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STRONGLY NESTED 1D INTERPOLATORY QUADRATURE AND EXTENSION TO ND VIA SMOLYAK METHOD
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One dimensional interpolatory rules with n to n+2 nesting are first derived by local and global minimization of the classical bounds of integration and polynomial interpolation error. The proposed 1D rules are then tested for different classes of functions. The most efficient 1D quadratures are then extended to multi-dimension using Smolyak's method and tested on basic multivariate functions. The proposed rules and their nD extension appear to be as efficient as their counterparts based on the classical Leja sequences.

INTRODUCTION

A very large number of scientific problems require the calculation of integrals and this need has led to the development and analysis of various types of quadrature formulae [START_REF] Davis | Methods of numerical integration[END_REF]. In the framework of interpolatory quadrature rules, the so-called nested formulae are those in which the points of a coarse set are included in larger sets defining more accurate formulae. This property is highly desirable when the evaluation of the function of interest is expensive, e.g. when it is an output of a CPU-expensive numerical simulation. The most often used 1D nested quadratures are two interpolatory rules : Fejér second rule [START_REF] Fejér | Mechanische Quadraturen mit Positiven Cotesschen Zahlen[END_REF] for which the nesting property is obtained from n-point set to (2n+1)-point set, and Clenshaw-Curtis rule [START_REF] Clenshaw | A method for numerical integration on an automatic computer[END_REF] that has a n to (2n -1) nesting. The aim of this work is to propose and study symmetric interpolatory quadratures with a n to n + 2 nesting property. They are also compared with interpolatory rules based on Leja-sequences that are the reference for strongly nested rules. In section 2, basics about interpolatory quadrature and Gauss-Legendre quadrature are recalled. In section 3, notions about all classical nested quadratures are introduced. In section 4, the mathematical criteria that have appeared in section 2 and 3 in mathematical analysis of interpolatory quadratures are used to derive n to n + 2 nested sets of 33 points by successive or global minimization. The proposed 1D rules are tested and compared with classical rules in section 5. Section 6 recalls the main properties of Smolyak sparse grids illustrating this complex technique with detailed 2D examples. Finally in section 7, the best 1D quadratures are extended in multi-dimension with Smolyak's method and tested on basic multivariate functions. Most of the work was done as the first author was working at ONERA.

2 Interpolatory quadrature and Gauss-Legendre quadrature 2.1 Interpolatory quadrature rules By a linear change of variable a finite summation interval can be transformed to [-1, 1] so that, without restrictions, integrals like

S[f ] = 1 -1
f (x)dx can be considered. An interpolatory rule [START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Dahlquist | Numerical methods in scientific computing[END_REF] is of the form

S[f ] I n [f ] = n i=1 w i f (x i ) (1) 
where x 1 < x 2 < ... < x n are distinct nodes and w 1 , w 2 ...w n the corresponding weights. Due to the expression in the right-hand side, a Riemann integral has to be considered in the left hand-side; as concerning the function f , it is always supposed to be at least continuous on [-1, 1]. The accuracy of formula [START_REF] Bogaert | Iteration-free computation of Gauss-Legendre quadrature nodes and weights[END_REF] is classicaly defined by the highest degree of the polynomials that this formula can exactly integrate. In case the nodes are defined a priori, the weights are calculated to exactly integrate the canonic polynomial basis 1, x, x 2 ...x n-1 . They are the solution of the following linear system

       w 1 + w 2 + ... + w n = 2 w 1 x 1 + w 2 x 2 + ... + w n x n = 0 ... ... ... ... ... w 1 x n-1 1 + w 2 x n-1 2 + ... + w n x n-1 n = 1-(-1) n n (2)
Lets us denote V (x 1 , x 2 , ..., x n ) its Vandermonde determinant the matrix of this linear system V (x 1 , x 2 , ...,

x n ) = 1≤i<j≤n (xj -x i ),
that is non zero as the nodes are distinct. The latter guarantees the existence and unicity of the solution. The corresponding weights define an exact quadrature for polynomials of degree up to (n -1). In case n is odd and the nodes are symmetricaly distributed in [-1, +1], it is easy to check that the rule is also exact for polynomial of degree n. The weights are fully defined by equation (2) but they are often calculated by applying the interpolatory quadrature rule itself to the Lagrange polynomials associated to the nodes: let L i (x) be the Lagrange polynomial associated to x i among the set of nodes (x 1 , x 2 ...x n )

L i n (x) = l=n l=1;l =i (x -x l ) (x i -x l )
L i n is a polynomial of degree (n -1). Hence its integral is calculated exactly by rule (1) and, as it is null at all points of the rule except x i ,

w i = 1 -1 L i n (x)dx (3) 
The Lagragian polynomial Π n (f ) that interpolates f in the n points (x 1 , x 2 , ..., x n ) is of degree n -1 and satisfies Π n (f )(x j ) = f (x j ). This yields

1 -1 Π n (f )(x)dx = n j=1 w j Π n (f )(x j ) = n j=1 w j f (x j ) = I n [f ], (4) 
which makes the name interpolatory quadrature quite clear.

Accuracy of interpolatory rules

The error in the evaluation of the sum S[f ] by

I n [f ] is now denoted R n [f ] R n [f ] = 1 -1 f (u)du - n i=1 w i f (x i ) 2.2.1 For a C 0 function
The accuracy of an interpolatory rule can first be infered from the following majoration, with the low hypothesis of a continuous functions f

I n [f ] - n i=1 w i f (x i ) ≤ 2E n-1 + i=n i=1 |w i |E n-1 , (5) 
where E n-1 is the supremum norm of the difference between f and its best approximation in this sense by a polynomial of degree (n-1) that will be denoted b n-1 (x) in the following lines

(E n-1 = ||f -b n-1 || ∞ ).
This property is easily proved noting that b n-1 (x) is exactly integrated by rule (1) as polynomial of degree (n-1), so that the left-hand side of previous equation can be rewritten

1 -1 (f (x) -b n-1 (x))dx - n i=1 w i (f (x i ) -b n-1 (x i )) .
As a consequence, when defining a quadrature rule, it is highly desirable that the sum of the absolute values of the weights has a constant bound. As the first line of system [START_REF] Bos | On the calculation of approximate fekete points: the univariate case[END_REF] states that the sum of the weights is equal to 2., the best possible bound is 2. This is obtained if and only if all weights are positive. In this case, equation ( 5) yields 

I n [f ] - n i=1 w i f (x i ) ≤ 4E n-1 . (6 
R n [f ] = 1 n! 1 -1 f (n) (ξ x ) l=n l=1 (x -x l )dx ξ x ∈ [-1, 1] (7) 
This leads in particular to the following upper bounds:

|R n [f ]| ≤ 1 n! ||f (n) || ∞ 1 -1 l=n l=1 (x -x l ) dx ≤ 2 n! ||f (n) || ∞ l=n l=1 (x -x l ) ∞ (8) 
The polynomial Φ n (x) = l=n l=1 (x -x l ) is called nodal polynomial of the set {x 1 , x 2 ...x n } Its degree is n and its leading coefficient is 1. It is known that the lowest supremum norm for a polynomial of degree n over [-1, 1] with leading coefficients 1 is 1/2 n-1 and is reached by T n (x)/2 n-1 (T n (x), the first-kind Chebychev polynomial of degree n). A low value of (n + 1)/2 n is obtained for corresponding second-kind Chebychev polynomial U n (x) divided by 2 n . In general, the presence of the third factor in the right hand-side of equation ( 8) suggests to consider a disposition of the interpolation points similar to those of the the roots of T n (x) and U n (x), that is cosine of regularly spread angles in [0, π]. This is actually confirmed by theoretical results (see [START_REF] Mastroianni | Optimal systels of nodes for La grange interpolation on bounded intervals. A survey[END_REF] 3). Other bounds may be derived from Taylor expansions up to order (n -1) with integral residual and Peano's Kernel [START_REF] Davis | Methods of numerical integration[END_REF].

