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Abstract. We analyze the behavior of the Italian electricity market
with an agent-based model. In particular, we are interested in testing
the assumption that the market participants are fully rational in the
economical sense. To this end, we suppose that while constructing its
strategy the agent takes into account all the possible strategies the other
(competitors) agents might adopt in the future, not only their last strate-
gies, as it is done in the literature. This motivates us to propose a co-
evolutionary approach to strategy optimization, which better reflects the
way actual decision makers behave in reality. The experiments carried
out corroborate our hypothesis and show an improvement in the results
compared to the literature.

1 Introduction

The need for understanding the evolution of the prices in the electrical power
markets has increased with the new trends of the electrical market in many
countries [15, 14]. Artificial Intelligence techniques have already proven to be
effective in modeling the electricity market. Faia and colleagues proposed in [4]
a Genetic Algorithm (GA) based approach to solve the portfolio optimization
problem for simulating the Iberian electricity market. The results show that their
GA based method is able to reach better results than previous implementations
of Particle Swarm Optimization (PS) and Simulated Annealing (SA) methods.
They also compared their results with the ones obtained with a deterministic
approach. Santos and colleagues proposed in [13] a new version of the Multi-
Agent System for Competitive Electricity Markets (MASCEM, [12]) with the
aim of optimizing it with repect to the results as well as to the execution time,
in order to face the highly demanding requirements from the decision support.

? Célia da Costa Pereira acknowledges support of the PEPS AIRINFO project funded
by the CNRS.
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Other models have been proposed, like the one presented by Urielli and col-
leagues [18], in which the authors study the impact of the Time-Of-Use (TOU)
tariffs in a competitive electricity marketplace. A very interesting and recent sur-
vey of potential design changes in the electricity market and their consequences,
has been proposed by Ela and colleagues in [3].

In this paper, we propose a framework which helps analysing the behavior
of the participants in the Italian electrical power market [16]. We would like
to stress that our interest is in understanding how the market behaves as a
consequence of the actions of its participants to make profit, and also in analysing
the behavior of the market in order to maximize the social welfare from an
economical rational point of view [19, 17], i.e., with respect to the electricity
producers as well as with respect to the electricity consumers. To this aim, we
build upon our previous contribution [2], which reproduced and then extended
an existing economical-based model of the Italian electricity market [8]. Instead
of treating the strategies of the market competitors as already known (from the
previous auctions) and fixed, here we adopt a more sophisticated setting, more
in line with reality, whereby each market participant optimizes its strategy while
trying to anticipate the strategies its competitors could adopt. This led us to
devise a co-evolutionary approach to strategy optimization.

The paper is organized as follows. Section 2 briefly presents the three op-
timization methods used in the paper. Section 3 presents the mechanism of
exchanges in the Italian market proposed in the literature. Section 4 presents
the problem statement and Section 5 discribes the co-evolutionary approach as
well as the obtained results. Section 6 concludes the paper.

2 Some Background: A Brief Description of the Used
Methods

In this section, we will briefly present the three methods used in our work to
model the rationality of the market participants.

A Genetic Algorithm (GA) [9, 7] is a computational technique inspired by
biology. The basic idea of a GA is to mimic the Darwinian principle of survival
of the fittest, according to which species with a high capacity of adaptation have
a higher probability to survive and then to reproduce. The algorithm considers
a population of individuals represented by their genes. Three operators can be
used to mimic the evolution of these individuals: mutation, which randomly
changes some bits of a gene, crossover, which mimics the sexual reproduction
of the living beings, and selection, which consists of deciding which among the
individuals in the population will survive in the next generation. This choice is
made thanks to a fitness function, which is an objective function allowing to
compute the extent to which an individual of the population is adapted to solve
the considered problem.

