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Approximate Variational Bayes

Joseph de Vilmarest1 and Olivier Wintenberger2

April 15, 2021

Abstract

This working paper considers state-space models where the variance of the observation is known but the covariance
matrix of the state process is unknown and potentially time-varying. We propose an adaptive algorithm to estimate
jointly the state and the covariance matrix of the state process, relying on Variational Bayes and second-order Taylor
approximations.

1 Introduction
Linear state-space models have been widely used to model observations as gaussian distributions whose mean is a
time-varying linear function of covariates. The linear parameter is a latent variable called state, and the parameters
of the state-space model are the variance of the observation and the variance of the state process noise. When these
variances are known, the recursive estimation is realized by Kalman filters (Kalman and Bucy, 1961).

However the observation and state noise variances are unknown in most practical applications. A wide literature
has emerged for tuning these hyper-parameters. The estimation of unknown fixed variances on a historical dataset is
generally realized maximizing the likelihood (Brockwell et al., 1991; Durbin and Koopman, 2012). Another approach
estimates these hyper-parameters (fixed or not) in an online fashion. Adaptive filtering methods have been described
by Mehra (1972).

Recently, online Variational Bayesian (VB) methods as introduced by Šmídl and Quinn (2006) have gathered
attention in the Kalman filtering community. We recall that the objective is the online estimation of potentially time-
variant parameters. The difference with classical bayesian method is that an approximation is realized at each step in
order to make the inference tractable: the distribution of the parameters is estimated by simple factored distributions.
The best factored distribution is defined as the one minimizing its Kullback-Leibler divergence with the posterior.

Sarkka and Nummenmaa (2009) apply a VB approach to estimate the observation noise covariance matrix in a
Kalman filter. The covariance matrix is assumed diagonal and the prior used is a product of inverse gamma distributions.
To allow for a dynamical noise variance the author use some sort of forgetting factor, multiplying the variances of the
inverse gamma posterior distributions by a constant. Huang et al. (2017) extend this method with an inverse Wishart
prior. At the same time they apply the VB approach to correct the covariance matrix of the state after applying Kalman
recursions with an inaccurate state noise covariance. The inverse Wishart distribution appears as a nice conjugate
prior to generalize the inverse gamma distribution. In another adaptive Kalman filter they propose to estimate both the
observation and state noise covariance matrices (Huang et al., 2020). Their method uses Kalman filtering and smoothing
on a slide window and could be described as an online expectation-maximization algorithm. In all these methods the
dynamics of the covariance matrices is introduced via a forgetting factor.

In this working paper we present a new approach to estimate recursively the state noise covariance matrix relying
on the VB approach. Instead of using a forgetting factor to impose a dynamical estimation, we consider a random walk
model on the covariance matrix. As there doesn’t exist a conjugate prior distribution on the state noise covariance, we
rely on several second-order Taylor approximations to estimate the Kullback-Leibler divergence.
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2 Bayesian formulation
We focus on the following state-space model:

yt = θ>t xt + εt ,

θt+1 = θt + ηt ,

where εt ∼ N (0, σ2
t ) and ηt ∼ N (0, Qt) are the observation and process noises, and the state follows the initial

distribution θ0 ∼ N (θ̂0, P0). In the case where σ2
t and Qt are known, the state vector θt given the past observations

follows a gaussian distribution whose mean and covariance can be estimated recursively by the standard Kalman
filter (Kalman and Bucy, 1961). We focus on a particular setting where σ2

t = σ2 is known, but the covariance matrix
Qt is unknown and needs to be estimated jointly with the state θt.

2.1 Dynamical model
A way to introduce a dynamical estimation of Qt is to treat it as another latent variable. ref Gaussian distributions
behave well to capture the latent information of a nonlinear state-space model, and they are appealing due to their nice
random walk interpretation to model a dynamic latent variable. Similarly we choose to use a gaussian prior for the
covariance matrix Qt. However a variance is necessarily nonnegative, thus we introduce a known transform g such that
Qt = g(bt), where bt is a normal distribution. Our dynamical model can be summarized as follows:

θ0 ∼ N (θ̂0, P0) , b0 ∼ N (b̂0,Σ0) ,

θt − θt−1 ∼ N (0, g(bt)) , bt − bt−1 ∼ N (0, rbI) ,

yt − θ>t xt ∼ N (0, σ2) .

