter k£ which makes the computation a bit more
heavy.

Let us now enter into the details. We first observe that thanks to (3.23),
one has

(3.40) F=Y 1o froor =Y 1o,R(G) o Book
k>0 k>0

with f, = fo ok_l = R(gr) o B (gx given by (3.31), 8 given by (3.19) and R

given by (3.22)). We introduce the following functions defined on H}d; h:
27

(3:41)  gr = Rig 1) © By k. = Rio11(Gr2) © B, Gk = Rio1((Grr) 0
which of course verify
(3.42) 9K = Gk, + Jk,H

thanks to the above construction. First observe that thanks to (3.23), one
has for any k € N, f, = R(gr)op = R]O,l[(R]lO’l[(gk))oﬁ = R]%’l[(R}lOJ[(gk)oﬁ)
and hence

(3.43) fo = Ryx (G0)
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where we recall that R]mb[ : LQ(Hfafbl[) — L*(Ja,b[x]0,1[%1) denotes the

restriction operator in the (2/,z”) variable. Splitting (3.40) into even and
odd terms and using (3.43), we get

f= Z ]10%1%]%,1[(9%) © 02k
(3.44) h=0

D - |
+ ZﬂQQkHR}%,l[(g%H) 001001 ©02+1
k>0

with &1 given by (3.10). Since this change of variable is simply given by
g1(z) = (2z1,2',2") we have for any 1

R}l,l[(w) (¢] 6’1 = R]

2

LW o)
where with a slight abuse of notatlon we use the symbol &1 to denote the
above dilation defined from 1%} into 1% ! . Combined with (3.44) and

3 1510
the identity &, ' o oogr1 = Gopy1 (see (3.5), (3.9) for the definition of &y),
this implies

f= Z ]]‘QQkR}%,l[(QQk‘) 0 09k
(3.45) h=0

+ E ILQQHI 1111 ((J2k+1 © G1) © Oop-
k>0

Denote Dy, = Q93U 41 for any k € Nand let v, : Dy — BoUDBj be defined
by vi(z) = 0(4Fxy,4%%2 2"). Since (1), = ook and (Vk)ja,,,, = F2k+1,
equation (3.45) becomes

F=> ]192,@}?]%,1[(@21@) o
(3.46) h=0

+ E :]192k+1 % % 92k+1 0 (71) O Vg.
k>0

We now relate the quadriadic decomposition of the function f to the dyadic
decomposition.

Sub-lemma 3.13. Let f;, := E]i,l[(f ov, ') and denote

(3.47) Vi(f,h) = Vouo (fouh)
where the functional V is defined by (3.34). One has
(348) fk = ]]-%<x1<%92k+1 o 6-1 + ]l%<x1<1g2k

and

(3.49) > " ahired)y, (F.h) = O(1).
k=0
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Moreover, one has the decompositions Je = Je,1, + G, and fr = th + th
with

|Gok+1, © 61||iz(n]dzl;1%[) + BNy, (Gor1,1 0 51,4 H]dgl%[)z
(3.50) < CVi(f,h)
||.§V72k,LHiQ(H]d%—’11[) + h 2Ny, (gzk,L,H}dg’hf < CVi(f, h)
and
(3.51) |G2k+1,1 © 61||2L2(H]d;%[) + ||§2k,HHiQ(H]d;[) < Ch2Vi(f,h)
and
(3.52) ka,LHiQ(HEi ) 4+ h2 Nh%(ﬁ,L,Hg}[p < OVi(f, h)
and
(3.53) ||fk,H||2L2(H]d;1[) < Ch*V(f, h).

where C is a positive constant independent of h.

Proof. By definition, one has f = Zkzo 1p, fov, Lo 1y, which combined
to (3.46) proves that

(3.54) fovit= ]lBOR]%J[(ng) + ]lBlﬁi]ié[(fth 0 d1).

Applying E[ 1) 00 both sides of this identity, we get (3.48).

We now observe that the analysis of Lemma 3.7,3.9, 3.10 can be performed
with the ”quadriadic” decomposition of the cusp induced by the change of
variable v. This yields

1 k(1tad _
(355) B2z &(f) = 5D 4T DERn L(Forh).
k>0

Dividing by h? and adding the L? norm, this implies
a7 (1,m) = 0(1)
k=0

which is exactly (3.49). Moreover, it follows from Remark 3.8, (3.43), (3.54)
and the inclusion By x BgU By x By C (Bg U By)? that

BoUB; —1 Bo —1 B A—1
EanaronnFovi ) 2 & W(Foom) + & 5 n(F 0 Tai)

(3.56) 1 1 11
7}571[ - 7]175[
> 5(5 W (926) + €

B2k7;7‘2k7 BQ/WEQIC’
for some constant C' > 0. Observe that Ao = 2hap, iLng = 2%h4;.. Hence
(3.56) proves that there exists C' > 0 such that
(3.57) Voi(f, h) + Vars1(f, h) < CVi(f, h).