In Monte Carlo Optimization [1], an approximation to the optimum of an
objective function is obtained by drawing random points from a probability
distribution, evaluating them, and keeping the one for which the value of the
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objective function is the greatest (if a maximum is sought for) or the least (if a
minimum is sought for). As the number of points increases, the approximation
converges to the global optimum.

Particle Swarm Optimization (PS) [11, 10] is a meta-heuristic method in-
spired by the behavior or rules that guide groups of animals, for example bird
flocks. According to these rules, the members of the swarm need to balance two
opposite behaviors in order to reach the goal: individualistic behavior, in which
each element searches for an optimal solution, and social behavior, which allows
the swarm to be compact. Therefore, individuals take advantage from other
searches moving toward a promising region. In this algorithm, the evolution of
the population is re-created by the changing of the velocity of the particles. The
idea is to tweak the values of a group of variables in order to make them be-
come closer to the member of the group whose value is closest to the considered
target. PS is similar to genetic algorithms (GAs). It is also a population-based
method with the particularity that the elements of the population are iteratively
modified until a termination criterion is satisfied.

3 The Italian Electricity Market

3.1 The Market Configuration

The reality of the Italian Electricity Market which takes place in the Italian
Power Exchange (IPEX), considers a two-settlement market configuration with
a generic forward market and the Day-Ahead Market (DAM). The DAM price
value is commonly adopted as underlying for forward contracts; therefore, as in
Guerci et al. [8], we will refer to DAM as the spot (i.e., immediate, instantaneous)
market session for simplicity. The forward market session is modeled by assuming
a common, zone-independent, and unique forward market price P f for all market
participants and by determining the exact historical quantity commitments for
each generating unit.

Definition 1 (Generating Company).
A generating company (GenCo) is an agent g, (with g = 1, 2, ..., G, and G is
the number of GenCos) which owns Ng generators4. The ith generator (where
i = 1, 2, . . . , Ng) has lower Q

i,g
and upper Qi,g production limits, which define

the feasible production interval for its hourly real-power production level in MW
(Mega Watt) Q̂i,g,h = Q̂f

i,g,h + Q̂s
i,g,h, with Q

i,g
≤ Q̂i,g,h ≤ Qi,g where Q̂f

i,g,h and

Q̂s
i,g,h are respectively the quantity sold in the forward market and the quantity

accepted in the DAM in each hour h.

It is assumed that the company g takes a long position in the forward market
(it means that the company makes agreement with the market operator with
large advance) for each owned generator i, corresponding to a fraction fi,g,h
(where h indicates the hour of the day) of its hourly production capacity, that

4 In the following we will use the terms generator and power plant interchangeably.
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is Q̂f
i,g,h = fi,g,h · Qi,g. The value of such fraction varies throughout the day,

indeed forward contracts are commonly sold according to standard daily profiles.
The value of fi,g,h has been estimated by looking at historical data and thus
corresponds to a realistic daily profile for each generator.

Definition 2 (Revenues for the forward and spot markets).

The revenue in Euro per hour ([eh]), Rf
g,h, from forward contracts for company

g and given the unique forward market price P f is:

Rf
g,h =

Ng∑
i=1

Q̂f
i,g,h · P

f (1)

The spot revenue, Rs
g,h, per hour for GenCo g is obtained as follows:

Rs
g,h =

Z∑
z=1

Q̂s
z,g,h · P s

z,h (2)

where P s
z,h is the price in the spot market in zone z at hour h, and Z is the total

number of zones.

Let Ci,g,h ([e/h])5 be the total cost (of production) function of the ith gener-
ator of GenCo g. The total profit per hour, πg,h, [e/h] for GenCo g is computed
as follows:

πg,h = Rs
g,h +Rf

g,h −
Ng∑
i=1

Ci,g,h(Q̂i,g,h) (3)

The considered set of thermal power plants, independently owned by GenCos,
consists of up to 224 generating units, using 5 different technologies. The num-
ber of generation companies and generating units offering in the DAM varies
throughout the day. Based on historical data, it has been determined for each
period (day and hour) the thermal power plants that offered in DAM.6 For each
power plant in the dataset, information on the maximum and minimum capacity
limits is available, as well as on the parameters needed to compute the cost.