In these equations we implicitly assume the independence of the process noises on the state and on the variance, in
particular we have

p(θt, bt | θt−1, bt−1) = p(θt | θt−1, bt)p(bt | bt−1) . (1)

2.2 Bayesian approach
We apply a bayesian approach in order to estimate jointly the state θt and the latent vector bt given the past observations.
Formally we introduce the filtration of the past observationsFt = σ(x1, y1, . . . , xt, yt). At each iteration t, the bayesian
approach consists in a prediction step and a filtering step where we use Bayes’ rule:

Prediction: p(θt, bt | Ft−1) =

∫
p(θt | θt−1, bt)p(bt | bt−1)p(θt−1, bt−1 | Ft−1)dθt−1dbt−1 ,

Filtering: p(θt, bt | Ft) = p(yt | xt, θt, bt)p(θt, bt | Ft−1)
p(xt,Ft−1)

p(Ft)
.

The prediction equation uses Equation (1). The posterior distribution p(. | Ft) is analytically intractable. The objective
is to estimate the first and second moments of its marginals in θt and bt, namely θ̂t|t, Pt|t, b̂t|t,Σt|t.

2.3 Variational Bayesian approach
A standard approach, referred to as VB, is to approximate recursively the posterior distribution with a factorized
distribution where each component is of a simple form (Šmídl and Quinn, 2006). We look for θ̂t|t, Pt|t, b̂t|t,Σt|t
such that the product of gaussian distributions N (θ̂t|t, Pt|t)N (b̂t|t,Σt|t) is the best approximation of the posterior
distribution. The best approximation is in the sense of the minimum of the Kullback-Leibler (KL) divergence.

In what follows we use the notation N (x | µ,Σ) for the probability density function at point x of the distribution
N (µ,Σ). Our aim is to minimize the following criterion in θ̂t|t, Pt|t, b̂t|t,Σt|t:

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, bt | Ft)

)
=

∫
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) log

N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t)
p(θt, bt | Ft)

dθtdbt . (2)
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Propagating the factorized approximation

p(θt−1, bt−1 | Ft−1) ≈ N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)N (bt−1 | b̂t−1|t−1,Σt−1|t−1) ,

the prediction step becomes:

p(θt, bt | Ft−1) ≈
∫
N (θt − θt−1 | 0, g(bt))N (bt − bt−1 | 0, rbI)

N (θt−1 | θ̂t−1|t−1, Pt−1|t−1)N (bt−1 | b̂t−1|t−1,Σt−1|t−1)dθt−1dbt−1

≈ N (θt | θ̂t−1|t−1, Pt−1|t−1 + g(bt))N (bt | b̂t−1|t−1,Σt−1|t−1 + rbI) .

Treating the approximation at time t− 1 as a prior at time t we obtain the following posterior distribution:

p(θt, bt | Ft) = N (yt | θ>t xt, σ2)N (θt | θ̂t−1|t−1, Pt−1|t−1 + g(bt))N (bt | b̂t−1|t−1,Σt−1|t−1 + rbI)
p(xt,Ft−1)

p(Ft)
.

(3)

This last equation defines the posterior distribution that we plug in Equation 2 to obtain the optimization problem
that we would like to solve recursively. At each step, the VB approach yields a coupled optimization problem in the
parameters of the two gaussian distributions.

2.4 The iterative optimization solution to the VB problem
The classical iterative method (see for instance Tzikas et al. (2008)) consists in computing alternately exp(E[log p(θt, bt |
Ft)]) where the expected value is taken with respect to one of the two latent variables, and identifying the desired
first and second moments with respect to the other latent variable. We compute the VB iterative step with respect to
θ̂t|t, Pt|t:

Theorem 1. Given b̂t|t,Σt|t, the values of θ̂t|t, Pt|t minimizing the KL divergence are given by

P ?t|t = A−1
t −

A−1
t xtx

>
t A
−1
t

x>t A
−1
t xt + σ2

θ̂?t|t = θ̂t−1 +
A−1
t xt

x>t A
−1
t xt + σ2

(yt − x>t θ̂t−1|t−1) .

with At =
∫
N (bt | b̂t|t,Σt|t)(Pt−1|t−1 + g(bt))

−1dbt.