For a C r (r < n) function

The most classical bound is derived going back to equations ( 5), [START_REF] Chen | Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[END_REF] and bounding E n-1 following Brass [START_REF] Brass | Error bounds based on approximation theory[END_REF] 

E n-1 ≤ K r (n -r)! n! ||f (r) || ∞ K r = 4 Π ∞ p=0 (-1) p(r+1) (2p + 1) r+1 .
Using Stirling formula, it is then easily proved that there exist a constant L r depending on r only such that

∀n n r E n-1 ≤ L r ||f (r) || ∞ .
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This yields (for a quadrature with only positive weights)

∀n |R n [f ]| = I n [f ] - n i=1 w i f (x i ) ≤ 4L r n r ||f (r) || ∞
Other bounds may be derived from Taylor expansions up to order (r -1) with integral residual and Peano's Kernel [START_REF] Davis | Methods of numerical integration[END_REF].

Minimal Lebesgue constant and derived criteria for interpolation and integration accuracy

It is known that not all sets of points are well suited for interpolation and interpolatory quadrature: uniformly-distributed points, for example, is known to be a bad choice, for which large interpolation error may appear at boundaries for regular functions and large integration errors are observed [START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Gourgoulhon | An introduction to polynomial interpolation[END_REF]. The purpose of this section is to present criteria to derive sets of points that do not suffer from these issues. Criteria are considered here for a general selection of all points for a fixed cardinal of the set (denoted n) and are used in section 4 for the derivation of nested symmetric sets of points.

Lebesgue constant for polynomial interpolation

The Lebesgue constant Λ n of a sequence of n distinct points gives an indication on the quality of polynomial interpolation based on this set. Let us denote as before b n-1 the best polynomial approximation of degree n -1 for a fixed norm of the continuous function f . More, precisely, the Lebesgue constant, denoted here Λ n , is bounding the interpolation error following

f -Π n (f ) ≤ (Λ n + 1) f -b n-1 (9) 
The advantage of using a sequence of points exhibiting low Lebesgue constant for interpolation is then obvious. The demonstration of equation ( 9) is simple: the process of interpolation in (x 1 , ..., x n ) maps any continuous function f to a polynomial of degree at most n -1, Π n (f ). The mapping Π n is linear and the space P n-1 of polynomials of degree n -1 or less is invariant by Π n . The best approximation of f for the considered norm b n-1 minimizes P -f among all polynomials of degree n -1. By the triangle inequality:

f -Π n (f ) ≤ f -b n-1 + b n-1 -Π n (f ) . ( 10 
)
Due to the invariance of

P n-1 by Π n , b n-1 = Π n (b n-1 ) and denoting Λ n = ||Π n ||: f -Π n (f ) ≤ (1 + Λ n ) f -b n-1 (11) 
An explicit expression of Λ n is most often derived for the infinity norm from equation for which last equation yields

f -Π n (f ) ∞ ≤ (1 + Λ n ) E n-1 Λ n = max x∈[-1,1] Leb n (x) Leb n (x) = n j=1 |L j (x)| (12) and |R n [f ]| ≤ (2 + 2Λ n ) E n-1 . (13) 
Leb n (x) is called the Lebesgue function of the set. Figure (2.3.2) presents typical plots of Lebesgue functions.

Lebesgue constant and interpolatory quadrature

From characterization (4) of interpolatory quadrature,

|R n [f ]| = 1 -1 f (x)dx - n i=1 w i f (x i ) = 1 -1 (f (x) -Π n (f )(x))dx , (14) 
so that the interpolation bound [START_REF] Davis | Methods of numerical integration[END_REF] leads to a straighforward bound for the residual of interpolatory quadrature, equation [START_REF] Dwight | A sparse grid and Sobol index code (Python) "smobol v1.0[END_REF]. In this equation E n-1 depends on the regularity of the function of interest (and not on the set of points) whereas Λ n depends on the set of points (and not on the function). Of the course the right-hand side of equation ( 13) is an upper bound but it quickly appears that is does not give a trustfull idea of how good a set of points is for interpolatory quadrature. This is illustrated in the following plot of Lebesgue functions for classical sets of quadrature points. Two of them exhibit local high values (at lower and upper bound of the interval [-1,1]) that may be detrimental for interpolation but are not so strongly detrimental for interpolatory quadrature. This is understood when deriving following bound from equations ( 5) and (3):

|R n [f ]| ≤ 2 + 1 -1 Leb n (x)dx E n-1 (15) 
When dealing with interpolatory quadrature the integral of Lebesgue function may be more relevant term than twice the Lebesgue constant in the majoration of the quadrature error (equation [START_REF] Fejér | Mechanische Quadraturen mit Positiven Cotesschen Zahlen[END_REF] versus equation ( 13)).

Vandermonde matrix and Fekete points

Fekete's approach (see [START_REF] Fekete | Uber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten[END_REF]) for polynomial interpolation is directly connected to the linear algebra point of view (equation ( 2)) for the calculation of the weights. The condition for the linear system for the coefficients to be well-defined is that the Vandermonde determinant of the node position V (x 1 , x 2 ...x n ) is non zero (that is is equivalent to say that the nodes are distinct). Besides the Lagrange polynomials for interpolation may be written in terms of two Vandermonde determinants

L i n (x) = V (x 1 , x 2 ...x i-1 , x, x i+1 ...x n ) V (x 1 , x 2 ...x i-1 , x i , x i+1 ...x n ) ( 16 
)
Hence a possible objective to define a set of nodes for interpolation is to maximize

V (x 1 , x 2 ...x n ).
The resulting set of points for fixed n is called Fekete points. From equation ( 16), this choice ensures in particular that all L i n (x) have an infinity norm smaller than one, and that the corresponding Lebesgue constant,

Λ n = max x∈ [-1,1] n j=1 |L j n (x)| ,
is smaller than n. An explicit definition of this points on a real interval is given in next subsection.

Squared sum of the Lagrange interpolating polynomials

Fejér searched, for any integer n, the set of points (x 1 n , ..., x n n ) solution of the following problem: min

-1≤x n n <...<x 1 n ≤1 max -1≤x≤1 (L 1 n (x) 2 + ... + L n n (x) 2 ) (17) 
He proved in [START_REF] Fejér | Bestimmung derjenigen Abszissen eines Intervalles, für welche die Quadratsummes der Grundfunctionen der Lagrangeschen Interpolation im Intervalle [-1,1] ein möglish kleines Maximum besitzt[END_REF]:

-that the corresponding (x k n ) 1≤k≤n are the roots of: (1-x 2 )P n-1 (x) with P n the Legendre polynomial of degree n ; -that those points are the same as the Fekete points ; -that the value of the max of the squared sum of Lagragian polynomials is 1. This problem is closely related to the minimization of Lebesgue constant with infinity norm and hence leads to satisfactory points for the interpolation.