3.2 Market Exchanges

A GenCo g submits to the DAM a bid consisting of a pair of values corresponding
to the limit price P s

i ([e/MW]) and the maximum quantity of power Qs
i ≤

Qi,g−Q̂
f
i,g([MW]) that it is willing to be paid and to produce, respectively. After

receiving all generators bids, the market operator clears the DAM by performing
a social welfare maximization, subject to the following constraints:

5 The details about the function can be found in [8].
6 Notice that bid data are publicly available on the power exchange website with a

one-week delay, therefore, information about what plants were actually present and
the like is supposed to be common knowledge.
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– the zonal energy balance (Kirchhoff’s laws),

– the maximum and minimum capacity of each power plant,

– the inter-zonal transmission limits.

It is worth noting that the Italian demand curve in the DAM is price-inelastic,
i.e., it is unaffected when the price changes. Therefore, the social welfare maxi-
mization can be transformed into a minimization of the total reported production
costs, i.e., of the bid prices (see Equation 4). This mechanism determines both
the unit commitments for each generator and the Locational Marginal Price
(LMP) for each connection bus. However, the Italian market introduces two
slight modifications. Firstly, sellers are paid the zonal prices (LMP), therefore,
this fact has to be explicitly considered in the model, whereas buyers pay a
unique national price (PUN, for Prezzo Unico Nazionale) common for the whole
market and computed as a weighted average of the zonal prices with respect to
the zonal loads. Secondly, transmission power-flow constraints differ according
to the flow direction.

The factor to minimize by solving the linear program is the following:

min

G∑
g=1

Ng∑
i=1

P s
i,g,hQ̂

s
i,g,h, (4)

which is subject to the following constraints:

– Active power generation limits: Q
i,g
≤ Q̂i,g,h = Q̂s

i,g,h + Q̂f
i,g,h ≤ Qi,g [MW]

– Active power balance equations for each zone z:∑G
g=1

∑
j∈z Q̂

s
j,g,h −Qz,load,h = Qz,inject,h [MW]

being
∑G

g=1

∑
j∈z Q̂

s
j,g,h the sum of all the productions over all generators lo-

cated in zone z,Qz,load,h, the load demand at zone z in hour h andQz,inject,h,
the net oriented power injection in the network at zone z in hour h.

– Real power flow limits of line, l: Ql,st ≤ Ql,st [MW] and Ql,ts ≤ Ql,ts [MW]

being Ql,st the power flowing from zone s to zone t of line l and Ql,st the
maximum transmission capacity of line l in the same direction. Ql,st are
calculated with the standard DC power flow model [5].

The solution consists of the set of the active powers Q̂s
i,g,h generated by each

plant i and the set of zonal prices P s
z (LMPs) for each zone z ∈ [1, 2, . . . , Z],

where Z is the number of zones.

4 Problem Statement

In this section we will present a general statement of the problem of choosing
the most competitive strategy for a GenCo.
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4.1 Model description

Each GenCo g must submit to the DAM a bid, i.e., a set of prices for each of
its own power plants. Therefore, each GenCo has an action space for each power
plant, which is a set of possible prices that the GenCo can choose. This set is
represented by vector ASi,g, which is obtained with the following product:

ASi,g = MCi,g ·MKset, (5)

where ASi,g represents the action space of power plant i of GenCo g, MCi,g is
the marginal cost of the same power plant, and MKset = [1.00, 1.04, . . . , 5.00] is
the vector with the mark-up levels. In this way, GenCos are sure not to propose
a price lower than the costs.