Combined with (3.36), (3.37), (3.41), this proves (3.50) and (3.51). On the
other hand, using Lemma 3.10 and (3.55) we have also a decomposition

E(fovy ) =E(fov, )+ E(fov; )

h(§2k+1 o 51))
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with suitable bounds on the right hand side. Restricting this decomposition
to % <z <1, weget fr = fk,L -+ fk,H with fk,[nfk,H which satisfy (3.52)
and (3.53). This completes the proof of the sub-lemma. O

Let us now apply Lemma 5.2 with Ag = I17; VoA = I'I]d1 1[, Ay = H]d }[,
47

]275[
¢o = g2k+l,L ogy and ¢ = g2k,L' Let wy = ]led)o + ]lAl(Z)l and denote
ro = Laggoky1, © 01, 1 = La,Gog, - Thanks to (3.42) and (3.48), wy
satisfies

(3.58) wi = LagGorr1 001+ La,gor — 710 — 71 = La, fr — 70 — 71

Hence, wi = ¢2 + r9 with

(3.59) ¢o = L4, frp and ro = L, fr;r — 710 — 71
Moreover, thanks to (3.51), (3.52) and (3.53), one has
(3.60) [Ir2l[Z2(ay) < CH*Vi

and

Nk gra 1 (92, A2) < OV

where we write for shortness Vi, = Vi.(f, k). From Lemma 5.2 with \;
N = 22’““ and \” = 1, there exists Y1 > 0 and hy > 0 such that for any k such
that hgk < hy (that is 272F > h/hy), there exists a function 1)q; supported

— 92k
= 2°%,

in H]i %[ﬁ {2 <z <i +h2k} such that (wgk)m_ (¢0)|x1_7 (¢1)\x1=l
and

N4k,4ka,1(¢2kaA1)2 <Y1V
and

12kl 20ay) < T1B? V.

From now, we suppose that hop < hg 1= min(hg, h1) with hg given by Lemma
3.10 and hy by Lemma 5.2. We then rewrite jo as gop = gg’;cog + gg’;f;g with
é’{,i"ﬁ = §ok,1, + Y2r and gg}f;l, = §ok,H — Y2k By construction, we have
d—1 \;
Nyk Ak 1(95;; L,H]l 1[) < CV), and
~mod 27
H g]LCOHHLQ(Hd 11[ < Ch Vk
(vmod

9214,L)x1:§ (Gor41,L © 5’1):,31:%

(3.61)

Let K(h) € N be the largest integer such that 4°5(") < hy/h. Then for
k < K(h) the functions 9o%L 4 and g%"?[ are well-defined and we can introduce
the decomposition f := fr + fog + fc with
K(h)
fo= kZO (1192,63]%71[(@57%) 0 ook + Loy, 1 4 ((G2r11,2) © 0’2k+1>,
K(h)
fo= Z <]1Q2kR];71[(§3}€?}'§) 0 ook + Loy, Byt 4(G2kt1,1) © 0'2k+1)7
=0 2 2
and

fe=f—fo—fu.
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It follows from (3.46) and the definition of K(h) that f¢ is supported in
{0 < 21 < (h/h2)"/*} which is the required property on fc. On the other
hand, we deduce from (3.50) and (3.61) that

Z 27k(ad’+1)N2k72ka’1(fL o O-k;_l o 971, BO)2
k=0
K(h)

hlod 41 < mod d—1\2
<C Y AN g (BT )
k=0

K(h)
+C Z AMOTI NG oy (Gok11, © 51, H}df
47
k=0
oo
S CZ4_k(ad/+l)f)k S C/
k=0

[)2

(S

where the last inequality follows from (3.49) and C’ is a positive constant.
Hence, fr satisfies

o0
(3.62) > 2 MO NG, a1 (fr o 03, Q0)? = O(1)

k=0
and thanks to (3.61) the functions Lo, fr and 1g,, f have the same trace
on 21 = 272k~1 Working similarly near z; = 272, we can modify (f1.)q,,
in order that 1gq,, fr, and 1q,, , f. have the same trace on z; = 272, More-
over, this new modification is supported in 2*2’“[1 — ho, 1]. Hence, for hg > 0
small enough, it doesn’t intersect the support of the modification 19 which
is contained in 272¥[1 1 + ko). Eventually, we modify also the function
92K (h)+1 in order that (fL),, —4-xm-1 = 0. Consequently, the fonction fr
that we obtain satisfies the assumptions of Lemma 3.3 and it follows that
fr € HY(Q) and || fL || g1(q) = O(1). The fact that || f||2(q) = O(h) follows
immediately from (3.49), (3.51), (3.61) and Lemma 3.3. O

3.2. The general case. Suppose that (f1,),e)0,1] is a family of functions in
L%(Q) such that ||fzllz2 = 1 and &E,(fn) = O(h?). Let J = I. U I, U {0}
and for all j € J, let O; = wj N Q where the w;, j € I. U I, are defined
in Assumption 1 and wy is a relatively compact open subset of §2 such that
2 C Ujes0O;. Since J is finite (independent of h), there exists C' > 0 such
that for any f € L? one has

(3.63) En(f) > %Z&?Z’(f)
ieJ
with
&) =gt [ Vamsienl£@) = F) P

Let (xi)ics be a family of non negative smooth functions such that supp(y;) C
w; for alli € J and ;. ; xi = 1 near Q. For all i € J, denote f;, = (fn)0,
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and observe that

fo=">_ Xifin
icJ
Moreover, since &,(f,) = O(h?) it follows from (3.63) that for all i € J,
5}?"(fi7h) = O(h?). Suppose first that i € I.. In a suitable coordinate

system, O; has the form (1.6) and we can apply Lemma 3.12 to get the
decomposition