Gauss-Legendre quadrature

As discussed in previous section, interpolatory rules based on sets of n points exactly integrate polynomials of degree n -1. Besides, n-point Gauss-Legendre rule exactly integrate polynomials of degree up to 2n -1. The actual superiority of Gauss Legendre quadrature for non polynomial functions has been discussed by Trefethen [START_REF] Trefethen | Is Gauss quadrature better than Clenshaw-Curtis ?[END_REF]. The nodes of the quadrature are the roots of Legendre polynomials P n defined recursively as :

(n + 1)P n+1 (x) = (2n + 1)xP n (x) -nP n-1 (x), P 0 (x) = 1, P 1 (x) = x, (18) 
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The n-th polynomials has n roots, denoted x k n in [-1, 1]. The x k n are separated by the x n-1,k . The weights and the quadrature are defined by following equations:

w k n = -2 (n + 1)P n (x k n )P n+1 (x k n ) = 2 (1 -x k n 2 )P n (x k n ) GL[f ] = n k=1 w k n f (x k n ) (19) 
Equality of exact sum of corresponding Lagragian interpolator Π n (f ) and GL[f ] is true as for interpolatory quadrature. Besides, Gauss-Legendre has a specific polynomial exactness: since Legendre polynomials are orthogonal for the L 2 integral dot-product over [-1,1], the polynomial P n is orthogonal to any polynomial of degree lower or equal to n-1.

Any polynomial S of degree lower-equal to 2n -1 can be rewritten by polynomial division as S(x

) = P n (x)Q(x) + R(x)
where the quotient and residual polynomials, Q and R, have a degree lower equal to (n -1). The property of exactness of Gauss-Legendre quadrature for polynomial S is then simply derived. Finally, using asymptotic expansions of abscissae and weights demonstraed by Bogaert [START_REF] Bogaert | Iteration-free computation of Gauss-Legendre quadrature nodes and weights[END_REF], it is easily proved that

x k n → (n,k→∞,k/n→γ) cos(πγ) n w k n → (n,k→∞,k/n→γ) π sin(πγ)
3 Nested quadrature rules

In some cases, a very reliable value of S[f ] is needed so that formulae of increasing accuracy should be used up to obtaining a sufficiently converged evaluation. If the calculation of f (x i ) is expensive, it is highly desirable that all (or at least some) of the nodes of the n-point rule are also involved in some of the further (n + p)-point rules. If so, the rules and sets of nodes are said to be nested. This property is rather rare. The basic version of Gauss-Legendre quadrature do not have this property but nested extensions (more nodes) or restrictions (less nodes) exist and are presented in the third subsection. The first two subsections are devoted to the two classical nested interpolatory rules, namely the second rule of Fejér [START_REF] Fejér | Mechanische Quadraturen mit Positiven Cotesschen Zahlen[END_REF] and the rule of Clenshaw and Curtis [START_REF] Clenshaw | A method for numerical integration on an automatic computer[END_REF] that respectively satisfy S n ⊂ S 2n+1 and S n ⊂ S 2n-1 . Besides, sequences of points with a stronger nesting property -S n ⊂ S n+1 or S n ⊂ S n+2 -may be used for polynomial interpolation or interpolatory quadrature. They are called Leja sequences and are presented in the fourth subsection.

Fejér's second rule

The second rule of Fejér is described hereafter in some details (As the first rule of Fejér, which nodes are not nested, does not appear in this work, the adjective "second" is sometimes omitted when refering to the former). The nodes of the n-point rule are the roots of the second-kind Chebychev polynomial U n (x)

θ k n = k π n + 1 x k n = cos(θ k n ) k ∈ {1, ..., n}.
The weights ensuring exact quadrature for polynomial up to degree (n-1) were calculated by Fejér using the property recalled in equation ( 3), a change of variable (x = cos(θ)) and properties of trigonometric polynomials [START_REF] Fejér | Mechanische Quadraturen mit Positiven Cotesschen Zahlen[END_REF]. These weights can also be calculated using Christoffel-Darboux formula for U n [START_REF] Davis | Methods of numerical integration[END_REF]. Their simplest expression is

w k n = 4 sin(θ k n ) n + 1 [(n+1)/2] l=1 sin((2l -1)θ k n ) 2l -1 . ( 20 
)
Under this form, the positivity of the w k n is not clear. Using the following substitution

2 sin(θ k n ) sin((2l -1)θ k n ) = cos((2l -2)θ k n ) -cos((2l)θ k n ),
and gathering the cosine terms of same argument [START_REF] Fejér | Mechanische Quadraturen mit Positiven Cotesschen Zahlen[END_REF], the positivity appears. All the nodes of the n-th rule are also nodes of the (2n + 1) rule so that getting the estimation of the latter requires only (n + 1) evaluations of f if the first has already been computed.

Using the Fourier transform of the crenel function Ψ, x →

1 if 0 < x ≤ π -1 if π < x ≤ 2π
, the asymptotic behavior is easily demonstrated:

nw k n → (n,k→∞, k n →γ) π sin(πγ) (21) 

Clenshaw-Curtis' rule

Clenshaw and Curtis defined the second classical nested rule [START_REF] Clenshaw | A method for numerical integration on an automatic computer[END_REF]. Their (n + 1)-rule has the same abscissae as the (n -1)-rule of Fejér plus the two extrema -1 and +1. In their article [START_REF] Clenshaw | A method for numerical integration on an automatic computer[END_REF], they evaluate the integral of interest from a spectral expansion on basis of the first-kind Chebychev polynomials. Later on, Imhof put their estimation under the form of equation ( 1) and proved that the corresponding weights are positive [START_REF] Imhof | On the method for numerical integration of Clenshaw and Curtis[END_REF][START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Dahlquist | Numerical methods in scientific computing[END_REF]. As stated before, the nodes of the n-point rule are the roots of the second-kind Chebychev polynomial U n-2 (x), -1 and 1.

θ k n = Πγ k n = k π n -1 x k n = cos(θ k n ) k ∈ {0, ..., n -1}.
The simplest expression of the weights associated to the n-point rule is [START_REF] Waldvogel | Fast construction of the Fejér and Clenshaw-Curtis quadrature rules[END_REF] 

w k n = c k n -1 1 - [(n-1)/2] j=1 b j 4j 2 -1 cos(2jθ k n ) ( 22 
)
where the coefficients b j , c k are defined as:

b j = 1, j = (n -1)/2 2, j < (n -1)/2 c k = 1, k = 0 or n -1 2, otherwise
Using the Fourier transform of Φ : x ∈ [0, 2π] → | sin(x)| the asymptotic behavior of the weights is easily demonstrated:

n w n → (n,k→∞,k/n→γ)
π| sin(θ)| = π sin(θ) = π sin(Πγ).