Note that the updates defined above are the ones of the Kalman filter with a known variance Qt, where we have
replaced Pt−1|t−1 +Qt with A−1

t .
However the expression exp(Eθt [log p(θt, bt | Ft)]) doesn’t match a gaussian distribution in bt and we need

additional approximations. Specifically, we use the first two moments in a second-order Taylor expansion to derive an
approximation to the VB iterative step with respect to b̂t|t,Σt|t.

3 Approximate Variational Bayes
We first present a detailed expression of the KL divergence defined in Equation (2) in the following Lemma:

Lemma 2. There exists a constant c independent of θ̂t|t, Pt|t, b̂t|t,Σt|t such that

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, bt | Ft)

)
= c− 1

2
log detPt|t +

1

2

(yt − θ̂>t|txt)
2 + x>t Pt|txt)

σ2
+

1

2
log det(Σt−1|t−1 + rbI)− 1

2
log det Σt|t

+
1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)

(Σt−1|t−1 + rbI)−1
)

+
1

2

∫
N (bt | b̂t|t,Σt|t)

(
log det(Pt−1|t−1 + g(bt))

+ Tr
(

(Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 + g(bt))
−1
))
dbt .
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We observe that the constraint g(bt) < 0 is sufficient to obtain a finite integral in Lemma 2. The rest of the Section
is devoted to minimize the expression of Lemma 2.

Theorem 1 realizes the exact optimum of the KL divergence with respect to θ̂t|t, Pt|t, even though A−1
t does not

admit an explicit form. We discuss a second-order Taylor approximation for A−1
t in this iterative step in Section 3.2.

3.1 Second-order Taylor approximation of the Kullback-Leibler divergence
The minimization of the KL divergence is analytically intractable due to the integral under bt (the last term of the
expression provided in Lemma 2). We rewrite this last term of the KL divergence as

∫
N (bt | b̂t|t,Σt|t)ψg(bt)dbt with

ψg(bt) = log det(Pt−1|t−1 + g(bt)) + Tr((Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 + g(bt))
−1) .

Therefore we use the first two moments of the gaussian distribution N (bt | b̂t|t,Σt|t), after performing a second-order
expansion. Specifically, we make the following approximations for a chosen bt:∫

N (bt | b̂t|t,Σt|t)ψg(bt)dbt ≈ ψg(bt) +
∂ψg
∂bt

∣∣∣>
bt

(b̂t|t − bt) +
1

2
Tr
(∂2ψg
∂b2t

∣∣∣
bt

(Σt|t + (b̂t|t − bt)(b̂t|t − bt)>)
)
.

(4)

Using this approximation, we obtain the iterative updates presented in the following theorem:

Theorem 3. Given θ̂t|t, Pt|t, replacing the last term of the KL divergence in Lemma 2 with its approximation (4), the
values of b̂t|t,Σt|t minimizing this expression are:

Σt|t =
(

(Σt−1|t−1 + rbI)−1 +
1

2

∂2ψg
∂b2t

∣∣∣
bt

)−1

,

b̂t|t = Σt|t

(
(Σt−1|t−1 + rbI)−1b̂t−1|t−1 +

1

2

∂2ψg
∂b2t

∣∣∣
bt
bt −

1

2

∂ψg
∂bt

∣∣∣
bt

)
.

Our approach consists in using this approximation as an alternative to the iterative approach of Šmídl and Quinn
(2006) in case the prior is not conjugate.

3.2 The algorithm
We focus on two settings. First we consider the scalar setting where bt is one-dimensional and g(bt) = b2t I . Second we
present the diagonal setting where bt is of the same dimension as the state and g(bt) = Db2t

(Dv is the diagonal matrix
whose coefficients are the ones of v). We provide the values of the derivatives used in Theorem 3:

Proposition 4. Scalar setting: If g(bt) = b2t I , we have

∂ψg
∂bt

∣∣∣
bt

= 2 Tr(C−1
t (I −BtC−1

t ))bt ,

∂2ψg
∂b2t

∣∣∣
bt

= 2 Tr(C−1
t (I −BtC−1

t )) + 8 Tr
(
C−2
t

(
BtC

−1
t −

I

2

))
b
2

t ,

where Bt = Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)> and Ct = Pt−1|t−1 + b
2

t I .