(3.64) fin =0in+ gin+Tin

with [|g;nllz2(0,) = O(h), supp(rin) C T'p (where I'y, is defined in Lemma
3.1) and (@i n)nejo,1) bounded in H'(O;). On the other hand, it follows from
Lemma 2.2 in [2] that for any ¢ € I, U {0}, (3.64) holds true with r; 5 = 0.
As a consequence, we get a global decomposition f;, = ¢ + gp + rn, with

Yh = ZXiSOi,ha gnh = ZXigi,m Th = Z XiTi,h-
icJ icJ icle

The functions g;, and ry, satisfy trivially the required properties. Since y; is
supported in O;, one has the identity

V(xipin) = 0inVXi + XiVoin
which permits easily to show that (@) is bounded in H*.

4. SPECTRAL ANALYSIS.

4.1. Weak convergence of Dirichlet forms. We start this section with
a lemma giving estimates of the Dirichlet form &, on H' fonctions. Given
a subset U of €2, we use the notation

& =g [ ayelute) = ut)Pan(e. ).

Lemma 4.1. Suppose that the domain ) satisfies Assumption 1. There
exists C > 0 and hg > 0 such that for any subset U C Q and any u € H (),
one has for all h €]0, h)

& (u) < CR?||VullZz s po.ony-

Proof. From Theorem 2, p 27 in [7], we know that C>°(Q) N H'() is
dense in H'(Q) for any open set €. Hence, we can assume that u € C°°(£2).
Let (wi)ies, J = I. U I, U{0} be a covering of Q as in section 3.2. For any
i € J, we denote w!' = w; + B(0,h). We have

=S g [ Bevienhis) — u) o)

jeJ

= — 1.,_ w(z) — u(y)Pdu?(z,y
(1) jezﬂhd //UU mylnlul@) — u(y) Pz )
wh
<36, (u)

jeJ
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For any j € J, since p is bounded, one has

h
Uﬁwj

7 (uy < e / / L yjenlu(x) — u(y)Pdady.
x,yGUﬂw}l

and using the change of variable y = x + hz this implies

h
Uﬂwj

€77 () < 0/ / () — u + he)Pdedz
acEUﬁw;l z€Dy,

where Dy, = {z € B(0,1), x + hz € U N wgl} Using local coordinates in w;?
one sees that there exists a piecewise smooth path v, ., : [0,1] — Q joining
rtox+ hzinUN w}l such that in local coordinates 7, . 5 is the union of
two straight lines from z = (z1,2’) to (x1 + hz1,2’) and from (21 + hz1, ')
to (x1 + hz1, 2’ + h2'). In particular there exist C' > 0 independent of z, z, h
such that ¥, .4(t)] < Ch for all t € [0,1] and dyvy . 4(t) = Id + O(h)
uniformly with respect to z and ¢. Hence, for any t € [0,1], z € B(0,1) and
h > 0 small enough, the map K¢, : & +— 75, 4(t) is a change of variable
from {z € Uﬁw]h, x+thz € Uﬁw?} onto a subset th of Uﬁw§-‘+B(0,h).
By the fundamental theorem of analysis, it follows that

h
Uﬂwj

1
g e[ [ aenl) Vutnatdfsd:
mEUﬂw;? z€Dy, 0

and thanks to the bound |y, . 1(t)| < Ch we get

1
ween [ [ Culan) Pitdzds
xEUﬁw;-l z€Dy, JO

and using the change of variable y = &y . () it follows that

h
Uﬁwj

En

h
Uﬁwj

1
g, T (u) < Ch2/ / / \Vu(y)|2dydzdt
0 JzeB(0,1) Jyev)

< Cn? / Vu(y)Pdy.
yeUnw! +B(0,h)

Plugging this inequality in the last inequality of (4.1) and since J is finite,

we get the result. O
From now, given r > 0, we denote
(4.2) Q. ={ze€Q, d(z,00) <r}.

Since we do not use the notation €2 related to the dyadic decomposition of
the cusp, there is no ambiguity.

Corollary 4.2. Suppose that (up) is a family of functions which is bounded
in HY(Q). Then &, (up) = O(h?). Moreover, ifu € HY(Q) is a fived function
independent of h, one has

En(u) = EN (u) + o(h?).

Proof. The first estimate is a direct consequence of the preceding lemma
with U = Q. To get the second estimate observe that

En(u) = £ (u) + E (u) + Ry,
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with
1 272 Qap,
Rn= Loy <nlu(®) — uly) Pl y) < 268 ()
h J Ja, xo\a,
From the preceding lemma with U = Qg it follows that
2R () < C / Loy, (0)|Vu(z)dz

which goes to 0 as h — 0 by the dominated convergence theorem (since u
doesn’t depend on h). O

Recall that B, and B denote the Dirichlet forms associated to 1 — T}, and
L, respectively. One has the following

Lemma 4.3. Let Q be an open set satisfying Assumption 1. Suppose that
(un)hejo,) s a bounded family of functions in L?(2) and assume there exists
a decomposition up = @p, + vy + 1, such that the following assumptions hold
true

- () converges weakly in H' () towards a limit ¢ when h — 0.
- lvallz2 = O(h) when h — 0.

supp(rr) C Qeon for some co > 0

there exists C > 0 such that E,(ry) < Ch? for all h €]0,1].

