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[1] Understanding the relationship between mean
temperature and its variance is essential for the prediction
of temperature variability in the European region. Results
on regional temperatures have been obtained for the climate
of the 21st century but they mainly focused on monthly-to-
seasonal variability. Since environmental variables such as
plant phenology, net primary production or atmospheric
pollution react on shorter timescales, it is necessary to
investigate how daily variability is related to interannual
temperature changes. Here, we assess the mean-variance
seasonal dependence of observed daily temperatures over
Europe. We find that extreme mean temperatures in the
summer and winter tend to be associated with more variance.
This assessment allows us to test whether 11 climate model
simulations used in the IPCC AR4 can reproduce this
relationship in cold and warm seasons. Most models yield a
fair performance in the winter, but apart from fourmodels, the
mean-variance relationship is underestimated in the summer.
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1. Introduction

[2] The recent European summer heatwaves have gener-
ated many studies on the mechanisms of temperature var-
iability [Beniston, 2004; Schaer et al., 2004]. Suchmechanisms
include soil moisture feedbacks [Fischer et al., 2007; Vautard
et al., 2007] and large-scale circulation [Cassou et al., 2005].
In winter, temperature variability is mainly driven by large-
scale atmospheric variability [Hurrell et al., 2003]. In both
seasons, temperature variability has an important impact on
ecosystems [Ciais et al., 2005; Piao et al., 2008; Rosenzweig
et al., 2008]. Climate variability is often assessed on statis-
tical features of temperature, i.e., a mean and a standard
deviation [Beniston and Stephenson, 2004; Meehl and
Tebaldi, 2004] and it is argued that climate change is sus-
ceptible to affect both parameters [Intergovernmental Panel
on Climate Change, 2007]. Hence a major issue in future
climate simulations is to be able to estimate correctly the re-
gional temperature variability under a secular and large-scale
forcing. Since environmental variables such as plant phenol-
ogy [Piao et al., 2008; Rosenzweig et al., 2008], net primary

production [Ciais et al., 2005] or atmospheric pollution
[Vautard et al., 2007] react on shorter timescales, it is neces-
sary to investigate how daily variability is related to interan-
nual temperature changes for useful climate predictions. Some
steps to derive those properties have been takenwith a regional
climate model, albeit focusing on monthly data [Schaer et al.,
2004]. This paper aims at revisiting a statistical description of
temperature by determining the regional relation between the
mean and standard deviation of temperature. We then explore
the ability of a set of General Circulation Model (GCM) sim-
ulations to reproduce the properties shown by observations.
This provides a new way to assess the behavior of GCMs, and
suggests how improvements can be undertaken.

2. Data and Methods

[3] We use a gridded version of the European Climate
Assessment and Data (ECA&D) [Klein-Tank et al., 2002] of
mean daily temperature [Haylock et al., 2008]. The grid
resolution is 0.5 � 0.5� and the data span 1961 to 2007. The
mean temperature m for each gridpoint, and cold and warm
seasons (December-January-February, June-July-August)
was computed. The standard deviation s was computed on
seasonal temperature anomalies with respect to the seasonal
cycle. Hence we treat time series of seasonal means and sea-
sonal standard deviations, computed from daily data. Then
we determine the Spearman rank correlation r betweenm and
s for each station and the associated p-values [von Storch and
Zwiers, 2001, section 8.2.3]. We consider here that r is sig-
nificantly nonzero when the p-value is smaller than 0.02. The
computations were checked on the station data of the ECA&D
database [Klein-Tank et al., 2002] starting in 1900, with similar
results (see auxiliary material1). We obtained very similar re-
sults with linear correlations, or by considering the slope (and
its significance) of a regression between the data.
[4] We applied this diagnostic to GCM output from the

World Climate Research Programme’s (WCRP’s) Coupled
Model Intercomparison Project phase 3 (CMIP3) multi-model
dataset. The information on the individual models can be found
at http://www-pcmdi.llnl.gov/ipcc/info_for_analysts.php.
We treated 11 models with daily data for the period 1961 to
2000, and their preindustrial control simulations. The hori-
zontal resolutions range between rather low (46 longitudes�
72 latitudes) to high (160 � 320) values.

3. Results

3.1. Observations

[5] We tested the collective patterns of correlation with a
False Discovery Rate (FDR) test [Ventura et al., 2004]. We