Proposition 5. Diagonal setting: If g(bt) = Db2t
, we have

∂ψg
∂bt

∣∣∣
bt

= 2∆C−1
t (I−BtC

−1
t ) � bt ,

∂2ψg
∂b2t

∣∣∣
bt

= 2(C−1
t (I −BtC−1

t )� I) + 8
(
C−1
t

(
BtC

−1
t −

I

2

)
�Dbt

C−1
t Dbt

)
,

where Bt = Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>, Ct = Pt−1|t−1 +D
b
2
t

and ∆M is the vector composed of the
diagonal of M .
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Furthermore, we recall that in Theorem 1 At is defined only implicitly. We use a similar second-order Taylor
approximation as in the previous subsection to estimate At. In the scalar setting, defining Ct = Pt−1|t−1 + b

2

t I we have

At =

∫
N (bt | b̂t|t,Σt|t)(Ct + (2bt(bt − bt) + (bt − bt)2)I)−1dbt

≈
∫
N (bt | b̂t|t,Σt|t)C−1

t (I − (2bt(bt − bt) + (bt − bt)2)C−1
t + 4b

2

t (bt − bt)2C−2
t )dbt

≈
∫
N (bt | b̂t|t,Σt|t)

(
C−1
t − C−2

t (b2t − b
2

t ) + 4C−3
t b

2

t (bt − bt)2
)
dbt

≈ C−1
t − C−2

t (b̂2t|t − b
2

t + ∆Σt|t) + 4C−3
t b

2

t (Σt|t + (b̂t|t − bt)2) .

In the diagonal setting, defining Ct = Pt−1|t−1 +D
b
2
t

we have

At =

∫
N (bt | b̂t|t,Σt|t)(Ct + 2Dbt(bt−bt) +D(bt−bt)2)−1dbt

≈
∫
N (bt | b̂t|t,Σt|t)C−1

t (I − (2Dbt(bt−bt) +D(bt−bt)2)C−1
t + 4Dbt(bt−bt)C

−1
t Dbt(bt−bt)C

−1
t )dbt

≈
∫
N (bt | b̂t|t,Σt|t)

(
C−1
t − C−1

t D
b2t−b

2
t
C−1
t + 4C−1

t (C−1
t � btb

>
t � (bt − bt)(bt − bt)>)C−1

t

)
dbt

≈ C−1
t − C−1

t D
b̂2
t|t−b

2
t+∆Σt|t

C−1
t + 4C−1

t (C−1
t � btb

>
t � (Σt|t + (b̂t|t − bt)(b̂t|t − bt)>))C−1

t .

Combining our findings we obtain Algorithm 1. As the KL optimization is a coupled problem we solve it in a
classical iterative fashion through the Iterative VB algorithm (Šmídl and Quinn, 2006), that is, we repeat N times the
updates of Theorems 1 and 3 (for instance N = 2).

4 Conclusion
We have presented in this working paper a recursive estimation of the state-space covariance matrix based on the VB
approach. We assumed the variance of the observation to be known and constant and we focused on the joint online
estimation of the state together with the time-varying covariance matrix of the state process.
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Algorithm 1: Variational Bayesian State-Space Model at time step t

Inputs: θ̂t−1|t−1, Pt−1|t−1, b̂t−1|t−1,Σt−1|t−1, xt, yt.
Initialize: b̂(0)

t|t = b̂t−1|t−1,Σ
(0)
t|t = Σt−1|t−1 + rbI .

Iterate: for i = 1, . . . , N :

1. • If scalar setting: Set bt =
√

(b̂
(i−1)
t|t )2 + Σ

(i−1)
t|t and Ct = KPt−1|t−1K

> + b
2

t I .

Set A−1
t =

(
C−1
t + 4C−3

t b
2

t (Σ
(i−1)
t|t + (b̂

(i−1)
t|t − bt)2)

)−1

.