Then for all & € HY(S2), one has

lim h =28y, (up, 0) = B(p, ).
h—0

Proof. Let us denote B, = h™2B), and let § € H'(Q2). We have to prove
that
i) limh_m B:h(rh, 9) =0
i) limy,—0 Bp(on,0) = By, 0)
iii) limp,_0 Bp(vp, 6) = 0.
Let M > 1 denote a parameter to be fixed later and let Qf,, = Q\ Qum
with Qpyp, defined by (4.2). Given two subset A, B of Q we denote

g}‘?’B(u, U) - 2hd'*1‘27/d //xeA,yeB ]1|x,y‘<h(u(m)—u(y))mdﬂi(% y)

and when A = B we denote g}‘?’B(u,v) = g;?(u, v). By Cauchy-Schwarz
inequality, one has

(4.3) B (u,v) < b2\ [EA(w)EB (v).

Since (py) is bounded in H1, it follows from Corollary 4.2 that &,(¢p) =
O(h?). On the other hand, |jv,|| 2 = O(h) implies &,(vy) = O(h?) and
hence &, (uy) = O(h?). Suppose now that uy, 6 are as above. We claim that

(4.4) By (up, 0) = By M7 (up, 0) + o(1).
Indeed, one has
23 _ R Mmh 2 5 Sn R S,
B (un,0) = B, (un,0) + By, (un,0) + By, (un,0)

+ g}?ﬁuh@ﬁ/m (un, 0),
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and it follows from (4.3) that

|l§h(uh79)_l§}?§\/1haﬂ§uh(uh’9)| < h*?\/gﬂlwh(uh)g}?w[h ()

(4.5) +h \/g Mh 5QMh( )—|—|l§]?Mh’Q?”h(uh,0)|
QC

< 2172\ JE, (un)ELM (6) + 1By M (uy,, 0)].

Since the operator Ty localizes at scale h one has

B0 )] = |y IO )] < g (e 6),
Combining this estimate with (4.5) and using the bound & (uy) = O(h?),
we obtain

1By (un, 0) — By M (wy,, 0)| < Ch1y/ €,/ 0" (9).
By Corollary 4.2, one knows that 5,?<M+1)h(0) = o(h?) which proves (4.4).

Since &, (rp) = O(h?), (4.4) implies By(rp,,0) = B{h)?‘“(rh,@) + o(1) and
since for M > ¢g, 7, = 0 on Q;,, we get directly 1).

Let us now prove ii). Using a partition of unity, we can write § = 3 jeJ 0;

with 6; supported in w; for all j € J. Since both side of the equality in ii)
are linear with respect to 0 we can assume from now that @ is supported in
a small chart w;. Using the change of variable y = x + hz, one has

5% .
By, " (¢n, 0) 2h2“//d/c /ZGDM on(x) — on(x + hz))

(0(x) — 0(x + hz))wp(z, z)dzdz
where D, , = {z € R%, |2| < 1 and = + hz € Q}. Since M > 1, for any

x € Qfyy,, one has Dy = D = {|z| < 1} and for any ¢t € [0,1] we get
x +thz € Q. Using this path and the argument of Lemma 4.1, we can write

7,1BM’L , z~V x + shz))ds
I3 1B (0,6) = - ) Ll en( + shz))ds)

</0 z-Vo(x +th2)dt>wh(;p’z)dzdx_

Since p is C!, then wy,(z, z) = p(z) + O(h) and hence

AﬂMh .
B, M (on, 0 2%/||<1/C / z Vgoh(a:+shz))ds>

< /0 2 VO(x + th2)dt ) p(x)dadz + O(h).

Using the change of variable kg, , : © — x — shz, this implies

(4.6) B ot Wd/ / /z|<1/xev5hz = Ven(a)))

(z -VoO(x + (t — s)hz))p(y)da:dzdsdt + O(h)
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where Vy p, ., = HS_}LZ(QEM) We claim that

/01 /01 /Z|<1 /vh IVO(z + (t — s)hz) — VO(z)[*dedzdtds = o(1).

Indeed by density of C°(Q) N H}(2) in H'(Q) we can assume that 6 €
C>(Q). Let us fix e > 0. Since § € H'(Q), there exists r > 0 such
er |VO(z)|?dz < 2. Moreover, since V@ is uniformly continuous on
there exists hg > 0 such that for all h €]0, k]

1 1
/ / / / |VO(x + (t — s)hz) — VO(z)|[*dedzdtds < €.
0 JOo Jz[<1JQeNVs p -

Combining these two estimates, we obtain (4.7). Combined to (4.6), it
implies

f)’ﬂMh (¢n, 0 2%/ /|Z<1 /yeQ z-Von(y )))
(14,0 (0)2 - V0() ) ply)dyd=ds + o(1)

Moreover, since ¢y, is bounded in H', § € H' and Tavv,,. — 0 point-
wise, it follows from Cauchy-Schwarz inequality and dominated convergence
theorem that

2"1//d /Z|<1 /yEQ (z : V%(@/))) (z : VH(@/))ﬂ(y)dydz +o(1)

and since ¢}, converges weakly to ¢ in H'!, we obtain

lim B2 (o5, 6) — 2}% / /| Vo) Vo) dpleds

h—0
=37, Z//|<1 2i050(x)2;0;0(x)dzp(x)dz.

