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Viking: Variational Bayesian Variance Tracking
Joseph de Vilmarest and Olivier Wintenberger

Abstract—We consider the problem of time series forecasting
in an adaptive setting. We focus on the inference of state-
space models under unknown and potentially time-varying noise
variances. We introduce an augmented model in which the
variances are represented as auxiliary gaussian latent variables in
a tracking mode. As variances are nonnegative, a transformation
is chosen and applied to these latent variables. The inference
relies on the online variational Bayesian methodology, which
consists in minimizing a Kullback-Leibler divergence at each
time step. We observe that the minimum of the Kullback-Leibler
divergence is an extension of the Kalman filter taking into account
the variance uncertainty. We design a novel algorithm, named
Viking, using these optimal recursive updates. For auxiliary latent
variables, we use second-order bounds whose optimum admit
closed-form solutions. Experiments on synthetic data show that
Viking behaves well and is robust to misspecification.

Index Terms—adaptive forecasting, state-space model, time
series, variance estimation

I. INTRODUCTION

L INEAR state-space models have been widely used to
model a time series as a gaussian random variable whose

mean is a time-varying linear function of covariates. The
linear parameter is a latent variable called state, and the
hyperparameters of the state-space model are the covariance
matrices of the state and space noises. When these variances
are known, the recursive estimation is realized by Kalman
filtering [1].

However the state and space noise variances are unknown
in most practical applications. A wide literature has emerged
to choose them. The estimation of unknown fixed variances
on a historical data set is generally realized maximizing the
likelihood (see for instance [2], [3]). Another approach is to
estimate these variances (fixed or not) in an online fashion,
that is adaptive filtering [4].

Recently, recursive variational Bayesian (VB) methods as
introduced in [5], [6] have gathered attention in the Kalman
filtering community. The objective is the online estimation of
potentially time-variant parameters. The difference with the
classical Bayesian method is that an approximation is realized
at each step in order to make the inference tractable: the
distribution of the parameters is estimated by simple factorized
distributions. The best factorized distribution is defined as
the one minimizing its Kullback-Leibler divergence with the
posterior.

A VB approach was first applied to estimate the observation
noise covariance matrix in a Kalman filter [7], then extended
in [8] to be robust to non-gaussian noise and in [9] to nonlinear
state-space models. The covariance matrix is assumed diagonal
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and the prior used is a product of inverse gamma distributions.
To allow for a dynamical noise variance the author use a
forgetting factor, multiplying the variances of the inverse
gamma posterior distributions by a constant. The method was
extended with an inverse Wishart prior [10]. At the same time
the authors apply the VB approach to correct the covariance
matrix of the state after applying Kalman recursions with an
inaccurate state noise covariance matrix. The inverse Wishart
distribution appears as a nice conjugate prior to generalize the
inverse gamma distribution. More recently another adaptive
Kalman filter was proposed in [11] to estimate simultaneously
the state and space noise covariance matrices. The method
uses Kalman filtering and smoothing on a slide window and
could be described as an online Expectation-Maximization
algorithm. In all these methods the dynamics of the variances
is introduced through a forgetting factor.

Up to our knowledge, to deal with unknown covariance
matrices in state-space models all existing methods apply at
each step the standard Kalman filter with an estimate of the
variances updated in an adaptive fashion. We claim that it is
suboptimal and that the recursive update of the state estimates
should leverage the variance uncertainty. In this article we treat
the variances as auxiliary latent variables yielding an important
degree of freedom in an augmented latent representation. We
apply the VB approach and we rely on second-order upper-
bounds to tackle the intractability of the VB step.

A. Overview

We present in Section II the state-space inference problem,
we introduce our augmented dynamical model and the VB
principle. As the minimization problem derived in the VB
approach doesn’t admit a closed-form solution, we derive in
Section III an approximation. The algorithm is detailed in
Section IV, and we provide experimental results in Section
V.

B. Notations

Besides canonical notations we define:

• N (x | µ,Σ) the probability density function at point x
of the distribution N (µ,Σ).

• For any distribution p and function Φ, Ex∼p[Φ(x)] is
defined as

∫
p(x)Φ(x)dx.

• For any matrix M , ∆M is the vector composed of the
diagonal coefficients of M . Reciprocally, for any vector
v, Dv is the diagonal matrix whose diagonal is composed
of the coefficients of v.

• If φ : R → R and x ∈ Rd, φ(x) is the d-dimensional
vector obtained by applying φ to each coordinate of x.
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II. VARIANCE TRACKING

We consider the problem of time series forecasting in the
univariate setting for simplicity. At each time t we aim at
forecasting yt ∈ R. To that end we have access to covariates
xt ∈ Rd as well as the past observations x1, y1, . . . xt−1, yt−1.
We focus on a state-space representation where yt is modelled
as a linear function of xt whose linear parameter evolves
dynamically:

θt = Kθt−1 + ηt ,

yt = θ>t xt + εt ,

where ηt ∼ N (0, Qt) and εt ∼ N (0, σ2
t ) are the state and

space noises, and the state follows the initial distribution
θ0 ∼ N (θ̂0, P0). When σ2

t and Qt are known, the state vector
θt given the past observations follows a gaussian distribution
whose mean and covariance can be estimated recursively by
the standard Kalman filter [1]. We focus on the setting where
these variances are unknown and need to be estimated jointly
with the state.