• If diagonal setting: Set bt =

√
(b̂

(i−1)
t|t )2 + ∆

Σ
(i−1)

t|t
and Ct = KPt−1|t−1K

> +D
b
2
t
.

Set A−1
t =

(
C−1
t + 4C−1

t (C−1
t � btb

>
t � (Σ

(i−1)
t|t + (b̂

(i−1)
t|t − bt)(b̂(i−1)

t|t − bt)>))C−1
t

)−1

.

2. Update the posterior for θt:
P

(i)
t|t = A−1

t −
A−1

t xtx
>
t A
−1
t

x>t A
−1
t xt+σ2

, θ̂
(i)
t|t = θ̂t−1|t−1 +

A−1
t xt

x>t A
−1
t xt+σ2

(yt − x>t θ̂t−1|t−1).

3. Update the posterior for Qt:
Set Bt = P

(i)
t|t + (θ̂

(i)
t|t − θ̂t−1|t−1)(θ̂

(i)
t|t − θ̂t−1|t−1)>.

• If scalar setting:
∂ψg

∂bt

∣∣∣
bt

= 2 Tr(C−1
t (I −BtC−1

t ))bt,

∂2ψg

∂b2t

∣∣∣
bt

= 2 Tr(C−1
t (I −BtC−1

t )) + 8 Tr(C−2
t (BtC

−1
t − I

2 ))b
2

t .

• If diagonal setting:
∂ψg

∂bt

∣∣∣
bt

= 2∆C−1
t (I−BtC

−1
t ) � bt,

∂2ψg

∂b2t

∣∣∣
bt

= 2(C−1
t (I −BtC−1

t )� I) + 8
(
C−1
t (BtC

−1
t − I

2 )�Dbt
C−1
t Dbt

)
.

Σ
(i)
t|t =

(
(Σt−1|t−1 + rbI)−1 + 1

2
∂2ψg

∂b2t

∣∣∣
bt

)−1

.

b̂
(i)
t|t = Σt|t

(
(Σt−1|t−1 + rbI)−1b̂t−1|t−1 + 1

2
∂2ψg

∂b2t

∣∣∣
bt
bt − 1

2
∂ψg

∂bt

∣∣∣
bt

)
.

Outputs: θ̂t|t = θ̂
(N)
t|t , Pt|t = P

(N)
t|t , b̂t|t = b̂

(N)
t|t ,Σt|t = Σ

(N)
t|t .
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A Proofs
Proof of Lemma 2. We start from the expression of Equation (2) that we can write in the following form:

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, bt | Ft)

)
=

∫
N (θt | θ̂t|t, Pt|t) logN (θt | θ̂t|t, Pt|t)dθt +

∫
N (bt | b̂t|t,Σt|t) logN (bt | b̂t|t,Σt|t)dbt

−
∫
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) log p(θt, bt | Ft)dθtdbt .

The entropy of gaussian variables is easily computed. The last term can be split using the factored form of Equation (3)
and we observe that∫
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) logN (yt | θ>t xt, σ2)dθtdbt

=

∫
N (θt | θ̂t|t, Pt|t)

(
− 1

2
log(2πσ2)− 1

2

(yt − θ>t xt)2

σ2

)
dθt

= −1

2
log(2πσ2)− 1

2

(yt − θ̂>t|txt)
2 + x>t Pt|txt)

σ2
,∫

N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) logN (θt | θ̂t−1|t−1, Pt−1|t−1 + g(bt))dθtdbt

=

∫
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t)

(
− d log(2π)

2
− 1

2
log det(Pt−1|t−1 + g(bt))

− 1

2
(θt − θ̂t−1|t−1)>(Pt−1|t−1 + g(bt))

−1(θt − θ̂t−1|t−1)
)
dltdθt

= −d log(2π)

2
− 1

2

∫
N (bt | b̂t|t,Σt|t)

(
log det(Pt−1|t−1 + g(bt))

+ Tr
(

(Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 + g(bt))
−1
))
dbt .