Extension and restriction of a Gaussian quadrature

The classical quadrature of Gauss do not naturally define a nested rule but it is possible to make an extension of a Gaussian quadrature with preassigned abscissae. Using the Kronrod scheme [START_REF] Montageno | An overview of results and questions related to Kronrod schemes[END_REF], a n-point Gaussian quadrature (integrating exactly the polynomials of degree up to 2n -1) is extended to a 2n + 1-point rule integrating exactly polynomials of degree up to 3n + 1. We denote (y 1 , y 2 , ..., y n+1 ) the set of abscissae to be added to the preassigned set, (x 1 , x 2 , ..., x n ), the new rule reads

Kr[f ] = n j=1 a j f (x j ) + n+1 i=1 w i f (y i ) ( 23 
)
where the y i have to be defined, the weights a j , w j being then defined by the interpolary conditions (2). Any polynomial S 3n+1 of degree 3n + 1 admits the following decomposition by polynomial division

S 3n+1 (x) = P n (x)E n+1 (x)Q n (x) + R 2n (x)
where P n (x) is the n-th Legendre polynomial (which roots are the pre-assigned abscissae x j ) and E n+1 (x) is a degree (n + 1) polynomial (which roots are the new abscissae y i to be defined), Q n (x) and R 2n (x) are quotient and residual polynomials (whose degree is their index). R 2n (x) is to be exactly integrated by any interpolatory (2n + 1)-point rule. So the condition to define a satisfactory set of new abscissae y i is to have

1 -1 P n (u)E n+1 (u)Q n (u)du = 0 ∀Q n (u) ∈ P n .
It happens this condition is satisfied chosing for E n polynomials that Stieltjes introduced in the context of the study of the second-kind Legendre functions [START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Montageno | An overview of results and questions related to Kronrod schemes[END_REF]. Besides, note that Patterson has presented a method starting from a n-point Gauss quadrature (for example 3-point), going to a (2n + 1)-point Kronrod quadrature (then 7-point) then adding (2n + 2) points to define a (4n + 3)-point Patterson rule exact for P 6n+4 and so on. The theory seems to be incomplete but the sequence from 3-point Gauss-Legendre quadrature to 7-point Kronrod and then 15-point, 31-point... 255-point Patterson has been computed (see [START_REF] Davis | Methods of numerical integration[END_REF] 2.7.1.1.) A somehow reverse idea has also been proposed by Patterson (see also [START_REF] Davis | Methods of numerical integration[END_REF] 2.7.1.1.): starting from a final "goal" (2 r + 1)-point Gauss quadrature and striking out every second points defines a (2 r-1 + 1)-point interpolatory quadrature, then a (2 r-2 + 1)-point interpolatory quadrature and so on. In pratice the weights appear to be non-negative.

Sequence of Leja points, symmetric Leja points

The definition of a classical Leja sequence in an interval T of R reads

x n+1 = arg max x∈T n i=1 (x -x i ) (24) 
with the first point, x 0 , is chosen arbitrarily in T . Let us note the connection with the sequential search of points minimizing the absolute value of the Vandermonde determinant:

x n+1 = arg max

x n+1 ∈[-1,1]
|V (x 1 , x 2 , ..., x n , x n+1 )| = arg max

x n+1 ∈[-1,1] 1≤i<j≤n+1 (xj -x i )
and of course 1≤i<j≤n+1

(xj -x i ) = 1≤i<j≤n (xj -x i ) 1≤i≤n (x n+1 -x i )
where the new point x n+1 is hence obtained as the solution of a Leja search. Conversely the N-point Fekete set can not be obtained by succesive solution of Leja search (which would mean that the solution of a global maximisation in R N would be obtained by sucessive maximization for all components of a partial function).

Besides, let us note that this method, even when started by 0 in a symmetric interval, does not successively add opposite points to the set. 1 In order to compare Leja-based interpolatory quadrature to symmetric quatradures, it may be convenient to define a symmetric Leja-type set of points. In the interval [-1,1], the straighforward definition of this sequence is

x n+1 = Arg max x n+1 x n+2 =-x n+1 (x n+2 -x n+1 ) 1≤j≤n (x n+1 -x j ) 1≤i≤n (x n+2 -x i ) (25) 
Actually many options and variants exist [START_REF] Bos | Application of modified Leja sequences to polynomial interpolation[END_REF][START_REF] Chkifa | On the Lebesgue constant of Leja sequences for the complex uint disk and their real projections[END_REF][START_REF] Chkifa | New bounds on the Lebesgue constants of Leja sequences on the unit disc and on R-Leja sequences[END_REF][START_REF] Dumont | Nested interpolatory quadrature minimizing the Lebesgue constant and derived criteria[END_REF].

4 Definition of n/n+2 nested sets of points for interpolatory quadrature from global criteria (done)

In an earlier work [START_REF] Dumont | Nested interpolatory quadrature minimizing the Lebesgue constant and derived criteria[END_REF], Dumont built symmetric sequences of points (starting from {-1, 0, 1}) by successive minimization of different critera (Lebesgue constant, integral of Lebesgue function, integral of absolute value of nodal polynomial, infinity norm of sum of squared Lagrange polynomials...). He then assessed the efficiency of the corresponding interpolatory rules for the six test function of a classical article by Trefethen [START_REF] Trefethen | Is Gauss quadrature better than Clenshaw-Curtis ?[END_REF]. This first of results validates the decision to focus for further study: -succesive and global minimization of Lebesgue constant ; -successive and global minimization of integral of Lebesgue function ; -Leja sequences where the the argmin of infinity norm of nodal polynomial is successively add to current set. The Lebesgue constants, integrals of Lebesgue function and infinity norm of nodal polynomials are plotted in figure 4.1 for corresponding nested sequences with cardinal 1 to 257. On all of the figures, the quantity of interest is also plotted for Clenshaw-Curtis quadrature (although its nesting is (n to 2n -1) and hence different and lower from the one studied). On the last plot, the optimal infinity norm obtained with first-kind Chebyshev polynomial is also plotted. It is first to be noted that the infinity norm of nodal functions is very weakly discriminant : it is almost the same for the three considered sequences of points.

As concerning the integral of Lebesgue function Leb n , as a function of cardinal n, it is much less regular for the proposed (n/n+2) nested sequence than for the Clenshaw-Curtis sets of points. The values of the sum are roughtly two times higher than those obtained for Clenshaw-Curtis sets of points. Finally, the Lebesgue constant is the most discriminant quantity : Clenshaw-Curtis sets of points have a Lebesgue constant close the optimal one (Λ n 2/Π log (n) + .7219 0.6366 log (n) + 0.7219) whereas the Lebsegue constant of the LebConst-so sets seems to be bounded by (n)log(n) curves.

Considering the strong irregularities of the Lebesgue constant on former left-plot it is decided to carry a global search for a 33-point set satisfying

∀ odd n Λ n ≤ 3 + K( √ n log (n) - √ 2 log 2) ( 26 
)
the selected set being the one exhibiting the smallest K value. Please note that Λ 3 ({-1, 0, 1}) = 1.25 and Λ 2 ({0, 1}) = 3 which explains the form of the selected right-hand-side that aims at avoiding to be too restrictive on the first values of the set. The lowest K value that could be achieved is 0.2508. The corresponding sequence of points is given below This sequence of points is denoted hereafter LebConst-go where go stands for global optimization.