For parity reason the terms associated to i # j vanish and using (4.4), we
get

gﬁ“(%ﬁ) =

d
. ot . =509
fny B, ) = fiy B (20,0) = 3 JRECLUEIErE

with

1 / y 1
= — Z, Az = .
294 Jizj<1 2(d+2)
This proves ii).

It remains to prove iii). As before we can work with the functional B, ™"

instead of gh. One has

/\{ZC
B, M (vy,, 0) / / (vp(x) — vp(x + hz))
h hz"//d |z\<1

(x) — 0(x + hz)wp(z, 2)dzdx
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Splitting the difference (vj,(z) — vp(x + hz)) in two different integrals and
making the change of variable z +— x — hz in the term corresponding to
vp(z + hz) we get

B?R’h(vh, 0) = gf{(vh, 0) + g}:(vh, 0)
with
1
+
= — — +
Bh (Uhv 0) 2h2/7/d /C /|z<1 vh(x)(ﬁ(m) 9(33 hz))wh(xa z)dzd:n,

where the integration domain in the variable z is the unit disc for the same
reason as before. We show how to estimate B;, the case of B, is similar.
The same computation as above shows that

2h/7/d /z|<1 /

(/0 2 VO + thz)dt)p(:v)dxdz +O(h)

g+ (’Uh,

Mh

where we used again wy(x, z) = p(x) + O(h). Since § € H', ||vg]|z2 = O(h)
and Lovog,, — 0 pointwise, we get as in the proof of ii) that

B} (v, 0) 2h%//Z|<1 z Vo(z ))p(x)dzda:+0(1),

and since f| ‘<1 z - VO(x))dz = 0, we obtain gz(vh, ) = o(1) which proves
iii). O

4.2. Case of smooth densities. In this section we prove Theorem 1.2.
We follow the proof of Theorem 1.2 in [3]. Let |A}| be the rescaled (non
negative) Laplacien associated to the Markov kernel 7},

1-Tp
h

Let R > 0 be fixed. If v, € [0, R] and uy, € L?*(M) satisfy |Ap|un = vhup
and ||up||z2 = 1, then thanks to Lemma 3.1, uj, can be decomposed as uj, =
©n + vy + 1, with ||vgllz2 = O(h), ¢, bounded in H'(Q) and 7}, supported
in Tj, C Qgyp for some ¢y > 0. Moreover, we claim that &,(ry,) = O(h?).
Indeed, since ry, = up — ¢ — v, and Ep(up) = h?v;, with v, bounded, it
suffices to show that &,(vy,) and &,(wn) are O(h?). The bound on &, (vy,)
follows directly from the fact that ||ry|| .2 = O(h) and that 1 — T}, is bounded
on L2. The bound on &, (i},) is obtained from the fact that ¢y, is bounded in
H' and Corollary 4.2. Consequently, (extracting a subsequence if necessary)
we can assume that (¢pp,) weakly converges in H!(Q) to a limit ¢ and that
(vp,) converges to a limit v. Hence (uy) converge strongly in L? to ¢, and it
now follows from Lemma 4.3 that for any 6 € C*°(M),

(4.9) v{ip, 6) = lim v (up, ) = lim h™*Bp(un,0) = B(p, 0).

(4.8) |An| =

Since 6 is arbitrary in H' this shows that ¢ € D(L,) and that (L,—v)¢ = 0.
Hence v is an eigenvalue of L,. Moreover, the dimension of an orthonormal
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basis is preserved by strong limit. So the above argument proves that for
any € > 0 small, there exists h > 0 such that for h €]0, h], one has

(4.10) o(|A]) N[0, R] C Ujlvj — €,v5 + ]
and
(4.11) fo(|AR]) N [vj — €, v + €] < mj.

In order to show that one has equality in (4.11) for e small enough, observe
that for any ¢ € H'(f2) independent of h, one has

lim h2,(1) = B, )

thanks to Lemma 4.3. In particular, if ¢ € D(L,) satisfies L,9 = vy for
some v > 0, then limy, 0 h 2E,(v)) = v||¥||?>. Hence, we can mimic the
proof of Theorem 2 iii) in [3] to get the result. The proof of Theorem 1.2 is
complete.

4.3. Case of measurable densities. In this section we assume that p is
a measurable function satisfying (1.1) and we prove Theorem 1.3. We first
apply Theorem 1.2 with py = 1. It follows that 1 is a simple eigenvalue of
Th,po- Moreover, denoting (fix,p,(h))ren the decaying sequence of positive
eigenvalues of Ty, ,,, one has 1 = g p, > p1,po (h) and i 5, (h) = h%v1+0(h?)
where we recall that 11 > 0 is the lowest positive eigenvalue of the Neumann
Laplacian on 2. Moreover, one has ker(7} ,, — 1) = Span(1) Combined to
the spectral theorem, this implies that for all € Span(1)+, we have

(4.12) (1 = Thpp)us w) 12(p) = Ch2”“”%2(po)~

On the other hand, from (3.2) one has
1
(1 = Thpo)us w) £2(pg) = T, /ng Ly <n(f(@) = f())2dps, (z,y),
and since m < p < M, then

1

<(1 - Th,po)ua u>L2(p0) < m <(1 - Th,p)uv u>L2(p)

po) = ﬁHuH%Q(p). Combined with (4.12), this implies that there

exists a new positive constant C' such that for all u € Span(1)*, we have

(1= Ty )z = CR2lul3a,.

and HUH%Q(

This proves i) and the lower bound on g(h). The upper bound is proved in
the same way, using the equivalence of Dirichlet forms.