The Multi-Agent System The multi-agent system is depicted in Figure 1.
The G GenCos are reported on the top of the figure. These GenCos repeatedly
interact with each other at the end of each period r ∈{1,. . . ,R}, that is they
all submit bids to the DAM according to their current beliefs on opponents
strategies. At the beginning of each period r, GenCos need to study the current

Fig. 1. A schematic representation of a simulation.
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market situation in order to predict which strategies their competitors will adopt
and identify the best reply to their opponents, to be played at period r + 1.

In order to choose the most competitive strategy, GenCos need to repeatedly
solve the market for different private strategies and predicted strategies of their
opponents, much in the same way as a chess player has to anticipate all possible
moves of her/his opponent before deciding which move to play. This correponds
to an optimization problem.

4.2 The Optimization Process

The general purpose of the optimisation algorithm is to keep a large population of
candidate strategies and to improve at the same time their fitness/performance
in the market. Thus, a population of size P , (see Figure 1), of strategies is
defined, which evolves throughout the Kr generations.

Strategy A strategy is a vector of prices in the action space, one for each of
the Ng power plants of GenCo g (depicted as a black dot in Figure 1).

Profit The profit generated by GenCo g using strategy x, while its competitors
are using the strategies collectively represented by y (a vector whose length is∑

g′ 6=g Ng′) can be computed based on Equation 3. In the following, it will be
convenient to denote such profit as profit(x, y).

Selecting a Strategy At the end of each period r, each GenCo bids to the
market by selecting one strategy among its current population of candidates.

In [8] the selection is done according to a probabilistic choice model in order to
favor the most represented strategy in the population (i.e., based on the frequency
probability). In addition to the frequency based strategy of selection, in [2] a
second strategy is used, based on the value of the fitness of the individuals, named
fitness-based strategy. Here, like in [2], we also consider these two strategies.

5 Intelligent GenCos: A Co-Evolutionary Approach

In this section, we will present an extension of the framework proposed in [2]. We
will start with a brief explanation of our motivations and then we will present
the methodology we have adopted.

5.1 Motivations

In previous work, like [8] and [2], it is supposed that the GenCos share their
strategies: a GenCo constructed its strategy while making the hypothesis that
the other GenCos maintain their last strategies. More precisely, the populations
of strategies evolve separately and the profit of a GenCo depends on the strate-
gies of the other GenCos. In particular, each GenCo considers, at time t, the
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strategies adopted by its competitors at time t− 1, not the ones it would expect
its competitors to adopt at time t. In other words, the expectation of a GenCo is
that all the competitors will repeat the strategy they used at the previous auction.

The framework we are proposing here allows instead to consider more realistic
situations. The hypothesis we make is that each GenCo should consider, during
the period in which it contructs its strategy, all the possible strategies the other
GenCos might adopt. This way, the strategy under construction can be optimized
against the most unfavorable competitors’ current strategies.

This approach may be seen as a kind of adversarial reasoning. The difference
is that in the game reasoning framework, the goal is to win against the opponent,
but here there are no winners and losers: the goal for a GenCo is to obtain
high profits as much as possible for its own characteristics and possibilities,
while respecting all the constraints imposed by the market. Therefore, under this
assumption, it is possible that the best strategy for a GenCo allows a competitor
to obtain a higher profit. In what follows, we will notice that the results of the
experiments made using this new framework for one particular configuration
outperform the previous results, but we will first explain the fundamental ideas
underlying our proposals.

5.2 Methodology

Here, instead of having G (where G is the number of GenCos) updating algo-
rithms evolving with one different population for each GenCo, our proposal is
to evolve G updating algorithms with two populations for each GenCo: the first
population concerns the GenCo’s own strategy, while the second population con-
cerns the possible strategies of all the other GenCos. Therefore, the individuals
of the second population represent the strategies of the remaining G−1 GenCos.