S LebConst-go 33 = { 0, -1,

Successive and global minimization of Lebesgue function integral

The symmetric sequence starting with S 3 = {0, -1, 1} and minimizing successively the integral of Lebesgue function Leb n has been derived up to n = 257. The first 33 values of the sequence are written down hereafter S LebInt-so 33 = {0, -1, 1, ± 0.625636256324887, ± 0.851846657718325, ± 0.339641788238558, ± 0.946850997383622, ± 0.482106487818637, ± 0.757667608694366, ± 0.175376580400003, ± 0.981012153711729, ± 0.693525212879786, ± 0.259992979486419, ± 0.906365106082807, ± 0.547932944191913, ± 0.993631434395368, ± 0.094661345500811, ± 0.813221010757367}

The Lebesgue constants, integrals of Lebesgue function and infinity norm of nodal polynomials are plotted in figure 4.2 for corresponding nested sequences with cardinal 1 to n for all odd n up 257. On all of the figures, the quantity of interest is also plotted for Clenshaw-Curtis quadrature (although its nesting is (n to 2n -1) and hence different and lower from the one studied). On the last plot, the (optimal) infinity norm obtained with first-kind Chebyshev polynomials is also plotted. As in the previous subsection, it can first be noted that the infinity norm of nodal functions is very weakly discriminant : it is almost the same for the three considered sequences of points (and from previous subsection, LebInt -so and LebConst -so sequences also exhibit very close Linf norm values). As concerning the integral of Lebesgue function Leb n , that has been successively minimized for this sequence of points, the values for LebInt -so are not that different from those obtained with LebConst -so and are also much less regular than for Clenshaw-Curtis sets of points. Once again the values of the sum are roughly two times higher than those obtained for Clenshaw-Curtis sets of points. Finally, the Lebesgue constant of the LebInt -so sequence are extremely high for n larger-equal 41 (see left plot, all values are then larger than 1000.) It is understandable that bounding the sum of Lebesgue function does not imply small maxima (these maxima being potentialy reached inside a narrow interval of two successive points).

Considering the strong irregularities of Lebesgue function integrals on former middleplot it is decided to carry a global search for a symmetric 33-point set satisfying

∀ odd n 1 -1 Leb n (u)du ≤ 2.5 + M √ n (27) 
the selected set being the one exhibiting the smallest M value. Please note that integral of Lebesgue function for S 3 = {0, -1, 1} is 7./3. so that the 2.5 factor slightly relesases the casting of the first values. The lowest M value that could be achieved is 0.6345. The corresponding sequence of points is given below This sequence of points is denoted herefater LebInt-go where go stands for global optimization.

Successive minimization of Linf norm of nodal polynomial (Leja sequence)

The Lebesgue constants, integrals of Lebesgue function and infinity norm of nodal polynomials are plotted for Leja sets -equation ( 24) starting from {-1, 0, 1, 1/ √ 3}-and symmetric-Leja sets -equation ( 25) starting from {-1, 0, 1}. The considered values of the cardinal are odd values up to 513 for symmetric-Leja and all odd or even values up to 513 for standard Leja. The first thirty-three abscissae of the two sequences are given hereafter. In the plots of next section, Leja and symLeja will refer to these two sequences of points. Looking at Lebesgue constant values, it is observed that symmetric-Leja sequence exhibits isolated very high values (way larger than the 0.8 √ n log(n) curve proposed for reference) that do not appear for non-symmetric Leja. Surprisingly, Lebesgue constants are (in average over some neighbours of each point) smaller for Leja sequence than for LebConst-so (see position w.r.t. upper reference curves and definition of these curves). As considering integral of Lebesgue function, the two plots have been seconded by 2+K

√ n reference curves although for the Leja sequence, a lower exponent may have been more appropriate (see central plot in figure 4). It is observed that the symmetric Leja sequence exhibits significantly higher values of integral of Lebesgue function than LebInt -so sequence whereas those of the classical non-symmetric sequence have the same order of magnitude as those of LebInt -so.

5 Test for classical functions

Test function and error definition

Quadrature rules should be tested for different types of functions : (a) polynomials, which allow to check the properties of polynomial exactness ; (b) entire functions, in our tests, exponentials, exponential of a polynom, cos and linear combination of these2 ; (c) analytic and C ∞ but not analytic functions3 ; (d) C 0 , C 1 and C 2 functions. Besides, for the first six functions (see [START_REF] Trefethen | Is Gauss quadrature better than Clenshaw-Curtis ?[END_REF]), the Linf error of best polynomial approximation, E n-1 , has been calculated for the cardinals n of interest. The curves presenting R n [f ] are then supplemented with the upper bound of equation ( 5) for Gauss-Legendre (bni -Gauss) and LebConst-so (bni -Lebconst-so) quadratures. All weights of the former quadrature are positive so that bni -Gauss is equal to 4E n-1 . The sum of the absolute value of the weights is slightly larger than 2 for LebConst-so for n equal 17 and 23, and equal to 2 for the other n values, so that bni -Lebconst-so is actually very close to bni -Gauss. The last auxiliary evaluation is denoted bna -Lebconst-so. It is the upper bound of integration error that derives from approximation point of view -equation ( 13) -calculated for Lebconst-so. To allow better comparison of convergence for the sixteen functions, |R n [f ]| and its bounds have all been divided by the exact integral of the function. In the next four subsections, integration error |R n [f ]| is considered as a function of the cardinal of the set n, whereas in subsection 6.6, it is assumed that all estimations

I 1 [f ], I 3 [f ]... I n [f ]
are required to monitor the convergence and |R n [f ]| is then considered as a function of the total number of f evaluations needed to get all these estimates.

Polynomials

Two polynomial functions are considered: f 1 (x) = x 20 and f 7 (x) = x 32 -x 28 . Gauss-Legendre quadrature should exactly calculate the integral of f 1 with n ≥ 11 points or more f 7 with n ≥ 17 points. Ordinary n-point interpolatory quadratures exactly integrate polynomials of degree (n -1) ; they require 21 points or more for the exact sum of f 1 and 33 points or more for the exact sum of f 7 . These theoretical properties are well checked (see figure 6.1). Now considering the various "ordinary" interpolatory rules (all but Gauss-Legendre), it is observed that the error is lower for Clenshaw-Curtis rule than for the other rules. Fejér second rule is not more efficient than the proposed n/n + 2 nested rules and the two Leja sequences (but the corresponding residual is decreasing more regularly) 

f 2 (x) = exp (x) ; f 3 (x) = exp (-x 2 ) f 8 (x) = cos Π(x + 1) 3 + 0.2 cos Πx 2 ; f 9 (x) = 3 exp (x) -4 exp (-2x)
Machine zero error is reached for f 3 with 23 points or less for all quadratures ; for the three other functions, 15 to 19 quadrature points are needed. Quadrature of these very regular functions is hence rather inexpensive. When comparing the convergence speed of the various rules, it is observed, once again, that Gauss-Legendre is the fastest. Clenshaw-Curtis' and Fejér's second rule exhibit log(|R n [f ]|) slopes that are similar to those obtained with Leja sequences or with the proposed rules, LebConst-so, LebConst-go, LebInt-so, LebInt-go (but the corresponding two curves are more regular).

C ∞ functions

Two analytical functions are considered: Two C ∞ but not anaytic functions are considered:

f 4 (x) = 1 1 + 16x 2 ; f 10 (x) = 4x + 1 2x 2 + x + 1
f 5 (x) = exp (-1/x 2 ) ; f 11 (x) = exp (-1/x 2 ) -3 exp (-2/x 2 )
For f 4 and f 10 , a significant advantage in convergence towards exact integrals is again observed for Gauss-Legendre and Clenshaw-Curtis quadratures. All other quadratures exhibit rather equivalent convergence speed and its is observed for f 4 that log(R n [f 4 ]) exhibits the same mean slope than the polynomial approximation bound E n-1 . As concerning f 5 and f 11 , all convergence curves (including Gauss-Legendre and Clenshaw-Curtis) are very wavy and it is only in average over some set-cardinals that Gauss-Legendre, Clenshaw-Curtis and Fejér's second rule, exhibit a faster convergence towards exact integrals.