Combining the last few equations we obtain

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, bt | Ft)

)
= −1

2
(1 + d log(2π) + log detPt|t)−

1

2
(1 + d log(2π) + log det Σt|t)

+
1

2
log(2πσ2) +

1

2

(yt − θ̂>t|txt)
2 + x>t Pt|txt)

σ2

+
d log(2π)

2
+

1

2

∫
N (bt | b̂t|t,Σt|t)

(
log det(Pt−1|t−1 + g(bt))

+ Tr
(

(Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 + g(bt))
−1
))
dbt

+
1

2
(d log(2π) + log det(Σt−1|t−1 + rbI)) +

1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)

(Σt−1|t−1 + rbI)−1
)

+ log p(Ft)− log p(xt,Ft−1) .
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Proof of Theorem 1. Thanks to Lemma 2 we have

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, at, bt | Ft)

)
= −1

2
log detPt|t +

1

2

(yt − θ̂>t|txt)
2 + x>t Pt|txt

σ2

+
1

2
Tr
(

(Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)

∫
N (bt | b̂t|t,Σt|t)(Pt−1|t−1 + g(bt))

−1dbt

)
+ cθ ,

where cθ is a constant independent of θ̂t|t, Pt|t. We define At =
∫
N (bt | b̂t|t,Σt|t)(Pt−1|t−1 + g(bt))

−1dbt, then the
first order conditions are written as

− 1

2
P ?−1
t|t +

1

2

(
At +

xtx
>
t

σ2

)
= 0 ,

−
(yt − θ̂?>t|t xt)xt

σ2
+At(θ̂

?
t|t − θ̂t−1|t−1) = 0 .

It yields

P ?t|t =

(
xtx
>
t

σ2
+At

)−1

= A−1
t −

A−1
t xtx

>
t A
−1
t

x>t A
−1
t xt + σ2

θ̂?t|t = P ?t|t

(ytxt
σ2

+Atθ̂t−1|t−1

)
= θ̂t−1 +

A−1
t xt

x>t A
−1
t xt + σ2

(yt − x>t θ̂t−1|t−1) .

Proof of Theorem 3. Combining Lemma 2 and the approximation of Equation (4), we obtain:

KL
(
N (θt | θ̂t|t, Pt|t)N (bt | b̂t|t,Σt|t) || p(θt, bt | Ft)

)
=

1

2

∫
N (bt | b̂t|t,Σt|t)ψg(bt)dbt −

1

2
log det Σt|t +

1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)

(Σt−1|t−1 + rbI)−1
)

+ cb

≈ 1

2
ψg(bt) +

1

2

∂ψg
∂bt

∣∣∣>
bt

(b̂t|t − bt) +
1

4
Tr
(∂2ψg
∂b2t

∣∣∣
bt

(Σt|t + (b̂t|t − bt)(b̂t|t − bt)>)
)

− 1

2
log det Σt|t +

1

2
Tr
((

Σt|t + (b̂t|t − b̂t−1|t−1)(b̂t|t − b̂t−1|t−1)>
)

(Σt−1|t−1 + rbI)−1
)

+ cb ,

where cb is a constant independent of b̂t|t,Σt|t. Therefore the first order condition yield

1

4

∂2ψg
∂b2t

∣∣∣
bt
− 1

2
Σ−1
t|t +

1

2
(Σt−1|t−1 + rbI)−1 = 0 ,

1

2

∂ψg
∂bt

∣∣∣
bt

+
1

2

∂2ψg
∂b2t

∣∣∣
bt

(b̂t|t − bt) + (Σt−1|t−1 + rbI)−1(b̂t|t − b̂t−1|t−1) = 0 ,

and the result follows immediately.

Proof of Proposition 4. We recall that in the scalar setting,

ψg(bt) = log det(Pt−1|t−1 + b2t I) + Tr((Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 + b2t I)−1) .