Benefits Two benefits emerge from considering two populations. The first one
is due to the introduction of the competitive aspect in the process. The second
one is due to the fact that we can now account for the independence between
GenCos unlike in [2], where GenCos were supposed to share their strategy with
their competitors in order to allow for the evolution of the population. Our
proposal is more in line with the reality of the Italian market, in which the
companies do not share their strategies with competitors. Therefore, by adding
a second population, GenCos can avoid sharing these precious information and
they can reason by themselves.

Figure 2 illustrates the two populations: the GenCo’s own population on the
left-hand side and the population of its competitors on the right-hand side. Let
xi be one individual of Population 1 (red rectangle) and let yj be one individual
of Population 2 (blue rectangle). The fitness of an individual xi of Population 1,
f+(xi), is to be maximized while the fitness of an individual of Population 2,
f−(yj), is to be minimized. f+(xi) may correspond to the average of the profit
that the GenCo would obtain if it adopts this strategy (xi) by considering all
the possible strategies yj of its competitors:
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Fig. 2. Schematic representation of the two populations of a GenCo

f+(xi) =
1

N
·

N∑
j=1

profit(xi, yj), (6)

where N in the size of Population 2 and profit is the function that estimates
the profit of GenCo g, given all generating units bids. The objective is to maxi-
mize the fitness f+(xi) for each xi in Population 1. Many other approaches can
be adopted, for example by considering the different possible variations when
computing the fitness. One particular example is to use the minimum instead of
the average as follows:

f+(xi) = min
j=1..N

(profit(xi, yj)) (7)

In this case, the best strategy in Population 1 corresponds to the most robust
strategy, i.e., the one which guarantees the highest profit against the strongest
competitor.

However, this new proposal increases considerably the execution time. In-
deed, instead of solving a linear programming problem M times, we have now
NM linear programming problems to solve.

Proposed solution In order to reduce the execution time, we have considered
only the best strategy among the competitors’ strategies. The best strategy for
the agent will then be the one which allows the GenCo to achieve better results
against the best of the competing strategies:

f+(xi) = profit(xi, ybest) (8)

where ybest is the element of Population 2 with the lowest fitness or the element
with the highest frequency. In this case, the linear programming problem is
solved M times.

It should be recalled that our aim is to find the most robust strategy for the
GenCo, i.e., the strategy which best replies to the competitors even if they all
do their best to minimize the GenCo’s profit. As for the fitness of individuals
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of Population 1, several possibilities can be considered to compute the fitness of
individuals of Population 2:

– Compute the fitness as an average:

f(yj) =
1

M
·

M∑
i=1

profit(xi, yj) (9)

where M is the size of Population 1.
– Choose the strategy with the maximum profit among all the possibilities:

f(yj) = max
i=1..M

(profit(xi, yj)) (10)

– Estimate the fitness considering only the best strategy of Population 1, in
order to reduce the computational effort of the two previous cases (from NM
to N):

f(yj) = profit(xbest, yj), (11)

where xbest is the element of Population 1 with the highest fitness value or
with the highest frequency.

Many scenarios can be explored by mixing different approaches of computing the
fitness from the two populations. Accordingly, the computational effort varies:
in the best case (using equations 8 and 11) the LP problem is solved NM times
and in the worst case it is solved (NM)2 times per iteration. Taking into account
the generations of the genetic algorithm ngen, the computational efforts become,
respectively, ngen ·NM and (ngen ·NM)2 per iteration.

5.3 Evaluation of the Proposed Approach

To validate the proposed approach, we tested several combinations of fitness
functions (f+ and f−), criteria for selecting one strategy from a population, and
optimisation algorithms. The Hist line (red line) reports real values of the PUN.
Two versions have been considered:

1. with f+ defined as in Equation 8, f− as in Equation 11:

(a) GAfreq1 : frequency-based strategy and genetic algorithm;
(b) GAfitness1 : f+ fitness-based strategy and genetic algorithm;
(c) PSfreq1 : f+ frequency-based strategy and swarm optimization;
(d) PSfirness1 : f+ fitness-based strategy and swarm optimization;
(e) Monte Carlo.