4.4. Total variation estimates. This section is devoted to the proof of
Theorem 1.4. Thanks to (1.10), we have

1
sup [t , (2, dy) — pllrv = S 15, — ol oo Lo
e

where Iy denotes the orthogonal projection on Span(1) in L?(p). Through-
out this section, we drop the dependance with respect to p in the notations.
For any p € N, one has T} = A, + B, with Ay = my,, Bi = K}, and for any
P Z 1 Ap+1 = mhAp, Bp-‘rl = thp—i-KhT;;. Since HthLOO—>L°° < 1-ChY
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and || K| 12z < Ch™2, it follows from (2.49) and (2.50) in [2] that for

any p € N

[ApllLoe s Lo < (1 — CRY)
(4.13) P
”Bp”L2—>L°° <Ch 77z

Suppose now that p,n € N. Since TypIly = Ily we get

| TF " — o[l poospoe < [|Apl|poomsroe | T — THo|| ooy e
+ || Bp(T7 — o) || oo s oo

Taking p = |Mnh?>~7| with M > 0 to be chosen large enough (here we
denote |n| the integer part of n € N), we deduce from (4.13) that

_ 2
[Apl| ooy poe < 7™M

where C' is a positive constant independent of h and M. Since T}, is mar-
kovian, T}, and Iy are bounded by 1 on L* and conseqently

_ 2
(4.14) TP — g oo poo < Ce™™ME || B (TP — )| poo s oo

We shall now estimate the second term in the above right hand side. One
has

1Bp(T3 " = To) | oo szoe < || Bpll s poe I T3 — Mol 2 12 [ Tal| oo 2
and from Proposition 1.1 and Theorem 1.3, we know that o(7},) \ {1} C

[-1+ Ch?,1 — g(h)] with h2/C < g(h) < Ch? and v < 2. Hence it follows
from the spectral theorem, that for h small enough

175 = oll 22 < (1 —g(h))"™.

Combined with (4.13) and the estimate ||Th||roor2 < || Th||Loe—ree = 1, it
follows that

|By(T3 ™ = o) sz < CRTI73(1 = ()" < ChT 3¢9,
Together with (4.14), this implies
T I ooy e < Ce™MOR | O 7= n9(R),
Since h?/C < g(h) < Ch?, it follows that for M > 0 large enough one has
TP Tl poe oo < CRTT 279,
Taking advantage of p = | Mnh?~7], this can be written
T3 Toll e ie < O~ $enal140(5)

which proves (1.11).
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5. APPENDIX

Let 1Y = (R/2Z)%, d = 1 +d +d". For f € L?(I1%) and for any k =
(ki k' k") € Zx Z¥ x Z¥", we denote by

(5.1) Fk) = Ff(k) = Qd% /H R fa)da

the Fourier coefficients of the function f. The map F is an isometry from
L?(11%) onto ¢?(Z%) and we denote by F its adjoint:

(5.2) F(a) 2d/2 Z ape’ ™k
kezd

for any a = (ag)pezqe- Let also A, A, X" > 0 be some parameters and denote
A= (A1, N, \’). We recall that for any & = (&1,¢,¢") € R*4+4" we denote
A& = (M&,NENEY). For any s € R, we define the A\-Sobolev space as
the space of functions ¢ such that [|¢| ms < co where

(5.3) llag = [[(CA - k)Y F£(k))klle2za)-
We define similarly the partial Fourier coefficients Fypn : L2(ITVHE+d")
Gz L2(I), Fp, « LAY 5 02(2, L2(14+47)) and their adjoint
Fur gy Fay. Consider the hypersurface Yo = {z1 = a} x 147 c T4, We
define the trace operator 71 : H}(I1¢) — H1/2(Ea) by

\}*ﬁz’,m” ( Z eiﬂ-klaf(b(kl, k,, k//)> (IE/, 1'”)
2 k1€Z

WZ ™ bk, 2").

k1€Z

Wolal,a”) =
(5.4)

Lemma 5.1. Let s > % There exists C' > 0 such that for any A1, \', X" >0
and any ¢ € Hi(11%) such that Fy, ¢(0,2',2") = 0, one has

_1
(5.5) e gl . < OA 2Nl g -

A/ )\II( a)

Proof. We may assume without loss of generality that a = 0. By a
density argument, it is sufficient to prove (5.5) for ¢ € C*(I1%) such that
Fuy#(0,2",2") = 0. For such functions, the sum in (5.4) is over k; € Z* and
it follows from Cauchy-Schwarz inequality that

Fx’ o . k/7 k// _ lﬂklaf'
| For o (Ya ) f| > (k)|

kieZ*
1 —48 3 S 3
<X aen) (X amFIFEmP)
k1€Z* k1€Z*
We claim that there exists a constant C' > 0 such that for any (K, k") €
Z¥+4" and any X, X" > 0, one has

(5.7) Z <)\ . ]€>—28 < C)\l_l«)\,k‘/, /\//k//)>1—25.
k1 €Z*

(5.6)
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Indeed, since the function m : t — (1 + |[At]> + [NE|? + |[NE"]2)75 is
decreasing and integrable on R, one has