A. Dynamical Variances

A way to introduce a dynamical estimation of σ2
t and

Qt is to treat them as latent variables in addition to the
state vector. Gaussian distributions are appealing to model a
dynamic latent variable. Therefore we choose a gaussian prior
for the variances as for the state vector. However a variance is
necessarily nonnegative, thus we consider transforms of gaus-
sian distributions. Precisely σ2

t = exp(at) and Qt = f(bt),
where at, bt follow gaussian distributions. We detail the choice
of f in Section II-E where we define either scalar covariance
matrices (proportional to I) or diagonal ones. Note that bt
can be of any dimension, as long as f(bt) is a d× d positive
semidefinite matrix. Our dynamical model is summarized as
follows:

θ0 ∼ N (θ̂0, P0) , a0 ∼ N (â0, s0) , b0 ∼ N (b̂0,Σ0) ,

at − at−1 ∼ N (0, ρa) , bt − bt−1 ∼ N (0, ρbI) ,

θt −Kθt−1 ∼ N (0, f(bt)) ,

yt − θ>t xt ∼ N (0, exp(at)) .

In these equations we implicitly assume that we have

p(θt, at, bt | θt−1, at−1, bt−1)

= p(θt | θt−1, bt)p(at | at−1)p(bt | bt−1) .

B. Bayesian Approach

We apply a Bayesian approach in order to estimate jointly
the state θt and the latent variables at, bt given the past
observations. Note however that the problem at hand is the
forecast of yt thus the latent variable of interest is θt. The
estimation of at is necessary for a probabilistic forecast of
yt since it drives the noise variance. The latent variable bt
is added to open enough flexibility for the estimation of the
other variables in a dynamical way. Formally we introduce the
filtration of the past observations Ft = σ(x1, y1, . . . , xt, yt).
At each iteration t, the Bayesian approach consists in a

prediction step using the model’s assumptions and a filtering
step using Bayes’ rule:

Prediction: p(θt, at, bt | Ft−1) ,

Filtering: p(θt, at, bt | Ft) .

In the case of known variances resolved by the Kalman
filter, the prediction step yields θ̂t|t−1 and Pt|t−1, the expected
value and covariance matrix of θt given the filtration Ft−1.
Furthermore we have p(θt | Ft−1) = N (θt | θ̂t|t−1, Pt|t−1).
Then the filtering step yields θ̂t|t and Pt|t such that the
posterior distribution is p(θt | Ft) = N (θt | θ̂t|t, Pt|t).

However in our variance tracking model the posterior dis-
tribution p(· | Ft) is analytically intractable, thus we estimate
it with simple distributions.

C. Variational Bayesian Approach

A standard approach, referred to as recursive Vari-
ational Bayes (VB), is to approximate recursively the
posterior distribution with a factorized distribution where
each component is of a simple form [6]. We look for
θ̂t|t, Pt|t, ât|t, st|t, b̂t|t,Σt|t such that the product of gaussian
distributions N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) is the best
approximation of the posterior distribution. The approximation
is quantified by the Kullback-Leibler (KL) divergence:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
, (1)

where KL(p || q) = Ex∼p(x)[log(p(x)/q(x))]. At each step,
the VB approach yields a coupled optimization problem in the
three gaussian distributions.

Propagating the factorized approximation

p(θt−1, at−1, bt−1 | Ft−1) ≈ N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)

N (at | ât|t, st|t)N (bt−1 | b̂t−1|t−1,Σt−1|t−1) ,

the prediction step becomes:

p(θt, at, bt | Ft−1)

≈
∫
N (θt −Kθt−1 | 0, f(bt))N (at − at−1 | 0, ρa)

N (bt − bt−1 | 0, ρbI)N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)

N (at | ât−1|t−1, st−1|t−1)N (bt | b̂t−1|t−1,Σt−1|t−1)

dθt−1dat−1dbt−1

≈ N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> + f(bt))

N (at | ât−1|t−1, st−1|t−1 + ρa)

N (bt | b̂t−1|t−1,Σt−1|t−1 + ρbI) .

Treating the approximation at time t− 1 as a prior at time
t we obtain the following posterior distribution:

p(θt, at, bt | Ft) = N (yt | θ>t xt, exp(at))

N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> + f(bt))

N (at | ât−1|t−1, st−1|t−1 + ρa)

N (bt | b̂t−1|t−1,Σt−1|t−1 + ρbI)
p(xt,Ft−1)

p(Ft)
. (2)
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This last equation defines the posterior that we plug in (1) to
obtain the optimization problem that we would like to solve
recursively.

The term N (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> + Qt) on the

second line, which would appear with any model for Qt,
makes a conjugate prior for Qt impractical in a VB method
to estimate the posterior distribution of the state and the
variances. The approach proposed by [11] consists in applying
a few iterations of Kalman smoothing with the previous
estimates of the variances σ̂2

t−1 and Q̂t−1. Then the authors
estimate the posterior distribution of σ2

t , Qt given Ft and the
distribution of θt−k estimated by Kalman smoothing given
Ft, σ̂2

t−1, Q̂t−1. In that way they get rid of the crossed factor
involving θt and Qt, and they obtain exact estimation of the
posterior distribution of the variances. Our approach does the
opposite on that part. We build on that crossed factor to avoid
Kalman smoothing, at the cost of the need of approximations
in the posterior estimation.

D. KL Derivation and Optimum in θ̂t|t, Pt|t
We first present a detailed expression of the KL divergence

defined in (1) in the following Lemma.