2. with f+ defined as in Equation 7, f− as in Equation 9:
(a) GAfreq2 : frequency-based strategy and genetic algorithm;
(b) GAfitness2 : fitness-based strategy and genetic algorithm;
(c) PSfreq2 : f+ frequency-based strategy and swarm optimization;
(d) PSfirness2 : f+ fitness-based strategy and swarm optimization;
(e) Monte Carlo.

The remaining configurations have been left for future work.
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Data The demand of energy for each zone is provided in a load matrix with
the following information: a first column which contains the zones, the second
which contains the maximum limit prices and the third column which contains
the demand quantities of electricity.

All the characteristics of the power plants are collected in a structure with
the following features:

– the names of the GenCos (for example ATEL, EDISON, . . .),
– the names of the used technologies (coal, combined cycle gas turbine, . . .),
– the prices of the fuels,
– information related to the Italian power plants: the columns indicates re-

spectively the zone, maximum production quantity, minimum production
quantity, coefficient a, coefficient b, coefficient c (see 3), GenCo’s id, tech-
nology index, and fuel index and power plant’s id.

– the production quantity data from other power plants (i.e., not produced by
the GenCo).

The PUN historical values used in the experiments are public data which can
be found in [6].

Implementation and Results The implementions have been done in MAT-
LAB R2017a with Optimization and Global Optimization toolboxes. Experi-
ments were performed on a computer running Windows 7 and based on an
IntelCoreTMi7-3610QM @2.30GHz microprocessor with 8 GB main memory.

In all the simulations, the number of GenCos participating in the market
varies between 15 and 19, while the number of power plants for each GenCo
varies between 1 and 90. The three optimization methods use the Matlab default
parameters and are allocated the same number of objective function evaluations.

The execution time varies a lot between different versions, since the execution
effort varies. With two populations of 10 individuals, the combinations Version
1:(a)–(e) take about 16 seconds for the GA per iteration, 20 seconds for the
PS and 6 seconds for Monte Carlo. The combinations Version 2: (a)–(e) require
about 180 seconds per iteration for the GA, 240 second for the PS, and 55
seconds for Monte Carlo. In all the figures below, the real situation is plotted in
red with the label Hist.

Figure 3 shows the results of genetic algorithm, particle swarm optimization
and Monte Carlo optimization of IntelligentGenCo in Version 1. GAfitness1 (lilac
line) is still low, GAfreq2 (dark-blue line) and GAfitness2 (dark-green line) still
overestimate the PUN (historical red line). PSfreq1 (light-blue line), PSfreq2
(yellow line) and PSfitness2 (brown line) are quite good (see also Figures 4
and 5), except for the overestimation in the off-peak hours. GAfreq1 (light-green
line) is equivalent to the previous ones, but it overestimates the PUN also in
peak hours. PSfitness1 (orange line) is again the best algorithm, since it is able
to reproduce the PUN in off-peak hours. The main difference is in Monte Carlo
(dark dashed line with crosses), which has basically the same trend of GAfitness1
in this version.
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Fig. 3. Simulated PUNs for 2010-10-03, provided by IntelligentGenCo in Version 1

Fig. 4. Focus on the best frequency–based algorithms seen in Figure 3.

Figure 6 shows the results for the IntelligentGenCos Version 2. In this version
results are very different with respect to the previous cases: now no line clearly
overestimates the historical values (red line), except in off-peak hours. This result
could be a consequence of the adversarial behavior of GenCos. In Figure 6, the
lines relevant to the various algorithms lie very close to each other, especially in
the central hours. Thus, the following detailed figures will focus on similar lines.

GAfitness1 (lilac line) is still low. Both PSfitness1 (orange line) and PSfit-
ness2 (brown line) are low in off-peak hours, almost reaching the historical line
(see Figure 7).

