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Connectivity is a fundamental structural feature of a network that determines the outcome of
any dynamics that happens on top of it. However, an analytical approach to obtain connection
probabilities between nodes associated to paths of different lengths is still missing. Here, we derive
exact expressions for random-walk connectivity probabilities across any range of numbers of steps in
a generic temporal, directed and weighted network. This allows characterizing explicit connectivity
realized by causal paths as well as implicit connectivity related to motifs of three nodes and two links
called here pitchforks. We directly link such probabilities to the processes of tagging and sampling
any quantity exchanged across the network, hence providing a natural framework to assess transport
dynamics. Finally, we apply our theoretical framework to study ocean transport features in the
Mediterranean Sea. We find that relevant transport structures, such as fluid barriers and corridors,
can generate contrasting and counter-intuitive connectivity patterns bringing novel insights into how
ocean currents drive seascape connectivity.
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I. INTRODUCTION

Connectivity is a key feature of network’s structure [I, 2] that determines how strongly and quickly different nodes
can be linked by consecutive edges [3H5]. Indeed, for any dynamics running over a network, connectivity strongly
influences the temporal and spatial evolution of the associated processes and patterns [6]. This has been proven in
several contexts such as epidemic or information spreading [7, [8], biological interactions [9], neural networks [10], social
systems [I1] and fluid transport [I2]. Globally, connectivity is determined by topological properties of the network:
link density, degree and weight distributions, clustering, modularity, reciprocity, etc. However, these metrics describe
statistical features of the network and do not inform about local patterns of connectivity between specific pairs of
nodes [3} [13].

The conventional approach to characterize pair-wise connectivity consists in studying random walks and their
trajectories. In fact, random walkers can be seen as agents that navigate through the network drawing paths between
pairs of nodes [I4HI6]. Each of these pathways can be thus defined by the sequence of nodes visited by a random
walker and, by multiplying the node-to-node single-step transition probabilities, one can obtain the probability of
occurrence of any of them [I7H20].

In this way, connectivity can be characterized within a solid probabilistic framework. Moreover, when a given
quantity, such as people [21], fluid [12], goods [22] or information [23], is transported across the network, random
walker transition probabilities can be related to fractions of exchanged quantities between node pairs. More concretely,
this means that it is possible to calculate the probability that an amount of quantity that has been tagged or sampled
in a given node will reach another specific destination node forward- or backward-in-time, respectively. As a result,
random walks can also mimic transport, dispersion and mixing processes across a network [18, 24]. Eventually, this
could permit to rigorously establish a quantitative link between the structural features of a network and the dynamics
of any transported quantity across it. Such connection would also be relevant in temporal networks, especially under
mixing regimes in which network connectivity patterns and random walks unfold on comparable time scales [25] 26].

However, to our knowledge, analytical expressions for connectivity probabilities between any pair of nodes that
take into account connections realized by paths of different lengths (i.e. paths composed of different number of steps)
in a “cumulated” manner are, to our knowledge, still lacking. Indeed, while the probabilities of connection realized
by paths of the same lengths (i.e. imposing a prescribed number of steps) are readily obtained with simple matrix
products, the cumulated probabilities across generic ranges of path lengths (i.e. across different numbers of steps)
has not been derived yet. This is mainly due to the fact that connection events between two nodes realized by paths
of different lengths are not mutually-exclusive from a probabilistic point of view, making the calculations to obtain
them quite convoluted. It is worth noting that this shortcoming holds for both static and temporal network. As
such, the current approach to study pairwise connectivity is through Monte Carlo numerical simulations. Specifically,
it consists in releasing large numbers of random walkers in a given starting node and in estimating the connection
probability with any other destination node from the proportion of walkers that ended up there after a given number
of steps.

Moreover, also the concept of connectivity by itself could be extended. Indeed, the explicit connectivity probabilities
described above are conceptually associated with the pathway of a random walker that joins two nodes, symbolizing
a kind of “parent-child” relationship between starting and ending node. Nevertheless, we can also be interested in
looking contemporaneously at the entire network in a synoptic fashion. This is the case, for instance, when modeling
a transport or spreading phenomena on a network [27] or when tracking differentiation across a phylogenetic tree
[28]. In such processes, each pair of nodes could be simultaneously influenced by a third node (or more than one) and
such “sibling-sibling” relationships can determine similarities between nodes pairs that we could regard as a form of
implicit connectivity. These connectivity patterns, at one step, are realized by a particular kind of three-nodes motif,
here called pitchfork, composed of a node acting as common source (or destination) for two other nodes (see Fig. .
Examples of such kind of interactions can be found in ecological networks when two species compete for the same
resource [29] or in social systems when two agents are both influenced by a third one [30]. Thus, implicit connections
associated with pitchforks are in this sense complementary to the aforementioned standard explicit patterns and,
despite being mostly overlooked, could play a major role in determining network dynamics.

In this paper, we derive exact analytical expressions for explicit and implicit random-walk connectivity probabilities
across any range of numbers of steps in a generic temporal, directed and weighted network. First, in Section [[I] we
set the theoretical background and delineate the relationships between random walk transition probabilities and the
transport dynamics of a given quantity across the network. In Sections [[II] and [[V] we introduce the concept of
cumulated connectivity that permits to calculate connection probabilities not only for a fixed number of steps but
also across an arbitrary range of possible numbers of steps, allowing probability values to eventually saturate toward
an asymptotic value. Such approach is adopted to provide exact formulas for: (i) explicit connectivity patterns
associated with causal paths among two nodes and (ii) implicit connectivity patterns realized by multistep pitchforks
(see a summary of the different connectivity patterns in Fig. [I). Moreover, if a given quantity @ is transported
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FIG. 1: Sketch of the different connectivity probabilities considered. The sections introducing each quantity are
indicated within brackets while greek letters correspond to their mathematical expressions.

across the network, we can relate random walk probabilities to processes of tagging and sampling such quantity in
specific nodes of the network. This allows linking the probabilistic view of connectivity with an interpretation in
terms of transport and diffusion. In Section [V] we calculate connection probabilities for two simple networks and
we numerically confirm our analytical results highlighting significant differences between static and temporal network
connectivity. In Section [VI} we further apply our theoretical approach to characterize connectivity probabilistic
features of a network describing the transport of surface water masses across the Mediterranean Sea [12] [BIH33].
From probabilistic estimations of connectivity we provide both specific site-to-site and global basin-scale statistics.
We find very relevant differences among explicit and implicit probabilities and across different ranges of number of
steps. We also show that such probabilities, in average, saturate to different, non-trivial values. Finally, we discuss
the implications of such results.