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL036836.
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arbitrarily (but conservatively) prescribed a false rejection
rate of q = 0.01 (i.e., 1%) on the null hypothesis of zero
correlation, and computed the test on the p-values obtained
from the correlation coefficients, following the method of
Benjamini and Hochberg [1995] modified by Storey [2002].
Ventura et al. [2004] give heuristic arguments that this
approach is robust to spatial dependency. From this test,
83% of the correlation coefficients with a p - value < q ob-
tained in the winter are significant (88% for the summer).
[6] We find that the mean and standard deviation of

temperature north of the Pyrenees are negatively correlated
in the winter (Figure 1a). Thus, colder winters have a higher
variability. This can be explained by a snow-albedo feed-
back on temperature: when temperature goes below 0�C,
snow can be maintained on the ground which increases the
albedo and provides a positive feedback. If there is no snow,
local temperature is mainly driven by atmospheric circula-
tion. Thus, for a given negative mean temperature, those
two types of behavior are responsible for a larger variance.
[7] The atmospheric circulation variability provides a com-

plementary mechanism for this relation. The negative phase of
the North Atlantic Oscillation (NAO-) is generally associated
with extremely low temperatures in Europe [Yiou and Nogaj,
2004]. The temperature associated with NAO- also yields
the highest variance (compared to other regimes), due to
increased precipitation in Western Europe. The relative daily
instability of this regime can account for increased variability.
[8] In summer, mean and standard deviation of tem-

peratures are positively correlated north of the Gironde
River in France (dotted line in Figure 1b). Thus, warmer
summers have a higher variability. This relation can be due
to soil-moisture and precipitation feedbacks, especially
during convective events occurring during warm summers
which tend to cool temperature rapidly [Schaer et al.,

1999]. Southern Europe does not have significant correla-
tions. Indeed, warm summers are already dry in this region;
hence local humidity feedbacks cannot induce much vari-
ability. The only apparent exception is Greece (with r > 0).
When checking on the original ECA&D station data, it
turns out that the gridded set is based on only one reliable
station in Greece (see auxiliary material) so that Figure 1b
might overemphasize this region. Therefore a discussion on
climate variability in this region requires further data
quality control that is beyond the scope of this study.
[9] This analysis has identified a regional and seasonal

dependence between the variance and mean temperature
in Northwestern Europe. Those results show that simple
stochastic models of temperature are not sufficient to
account for such dependence between mean and variance.
For example, a Gaussian autoregressive process of order 1
[von Storch and Zwiers, 2001] does not have any corre-
lation between its mean and variance. Nevertheless, this
correlation-based diagnostic offers an integrated assess-
ment of temperature variability that can be interpreted in
terms of regional and seasonal feedbacks. Moreover, this
illustrates how temperature variability features are region-
ally and seasonally dependent over Europe. This behavior
could be summarized by the skewness of the temperature
distribution, which is negative in winter and positive in
summer (in Northwestern Europe). Besides avoiding the
large uncertainties of skewness estimators [von Storch and
Zwiers, 2001], our approach proposes a dynamic descrip-
tion of the mean-variance relationship that is potentially
more useful.

3.2. Model Output

[10] For each of the 11 GCM simulations and the gridded
observations, we extracted the land grid points either north
of the Pyrenees (for winter) or north of the Gironde River

Figure 1. Rank correlations between mean daily temperature and its standard deviation for the gridded ECA&D dataset
[Haylock et al., 2008], between 1961 and 2007: (a) winter (December to February) and (b) summer (June to August). The
dashed line represents a region north of which all correlations are positive (roughly north of the Gironde River in France).
Solid circles have collectively significant correlations (p-values < 0.01) with an FDR test [Ventura et al., 2004].
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(for the summer) and we determined the fraction of the
number of grid points with negative (winter) or positive
(summer) r and the corresponding p-values. The synthesis
for all models (20th century experiment), as a function of
the number of gridpoints in the delineated regions is shown
in Figure 2. The model correlation patterns are generally fair
for winter variability, all models exhibiting the similar be-
havior as observations (r < 0), although weighing the signif-
icance with p-values mitigates the performances (Figure 2).
There is a large spread of behavior for the summer for the
correlation patterns. This spread is accentuated when taking
p-values into account, with only four models having scores
larger than 0.5 (comparable to observations). Control sim-
ulations give similar results: fair scores in winter and a large
spread of behavior in summer (not shown). High-resolution
models tend to have better scores, but this is not a rule since
a couple of medium resolution models yield fair scores
(Figure 2). This suggests that physical feedbacks controlling
temperature should be improved to provide a more accurate
representation of its variability [Fischer et al., 2007]. This
synthetic presentation is a guide to outline potential biases
in individual model simulations, and we stress that diagnos-
tics shown in Figure 1 provide more accurate descriptions.

4. Conclusions

[11] We have shown the intrinsic property of daily tem-
perature in Western Europe that extreme seasons (cold
winters and warm summers) yield higher variability than
mild seasons (warm winters and cool summers). The reasons
for such dynamics remain to be elucidated. In a warming
climate, it can be anticipated that European summers might
be more variable, while winters becoming milder would have

a decreasing intraseasonal variance. This study refines the
results of Schaer et al. [2004] by treating explicitly statistical
properties of daily data. We also have provided a test for the
performance of climate models to simulate temperature
variability in the European region. There is obvious room
for improvement for European temperature variability in the
GCM simulations we used, although such models were not
specifically designed to reproduce such variability (especially
the low resolution ones). The results we report are a simpli-
fied form of the diagnostics of S. Parey et al. (Mean and
variance evolutions of the hot and cold temperatures in
Europe, submitted to Climate Dynamics, 2008), who devel-
oped a more complex statistical approach based on nonpara-
metric methods.
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