Lemma 1. There exists a constant c independent of
θ̂t|t, Pt|t, ât|t, st|t, b̂t|t,Σt|t such that

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
= −1

2
log detPt|t −

1

2
log(st|t)

+
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t)

− 1

2
log det Σt|t +

1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)]

+
1

2(st−1|t−1 + ρa)
(st|t + (ât|t − ât−1|t−1)2) +

1

2
ât|t

+
1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)

(Σt−1|t−1 + ρbI)−1
)

+ c ,

where

ψt(bt) = log det(KPt−1|t−1K
> + f(bt))

+ Tr
(

(Pt|t + (θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>)

(KPt−1|t−1K
> + f(bt))

−1
)
.

We easily obtain a closed-form solution to minimize the KL
divergence with respect to θ̂t|t, Pt|t.

Theorem 2. Given ât|t, st|t, b̂t|t,Σt|t, the values of θ̂t|t, Pt|t
minimizing the KL divergence are given by

At = Ebt∼N (b̂t|t,Σt|t)
[(KPt−1|t−1K

> + f(bt))
−1] , (3)

Pt|t = A−1
t −

A−1
t xtx

>
t A
−1
t

x>t A
−1
t xt + exp(ât|t − 1

2st|t)
, (4)

θ̂t|t = Kθ̂t−1|t−1 +
Pt|txt

eât|t−st|t/2
(yt − x>t Kθ̂t−1|t−1) . (5)

Note that the updates defined above are the ones of
the Kalman filter with known variances σ2

t and Qt, where
we have replaced σ2

t with exp(ât|t − 1
2st|t) which is

Eat∼N (ât|t,st|t)[exp(at)
−1]−1 and KPt−1|t−1K

> + Qt with
Ebt∼N (b̂t|t,Σt|t)

[(KPt−1|t−1K
> + f(bt))

−1]−1. If st|t =

0,Σt|t = 0 then we know the variances and we obtain
the Kalman filter with σ2

t = exp(ât|t) and Qt = f(b̂t|t).
Otherwise if Σt|t 6= 0, the result states that the update of
the Kalman filter with unbiased estimated variances in place
of the unknown variances is suboptimal in the sense of the
Kullback-Leibler divergence. It implies also that we don’t
expect to obtain unbiased estimates of the variances. The
same conclusion would follow if one adapted the classical
VB approach of [12] to our framework.

It is important to remark that as long as ρb > 0 we
do not have the convergence of Σt|t to 0. Therefore we do
not recover the standard Kalman filter asymptotically. On the
contrary, existing adaptive Kalman filters use the standard
Kalman recursive updates with estimates of the variances [7]–
[11]. Therefore, in a well-specified setting where the state-
space model is the underlying generating process, our method
should be outperformed by adaptive Kalman filters whose
variance estimates are consistent. We believe this drawback is
a reasonable price to pay to get robustness to misspecification.

Furthermore note that (5) may be interpreted as a gradient
step on the quadratic loss, where instead of a gradient step size
we have the preconditioning matrix Pt|t/ exp(ât|t − 1

2st|t).
Therefore the algorithm derived in this article may be seen
as a way to parameterize a second order stochastic gradient
algorithm.

E. Choice of f
The natural transform for the latent variables at and bt is

the exponential, see [13] for a filter on latent variables lying in
a Riemannian manifold. We use the exponential to represent
σ2
t . However setting f(bt) = exp(bt)I for a unidimensional bt

contradicts a careful property that we define as follows using
the gradient interpretation of Section II-D. We claim that the
algorithm should be more careful with uncertainty (Σt|t � 0)
than without (Σt|t = 0). By more careful we mean smaller gra-
dient steps, that is formally A−1

t 4 KPt−1|t−1K
> + f(b̂t|t).

By Jensen’s inequality we have

At <
(
KPt−1|t−1K

> + Ebt∼N (b̂t|t,Σt|t)
[f(bt)]

)−1

.

Therefore a sufficient (but not necessary) condition providing
the careful property is f concave, again thanks to Jensen, and
that is the contrary of the exponential. Unfortunately we cannot
have both f concave and f < 0. We propose to use a function
which is zero on negative numbers and concave elsewhere:

φ(b) =

{
0 if b < 0 ,

log(1 + b) if b ≥ 0 .

Then we consider two settings for f : First a scalar setting
where f(bt) = φ(bt)I for a unidimensional bt. Second, a
diagonal setting where bt ∈ Rd and f(bt) = Dφ(bt) is a
diagonal matrix whose diagonal coefficients are defined by
the φ transform applied to each coefficient of bt.
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III. APPROXIMATE VARIATIONAL BAYES

Theorem 2 realizes the exact optimum of the KL divergence
with respect to θ̂t|t, Pt|t. To obtain closed-form solutions of
the minimum with respect to the other parameters we need
additional approximations. In this section, we use the first
two moments of gaussian distributions in second-order upper-
bounds. That yields closed-form approximations to the VB
recursive step with respect to ât|t, st|t and b̂t|t,Σt|t. Minimiz-
ing the upper-bounds does not necessarily lead to minimizing
the KL divergence, but it yields the guarantee of decreasing
the instantaneous KL divergence at each step.

A. Optimum in ât|t, st|t
We first present recursive updates for ât|t, st|t.
1) Optimum in st|t: We are looking for st|t ≥ 0 minimizing

the KL divergence. As the conditional variance of at given
Ft−1 is st−1|t−1 + ρa, we look for st|t in the interval
[0, st−1|t−1+ρa]. In this interval we simply use a linear upper-
bound for the exponential:

Proposition 3. For any st|t ∈ [0, st−1|t−1 + ρa] we have

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
≤ 1

4
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|tst|t

+
1

2
(st−1|t−1 + ρa)−1st|t −

1

2
log(st|t) + cs ,

where cs is a constant independent of st|t. Furthermore, the
upper-bound is minimized by:

st|t =
(

(st−1|t−1 + ρa)−1

+
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t

)−1

. (6)

2) Optimum in ât|t: To upper-bound the exponential with
a polynomial form also in ât|t we need to bound ât|t, and we
consider the segment [ât−1|t−1−Ma, ât−1|t−1 +Ma] (we set
arbitrarily Ma = 3st−1|t−1).