II. RANDOM WALKS AND TRANSPORT PROCESSES
A. Network adjacency matrix and its normalizations

We consider a generic directed, weighted and temporal network of N nodes. Hence, each of its links is directed
and characterized by a positive weight that measures the ’intensity’ of the connection realized between two nodes.
Moreover, due to the temporal character of the network, such weights can change in time. Given a discrete time

sequence {to,tl, vyttt M} the time-dependent structure of the network can be thus described by a set of ad-

jacency matrices in which each element Ath“’1 is the weight of the link from node ¢ to node j during the time

interval [t;,t;+1]. For convention, links are hereafter established forward-in-time across different layers representing
consecutive discrete times [34].

We define the out-strength and in-strength of node ¢ as:

S tlﬂtlJrl ZAtL»tHrl (1)

S tlﬂtlJrl ZAtL»tHrl (2)
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Assuming that S© and S’ are always positive, two normalizations for the matrix AZ are possible:
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obtaining the following conservation conditions: Ff}”l“ =1land ), B;’i“ wh_

B. Random walk transition probabilities and transport dynamics

Once the adjacency matrices of the network A% >%+1 are normalized, a random walk can be defined on it. Indeed,
in the [t;;¢;41] time interval, FZ-%’“ is the forward-in-time transition probability for a random walker to jump from
node i to j while B;lfﬁtl is the backward-in-time transition probability to go from j to ¢. Hence, the direction of
the links is always associated with the forward-in-time direction but still, for a given link, we are able to define both
the forward- and backward-in-time transition probabilities. If we assume a Markovian dynamics, the probability for a
random walker to visit a given sequence of nodes will be given by the product of the associated single-step transition
probabilities.

If link weights can be associated with a generic transported quantity () across the network, random walk transition
probabilities can be related to processes of tagging and sampling the transported quantity. Indeed, imagining to tag a
portion of @ inside 7 at t;, FZ‘%““ is the probability that such tagged quantity will arrive to j at ¢;+1. Consequently,
B;li“ 7" g the probability of sampling a portion of ) in j at ¢;41 that was in ¢ at ¢;. Pushing forward this analogy,
we can quantify the fraction of transported quantity between the pair of nodes 4, j in the time interval [t;;¢,41] by
means of transition probabilities [I8] 24]. Indeed, FZ-%’“ is the fraction of Q) present in 7 at ¢; that arrives to j at

t -t
B I+1 l

ti+1. Similarly, B; is the fraction of @ present in j at ¢;,; that was in ¢ at ¢;.

C. Paths in temporal weighted networks

We denote a path p of M-steps between nodes @ and j as a (M + 1)-tuple {z'7 ki, e, kM,hj} corresponding to the
sequence of nodes visited by a random walker at times {to7 t1, ... ,tM,l,tM}.

Thus, assuming a Markov process, the forward-in-time probability for a random walker to take the M-steps path
u under the condition of starting in ¢ and ending in j is [I8] 20} 24 35]:

to>t1 @ty ~to tp—2>tpm—1 ptm—1->tm
Fikl Fklkz T kvmo2kaoa FkM—lj . (5)

Conversely, the backward-in-time probability to take the M-steps path p under the condition of starting in j and
ending in 7 is:

tp>tv—1 pptm—1-2>tm—2 ta >t pt1>to
B]'kal kn—1kar—2 "'Bkzkl Bkli : (6)

Note that, due to the temporal dependence of the network, the above probabilities depend not only on the number
of steps (as in the static case) but also on the specific initial or final time considered.

III. EXPLICIT CONNECTIVITY

In this Section we provide exact analytical expressions for random walk probabilities associated with paths. De-
pending on the number of steps considered, we can define single-step (M = 1) or multistep (M > 1) connectivity.
First, we introduce connectivity for the case of a fixed number of steps M (non-cumulated connectivity). Then, we
extend this conventional concept by considering connections occurring over a given range of number of steps spanning
1 to M (cumulated connectivity). Hence, the non-cumulated connectivity is associated with the probability that a
random walker joins two nodes in a specific number of steps. Note that, for the temporal case, since the network is
time-dependent, we should also specify the initial time. This probability does not include the possibility of reaching



the destination node before or after the exact number of steps chosen. Cumulated connectivity overcomes this limi-
tation by considering the probability that a random walker reaches the destination in an arbitrary number of steps
as long as it is comprised within a given range of numbers of steps. When a generic quantity @ is transported across
the network, we can also find a relation between the above probabilities and portions of @ (see Section m

A. Single-step explicit connectivity

Single-step explicit connectivity is associated directly with the elements of the F and B matrices (see Section [II B)).
Considering the [t;, t;4+1] time interval, we define the single-step explicit connectivity calculated forward-in-time from
node i to j as:

>t
v (b, tigr) = F 70 (7)
Similarly, we define the backward-in-time single-step explicit connectivity as:
t t
vt tin) = BT (8)
If some generic quantity () is transported across the network and one tags an amount of it that is present in node 4
at time t;, the probability that will arrive in node j at time t;; is exactly FE}%’“

amount of @ in 7 at time ¢;;1, the probability that was in j at time ¢; is BZ“ wh

. Analogously, if one samples an

B. Non-cumulated multistep explicit connectivity

To obtain the total probability of connection among any given pair of nodes in exactly M steps, we need to sum the
probability of each of the paths that connect that pair. Hence, using the Chapman-Kolmogorov equation, we define,
given a fixed number of steps M, the non-cumulated multistep explicit connectivity calculated forward-in-time as:

,Yf(to, tM) — Fto~ti ptiote  piu—2-2ty—1 ptar-12tm (9)
Similarly, we define the non-cumulated multistep explicit connectivity calculated backward-in-time :
PYb(th tM) — BtmM-tuM-1 BlM-12tu—2 RBt22ti Bti-to (10)

In both definitions above we used the fact that summing probabilities over all the paths corresponds to performing
the matrix product of the associated adjacency matrices. Therefore, v/ is a matrix whose element i — j is the
probability for a random walker to reach j starting from i after M-steps forward-in-time. Similarly, v° is a matrix
whose element i — j is the probability for a random walker to reach j starting from i after M-steps backward-in-time.
It is straightforward to prove that the matrix elements of both v/ and v are always bounded in between 0 and 1.