5.5 C 0 C 1 and C 2 functions Three C 0 functions, two C 1 functions and one C 2 functions are considered: 9) should also be looked at: the convergence of estimates towards exact integral of the six weakly regular functions is much slower than for the regular functions considered in the three previous sub-sections. Finally, it is noticed that going from C 2 symmetric function, f 6 , to C 0 non-symmetric function, f 12 , the better convergence of Gauss-Legendre and Clenshaw-Curtis quadratures (in average of neighboring n) is less and less clear until all residual curves are intricated for f 12 .

f 12 (x) = 3|x -0.5| + 2|x + 0.5| ; f 13 (x) = |x| ; f 14 = |x| cos (x) f 15 (x) = |x -0.5|(x -0.5) + x ; f 16 (x) = |x -Π/6|(x -Π/6)

Integration error as a function of the number of evaluations

It is assumed in this section that the estimations of I n [f ] have to be computed for all rules with odd cardinal n. This point of view, of course, is in favor of strongly nested quadratures like Leja or the proposed sequences. On the contrary, it is questionable for Clenshaw-Curtis rule which is most often used calculating the nested sequence of 1, 3, 5, As concerning the entire fonction f 2 , the convergence (in this sense) of fully nested methods is as efficient Gauss' and faster than that of Clenshaw-Curtis' or Fejér's sencond rule. As is to be numericaly estimated for a continuous f . Only Smolyak's sparse grid method [START_REF] Smolyak | Quadrature and interpolation formulas for tensor products of certain classes of functions[END_REF] based on the studied 1D interpolatory rules is considered 4 . The presentation hereafter is based on articles by Gerstner and Griebel ( [START_REF] Gerstner | Numerical integration using sparse grids[END_REF] 4 and 5), Novak and Ritter [START_REF] Novak | The curse of dimansion and a universal method for numerical integration[END_REF] and the thesis of Kaarnioja ([24] 1). The retained convention of sparse grid indices is the one of references [START_REF] Gerstner | Numerical integration using sparse grids[END_REF][START_REF] Heiss | Likelihood approximation by numerical integration on sparse grids[END_REF]. Functional analysis is not the focus is this section ; nevertheless, following [START_REF] Novak | The curse of dimansion and a universal method for numerical integration[END_REF] and preparing section 7.6, we introduce two spaces of functions with bounded derivatives

C r d = {f : [-1, 1] d → R / Max |k| 1 ≤r ||f (k) || ∞ < ∞} and F r d = {f : [-1, 1] d → R / Max |k|∞≤r ||f (k) || ∞ < ∞}.

Reminder. Tensor product of quadratures

The straighforward way to integrate a multidimensional function, based on a 1D rule, is the corresponding tensor or full-grid rule. The points of the multivariate rule are then every combination of the points of the univariate rule. The explicit definition of a rule of this kind is first illustrated in the 2D case. Given Q X and Q Y two 1D quadratures that read

Q X [f ] = m i=1 a i f (x i ) Q Y [f ] = n i=1 b i f (y i ), the tensor product quadrature Q X ⊗ Q Y is simply: Q X ⊗ Q Y [g] = m i=1 n j=1
a i b j g(x i , y j ), the weight of point (x i , y j ) being a i b j , the product of the corresponding weights of the univariate rules. Let us note that, provided Q X and Q Y are two interpolatory rules, Q X ⊗ Q Y exactly integrates x p y q if p ≤ m -1 and q ≤ n -1. This is not a criterion on the total degree of the monomial (or more generally, using linearity, on the total degree of the polynomial of interest). The general definition in d-dimension with possibly different 1D-rules for the different variables (denoted Q 1 , Q 2 ... Q d and involving n 1 ,n 2 ... and n d points) is

Q 1 ⊗ ... ⊗ Q d [f ] = n 1 i 1 =1 ... n d i d =1 w 1i 1 ...w di d f (x 1i 1 , ..., x di d )
If we consider the simple case where the number of points is the same for all axes, the number of function evaluations needed for the tensor-product quadrature is equal to n d (n being the number of points in the univariate rule). It depends exponentially on the dimension d and this practical issue is called "Curse of dimensionality". Smolyak's sparse grids method allows to get satisfactory results from less evaluations and exhibits a property of polynomial exactness for the total degree. It is described in the next subsections.

Hierarchy of quadratures. Difference of quadratures

All the 1D-quadratures of interest are now supposed to be part of a hierarchical set of rules, Q l , (not necessarly nested) and the index is the one of the hierarchy (whereas the exponant refering to variable used in previous section is now omitted). The formula of tensor quadrature is rewritten in this case

Q l 1 ⊗ ... ⊗ Q l d [f ] = n l 1 i 1 =1 ... n l d i d =1 w l 1 i 1 ...w l d i d f (x l 1 i 1 , ..., x l d i d )
Besides, differences of quadrature formulas of the hierarchy may be defined by

∆ k [f ] := Q k [f ] -Q k-1 [f ] Q 0 [f ] := 0.
In general, the difference formula ∆ k f is defined on the union of the grids of the two quadratures Q k and Q k-1 (which is the grid of Q k in the nested case). Let us now note that the simple product formula with level l 1 , l 2 ...l d for the successive variables may be characterized by the following sum

Q l 1 ⊗ ... ⊗ Q l d [f ] = k/ 1≤k j ≤l j (∆ k 1 ⊗ ... ⊗ ∆ k d )f (28) 
This property derives from the sum of the successive ∆

n k=1 ∆ k [f ] = (Q 1 [f ] -Q 0 [f ]) + (Q 2 [f ] -Q 1 [f ]) + ... + (Q n [f ] -Q n-1 [f ]) = Q n [f ]
and is easily checked for low dimensions. For example, the expansion of

Q 3 ⊗ Q 2 [f ]
, is checked summing the lines then the rows (or criss-cross) of the right-hand side of next equation

Q 3 ⊗ Q 2 [f ] = (Q 3 -Q 2 ) ⊗ (Q 2 -Q 1 )[f ] + (Q 3 -Q 2 ) ⊗ (Q 1 -Q 0 )[f ] + (Q 2 -Q 1 ) ⊗ (Q 2 -Q 1 )[f ] + (Q 2 -Q 1 ) ⊗ (Q 1 -Q 0 )[f ] + (Q 1 -Q 0 ) ⊗ (Q 2 -Q 1 )[f ] + (Q 1 -Q 0 ) ⊗ (Q 1 -Q 0 )[f ]
6.3 Smolyak's sparse grids Smolyak's sparse grids are linear combinations of tensor-product operators meant to balance computational effort and accuracy. Their direct definition is based on equation [START_REF] Novak | The Curse of Dimension and a Universal Method For Numerical Integration[END_REF] where the domain of indices is restricted to a simplex:

Q d l [f ] = |k| 1 ≤l+d-1 (∆ k 1 ⊗ ... ⊗ ∆ k d )[f ] (29) 
In this expression, the weights of the tensor-product quadratures obtained when developping the ∆ differences, are products of weights as stated in section 7.1. Besides, the lowest possible value of l is 1. The lower value of |k| 1 for non zero terms is hence d so that the defintion of sparse grids can possibly be made more explicit

Q d l [f ] = d+l-1 j=d k/|k| 1 =j (∆ k 1 ⊗ ... ⊗ ∆ k d )[f ] (30) 
The link between Q d l+1 and Q d l is then obviously

Q d l+1 [f ] = Q d l [f ] + k/|k| 1 =d+l (∆ k 1 ⊗ ... ⊗ ∆ k d )[f ] (31) 
Of course, a direct expression in terms of the quadratures Q l (rather than their ∆ differences) is of interest. The formula (see [START_REF] Gerstner | Numerical integration using sparse grids[END_REF]) is

Q d l [f ] = max(l,d)≤|k| 1 ≤l+d-1 (-1) l+d-|k| 1 -1 d -1 |k| 1 -l (Q k 1 ⊗ ... ⊗ Q k d )[f ] (32) 
where the lower value |k| 1 is indeed max(l, d) and not d as could be guessed from equation [START_REF] Patterson | The optimum addition of points to quadrature formulae[END_REF]. This means that the tensor product of the lowest order quadratures are not involved in the higher order (that is higher l) formulas. They are canceled in the additive process of equation ( 31) when increasing the level l. The number of points n(Q d l ) involved in the sum of equation ( 32) depends of course of the set Q k of 1D quadrature. An obvious upper bound may be derived from last equation

n(Q d l ) ≤= max(l,d)≤|k| 1 ≤l+d-1 n k 1 n k 2 ...n k d

Polynomial exactness

Let us denote P d j the space of multivariate polynomials of degree lower-equal to j

P d j = {x ∈ R d → |β| 1 ≤j a β x β ∈ R, a β ∈ R, for all β ∈ N d } with x β = d i=1 x β i i . The dimension of this space is dim(P d j ) = d + j d .
The definition of the tensorial product of 1D polynomials is then derived from that of P 1

j d i=1 P 1 m i = {(x 1 , ..., x d ) ∈ R d → d i=1 p i (x i ) ∈ R, p i ∈ P 1 m i }
The univariate rule Q i having polynomial exactness m i such that m i ≤ m i+1 , the sparse grid quadrature

Q d l [f ] = |k| 1 ≤l+d-1 (∆ k 1 ⊗ ... ⊗ ∆ k d )[f ]
is exact for all polynomials of the non classical space

V(Q d l ) = V ect{P 1 m k 1 ⊗ ... ⊗ P 1 m k d / |k| 1 = l + d -1}
(where it is obviously not necessary to involve lower values of |k| 1 ).

As an example, we consider the rule U V(Q 2 4 ) = V ect{P 6 ⊗ P 0 + P 4 ⊗ P 2 + P 2 ⊗ P 4 + P 0 ⊗ P 6 }. Note that this space can not be simply defined by the total degree of the polynomial (it includes all polynomials of total degree lower-equal to five but also part of the polynomials of total degree six). Conversely, the minimal number of nodes needed by a cubature to have degree l of polynomial exactness in dimension d may be discussed [START_REF] Novak | Simple cubature formulas with high polynomial exactness[END_REF]. It is straighforward that it is lower equal dim(P d l ). It is also larger equal to dim(P d [l/2] ) [START_REF] Novak | Simple cubature formulas with high polynomial exactness[END_REF]. Besides Heiss and Winshel give a theorem for the specific case where the base rule Q l is exact for polynomials of order (2l -1) (typically l-point Gaussian rule): in this case, Q d l is exact for all d-variate polynomials of total order (2l -1) or less ([22] 3.2).

(∆ k 1 ⊗ ∆ k 2 )[f ] U 2 4 [f ] = (U 4 ⊗ U 1 + U 3 ⊗ U 2 + U 2 ⊗ U 3 +
The coding of Smolyak sparse grids is quite technical and we rather rely on a package designed by Dwight et al. [START_REF] Dwight | A sparse grid and Sobol index code (Python) "smobol v1.0[END_REF] which follows the indexing proposed in [START_REF] Gerstner | Dimension-Adaptive Tensor-Product Quadrature[END_REF] and proposes tests for Genz functions [START_REF] Genz | A Package for Testing Multiple Integration Subroutines, Numerical Integration: Recent Developments, Software and Applications[END_REF]. Actually the domain of integration with this tool is [0, 1] d but the simple conversion of 1d rule from [-1, 1] to [0, 1] is easily coded in this framework. Here, we retain the oscillatory function, F 1 , the "product peak" function, F 2 , the Gaussian function, F 4 , and the C 0 function F 5 ,

F 1 = cos (2Πu 1 + i=d i=1 a d x i ) F 2 = 1 i=d i=1
(1/a 2 d + (x i -u i ) 2 The a parameters are chosen equal for all coordinates but dependant on the dimension: a d is equal to 4.5 for dimension 2, 1.8 for dimension 5 and 0.9 for dimension 10). The u i are all taken equal to 0.5. New Python classes, corresponding to LebConst-so, LebConst-go, LebInt-so, LebIntgo, Leja and symLeja 1D interpolatory rules are added to the "smobol" package [START_REF] Dwight | A sparse grid and Sobol index code (Python) "smobol v1.0[END_REF] that can then automatically build sparse grids based on these 1D rules. Tests are then carried out for the sparse grid rules based on LebConst-so, LebConst-go... symLeja rules (17 levels, from 1 to 33 points) and also Gauss-Patterson rule (6 levels respectively involving 1, 3, 7, 15, 31 and 63 points) and Clenshaw-Curtis rule (10 levels involing 1,3,5,9...513 points). Integral evaluations are requested to last less than a few minutes which actually limits the number of nodes per calculation to roughly one milion ; this is the reason why the highest level sparse grids are not tested in dimension 10. The results are gathered in figure 13.

For the analytic function F 1 and F 4 , and the C ∞ function F 2 the convergence is faster for the sparse grid rules based on strongly nested quadratures (LebConst-so, LebConst-go, LebInt -so, LebInt -go, Leja symLeja) than for the one based on Clenshaw-Curtis but the difference is less significant in dimension 10 than in dimension 2 and 5 (see figure 13).

For the C 0 function F 5 , the sparse grid rules based on strongly nested quadratures gives decreasing but weavy evalution of the integral when increasing the level l. The Clenshaw-Curtis based sparse grid is in this case more efficient than those derived from the strongly nested quadrature (see figure 14).