Furthermore, note that if A � 0, it holds detA = exp Tr(LogA). We define Ct = Pt−1|t−1 + b
2

t I and we get

log det(Pt−1|t−1 + b2t I) = Tr Log(Pt−1|t−1 + b2t I)

= Tr Log(Ct) + Tr Log
(
I + (2bt(bt − bt) + (bt − bt)2)C−1

t

)
= Tr Log(Ct) + Tr

(
(2bt(bt − bt) + (bt − bt)2)C−1

t −
1

2
(2bt(bt − bt)C−1

t )2 + o((bt − bt)2)
)
.
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The last line follows from the series expansion of the Logarithm. We apply another series expansion for the second
term of ψg: defining Bt = Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)> we have

Tr(Bt(Pt−1|t−1 + b2t I)−1) = Tr
(
BtC

−1
t

(
I + (2bt(bt − bt) + (bt − bt)2)C−1

t

)−1)
= Tr

(
BtC

−1
t

(
I − (2bt(bt − bt) + (bt − bt)2)C−1

t + (2bt(bt − bt)C−1
t )2 + o((bt − bt)2)

))
.

Summing the last two equations, and using the identity Tr(AB) = Tr(BA), we obtain

ψg(bt) = Tr Log(Ct) + Tr(BtC
−1
t ) + 2 Tr(C−1

t (I −BtC−1
t ))bt(bt − bt) + Tr(C−1

t (I −BtC−1
t ))(bt − bt)2

− 4 Tr(C−2
t (

I

2
−BtC−1

t ))b
2

t (bt − bt)2 + o((bt − bt)2) .

We can identify the first and second derivatives of ψg , that yields Proposition 4.

Proof of Proposition 5. The proof is similar to the one of Proposition 4. We recall that in the diagonal setting,

ψg(bt) = log det(Pt−1|t−1 +Db2t
) + Tr((Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)>)(Pt−1|t−1 +Db2t

)−1) .

Furthermore, note that if A � 0, it holds detA = exp Tr(LogA). We define Ct = Pt−1|t−1 +D
b
2
t

and we get

log det(Pt−1|t−1 +Db2t
) = Tr Log(Pt−1|t−1 +Db2t

)

= Tr Log(Ct) + Tr Log
(
I + (2Dbt

Dbt−bt +D2
bt−bt

)C−1
t

)
= Tr Log(Ct) + Tr

(
(2Dbt

Dbt−bt +D2
bt−bt

)C−1
t −

1

2
(2Dbt

Dbt−btC
−1
t )2 + o(‖bt − bt‖2)

)
.

The last line follows from the series expansion of the Logarithm. We apply another series expansion for the second
term of ψg: defining Bt = Pt|t + (θ̂t|t − θ̂t−1|t−1)(θ̂t|t − θ̂t−1|t−1)> we have

Tr(Bt(Pt−1|t−1 +Db2t
)−1) = Tr

(
BtC

−1
t

(
I + (2Dbt

Dbt−bt +D2
bt−bt

)C−1
t

)−1)
= Tr

(
BtC

−1
t

(
I − (2Dbt

Dbt−bt +D2
bt−bt

)C−1
t + (2Dbt

Dbt−btC
−1
t )2 + o(‖bt − bt‖2)

))
.

Summing the last two equations, and using the identity Tr(AB) = Tr(BA), we obtain

ψg(bt) = Tr Log(Ct) + Tr(BtC
−1
t ) + 2 Tr(C−1

t (I −BtC−1
t )Dbt

Dbt−bt) + Tr(C−1
t (I −BtC−1

t )D2
bt−bt

)

− 4 Tr(C−1
t (

I

2
−BtC−1

t )Dbt
Dbt−btC

−1
t Dbt

Dbt−bt) + o(‖bt − bt‖2) .

To conclude we use the following identity:

Tr (ADvBDv) =
∑
i,j

ai,jvjbj,ivi = v>(A> �B)v .

Noting � the Hadamard product and ∆M the vector composed of the diagonal coefficient of M , we obtain

ψg(bt) = Tr Log(Ct) + Tr(BtC
−1
t ) + (2∆C−1

t (I−BtC
−1
t ) � bt)

>(bt − bt) + (bt − bt)>(C−1
t (I −BtC−1

t )� I)(bt − bt)

− 4(bt − bt)>
(
C−1
t (

I

2
−BtC−1

t )�Dbt
C−1
t Dbt

)
(bt − bt) + o(‖bt − bt‖2) .

We can identify the first and second derivatives of ψg , that yields Proposition 5.
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