C. Cumulated multistep explicit connectivity

We now consider the case of multiple numbers of steps together to introduce the novel concept of cumulated
connectivity (see Fig. . We still refer to the discrete time sequence {to, t1y ooy thr—1, tM} introduced before and we
provide the probability for a random walker to connect two nodes in a finite range of possible number of steps. In the
forward-in-time case, the initial time ¢; is fixed and the number of steps increases progressively ending up at larger
t;’s. Backward-in-time, we instead end always at ¢;; but starting from decreasing ¢;’s while increasing the number of
steps. Without loss of generality, we consider in the following multistep connectivity realized in a range of number of
steps comprised between 1 and M.

1. Deriving up to 3-steps cumulated multistep explicit connectivity

Let’s start considering the forward-in-time connectivity. Keeping fixed the initial time ¢y, we focus on a starting
node 7 and a destination node j and we aim to find an expression for the union of the multistep explicit probabilities
of 1, 2 and 3 steps. We start defining the following three events:



e A: reaching j from i in 1 step,
e B: reaching j from i in 2 steps,
e (' reaching j from i in 3 steps.
Since the events connecting ¢ to j in different numbers of steps are not mutually-exclusive, we cannot obtain the

three-events union probability BY simply summing their individual probabilities. Such union probability, which will
be used to define the cumulated multistep explicit connectivity, can be written as:

P(AUBUC);; = P(A) + P(B) + P(C) + PLANBNC) — P(ANB) — P(ANC) — P(BNC) =
= P(A) + P(B) + P(C) + P(A)P(B|A)P(C|AN B) — P(A)P(B|A) — P(A)P(C|A) — P(B)P(C|B).  (11)

Following Eq. @, the multistep connectivity probabilities of the events A, B and C are:

P(A) =Fj3"", (12)

P(B) =) Fp " F™", (13)
k

P(C)=) Fi "t F 2 FpE". (14)
k.l

Using Eqs. (I23J14) into Eq.(LI) we obtain:

T to-t1 to-t1 t1 >to to~>t1 t1 >to to>ts3 to-t1 t1 >t ta>ts3 _
P(AUBUC),; =Fl97 4 S Rl 7t Flot 4 S Fl b Fly2t Flzols | plovt phiot pls
k k,l

to-t1 Tt >ta to >t1 pt1 ot te o ts to>t1 1 2 t2 pia i3
— FPUFLo = YRR FRT - YRR LR (15)
l k

Developing the second and the third terms in Eq. , we find:
P(AUBUC);; =F37" 4+ Y FR 70 FL72 + > N F " F 2 Fp7h =
Py k] 1]

= F70 4+ Y FR T (1= 0k ) FR 4 Y FR T (1= 0 ) Fp TR (1 — 07 (16)
k k,l

From a geometrical point of view, impeding the indexes k and [ from taking the value of j means excluding the
contribution to the union probability of all the paths that visit j more than once.

Denoting with a circle the Hadamard (or element-wise) product, we can write Eq. for any pair i-j in a compact
form and define the matrix:

I‘f(to,tg) — Fhot | plooh([, o »tQ) 4 Flo-t (L o (Ft1 St (Lo Fl2 *)tg))) ’ (17)

where L is the all-ones matrix minus the identity matrix i.e. L =J —T and L;; = (1 — &;5).

2. Generalizing up to M-steps cumulated multistep explicit connectivity

To generalize the result from the previous Section, we consider the probability of the union of M different events
Ay, ..., Ay and, using the inclusion-exclusion formula, we can write such probability as:

M M M M
P(UAi) =3 PAL,) ~ Y P(An NAL) o + (DM ST P4, N A, NN Ay, =
=1 11=1 11 <to 11 <... <ty

=P(A1)+PATNA)+ P(ASNASNAs)+ ...+ P(ATN..NAY 1 NAM). (18)



Expanding Eq. we find an expression for the probability union that is a generalization of Eq. to the
generic case of M-steps. Keeping fixed the initial time tq, we define thus the cumulated multistep explicit connectivity
calculated forward-in-time as:

T/ (to, tar) = Floot 4 Flooti ([ o Fhi2t2) 4 Ftoot (]Lo (Bt =12 (LOthatg))) i

o FO20 (Lo (B0 (Lo Rt L)), (19)

Similarly, keeping fixed instead the final time t5;, we derive the cumulated multistep explicit connectivity calculated
backward-in-time:

Fb(to tM) — BtmMtm-1 + BtM "tlu—l(]L o BtM-1 ﬁtM—z) + BtM 2 tm—1 (]LO (BtM—l >ta—2 (L o BtM-2 %tM—s))> +

4o 4 Bt otue (]Lo (Bt >ta— ...(LoBtho)...)) . (20)

Hence, '/ and I'® provide the expected probabilities for a random walker to connect pairs of nodes in a range of
possible number of steps comprised between 1 and M, forward- and backward-in-time respectively. Consequently, I'
corresponds also to the probability that a portion of quantity @ tagged in node i arrives into node j, forward-in-time.
Similarly, T'® corresponds to the probability that a portion of sampled quantity @ in node i comes from node j,
backward-in-time.

3. Bounding M -steps cumulated multistep explicit connectivity probabilities

Let’s consider the forward-in-time dynamics (the same arguments hold for the backward-in-time case) and write
down Eq. for a specific matrix element associated with the origin node ¢ and destination node j, we have:

to-t1 to-t1 t1 >t2 to-t1 t1 >ta to—>t3 to%tl t]\l 12>tm _
Fij + Z F2k1 Fklj + Z Z Fllﬁ Fk1k2 Fk2j + Z Z Fllﬂ : kM 1J -

k1#j k1#j ko#j k1#j  km—17#j
to >ty to->t1 t1 >t 2 : t1 >to tM 2-tm—1 tM—2tm—1ptM—1>tM
Fij + Z F'lkl (Fklj + Fkle ( ( kn—2] + z : Fkaszfl FkM,lj . (21)
k1737 ka#j knv—1#3

Recalling that ) y F;; = 1 and F;; < 1, we note that the quantity in the inner parenthesis is bounded to 1. This
automatically bounds to 1 the quantity in the more external parenthesis. Recursively, we can finally see that all the
expression is bounded to 1 too.

IV. IMPLICIT CONNECTIVITY

Paths are not the only connectivity patterns that can be found in a network. In general, one can identify different
network motifs composed of an arbitrary number of links and nodes. Such motifs are expected to be associated with
different dynamical processes depending on their geometry. In particular, we focus here on the so-called pitchforks
motifs and their associated random walk connectivity pattern that we call implicit connectivity. We define pitchforks
as a particular subgroup of motifs composed of three (sometimes two) nodes and two links. We call converging
pitchfork a motif of 3 (or 2) nodes and two links pointing to one of them; we call instead diverging pitchfork a motif
of 3 (or 2) nodes and two links emanated from one them (see Fig. |3).