Proposition 4. For any ât|t ∈ [ât−1|t−1−Ma, ât−1|t−1 +Ma]
we have

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
≤ 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2(

− (ât|t − ât−1|t−1) +
eMa

2
(ât|t − ât−1|t−1)2

)
+

1

2
(st−1|t−1 + ρa)−1(ât|t − ât−1|t−1)2 +

1

2
ât|t + ca ,

where ca is a constant independent of ât|t. Furthermore the
upper-bound is minimized by:

â = ât−1|t−1 +
1

2

( 1

st−1|t−1 + ρa

+
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2+Ma

)−1

(
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2 − 1

)
,

ât|t = max(min(â, ât−1|t−1 +Ma), ât−1|t−1 −Ma) . (7)

We note that ((yt−θ̂>t|txt)
2+x>t Pt|txt)e

−ât−1|t−1+st|t/2−1
is the gradient with respect to â of

E(θt,at)∼N (θ̂t|t,Pt|t)×N (â,st|t)
[logN (yt | θ>t xt, exp(at))]

= −1

2
â− 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−â+st|t/2 ,

therefore (7) may be seen as a projected gradient step on an
expected log-likelihood.

B. Optimum in b̂t|t,Σt|t
The minimum of the Kullback-Leibler is also intractable in

b̂t|t,Σt|t due to the absence of analytical form for the expected
value of ψt. In the following we focus on the specific settings
that are introduced in Section II-E, namely the scalar setting
f(bt) = φ(bt)I and the diagonal setting f(bt) = Dφ(bt). For
these two possible choices of f we have the following second-
order upper-bound for ψt:

Proposition 5. In the scalar and diagonal settings defined in
Section II-E, for any t such that f(b̂t−1|t−1) � 0, the following
holds for any bt in a neighbourhood of b̂t−1|t−1:

ψt(bt) ≤ ψt(b̂t−1|t−1) +
∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(bt − b̂t−1|t−1)

+
1

2
(bt − b̂t−1|t−1)>Ht(bt − b̂t−1|t−1) ,

where Bt = Pt|t + (θ̂t|t − Kθ̂t−1|t−1)(θ̂t|t − Kθ̂t−1|t−1)>,
Ct = KPt−1|t−1K

> + f(b̂t−1|t−1), and then

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

= Tr(C−1
t (I −BtC−1

t ))φ′(b̂t−1|t−1) ,

Ht = −Tr(C−1
t BtC

−1
t )φ′′(b̂t−1|t−1)

+ 2 Tr(C−2
t BtC

−1
t )φ′(b̂t−1|t−1)2 ,

in the scalar setting, and

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

= ∆C−1
t (I−BtC

−1
t ) � φ

′(b̂t−1|t−1) ,

Ht = −
(
C−1
t BtC

−1
t Dφ′′(b̂t−1|t−1)

)
� I

+ 2C−1
t BtC

−1
t � C−1

t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> ,

in the diagonal setting, with � the Hadamard (pointwise)
product.

The upper-bound of the Kullback-Leibler divergence ob-
tained thanks to the proposition above admits a closed-form
minimum:

Proposition 6. In the scalar and diagonal settings, for any t
such that f(b̂t−1|t−1) � 0 and any b̂t|t,Σt|t,

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
≤ −1

2
log det Σt|t +

1

2

∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(b̂t|t − b̂t−1|t−1)

+
1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)(
(Σt−1|t−1 + ρbI)−1 +

1

2
Ht

))
+ cb ,
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where Ht is defined in Proposition 5 and cb is a constant
independent of b̂t|t,Σt|t. The minimum of the upper-bound
detailed above is obtained with:

Σt|t =
(

(Σt−1|t−1 + ρbI)−1 +
1

2
Ht

)−1

, (8)

b̂t|t = b̂t−1|t−1 −
1

2
Σt|t

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

. (9)

Similarly as (7) we can interpret (9) as a gradient step on
ψt and we can remark that ψt(b̂) is the following expected
log-likelihood:

Eθt∼N (θ̂t|t,Pt|t)
[logN (θt | Kθ̂t−1|t−1,KPt−1|t−1K

> + f(b̂))] .

Thus, except the exact recursive steps on θ̂t|t, Pt|t which
are extensions of the Kalman filter steps, our recursive steps
resemble Stochastic Gradient Variational Bayes (SGVB) algo-
rithm steps as described in [14]. This novel class of algorithms
is very popular for tuning complex deep learning networks,
see for instance [15], [16]. There, the expectation of the log-
likelihood is approximated by using Monte-Carlo simulation
and only the first order of the gradient is used.

IV. VIKING

We now introduce the algorithm following from the recur-
sive updates described in the previous sections.

A. Definition of the Algorithm

Theorem 2 yields exact recursive updates for θ̂t|t, Pt|t
but A−1

t does not admit an explicit form. We propose to
run Monte-Carlo estimation of At with very small samples
(nmc = 10 draws by default). As the KL optimization is a
coupled problem we solve it in a classical iterative fashion, that
is, we repeat N times the updates alternately (N = 2 is a good
default value). We summarize the procedure in Algorithm 1.
We name it Viking (Variational Bayesian Variance Tracking).