5.9 >R = 3 i) < [ mio)dr
k1 €Z* ki€Z* R
Using the change of variable t — Wt one gets [, m(t)dt = CLA; (N, N'E"))1 =2
for some universal constant . Combined with (5.8), this proves (5.7).
Now, using (5.7) and (5.6), we get

’fz’,x”(/}/ad))(k/a k//)‘Z < C)\l—l«)\/kl?)\//k//»lst Z <A . ]ﬁ>28’f¢(k)|2
ki€Z*

and hence

BB ) = S (K N2 o (a) (1)

)\/7)\// k/ ’kl/

<SONTY DD RPIFGR)P = OA 10N g ray
k' k" k170

which proves the result. O

Given 0 < a < b < 2, the restriction operator defined by (3.22) acts on
H*' functions Ry, : H(II?) — H'(Ja,b[xI1?"!) and one defines the trace
operator

(5.9) Yo : HY(Ja, b[xII%) — H2(X,)

by Yaf = ~Nf for any f € H'(II%) such that R]a,b[f = f. Throughout we
write 7o f = f\:vlza

Suppose now that a < b < ¢ are some fixed real numbers and let Ay, A1, A2 C
R x TI%! be defined by Ag =]a, b[xII%1, Ay =]b, ¢[xII9"L, Ay =]a, c[xTT¢L.

Lemma 5.2. Let (¢;)j=012 € Hi(A;) and ro € L*(A2) be some functions
depending one some parameters A = (A, X', ") €]0,+oc[> and h > 0. Let
f € L*(Ag) given by f = 14,00 + 14,01 and assume that f = ¢o + 72 with

103l 71 (4, < 1 and |2l r2(a,) < h

for all 5 = 0,1,2. Then there exists hy > 0 and Y > 0 such that for
0 < AMh < hq, there exists Y € H}\(Al) supported in b < x1 < b+ hA1 and
such that ¥, —p = (00)z,=b — (¢1)}e,=p and

(5.10) [0l rayy < T and [[¢]|p2(a,) < Th

Proof. Throughout C denotes a positive constant independent of h and
A that may change from line to line. First observe that the statement of
the lemma is invariant by translation and dilation in the variable x;. Hence
we can assume without loss of generality that a = —1,b = 0 and ¢ = 1.
Throughout the proof, we denote ¥ = {x; = 0} x 1! Cla, ¢[xI1%! and
we let o :]a, c[xII%"! —]a, c[xII%! denote the symmetry with respect to .
We define go = 14,00 + 14,0000 and g1 = L 4,01 00 + 1 4,¢01. We denote

(5.11) 0= (¢o)= — (¢1)= == 10(g90 — 91)
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with ~p defined by (5.9). We claim that there exists Cp > 0 independent of
the ¢; such that

[ h
(5.12) 10l 22y < Co SVe
1

In order to prove this estimate, let € > 0 a constant to be fixed later and let

0 €
(5.13) I.=I.(2) == f(z1,2")dzy — /0 f(x1,2")dxy

wich is well defined for | | < h1 := min(b — a,c — b). By Taylor expansion,
one has ¢;(z) = ¢;(0,2') + f O ¢i(t, x')dt and hence

I(a') = ¢0($1,$/)d$1 - /0E ¢1 (1, 2")dzy

0 x1
(5.14) =ef(z) + / / D190 (t, 2" )dtdz,
—eJ0

€ x1
- / / 81¢1(t, x’)dtdxl.
0 Jo
Moreover, one has

0 €1
H//O 81¢0(t,a:’)dtd:1:1’L2

0
< H/ \/|901P\flH)\131¢0||L2(]a,b[)d$1‘
0
< 7! / Vel IMdidoll 2y do

2 3. _ 3. _
< 352)‘1 1||¢0HH;(AO) < Cexart,

(1)

(5.15) L2(I)

and of course an estimate similar to (5.15) holds true for ¢;. On the other
hand, since f = ¢9 + 73, then

0 €
IE(:):’)—/ ro(z1, 2" )dxy — / ro(x1, 2" )dzy + ¢2(0 2')dz' —/ $2(0, 2")

/ / O1¢a(t, 2')dtdz, — / / D192 (t, 2')dtdxy
=/ ro(xy, 2" )dxy — /7‘2(9617 "dx
—€ 0

0 x1 € T
+ / / a1¢2(t, l’/)dtdl’l - / / 81(;52 (t, :L’l)dtdl'l.
—eJ0 0 JO

The two last terms of the above identity are estimated as above. It follows
that

dry + Cez ML,
LQ(Hd—l)

Using Cauchy-Schwarz and the assumption on ry, we get

M)l 2uan) < Cle+ A7,

(&) gty < /

—€

7"2('%'17 x/)’
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Combining this estimate, (5.14) and (5.15), we get

N
10 22(x) < C(/\il + ﬁ)'

Minimizing the right hand side by taking € = hAywe get ||0|[2(smy= O(y/h/A1)
which proves (5.12).

Next we want to estimate half derivatives of . We recall that 6 is defined
by (5.11) and we decompose gy — g1 = 6 + g with

(5.16) gm>=/'@m—mxafw%w.