We relate such motifs to an implicit relationship between two nodes i—j that are somehow influenced (or influencing)
by a third node k. If “third-party” nodes k’s are more than one for a given pair ¢ — j, we consider them together
summing over k. The strength of these implicit relationships can be associated with the probability that two random
walkers starting (or arriving) in k end up (or come from) one in ¢ and the other in j. Similarly, the probability can
be summed over k to obtain the global implicit connection probability for i — j. As for the explicit case (Section ,
we can derive (see below) both non-cumulated and cumulated implicit connectivity probabilities and, consequently,
relate these probabilities with portions of a quantity @ transported across the network (see also Section .

Note that implicit connections studied here happen “synchronously”. For the temporal case, it means that both
random walkers ensuring connections start from (or end up in) node k at the same time. It is also the same time at
which they reach (or start from) node ¢ and j, respectively. For static networks, it means that we consider for each
single non-cumulated connection two random walks of the same number of steps. From a physical perspective, this
is tantamount to sampling/tagging a transported quantity at the same time. This requirement is consistent with the
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FIG. 2: Several consecutive multistep windows are used together to calculate cumulated connectivity matrices. Each
window is defined by an initial time, a final time and a certain number of steps in between. One of the two times is
kept fixed (either the initial or the final one) while the other is moving while it draws windows with a progressively
larger number of steps. Specifically, in the forward-in-time case, the initial time ¢, is fixed and we increase the
number of steps ending at larger ¢;’s up to tj; (top panel). Going backward-in-time, we instead end always at ¢,
but starting from decreasing t;’s until reaching to (bottom panel).
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FIG. 3: Schematic representation of converging (left) and diverging (right) pitchforks. Black dots represent network
nodes, arrows symbolize directed temporal links.

fact that, for any dynamics running on the network, the states of each node would change in time so that it would be
difficult to interpret non-synchronous relationships. More generally, if we look for a correct synoptic view of a system,
we need to consider comparable snapshots of the associated network i.e. matching time intervals (temporal case)
or the degrees of separation (static case). This would be the case, for instance, when studying indirect interactions
between competitors for the same resource in food webs, shared “influencers” of opinions in social systems or common
sources of pollutants in fluid transport networks.

A. Pitchfork motifs and the implicit connectivity concept
1. Single pitchfork motifs

From now on, let’s focus on diverging pitchforks (an analogous approach can be used for the converging ones) over
a time interval [tp;¢1]. Both links composing the pitchfork emanated from the ”source” node k and point to nodes
1 and j. We look for the probability that two random walkers, released simultaneously in ¢ and j at ¢;, moving
backward-in-time, arrive together into k at to. Such probability can be related to a sampling process on the pair i — j.
Indeed, if we take a sample of the quantity @ in ¢ at time ¢1, the probability that such sample was in k at time ¢g
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FIG. 4: Degenerate pitchforks composed of two nodes instead of three i.e. when k =i or k = j respectively. Black
dots represent network nodes, arrows symbolize directed temporal links.

is Bl; 7. Similarly, the probability for j would be Bﬁ.}:to. Hence, if we sample simultaneously in i and j at ¢; the
probability that both samples were in k at tg is:

Bj "B (22)

Note that in the particular case (called here degenerate pitchfork) for which k¥ = ¢ or k = j the formulation is
conceptually consistent. For instance, for & = i the probability of Eq. becomes sz1 %OBE%O and the node 7 act
as source as well as destination (see Figure []).

2. Summing over pitchforks

We now address a more general question: if one samples a quantity in nodes ¢ and j at ¢;, what is the probability
that both samples share the same origin at ¢y (regardless of the origin nodes)? This is equivalent to looking for the
probability that two random walkers, released simultaneously in ¢ and j at ¢1, arrive backward-in-time into the same
node at tg. By generalizing Eq. , such probability is the simple sum over all the k& nodes that form a pitchfork
with ¢ and j. This is because (i) the probability that a sample in ¢ comes from k is independent from the probability
that a sample in j comes from k and because (ii) sampling quantities coming from different k’s inside a single node
are mutually-exclusive events. We associate this backward-in-time total probability with what we call as implicit
connectivity and we define it as:

I’tL; >to _ I;;»to _ Z lelcﬁtOB;}ﬁﬁto — (Btl -to TBtl Ato)ij ; (23)
k
where with "Bt 2% we denote the transpose of Bttt

t1>to _

Note that when ¢ = j we have I; >k (Bf,?t”f that corresponds to the probability that two random samples
of the quantity in ¢ came from the same origin (assuming a sampling with replacement). This measure corresponds
to the backward-in-time Reny-entropy for ¢ = 2 of the node i defined in [12]. Interestingly, If; 7% s also related to
the definition of the well known Simpson’s Index and could be interpreted thus as a measure of diversity of origins of
the quantity contained in 3.

For the case of converging pitchforks an analogous development can be done. Indeed, when the two links converge
to a common “destination” node k, we can calculate the probability that two random walkers, released simultaneously
in ¢ and j at ty, moving forward-in-time arrive together into k at t;. Such probability corresponds also to the chance
that given portions of tagged quantity in ¢ and j at ¢tg will reach simultaneously k at ¢;.

3. Bounding implicit connectivity probability

We want to prove that I%”O < 1 for every 4,j. Using that B;}C”O <1and Bl}?" <1 and that 3, Bii7™ =1

and ), B;}jto =1 one can easily find the following relationships:
1o <N Bl =1 (24)

k
Il <M BhT =1 (25)
k
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B. Non-cumulated multistep implicit connectivity

Here, analogously to what we did for explicit connectivity (Sectiom7 we first define the non-cumulated multistep
implicit connectivity by focusing on a fixed number of M steps (instead than single links). We develop only the case
of backward implicit connectivity but the same reasoning can be used for forward-in-time dynamics.