B. Complexity

We decompose the number of operations of Viking in Table
I. Although matrix multiplication and inversion have the same
asymptotic complexity, in practice inversion is more costly.

We suggest the default N = 2 and nmc = 10, therefore the
complexity of Viking is essentially driven by the complexity
of matrix inversion. Consequently it is proportional to the one
of methods relying on Kalman smoothing as in [11].

V. EXPERIMENTS

We run several experiments, and we argue that our method
behaves well for misspecified data. We begin with well-
specified data generated under a state-space model with
smoothly varying variances. Then we focus on misspecified
data.

Algorithm 1: Viking at time step t
Time-invariant parameters: ρa, ρb, nmc, f .
Default: ρa = e−9, ρb = e−6, nmc = 10, f(·) = Dφ(·).
Inputs: θ̂t−1|t−1, Pt−1|t−1, ât−1|t−1, st−1|t−1,
b̂t−1|t−1, Σt−1|t−1, xt, yt.
Initialize:
Set â(0)

t|t = ât−1|t−1, s(0)
t|t = st−1|t−1 + ρa.

Set b̂(0)
t|t = b̂t−1|t−1, Σ

(0)
t|t = Σt−1|t−1 + ρb.

Iterate: for i = 1, . . . , N :
• 1. Set At then compute A−1

t using (3) with
Monte-Carlo from nmc samples of N (b̂

(i−1)
t|t ,Σ

(i−1)
t|t ).

2. Set P (i)
t|t , θ̂

(i)
t|t using (4) and (5), with A−1

t from step 1

and â(i−1)
t|t , s

(i−1)
t|t .

• If we learn σ2
t :

3. Set s(i)
t|t using (6) with θ̂(i)

t , P
(i)
t , â

(i−1)
t|t .

4. Set â(i)
t|t using (7) with θ̂(i)

t , P
(i)
t , s

(i)
t|t .

• If we learn Qt:
5. Set Σ

(i)
t|t , b̂

(i)
t|t using (8) and (9).

Apply threshold b̂(i)t|t = max(b̂
(i)
t|t , 0).

Outputs: θ̂t|t = θ̂
(N)
t|t , Pt|t = P

(N)
t|t , ât|t = â

(N)
t|t , st|t =

s
(N)
t|t , b̂t|t = b̂

(N)
t|t ,Σt|t = Σ

(N)
t|t .

TABLE I
COMPLEXITY OF ALGORITHM 1.

Steps Operations
1 nmcS + (nmc + 1)I(d) +O(M(d))
2 O(d2)

3 and 4 O(d2)
5 3I(d) +O(M(d))

Whole N
(
nmcS + (nmc + 4)I(d) +O(M(d))

)
S denotes the complexity of gaussian draw, M(d) and I(d) denote the
complexity of matrix multiplication and inversion.

A. Well-Specified Data with Unknown σ2
t and Known Qt

We reproduce the experiment presented in [7] on the
stochastic resonator model:

θt+1 −

1 0 0

0 cos(ω∆t) sin(ω∆t)
ω

0 −ω sin(ω∆t) cos(ω∆t)

 θt ∼ N (0, Q) ,

yt − (θt,1 + θt,2) ∼ N (0, σ2
t ) ,

where we set ω = 0.05 and ∆t = 0.1 and the known covari-
ance of the process noise is Q = D(0.01,0,0.0001). We display
the variance trajectory for one simulation in Figure 1. Running
the experiment 100 times we observe that both methods almost
coincide in terms of root-mean-square error: 0.6859 for Viking
and 0.6858 for VB-AKF [7]. In this comparison we take the
best value of ρa for Viking as well as the best ρ for the VB-
AKF in the list e−i, 1 ≤ i ≤ 10.

B. Well-Specified Data with Unknown σ2
t and Qt

We run a second simulation inspired by [11] in a well-
specified setting. We generate xt ∈ [0, 1]5 using two possible
alternatives:
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Fig. 1. Trajectory of the observation variance σ2
t estimated by our algorithm

and compared to the estimate provided in [7].
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Fig. 2. Example of trajectory of the 5 components of the vector xt considered
in the setting uniform non-iid.

1) Uniform i.i.d. design: (xt) is independent identically
distributed. For each t, xt is composed of 4 indepen-
dent coefficients generated with uniform distributions on
[0, 1] and one deterministic 1 coefficient.

2) Uniform non-i.i.d. design: (xt) has the same distribu-
tion but is not i.i.d., a sample is displayed in Figure
2. Precisely x1 is generated as before. Then for j ∈
{1, 2, 3, 4} and t ≥ 2, we consider zt,j = xt−1,j + εt,j
where εt,j ∼ N (0, 10−3) and we generate

xt,j =

{
zt,j if 0 ≤ zt,j ≤ 1 ,

dzt,je − zt,j otherwise.

Then we generate yt by the following state-space model:

θ0 ∼ N (0, I) ,

θt − θt−1 ∼ N (0, Qt) ,

yt − θ>t xt ∼ N (0, σ2
t ) ,

where

σ2
t = 1 + 0.1 cos

4πt

n
,

Qt =
(

0.25 + 0.2 cos
4πt

n

)
D(0,0,1,1,1) .

The simulation time is n = 103. In Figure 3 we compare
Viking to the slide window variational adaptive Kalman filter
(SWVAKF) introduced in [11], which we tune in several ways.
First we increase the window length from 5 to 20, resulting in
a significant improvement at the cost of more computations.
Second we tune the forgetting factor, and to play fair with
Viking we define different forgetting factors for the estimation
of σ2

t and the estimation of Qt. We select the best a posteriori,
and we do the same for Viking. Third, we enforce diagonal
and scalar variants of the SWVAKF: the diagonal variant is
defined by replacing by 0 each non-diagonal coefficient after
each update, and on top of that in the scalar variant we replace
each diagonal coefficient by the averaged diagonal.