The remaining genetic algorithms GAfreq1 (light-green line), GAfreq2 (dark-
blue line) and GAfitness2 (dark-green line) are very close to each other, but
only the last one is able to reach the peaks at 8pm and 9pm (as it could be
seen in Figure 8). The last three algorithms are very close to the historical line
in the central hours, but they overestimate the off-peak hours (see Figure 9).
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Fig. 5. Focus on the best fitness–based algorithms seen in Figure 3.

Fig. 6. Simulated PUNs for 2010-10-03, provided by IntelligentGenCo in Version 2

Both PSfreq1 (light-blue line) and PSfreq2 (yellow line) underestimate the peak
hours; on the contrary, Monte Carlo (black line) is good at these hours.

Evaluation of the RMSD These considerations at the macro-level are supported
by the evaluation of the root-mean-square deviation (RMSD) which is a fre-
quently used measure of the difference between values predicted by a model
and the actually observed values. The RMSD represents the sample standard
deviation of the differences between predicted values and observed values. The
formula we have used is the following:

RMSD =

√∑24
h=1(ŷh − yh)2

24
(12)

where ŷh and yh are respectively the predicted value and the observed value of
the PUN at hour h.

Table 1 shows the RMSD of all the 9 scenarios for the two versions of the co-
evolutionary approach and compares them to the corresponding scenarios of two
simple evolutionary approaches proposed in [2]. The Approx approach makes the
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Fig. 7. Focus on the lowest algorithms seen in Figure 6.

Fig. 8. Focus on the genetic algorithms seen in Figure 6.

same simplification as in [8], namely, that the vector of prices in the action space
contains only one price for each collection of power plants situated in the same
zone and using the same technology. The Real approach relaxes such constraint,
as our co-evolutionary approach does.

We can noticed that for some optimization methods, the co-evolutionary ap-
proach gives less accurate predictions than the simple approach. This can be
explained by the increased size of the optimization problem (the search space
goes from just one vector of parameters to G vectors of parameters, i.e. the strat-
egy of the GenCo itself and the strategies of all its competitors). It is important
to notice that the comparison to previous work has been done by allowing the
same number of objective function evaluations to each approach and configu-
ration in order for the comaparison to be fair. Nevertheless, it is interesting to

Version GAfreq1 PSfreq1 GAfreq2 PSfreq2 GAfitness1 PSfitness1 GAfitness2 PSfitness2 Montecarlo

1 9.58 9.87 21.89 9.83 18.11 4.95 22.62 9.97 19.51

2 9.61 11.60 9.51 9.32 18.91 9.51 9.41 9.11 13.04

[2] Approx 8.30 7.74 18.49 12.12 18.60 5.14 35.87 9.29 14.93

[2] Real 7.41 8.41 17.84 12.08 18.12 5.85 34.94 9.42 15.55

Table 1. RMSD of IntelligentGenCo methods for Versions 1 and 2.
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Fig. 9. Focus on selected algorithms seen in Figure 6.

notice that some optimization methods achieve improved results despite this in-
crease in problem size. Indeed, PSfitness1 achieve the best accuracy among all
tested combinations, improving over the simpler approaches of previous work.
This confirms the potential of the co-evolutionary approach but also highlights
the need to increase the number of objective function evaluations, if accurate
predictions are sought for.

6 Conclusion

We have extended an existing agent-based model of the Italian electricity market
and we have investigated the rationality of the market participants by comparing
three optimization methods.

We can conclude that the planning for managing GenCos follows a rational
strategy. It can be modeled as an optimization method using a co-evolutionary
approach which better reflects the real behavior of the decision makers. We can
also conclude that the particle swarm optimization method with a fitness-based
strategy selection is the method which is capable to best simulate the behavior of
the agents in the Italian electricity market — its results better fit the historical
PUN values than all the others.

In addition to confirming the rationality of the market, our model could be
used to predict the behavior of the Italian electricity market, for example by
performing contingency analyses.
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