For M = 2, the multistep implicit connectivity between node i and j is denoted as:

Z (ZBZQ»tlBﬁ»to ZBE’ZHB;{;;%) _ <(Bt2»t1Bt1 »to) T(Bt24t1Bt1 »to)) ) (26)
k l m

j

We can generalize Eq. formula to M steps to define the non-cumulated multistep implicit connectivity calculated
forward-in-time in matrix form as:

A (to, tar) = (Blo7tn  Fra-iotar) T(ploot | ptar-1tar) (27)
and the matrix form of the non-cumulated multistep implicit connectivity calculated backward-in-time as:

Ab(ty, tyy) = (Btw vt Btiote) T(Bhu s | Bhiote) (28)

C. Cumulated multistep implicit connectivity

Similarly to Section [[ITC} we now further consider the case of multiple numbers of steps to introduce the cumu-
lated multistep implicit connectivity (see Fig. . We refer gain to the discrete time sequence {to,tl, ,tM_l,tM}
introduced before and, without loss of generality, we consider multistep connectivity realized in any number of steps
comprised between 1 and M. In other words, we look for a generic analytical expression to obtain the probability of
linking two nodes by implicit connections occurring over a range of possible number of steps. For Forward-in-time
dynamics, the initial time ¢y is fixed while the number of steps considered increase successively up to largest ¢;’s.
Backward-in-time, the final time tj; is fixed while the number of steps considered starts from the lowest ¢;’s and
increases successively.

1. Deriving up to 3-steps cumulated multistep implicit connectivity

We consider in the following the forward-in-time implicit connectivity land, as before, all the derivations are similar
for the backward-in-time case. Keeping fixed the initial time tq, we focus on the nodes i and j and we want to find
an expression for the union of the multistep implicit probabilities increasing progressively the number of steps from 1
to M. Since the probabilities at different numbers of steps are not mutually-exclusive, we can cannot use the simple
probability sum. First, we evaluate the probability union from 1 to 3 steps and then we generalize it up to a generic
M. We define the three events:

e A: taking a sample from ¢ and j with the same origin in 1 step,
e B: taking a sample from 7 and j with the same origin in 2 step,
e (' taking a sample from ¢ and j with the same origin in 3 step.

The union of the probabilities of the above three events, which we call cumulated multistep implicit connectivity, is
derived from Eq. . Following Eq. , we have:

P(A) _ ZFE%»tlFE%»tl, (29)
k

P(B) = 3 (SRR R ), (30)
k l m

)= 3 (SRl R R ). o
k Lf m,g

Consequently, the remaining terms of Eq. are:
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P(A)P(BIA) =Z(ZFf?”lFf,t”ze‘;“lFf,;”2), (32)

k
PPV = 3 ( SF Bl T SRR ) )
k m
PP = 3 (SR SRR )
k g
P(A)P(B|A)P(C|A N B) = Z <Z Flo-tipi>tapie > ta plo >t gty >t pta 9t3) (35)
il Lf fk jl Lf fk :
k If

Developing properly the sum ), in Eq. and the sums E in Eq. || the contributions from Egs. l |
cancel out inside Eq. ( . and we finally ﬁnd

P(AUBUC);; =) FR "FR”" +3 (ZFE?“IF@?“ dUFRIE “’)+
k l

k m#l
+Z(ZF§?”1F?}”2F%@”3 > FmFka) (36)
k Lf m#Lg#£f

From a geometrical point of view, preventing the indexes m and g from taking the values of [ and f corresponds to
excluding the paths starting from ¢ and j that converge to any common destination node more than once. Recalling
the definition of the matrix IL as the all-ones matrix minus the identity matrix i.e. . = J — I, we can write Eq.
as:

PALBUC), = SRR 5 (SRR LR R )

+y 1Y Fzg”1Ff;mF}?,:stlmLngje;tlFf;;tngzjtS). (37)
k L, f,m

By using the Hadamard product and performing some transpositions, we can finally find an expression for Eq. ,
for every pair 7 — j, in a compact form and define the matrix:

Al(tg, t3) = Floot TRtosti 4 proot (Lo (Ft1 ~t2 Tpty »tz)) Tgtooti 4
I (L o (Ft1 2 (Lo (F'27%s TFtwtg)) TFthz)) Tpto>t (38)

2.  Generalizing up to M-steps cumulated multistep implicit connectivity

To generalize the result derived in the above Section, we consider the probability union of M different events
Ay, ..., Ay using the inclusion-exclusion formula of Eq. . Keeping fixed the initial time ty, we derive thus the
cumulated multistep implicit connectivity calculated forward-in-time:

A/ (to, ty) = Flooh Tgtooti 4 pto-t (IL o (Ft1 »t2 Tty »tz)) Tgto-ti 4
4 Flooh (]Lo (Ftl Sto (L o (Ft2»t3 TFtQ»tS)) Tgt: »m)) Tptosti 4

4 Fto%tl <]LO (Ft19t2 (]L o (”.(th\4,1%t]\/[ TFtJ\l—l %tM)>) TFt1%t2>) TFto%tl . (39)

Similarly, keeping fixed instead the final time t;;, we derive the cumulated multistep implicit connectivity calculated
backward-in-time:

Ab(to,tM) — BtmM~tm-1 TBtM S>ty—1 + BiM ~tm-1 (L o (BtM—l >tam—2 TBtM—l %thz)) TBtM %thl_i_
+ BtM >tamr—1 (L ° (Btl\l—l »>tm—2 (L ° (BtM’2 >tnm—3 TBthz %tha)) TBtM—l %th2)) TBtZM >tm—1 + ...+

+ BtM >tar—1 (]L o <BtM—1 >tam—2 (]L ° (...(Btl %o TBtl %to)m)) TBtM—l "tl\l—2)> TBtM >tam—1 . (40)
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FIG. 5: Examples of two small static networks: a strongly connected network A (left panel) and a weakly connected
network B (right panel). Black dots represent network nodes, arrows symbolize directed static links. Small letters
label different nodes and numbers are forward-in-time probabilities of transition associated with each link. Note
that while the network A is strongly connected, the network B one is not.

Hence, A/ and A provide the expected probabilities for two random walkers released at the same time in two nodes
of the network of arriving both into the same node in over a range of steps comprised between 1 and M, forward-
and backward-in-time respectively. Consequently, A ¢ corresponds also to the probability that two portions of tagged
quantity @ from a node pair will arrive to the same node forward-in-time. Similarly, A corresponds to the probability
that two portions of sampled quantity @ from a node pair come from the same node backward-in-time.

V. EXAMPLE APPLICATIONS BASED ON SIMPLE NETWORKS

We now study the performance of our novel connectivity metrics when applied on two simple, static networks
represented in Fig. To start simple, we compare the analytical and the numerical results for the forward-in-time
cumulated multistep explicit and implicit connectivity assuming no time-dependence (Table . In Table [} we report
the values of I'f and Af with M = 1,5 and 100 for every pair of nodes in both networks. We then perform numerical
experiments releasing thousands of random walkers across the networks verifying that their encounter probabilities
match perfectly the values of I'f and Af. As highlighted in Fig@ we clearly see that explicit and implicit connectivity
present marked differences. Moreover, the results show that, while explicit connectivity is not necessarily symmetric
with respect to ¢ and j, implicit connectivity is symmetric by definition (i.e. Af L= Af7) We note also that, for
explicit connectivity with M = 100, the probabilities saturate to one only for the network A of Fig. This can be
explained by the fact that the network A is strongly connected while the network B is not, for such reason the node
c in the network B acts as an absorbing state for random walkers impeding the saturation to one of all probabilities.