C. Misspecified Data with Unknown σ2
t and Qt

To experiment misspecification we consider a state-space
model with two states evolving independently with identical
processes, and the observation is generated using one of them
uniformly at random. That is summarized by the following set
of equations:

θ
(i)
0 ∼ N (0, I) , i ∈ {0, 1} ,
θ

(i)
t − 0.9 θ

(i)
t ∼ N (0, Qt) , i ∈ {0, 1} ,

it ∼ B(1/2) ,

yt − θ(it)>
t xt ∼ N (0, σ2

t ) ,

where we assume all gaussian noises to be independent of
each other and of (it). We consider the same settings for xt
as well as the same variances σ2

t , Qt defined in Section V-B.
The contraction (here by a coefficient 0.9) is necessary to

have the convergence of the distribution of yt as well as of the
conditional distribution of yt given the filtration Ft−1. In the
tracking mode (no contraction) the variance of the conditional
distribution would diverge to∞, and therefore the error of any
forecasting strategy would also diverge to ∞.

We refer to Figure 3 for the evaluation in mean squared
error. We observe that Viking in the diagonal setting behaves
poorly compared to the SWVAKF for well-specified data
with i.i.d. design but better in the other 3 experiments. As
mentioned in Section II-D we believe it is natural that a
consistent adaptive Kalman filter should be closer to the true
Kalman filter than our algorithm which cannot be written
using Kalman recursion. However the careful property (see
the design of f in Section II-E) allows us to outperform
existing methods for misspecified data. This interpretation of
the observation generation may to a minor extent be transposed
to the design generation. Indeed, in our non-i.i.d. design a shift
in the data should be harder to attribute to one coefficient of the
state, and therefore it should be harder to learn the variances,
that is why the difference between the two Kalman filters with
constant variances is smaller. Thus the model should not be
trusted too much.
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Fig. 3. Mean Squared Errors in the four settings introduced in Sections V-B and V-C: i.i.d. (left) or non-i.i.d. (right) design, well-specified (top) or misspecified
(bottom). We compare Viking to the SWVAKF of [11] in the scalar and diagonal settings. For Viking we set nmc = 10. The oracles to which we compare
are the Kalman filter with known variances when they exist (well-specified settings) and two Kalman filters with constant variances: the state noise covariance
is either Q = q ·D(0,0,1,1,1) or Q = q · I and in both we set the space noise variance to σ2 = 1. We evaluate through the mean squared error on the second
half of the experiment in order to not depend too much on the initialization (even if we have same initial expected variances for Viking and SWVAKF).

D. Impact of nmc

The number of Monte-Carlo samples used at each step
to compute A−1

t is a crucial factor of the complexity of
Viking. It is therefore necessary to evaluate its impact on the
performance in order to reach the best compromise between
forecasting and computational efficiencies. We refer to Figure
4 for an evaluation of the error with different values of nmc.
The default value nmc = 10 seems reasonable.

VI. CONCLUSION

We have introduced Viking, an algorithm for adaptive time
series forecasting relying on state-space models with unknown
state and space variances. We derived an augmented latent
model, and we apply variational Bayes for the inference. We
extend the Kalman filter to uncertain environment. For the
additional latent variables, we use approximative steps close to
SGVB recursive ones. The prediction performances are better
than the state of the art in misspecified settings at the same
computational cost.
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Fig. 4. Mean Squared Error of Viking as a function of nmc. We scale by the
mean squared error of the algorithm with nmc = 1 in order to fit the different
algorithms (diagonal and scalar settings) as well as the different experiments
(i.i.d. or non-i.i.d. design, well-specified or misspecified) in the same graph.
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The choice of the function applied to the latent variable
to obtain the state noise covariance matrix is a perspective
of future research. We provide a specific choice leading to
promising experimental results on simulations in both well-
specified and misspecified settings. However we wrote most of
the article considering this function is a parameter of Viking,
because we believe other functions may be of interest.

APPENDIX

We provide the proofs for all the claims of the article.

Proof of Lemma 1. We start from the expression of (1) that
we can decompose as follows:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
= Eθt∼N (θ̂t|t,Pt|t)

[logN (θt | θ̂t|t, Pt|t)]

+ Eat∼N (ât|t,st|t)[logN (at | ât|t, st|t)]
+ Ebt∼N (b̂t|t,Σt|t)

[logN (bt | b̂t|t,Σt|t)]

− E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)

[log p(θt, at, bt | Ft)] .

The last term can be split using the factorized form of (2). We
observe that on the one hand,

E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)

[logN (yt | θ>t xt, exp(at))]

= −1

2
log(2π)− 1

2
ât|t

− 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t) ,

and on the other hand,

E(θt,at,bt)∼N (θ̂t|t,Pt|t)N (ât|t,st|t)N (b̂t|t,Σt|t)

[logN (θt | Kθ̂t−1|t−1,KPt−1|t−1K
> + f(bt))]

= −d log(2π)

2
− 1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)] ,

where ψt is defined in the lemma. Combining the last
equations with the value of the entropy of gaussian random
variables yields the result.