The function g is independant of x1, hence it is defined as a function on As
and as a function on X

1
Sub-lemma 5.3. One has g € Hy(As) and g € H3 ,,(X). Moreover

(5.17) 1911711 (A2) < D0l a1 (a0) T 11011171 4y

and there exists a constant C' > 0 such that
C
(5.18) gl 1 < —=
Hf/)\//(z) )\1
Proof. By Cauchy-Schwarz inequality, one has [|g[[z2(4,) < C([[¢ollz2 +
@1ll22)s 1IN 0w gllr2(ay) < C([NOwdollr2 + [|N O ¢1llr2) and a similar esti-
mate for derivative in the variable z”. Moreover, \10;,§ = 0. Hence we
have § € H}(A2) and (5.17) holds true. By a classical trace theorem, it
1

follows that g € H}, ,,(X) and it remains to prove (5.18). We can assume
A1 > 1. One has

111® 4 = Y A RIFeegk)?

Hf/,)\//(z) I;eZdl+d,,

where we denote A = (X, \’) and k = (K, k”). Splitting the sum in two

parts we get [|g]|? 1 = S<(A1) + S5 (A1) where
)\2/,>\/I
Ss (M) = Z <5‘ ) iﬁ)’fm’,x”g@ﬂz-
<5\~]’<~}>>/\1
One has
519)  Su(M) < - A2\ Fo g (B)2 < g2 <
619 SO0 < Y G RHFwg®F < gl < 1

<5\~£}>>/\1
thanks to (5.17). In order to estimate the low frequencies, we observe that
(5.20) ScM) <A D [ Fwarg®)? < MllglFas.
(AEY<M

We claim that

_ 1
(5.21) ”g”%?(z) < (K + )\*%)
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Indeed, by Cauchy-Schwarz inequality and thanks to the symetric form of
go and g1, one has

19l 2zy < Cllpo — p100ll12040) = Cllf = foolr2ia,

< Cllg2 = 200l 12(a5) + ClirnllLz(a,)
Moreover, since ¢o(x) — ¢y 0 o(x) = ff;l oo (t,a', 2" dt, we get
_ C C

(5.22) 19l sy < )\71||¢2HH>1\ + Cllrnllz2(as) < N +Ch
which proves (5.21). Now combining (5.20) and (5.21) we get S<(A\1) <

/\% + Ch which combined with (5.19) proves the result since hA; is bounded.
U

We are now in position to estimate 6 in H2. One has 6 = g + Y0(d) with
0 =go — g1 — g and from Sub-lemma 5.3 we know that

Moreover, by construction, one has ngHHi(Aﬂ < C for j = 0,1 and by

Sub-lemma 5.3 one has also HgHHi(AQ) < C. Hence H(SHHi(AQ) < C and

since ng 6(z1,2',2")dzy = 0, Lemma 5.1 implies |[]|,1/2 = < C/V)\.
)\/,)\//

Combined with (5.23), this proves that

(5.24) 1005372,y < C/v/ A1

We are now in position to define the function . Let p € C*°(R4) be
such that p(0) = 1 and supp(p) C [0, 3]. We define 1 via its partial Fourier
coefficients in the variables (2/,2"). For 1 €]0,1[ and k = (k', k") € 24+,
let

~

k) if (k) < h1
(k) if (k) > h~!

e p( 1)(
Y(z1, k) = p(‘”li?’;>)é

A1
where for sake of shortness we denote @ = Fy/ x(u). Of course, ¥, = 0
since one has (0, k) = (k). Moreover, since p is supported in [0, 1], then
1 is supported in 0 < z1 < hA;. Let us now estimate its L? and H' norms.
Denoting ||u||%2(]071[xzd71) = Zkezdfl Ju(., k)H%ﬂ(]QJ[y we have

||¢H%2(A1) = ”1/3(1‘17 E)Himo 1[xZ4-1)

> Ié(%ﬂ2]€ () P + P B [ o Py

(k)y<h—1 Ry>h-1
(ky<h=1 (k)>hf1
< W plBa e 1612 sy < OB

thanks to (5.12). This proves the second part of (5.10). To prove the H*
estimate, we observe that

(5 25) ||¢|!H1(Al) ”¢”L2 A1)+||)‘161¢HL2 (]0,1[xZd-1) +||< >¢HL2 (10,1[xZd-1)
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and we estimate separately each term of the right hand side. First, we have

) 2 xl 2
HAlalq/}HLQ(]QJ[de n = Z h™~ ‘0 /0 ’ ,(TM>‘ dxy

ky<h—1
o /x1<,1;;> 2
£ 3 @AEE [ P
(ky>h—1
A1 AT (2 TNACTY 12
=715 (5 X 0ERE+x Y RI6EP)
(k)y<h—1 (ky>h—1

A
< NP lIze (5 101Z2 + Mllol ) < Clellz
)\/’)\//
thanks to (5.12) and (5.24). Let us now estimate the last term in (5.25).
We have

IRV B agoapezsy = D 10 /0 rp<h””—;1>12dx1

> 371<l~€> 2
£ 30 P [ 1o P
(k)y>h—1
= o2 (hA D2 R+ M Y 10(R) 20
(k)y<h—1 (ky>h—1
<lolaMllel? ) <Clpls

A )\//

thanks again to (5.24). This achieves to prove that |||? e

[y = 0. O
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