To include the effect of temporal dynamics and highlight its relevance for connectivity patterns, we also study
the case of a temporal network. To this aim, we consider the network A of Fig. [5| and we cyclically modify some
of its weights while keeping the average equal to the original static network. In this way, we can properly asses
the differences between a temporal network and its aggregated static counterpart. Specifically, we use the following
temporal weights sequences:

a—b (0.6,0.5,0.4,0.7,0.8)
a—c (0.4,0.5,0.6,0.3,0.2)
c—b (0.7,0.6,0.5,0.8,0.9)
c—d (0.3,0.4,0.5,0.2,0.1)

where each sequence describe the weights of a link for 5 time intervals and then is repeated, the other weights are kept
constant in time as in network A. In Table We report the values of I'f and Af with M = 1,5 and 100 for every pair
of nodes in both networks. We note that, consistently, for M = 1 and 100 the probabilities coincide with the static
case. Indeed, on the one hand, in the first time interval the static network A coincide with its temporal version while,
on the other hand, for M = 100 probabilities saturate to 1 driven by links geometry rather than weight’s values. As
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v/ AT v/ AT
M=1M=5[M=100|M=1] M =5 |M =100 M =1]M =5|M = 100|[M = 1|M = 5| M = 100
a—al 0 0.855 1 0.52 | 0.84976 1 a—al 0 0.7 0.7 0.58 | 0.706 1
a—b| 0.6 |0.9856 1 0.3 | 0.67607 1 a—b| 07 | 0.7 0.7 0 [0.153 1
a—c| 04 | 058 1 0.42 | 0.755562 1 a—c| 03 | 051 1 0.3 | 051 1
a—d| 0 |0.9275 1 0 [0.6402272 1 a—d 0 0.7 0.7 0 ]0.2601 1
b—a| 0 |0937 1 0.3 | 0.67607 1 b—a| 0 1 1 0 [0.153 1
b—0b| 05 | 094 1 0.5 | 0.73775 1 b—b| O 0.7 0.7 1 1 1
boc| 0 0.35 1 0.5 | 0.73775 1 boc| 0 0.3 1 0 0.3 1
b—d| 05 [0.96875 1 0 0.57058 1 b—d| 1 1 1 0 [0.153 1
c—a| 0 [09125 1 0.42 | 0.755562 1 c—al 0 0 0 0.3 | 0.51 1
c—b| 0.7 | 0.964 1 0.5 | 0.73775 1 cob| 0 0 0 0.3 1
coe| 0 0.33 1 0.58 | 0.77971 1 c—oc| 1 1 T 1 T 1
c—d| 0.3 |0.95625 1 0 0.58398 1 c—d| 0 0 0 0 0.51 1
d—a| 1 1.0 1 0 [0.6402272 1 d—a| 1 1.0 1 0 ]0.2601 1
d—=b| 0 0.952 1 0 0.57058 1 d—=b| 0 0.7 0.7 0 |0.153 1
d=c| O 0.52 1 0 0.58398 1 d—c| 0 0.51 T 0 0.51 1
d—d| 0 0.855 1 1 1 1 d—d| 0 0.7 0.7 1 1 1

TABLE I: Tables reporting connectivity values of I'f and A¥ with M = 1,5 and 100 for every pair of nodes of the
two example networks shown in Fig. The left table reports values for the network A and the right table reports
values for the network B.

r’ A
M=1M=5|M=100||M =1| M =5 |M = 100
a—a|l 0 0.865 1 0.52 | 0.8705 1
a—b| 0.6 |0.9952 1 0.3 |0.7102 1
a—c| 04 0.52 1 0.42 | 0.7829 1
a—d| 0 0.9325 1 0 0.6438 1
b—a 0 0.9375 1 0.3 |0.7102 1
b—b| 0.5 0.94 1 0.5 0.766 1
b—c 0 0.4 1 0.5 0.766 1
b—d| 0.5 ]0.96875 1 0 0.5581 1
c—a 0 0.9125 1 0.42 |0.78296 1
c—b| 0.7 0.964 1 0.5 0.766 1
c—c 0 0.319 1 0.58 [0.80344 1
c—d| 03 0.956 1 0 0.5869 1
d—a| 1 1.0 1 0 0.6438 1
d—b 0 0.95 1 0 0.5581 1
d—c| 0 0.55 1 0 0.5869 1
d—d 0 0.87 1 1 1 1

TABLE II: Table reporting connectivity values of I'f and Af with M = 1,5 and 100 for every pair of nodes of the
temporal version of the network A shown in Fig.

shown in Fig. [6] for M = 5 we can find instead significant differences between the static and aggregated case that are
a clear signature of the temporal dynamics.

Allin all, the above results suggest that I'f and A7 can provide different and complementary information about the
connectivity processes occurring across a network. Moreover, as already pointed out by several study [2], connectivity
patterns can change significantly between a full temporal network description and its aggregated counterpart and this
is well reflected in our simple examples.

VI. APPLICATION TO OCEAN TRANSPORT

We now apply our theoretical framework on a real-case network representing the dynamics of fluid elements by
geophysical transport processes (e.g. oceanic or atmospheric circulation). Network approaches have demonstrated
great effectiveness in assessing transport and mixing of fluid parcels in both theoretical and geophysical settings
[12 24, 36-40]. Studying the connectivity of such networks consists in estimating the probability of exchanging fluid
parcels among different geographical locations. Since water (air, respectively) parcels carry numerous particulate
and dissolved substances, connectivity is tantamount to evaluating how any almost-passive tracer is transported and
dispersed by the oceanic (atmospheric, respectively) circulation. As such, relevant applications of transport networks
already include studying the spread of oceanic tracers [41] [42], micro-plastics [43], biological propagules [44H47] and
of atmospheric pollutants [48].