Proof of Theorem 2. Thanks to Lemma 1 we have

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
=

1

2
Tr
(

(Pt|t + (θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>)At

)
+

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt) exp(−ât|t +
1

2
st|t)

− 1

2
log detPt|t + cθ ,

where cθ is a constant independent of θ̂t|t, Pt|t, and At is
defined in the theorem. To conclude we write the first order
conditions:

− 1

2
P−1
t|t +

1

2

(
At +

xtx
>
t

exp(ât|t − 1
2st|t)

)
= 0 ,

−
(yt − θ̂>t|txt)xt

exp(ât|t − 1
2st|t)

+At(θ̂t|t −Kθ̂t−1|t−1) = 0 .

Proof of Proposition 3. Thanks to Lemma 1, we have

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
=

1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t+st|t/2

+
1

2
(st−1|t−1 + ρa)−1st|t −

1

2
log(st|t) + cs ,

where cs is a constant independent of st|t. Moreover, if 0 ≤
st|t ≤ st−1|t−1 + ρa then

est|t/2 ≤ e(st−1|t−1+ρa)/2 +
1

2
(st|t − (st−1|t−1 + ρa)) .

The last two equations yield the upper-bound of the propo-
sition. To obtain (6) we write the first order condition of
optimality:

1

4
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t − 1

2
s−1
t|t

+
1

2
(st−1|t−1 + ρa)−1 = 0 .

Proof of Proposition 4. Thanks to Lemma 1 we have

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
≤ 1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât|t+st|t/2

+
1

2
(st−1|t−1 + ρa)−1(ât|t − ât−1|t−1)2 +

1

2
ât|t + ca ,

with ca a constant independent of ât|t. Moreover, if ât|t ∈
[ât−1|t−1−Ma, ât−1|t−1 +Ma] we have the following upper-
bound:

e−ât|t ≤ e−ât−1|t−1

(
1− (ât|t − ât−1|t−1)

+
eMa

2
(ât|t − ât−1|t−1)2

)
.

The last two equations yield the upper-bound of the proposi-
tion. To obtain (7) we write the first-order condition:

1

st−1|t−1 + ρa
(ât|t − ât−1|t−1) +

1

2

+
1

2
((yt − θ̂>t|txt)

2 + x>t Pt|txt)e
−ât−1|t−1+st|t/2(

− 1 + eMa(ât|t − ât−1|t−1)
)

= 0 ,

To prove Propositions 5 and 6 we first compute the first and
second derivatives of ψt for the scalar and diagonal settings:

Lemma 7. Let Ct = KPt−1|t−1K
>+ f(bt) and Bt = Pt|t +

(θ̂t|t −Kθ̂t−1|t−1)(θ̂t|t −Kθ̂t−1|t−1)>.
• If f(·) = φ(·)I then for any bt, we have

ψ′t(bt) = Tr(C−1
t (I −BtC−1

t ))φ′(bt) ,

ψ′′t (bt) = Tr(C−1
t (I −BtC−1

t ))φ′′(bt)

+ 2 Tr(C−2
t (BtC

−1
t − I/2))φ′(bt)

2 .
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• If f(·) = Dφ(·) then for any bt, we have

∂ψt
∂bt

= ∆C−1
t (I−BtC

−1
t ) � φ

′(bt) ,

∂2ψt
∂b2t

= C−1
t (I −BtC−1

t )Dφ′′(bt) � I

+ 2C−1
t (BtC

−1
t − I/2)� C−1

t � φ′(bt)φ′(bt)> ,

where � is the Hadamard (pointwise) product.

Proof. • In the scalar setting we recall that

ψt(b) = log det(KPt−1|t−1K
> + φ(b)I)

+ Tr(Bt(KPt−1|t−1K
> + φ(b)I)−1) .

We denote by log and exp the univariate logarithm and
exponential and by Log the matrix logarithm. Note that
if A � 0, it holds detA = exp Tr(LogA). We define
Ct = KPt−1|t−1K

> + φ(bt)I and we obtain:

log det(KPt−1|t−1K
> + φ(b)I)− Tr Log(Ct)

= Tr Log(KPt−1|t−1K
> + φ(b)I)− Tr Log(Ct)

= Tr Log
(
I + (φ(b)− φ(bt))C

−1
t

)
= Tr

((
φ′(bt)(b− bt) +

1

2
φ′′(bt)(b− bt)2

)
C−1
t

− 1

2

(
φ′(bt)(b− bt)C−1

t

)2
+ o((b− bt)2)

)
.

The last line follows from the series expansion of the
Logarithm. We apply another series expansion for the
second term of ψt: we have

Tr(Bt(KPt−1|t−1K
> + φ(b)I)−1)

= Tr
(
BtC

−1
t

(
I + (φ(b)− φ(bt))C

−1
t

)−1)
= Tr

(
BtC

−1
t(

I −
(
φ′(bt)(b− bt) +

1

2
φ′′(bt)(b− bt)2

)
C−1
t

+
(
φ′(bt)(b− bt)C−1

t

)2
+ o((b− bt)2)

))
.

Summing the last two equations, and using the identity
Tr(AB) = Tr(BA), we can identify the first and second
derivatives of ψt.