Conclusion

One dimensionnal interpolatory quadratures have been proposed based on classical bounds on integration error and successive or global minimization of these bounds. The accuracy of these rules and the corresponding sparse grids (in dimension 2, 5 and 10) have been assessed for classical test functions. 
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 2 Figure 2: Lebesgue constant, integral of Lebesgue function and Linf norm of nodal polynomial for LebConst -so sequence of sets
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 3 Figure 3: Lebesgue constant, integral of Lebesgue function and Linf norm of nodal polynomial for LebInt -so sequence of sets
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 334 Figure 4: Lebesgue constant, integral of Lebesgue function and Linf norm of nodal polynomial for Leja sequence of sets
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 5 Figure 5: Lebesgue constant, integral of Lebesgue function and Linf norm of nodal polynomial for symmetric Leja sequence of sets
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 6 Figure 6: Test of quadrature rules for polynomials
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 7 Figure 7: Test of quadrature rules for entire functions
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 8 Figure 8: Test of quadrature rules for C ∞ functions (analytic or not)
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 9 Figure 9: Test of quadrature rules for C 0 ,C 1 ,C 2 functions
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 11 Figure 11: Representation of a tensor product in 2D of a nested n-points univariate rule for n equal 1, 3 and 5
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 2 with four rules U 1 , U 2 , U 3 , U 4 involving n 1 = 1, n 2 = 3, n 3 = 5, n 4 = 7 points and having polynomial exactness m 1 = 0, m 2 = 2, m 3 = 4, m 4 = 6. The rule

F 4 =

 4 exp(-i=d i=1 a d (x i -u i ) 2 ) F 5 = exp(-i=d i=1 a d |x i -0.5|).
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 13 Figure 13: Test of sparse grid rules based for C ∞ ) functions F 2 , F 4 , and F 5
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 14 Figure 14: Test of sparse grid rules based for functions F 5 (C 1 )

  

  ) 2.2.2 For a C n function For a C n function, the error R n [f ] in the evaluation of the sum S[f ] by I n [f ] may be expressed as ([10] theorem 4.2.3)

  U 1 ⊗ U 4 + ...lower .. order...)[f ] is then exact for polynomial vector spaceP 2 4 V(Q 2 4 ) = V ect{P m 4 ⊗ P m 1 + P m 3 ⊗ P m 2 + P m 2 ⊗ P m 3 + P m 1 ⊗ P m 4 }, that is

although the type of these functions refers to complex analysis, these functions are considered here for real inputs only

The classical example of C ∞ but not analytic function f (x) = exp(-1/x) -that is not expandable in convergent power series in 0 -is retained as in[START_REF] Trefethen | Is Gauss quadrature better than Clenshaw-Curtis ?[END_REF] 

As recalled byHeiss and Winschel ([22] 3.2) there are determinsitic integration rule defined for specific number of dimensions, degree of polnomial exactness and possibly weight function and integration domain, that do not belong to the family of Smolyak sparse grids

The proposed 1D, (n/n+2) nested, interpolatory quadrature (LebConst-so, LebConstgo, LebInt -so, LebInt -go) have appeared to be equivalently good to those based on the classical Leja sequences. The efficiency of these methods with respect to less nested classical rules (Gauss-Legendre, Fejér second rule and Clenshaw-Curtis) is dependant on the regularity of the function of interest (the lowest the regularity, the smallest the difference in quality). When extending this work to nD Smolyak sparse grids using the "Smobol" tool of R.P. Dwight, once again, equivalent results have been obtained for rules derived from Leja sequences and from the proposed sequences. These sparse rules appeared to more efficient than Clenshaw-Curtis based sparse-grid for the integration of regular functions.

Joffrey Dumont-Le Brazidec and Jacques Peter concerning the C ∞ functions f 4 and f 11 , with the retained point of view, the convergence of all strongly nested quadratres, is faster than the one of classical quadratures (Gauss, Clenshaw-Curtis, Fjer second rule). As concerning the C 0 function f 12 , the convergence is only faster for LebConst-so, LebConst-go and the classical (non-symmetric) Leja sequence. 

Also important is the expression linking quadratures in dimension d and d -1:

2D illustration of sparse grids

Sparse grids are illustrated here in the very basic case of dimension 2 and a hierarchy of four nested rules U 1 , U 2 , U 3 and U 4 with respectively n 1 = 1, n 2 = 3, n 3 = 5, n 4 = 7 points. Refering to the 1D sections, the rules may be the first four of a symmetric Leja-based rule or of the proposed nested series of interpolatory rules. As an example, the corresponding sets are S 1 = {0}, S 2 = {-1, 0, 1}, S 3 = {-1, -x 4 , 0, x 4 , 1}, S 4 = {-1, -x 6 , -x 4 , 0, x 4 , x 6 , 1} with x 4 = 0.620911304689912 and x 6 = 0.8511169062754670 for LebConst-so. The four first Smolyak's sparse grids in 2D are: -sparse grid level 1:

-sparse grid level 2:

that requires the evaluation of integrand at (0,0),(1,0),(-1,0),(0,1),(0,-1).

-sparse grid level 3:

that requires the evaluation of integrand at (0,0),(1,0),(-1,0),(0,1),(0,-1),(-x 4 ,0),(x 4 ,0), (0,x 4 )(0,-x 4 ),(-1,-1),(1,1),(-1,1)(1,-1). The sets of points of U 2 1 , U 2 2 and U 2 3 are drawn in plot [START_REF] Dumont | Nested interpolatory quadrature minimizing the Lebesgue constant and derived criteria[END_REF].

-sparse grid level 4: Calculation of U 2 4 performed from scratch is quite tedious and we use equation ( 31)

In dimension two, the direct expression of sparse grid equation (32) gets

and the expansions of U 2 1 ...U 2 4 are more quickly obtained with this explicit formula that expresses the sparse grid as sum of front (|k| 1 = l+1) of tensor quadratures with coefficient one plus a second front (|k| 1 = l) with coefficient minus one. Finally, the dimensionextension formula [START_REF] Novak | Simple cubature formulas with high polynomial exactness[END_REF] reads in dimension two (as

According to this equation, for example

which is consistent with the previous expressions of U 2 3 . Equivalent checks can be carried out for U 2 1 , U 2 2 , U 2 4 . 

Number of evaluations, bounds for weights and error analysis

These points can not be discussed independantly of the selected hierarchical family of 1D quadratures Q k . Most often, results are presented for Clenshaw-Curtis rule. The results derived by Novak and Ritter [START_REF] Novak | The curse of dimansion and a universal method for numerical integration[END_REF] for this choice of Q l are presented here (but the convention of [START_REF] Gerstner | Numerical integration using sparse grids[END_REF] is kept for indices of sparse grids). The Q l are the nested Clenshaw-Curtis quadratures with

Of course, all weigths are positive and the degree of polynomial exactness is

For fixed dimension d and l → ∞ the number of points involved in

, is equivalent (in the strong sense of limit of sequences being equal to 1) to

Besides, there exists a constant c d depending on d only such that the L 1 norm of the vector of weights (or sum of the absolute value of these weights) of

Finally the errors bounds of Q d l , R(Q q l )[f ] for functions of C r d and F r d are respectively

where of c r,d only depends on regularity r and dimension d and where the infinity norms refers to the max of the infinity norm of all derivatives defined respectively for functions of F r d and functions of C r d . The loss of accurracy in large dimensions due to the d factor in n -r/d (for C r d ) instead of n -r (for F r d ) is sometimes also refered as the "Curse of dimensionality" (as the number of points in tensor product quadratures).

Extension to more general sparse grids

More general sparse grids-like quadrature are based on the definition (29) and the equation [START_REF] Novak | The Curse of Dimension and a Universal Method For Numerical Integration[END_REF]. Their definition uses the ∆ k 1 ⊗ ... ⊗ ∆ k d sum but with more complex sets of indices than those defined by the requirement that |k| 1 or |k| ∞ be lower than a specified bound.

The constraints on the set J is that all multi-indices dominated (ie with all components lower-equal) by a multi-index of J must also be part of J . The simplest option is to have more quadrature points in a direction than in the other direction.