Focusing on the ocean, network-based studies recently reported the presence of both preferential corridors and
semi-permeable barriers of transport within realistic oceanic flows [12] [18], as documented also by alternative methods
developed from Dynamical Systems Theory [49, 50]. These dynamical features, which were associated with relatively
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FIG. 6: Schematics highlighting the differences between explicit and implicit connectivity metrics and applied to
both aggregated and temporal descriptions of the network A of Fig. [5] The four upper panels represent explicit and
implicit connections for M = 1 and 5 with arrows colored according to their probabilities (see also TableE[). The two
lower panels shows the probability differences (i.e. the aggregated case, tab. E minus the temporal case, tab. of

both explicit and implicit metrics of connectivity for M = 5.
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persistent fronts [51] (jet-like currents [52], respectively) tend to prevent (facilitate, respectively) the chaotic advection
of water parcels across (within, respectively) them. Their existence determines the magnitude of connectivity among
distinct oceanic sub-regions [53] and results in the emergence of broad-scale transport patterns [31], 42, [44]. However,
this wiev of ocean connectivity has been mainly described by only considering explicit connections associated with
a precise transport duration. Hence, the cumulated and implicit approaches introduced in the previous Sections can
bring new insights into how different places of the ocean can be connected by water parcels dispersal. In the following,
we apply our previous analytical results to provide a broader and more general perspective of the connectivity of a
realistic transport network in the Mediterranean Sea. In particular, we illustrate how our new metrics allow extracting
novel and relevant information (that is well explained by current oceanographic knowledge) from a state-of-the-art
oceanic flow field but we by no means intend to assess the reliability of the hydrodynamical model that generated it.

Adopting the Lagrangian Flow Network approach [12], we define a set of N = 967 oceanic nodes representing
small, equal-sized sub-regions of the Mediterranean Sea surface. Links and weights between such set of nodes quantify
water parcels exchanges driven by ocean currents over a time-interval of 30 days forward-in-time. To construct
the network, we use a reference horizontal flow fields produced by an operational data-assimilating ocean model
(//doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1) whose outputs have been validated [54]. More
specifically, we exploit realistic daily currents at 10 m depth over a 30-day period spanning 01,/06/2012 - 01/07,/2012
(top-left insert in Fig. ) The examination of M steps on this network corresponds to the concatenation of M-times
transport events of 30 days under the approximation of negligible diffusion and vertical displacements [I8|[24]. Explicit
forward-in-time connectivity, in this case, is associated with the probability for a fluid parcel of traveling from one
node to another and thus, to the probability that tagging a volume of water in one region of the ocean it will arrive
to another given destination (after 30 days). Implicit connectivity represents instead the probability for two water
parcels, belonging each of them to different nodes, of ending up in a third specific node. Again, this can be seen as the
probability that two tagged volumes of water will meet together at a different common place in the ocean afterwards
(after 30 days).

We first investigate how the conventional appraisal of ocean connectivity (i.e. single step explicit) changes when
computing our connectivity metrics at a few different time-steps. To do so, we arbitrarily select a coastal site located
to the south of Cartagena (see the red dot in Fig. EB) in the Alboran Sea and we analyze the evolution of a dispersal
plume starting from this reference site using both T'/ and Af for M = 1,2 and 5 (Fig. . Assigning the index ¢ to
the targeted location and by considering all the non-vanishing indexes j, we can map all the nodes, along with their
associated probabilities, which are explicitly or implicitly connected with the reference coastal site. Next, we briefly
review the main transport barriers and conduits documented by previous research in the study-area and we highlight
how explicit connectivity conforms with previous findings while implicit connectivity brings new insights to ocean
connectivity.

In the western Mediterranean Sea, previous research highlighted, on the one hand, the presence of several Transport
Barriers (TB, black annotations in Fig. @ associated with major oceanographic fronts: the Oran-Almeria front [44] 53],
the Carthagena-Tenes front [56] and the North-balearic front [42] [44] [57]. On the other hand, preferential Transport
Corridors (TC, red annotations in Fig. @ are associated with the main geostrophic jet-like currents such as the
Algerian current, the Atlantic-Ionian jet and the Northern current [I8] 58| [59].

When M =1 in the explicit case (Fig[8]) (e.g. equivalent to single-step explicit estimates), the dispersal plume is
spatially inhomogeneous with two cores of medium to high probabilities (~ 10~ to 1072) which are well-explained
by the pre-identified transport features (Fig[7|A, B). The Almeria-Oran and Cartagena-Tenes fronts, likely associated
with an intense quasi-stationary eddy (Fig. |[7B) trap water parcels south of Cartagena while the nearshore pathway
of the Algerian current (Fig. [7B) allows some parcels to flow across TB2 and thus to disperse eastward into the
Algerian basin (up to 5°E only, Fig. . The single-step implicit connectivity plume is much larger, extending
from the strait of Gibraltar to about 10°E, and associated with more homogeneous probabilities than in the explicit
case. While both cores of high probabilities (ranging from ~ 1072 to 107!) are similar in both cases, the implicit
plume exhibits moderate to low probabilities (~ 1073) in the western Alboran Sea and in the north-eastern Algerian
basin. These implicit patterns are counter-intuitive and more difficult to interpret as they involve indirect connections
ensured by “third-party” nodes. The reference site appears to be connected to the western Alboran Sea despite
the presence Oran-Almeria front (TB1) and the continuous entrance of Atlantic waters (surface transport is mostly
eastward) because they send waters to common downstream locations. Similarly, the low probabilities found in the
north-eastern Algerian basin are probably due to recirculation processes and indirect connections ensured by coastal
(counter-) currents and the meandering Algerian current. It suggests that, while the Cartagena-Tenes transport
barrier constrains strongly the explicit plume [56], it becomes permeable in the case of the implicit plume.

For M = 2, the explicit connectivity dispersal plume extends north-eastward, reaching 10° E (Fig. ) The cores
of high probabilities (~ 10~1) match those revealed by the single-step (M = 1) plumes, corroborating the cumulative
property of our methodology. Less probable connections (~ 1072 to 10~*) are found in most of the Algerian basin
after approximating 60 days of advection, whereas they were absent for M = 1. Acting as a transport barrier, the
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FIG. 7: Maps of the study area covering the western Mediterranean Sea. Panel A: Horizontal currents direction
(thin white arrows) and mean modulus (background colors, in ms~!) of the 10 m flow field averaged over one month
(01/06/2012-01/07/2012). The top-left insert displays the whole model domain covering the entire Mediterranean
basin. Panel B: Streamlines of the 10 m flow field averaged over one month (01/06/2012-01/07/2012). The red dot
indicates the studied coastal site located south of Cartagena. Other annotations highlight the main transport
features, adapted from [58] and [59]. Transport Barriers (TB) are depicted in black dotted lines with the
Almeria-Oran front (TB1), the Cartagena-Tenes front (TB2), the Balearic front (TB3) and the meandering barrier
associated with the northern Tyrrhenian gyres (TB4). Mean positions of the preferential Transport Corridors (TC),
associated with the main geostrophic jet-like currents, are represented as plain red lines with the Algerian current
(TC1), the Atlantic-Ionian jet (T'C2) and the Northern current (TC3).