• We develop a similar argument in the diagonal setting:

ψt(b) = log det(KPt−1|t−1K
> +Dφ(b))

+ Tr(Bt(KPt−1|t−1K
> +Dφ(b))

−1) ,

then we apply the series expansion of the Logarithm:

log det(KPt−1|t−1K
> +Dφ(b))− Tr Log(Ct)

= Tr Log
(
I +Dφ(b)−φ(bt)C

−1
t

)
= Tr

(
Dφ′(bt)(b−bt)+ 1

2φ
′′(bt)(b−bt)2C

−1
t

− 1

2
(Dφ′(bt)(b−bt)C

−1
t )2 + o(‖b− bt‖2)

)
,

where Ct = KPt−1|t−1K
> + Dφ(bt) and φ′(bt), φ

′′(bt)
denote the coefficient-wise application of the first and

second derivatives of φ to the vector bt. We apply another
series expansion for the second term of ψt:

Tr
(
Bt(KPt−1|t−1K

> +Dφ(b))
−1
)

= Tr
(
BtC

−1
t

(
I +Dφ(b)−φ(bt)C

−1
t

)−1)
= Tr

(
BtC

−1
t(

I −Dφ′(bt)(b−bt)+ 1
2φ
′′(bt)(b−bt)2C

−1
t

+ (Dφ′(bt)(b−bt)C
−1
t )2 + o(‖b− bt‖2)

))
.

Summing the last two equations we obtain

ψt(b) = Tr Log(Ct) + Tr(BtC
−1
t )

+ Tr
(
C−1
t (I −BtC−1

t )

Dφ′(bt)(b−bt)+ 1
2φ
′′(bt)(b−bt)2

)
+ Tr

(
C−1
t (BtC

−1
t − I/2)

Dφ′(bt)(b−bt)C
−1
t Dφ′(bt)(b−bt)

)
+ o(‖b− bt‖2) .

Then we use the identity Tr(ADvBDv) = v>(A �
B>)v. We have

ψt(b) = Tr Log(Ct) + Tr(BtC
−1
t )

+
1

2
(b− bt)>

(
C−1
t (I −BtC−1

t )Dφ′′(bt) � I

+ 2C−1
t (BtC

−1
t − I/2)�

C−1
t � φ′(bt)φ′(bt)>

)
(b− bt)

+ (∆C−1
t (I−BtC

−1
t ) � φ

′(bt))
>(b− bt) + o(‖b− bt‖2) .

Thus we can identify the first and second derivatives of
ψt.

Proof of Proposition 5. As long as f(b̂t−1|t−1) � 0 we know
that f is twice differentiable in b̂t−1|t−1 and the local upper-
bound property of Proposition 5 holds if ∂2ψt

∂b2t
|b̂t−1|t−1

≺ Ht.
We bound the expressions obtained in Lemma 7.
• In the scalar setting,

ψ′′t (b̂t−1|t−1) = Tr(C−1
t (I −BtC−1

t ))φ′′(b̂t−1|t−1)

+ 2 Tr(C−2
t (BtC

−1
t − I/2))φ′(b̂t−1|t−1)2 .

Furthermore, Ct � 0 thus C−1
t � 0, Tr(C−1

t ) > 0, and
Tr(C−2

t ) > 0. φ′′(b̂t−1|t−1) = −1/(1 + b̂t−1|t−1)2 < 0

and φ′(b̂t−1|t−1)2 > 0, therefore we obtain

ψ′′t (b̂t−1|t−1) < −Tr(C−1
t BtC

−1
t )φ′′(b̂t−1|t−1)

+ 2 Tr(C−2
t BtC

−1
t )φ′(b̂t−1|t−1)2 .

• In the diagonal setting,

∂2ψt
∂b2t

∣∣∣
b̂t−1|t−1

= C−1
t (I −BtC−1

t )Dφ′′(b̂t−1|t−1) � I

+ 2C−1
t (BtC

−1
t − I/2)� C−1

t �
φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> .
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Similarly we have C−1
t � 0, Dφ′′(b̂t−1|t−1) ≺ 0 and

as diagonal coefficients of C−1
t are positive, it yields

(C−1
t Dφ′′(b̂t−1|t−1))� I ≺ 0.

Moreover φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> � 0, and we
can apply Schur product theorem: C−1

t � C−1
t �

φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> � 0. Eventually:

∂2ψt
∂b2t

∣∣∣
b̂t−1|t−1

≺ −C−1
t BtC

−1
t Dφ′′(b̂t−1|t−1) � I

+ 2C−1
t BtC

−1
t � C−1

t � φ′(b̂t−1|t−1)φ′(b̂t−1|t−1)> .

Proof of Proposition 6. Thanks to Lemma 1 we have:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
= −1

2
log det Σt|t +

1

2
Ebt∼N (b̂t|t,Σt|t)

[ψt(bt)]

+
1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)

(Σt−1|t−1 + ρbI)−1
)

+ cb ,

where cb is a constant independent of b̂t|t,Σt|t. Combining
the last equation and Proposition 5, then using the first two
moments of the gaussian distribution we obtain:

KL
(
N (θ̂t|t, Pt|t)N (ât|t, st|t)N (b̂t|t,Σt|t) || p(· | Ft)

)
≤ −1

2
log det Σt|t +

1

2
ψt(b̂t−1|t−1)

+
1

2

∂ψt
∂bt

∣∣∣>
b̂t−1|t−1

(b̂t|t − b̂t−1|t−1)

+
1

4
Tr
(
Ht(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)

)
+

1

2
Tr
(

(Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>)

(Σt−1|t−1 + ρbI)−1
)

+ cb .

This yields the upper-bound of Proposition 6. The recursive
updates follow from the first order conditions:

− 1

2
Σ−1
t|t +

1

2

(
(Σt−1|t−1 + ρbI)−1 +

1

2
Ht

)
= 0 ,(

(Σt−1|t−1 + ρbI)−1 +
1

2
Ht

)
(b̂t|t − b̂t−1|t−1)

+
1

2

∂ψt
∂bt

∣∣∣
b̂t−1|t−1

= 0 .
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