Balearic front (TB3, Fig. EB) might explain why the plume does not extend further north. As such, explicit two-step
connectivity suggests that our reference site remains disconnected from the French and Italian coastlines and from
the Alboran Sea. Conversely, the implicit connectivity plume spreads substantially across the western Mediterranean,
connecting our reference site to most shorelines until ~ 10°F and ~ 45°N (Fig. ) Probabilities are larger or equal
than ~ 1072 south of TB3 while they drop down to 10~* north of the barrier (Fig. , D). It indicates that weak
implicit connections across the Balearic front occur at M = 2 despite the large distances and the supposed transport
barrier effect. This can be explained by the fact that, in the vicinity of the front, water parcels coming from the
|rjeéerence site can encounter parcels coming from north of the barrier, realizing thus such implicit connections (Fig.

).

For M = 5 (i.e. surface transport over 150 days), the multistep explicit connectivity plume (Fig. [8| E) spreads
across most of the western Mediterranean basin and penetrates the Ionian Sea. These connectivity patterns are
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FIG. 8: Forward-in-time dispersal plumes for a tracking-time of 30 days starting from Cartagena, as derived from
the explicit (left panels A, C and E) and implicit (right panels B, D and F) connectivity metrics using different
number of steps (from upper to lower panels: M=1, 2 and 5). Each node is colored according the probability of

connection starting from our reference site (red dot) located south of Cartagena. White nodes indicate no
connectivity (null probability).

well-explained by the mean circulation highlighted in Fig. EA, B. The northern Tyrrhenian meanders (the Almeria-
Oran and Cartagena-Tenes fronts, respectively) prevent effective connections with the northern Tyrrhenian Sea (the
Alboran Sea, respectively). The Northern current (the Atlantic-Ionian jet, respectively) ensure rare connections
(~ 10=* ; 1072) with the northern shorelines (with the eastern Ionian Sea, respectively). The multistep implicit
connectivity plume (Fig. [§| F) is larger: it covers the entire western Mediterranean basin and spreads over the Ionian
Sea as well as the southern Adriatic Sea, despite the presence of the previously mentioned transport barriers. In
comparison with the 2-step implicit connectivity, the core of elevated probabilities extends further north, suggesting
that the barrier effect of the Balearic front vanishes when longer transport durations are considered. For M = 5
and using both explicit and implicit methods, our reference site is weakly but consistently connected to most distant
coastlines, except the northern Adriatic shores.

Finally, we analyze the global statistical distribution of our explicit and implicit proxies as a function of the number
of steps. To do so, we compare the forward-in-time cumulated multistep explicit (I'f) & implicit (A/) connectivity
metrics for different M spanning 1—1000 by computing mean probabilities of connection, and their associated standard
deviations, for all pairs of nodes (i.e. N x N = 935089 pairs) of our flow network (Fig. E[).We find that the mean I'f
probabilities grow sub-linearly with the number of steps until reaching a plateau at around 0.1 after about M = 800
steps. Mean A/ probabilities grows almost-linearly with the number of steps until reaching a plateau at around 0.5
after approximatively M = 500 steps. For both metrics, saturation does not reach 1, as it was shown for one of
the theoretical cases (see Section , due to the presence of strongly disconnected components in our realistic ocean
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FIG. 9: Mean probabilities of connection (left panel) and the associated standard deviations (right panel) for all
possible pairs of nodes in our ocean network for steps ranging M =1 to M = 1000. Black plain (dotted,
respectively) lines stand for the cumulated multistep explicit (implicit, respectively) connectivity.

network. At saturation, explicit probabilities are spread-out over a wide range of values since the standard deviations
tend to overcome the means. Implicit probabilities are more homogeneous and closer to the mean, even at saturation.

All in all, the newly introduced “implicit connectivity” proxy suggests thus that the connectivity of the surface
ocean could have been substantially underestimated by previous methods, providing novel possible directions for the
study of dispersion and transport patterns of any tracer across the ocean.

VII. CONCLUSIONS AND PERSPECTIVES

Our theoretical approach can be applied to study any kind of temporal, weighted and directed network in which a
random walk can be defined. This should guarantee a broad applicability to various fields such as ecology, epidemics
spreading, mobility, genetics and fluid-dynamics. By introducing the cumulated connectivity formalism, we provide
exact analytical expressions for random walk connection probabilities between any pair of nodes and across arbitrary
ranges of number of steps. This framework could constitute a first step for future modeling efforts to characterize
network connectivity from a probabilistic perspective. We first focused on ezplicit connectivity patterns realized by
paths and then for a novel implicit connectivity concept associated with network pitchforks. Such implicit view of
connectivity highlighted network topological features overlooked until now. Future studies could indeed investigate
how different network topologies, such as random, small-world or scale free, would be reflected in implicit connectivity
patterns and how the latter would be related to different network dynamical regimes. Moreover, when random walk
single-step transition probabilities can be mapped to fractions of a given quantity exchanged across the network,
it is possible to link the probabilistic connectivity interpretation to transport dynamics. Indeed, we showed that
explicit connection probabilities correspond to probabilities related to processes of tagging or sampling the transported
quantity in a node forward- or backward-in-time, respectively. Analogously, implicit connection probabilities are
also related to tagging or sampling processes but in two nodes simultaneously. These relationships can be further
developed both theoretically and for practical applications, such as tagging and sampling experiments on spatial
systems, discovering indirect interactions in complex ecological networks or further characterize diseases spreading and
opinion dynamics in social systems. Possible extensions of our approach can also include non-conservative dynamics
such as production, consumption and transformation of a transported quantity by modulating the probabilities at
node-scale. We finally illustrated an example of how our results can be applied to characterize fluid transport driven
by ocean currents in the Mediterranean Sea. We showed that our approach extends and generalizes the way physical
connectivity in the ocean was understood until now and unveils hidden connections between different regions of the
Mediterranean Sea. Consequently, this changes also our understanding of the role of some oceanographic features,
such as transport barriers and transport corridors, in controlling fluid connections across the seascape. Applications of
this methodology to geophysical flows could provide novel insights on the spreading of drifting organisms, pollutants
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and, more generally, any tracer that is transported by the flow.
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