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ONE-ENDED SPANNING SUBFORESTS AND TREEABILITY OF

GROUPS

CLINTON T. CONLEY, DAMIEN GABORIAU, ANDREW S. MARKS,
AND ROBIN D. TUCKER-DROB

Abstract. We show that several new classes of groups are measure strongly
treeable. In particular, finitely generated groups admitting planar Cayley graphs,
elementarily free groups, and Isom(H2) and all its closed subgroups. In higher
dimensions, we also prove a dichotomy that the fundamental group of a closed
aspherical 3-manifold is either amenable or has strong ergodic dimension 2. Our
main technical tool is a method for finding measurable treeings of Borel planar
graphs by constructing one-ended spanning subforests in their planar dual. Our
techniques for constructing one-ended spanning subforests also give a complete
classification of the locally finite p.m.p. graphs which admit Borel a.e. one-ended
spanning subforests.
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0. Introduction

This article is a contribution to the study of measured and Borel equivalence
relations, in terms of their graphed structures, with applications in the measured
group theory of countable and locally compact groups.

Dramatic progress has been realized in the study of discrete groups in relation with
topological and geometric ideas over the course of the 20th century, from the early
works of Klein, Poincaré, Dehn, Nielsen, Reidemeister and Schreier for instance,
to Bass-Serre theory and Thurston’s Geometrization program as well as hyperbolic
groups and the emergence of geometric group theory as a distinct area of mathemat-
ics under the impulse of Gromov. In his monograph [Gro93], Gromov outlined his
program of understanding countable discrete groups up to quasi-isometry (e.g., co-
compact lattices in the same locally compact second countable group G). In the same
text Gromov also introduced the parallel notion of measure equivalence (ME) be-
tween countable discrete groups [Gro93, 0.5.E], the most emblematic example being
lattices in G. Two groups are ME if they admit commuting, free, measure-preserving
actions on a nonzero Lebesgue measure space with finite measure fundamental do-
mains. This concept is strongly connected with orbit equivalence (OE) in ergodic
theory ([Fur99], [Gab02b, Th. 2.3]; see [Gab05, Fur11] for surveys on ME and OE).

The history of orbit equivalence itself can be traced back to the work of Dye
[Dye59, Dye63] stemming on the group-measure-space von Neumann algebra of Mur-
ray and von Neumann [MvN36]. The abstract and basic objects connecting this
turn out to be the standard measure-class preserving equivalence relations, as ax-
iomatized by Feldman-Moore [FM77]. A major milestone is the elucidation of the
connections between five properties (see [Con76, CK77, OW80, CFW81]): the fol-
lowing are equivalent: (1) hyperfiniteness of the group-measure-space von Neumann
algebra, (2) hyperfiniteness of the equivalence relation, (3) amenability of the equiv-
alence relation, (4) orbit equivalence with a Z-action, and (5) when the action is
assumed to be probability measure preserving (p.m.p.) and free, amenability of the
acting group. As a consequence, the measure equivalence class of Z consists exactly in
all infinite amenable groups. Thus such a useful geometric invariant as the growth
becomes apparently irrelevant in measured group theory insofar as amenability is
concerned, although our Theorem 2.6 leads us to reconsider this observation.

Much of progress in orbit equivalence has been realized since the 80’s following
a suggestion of A. Connes at a conference in Santa Barbara in 1978 (see [Ada90])
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of studying equivalence relations R with an additional piece of data: a measurably-
varying simplicial complex structure on each equivalence class (aka a complexing
[AG21]). The 1-dimensional complexings are known as graphings. Their acyclic
version (treeings) were originally studied by S. Adams [Ada90, Ada88]. Both are
constitutive of the theory of cost [Lev95, Gab00], since this is defined in terms of
graphings and treeings allow to compute it [Gab00, Théorème 1]. Graphings and
treeings have also played a crucial role in the theory of structurings on countable
Borel equivalence relations [JKL02].

Amenability, seen from the perspective of orbit equivalence, can be rephrased as
the capability of embellishing almost every orbit (equivalence class) with a measurably-
varying oriented line structure [Dye59, OW80, CFW81]. Alternatively, it is easy to
equip the classes of any hyperfinite equivalence relations with a one-ended tree
structure. As a kind of converse, in the p.m.p. context (which will be our context in
the introduction through Theorem 9) any treeing of an amenable equivalence relation
is (class-wise) at most two-ended ([Ada90]).

Beyond amenability, the simplest groups from the measured theoretic point of
view are the treeable ones: those admitting a free p.m.p. action whose orbit equiv-
alence relation can be equipped with a treeing1. This is an extremely rich and still
mysterious class of groups (see the survey part of [Gab05]). By a theorem of Hjorth
[Hjo06], this is precisely the class of groups Γ that are ME with a free group Fn.
This family splits into four ME-classes: n = 0 when Γ is finite, n = 1 when Γ is
infinite amenable, and n = 2 or n = ∞ according to their cost belonging to (1,∞)
or {∞} [Gab00].

The first substantial example of a treeable group apart from free products of
amenable groups is the fundamental group π1(Σ) of a closed hyperbolic surface
Σ. Indeed, both π1(Σ) and F2 share the property of being isomorphic to lattices
in G = SL(2,R). It follows that π1(Σ) admits at least one treeable free action,
namely the natural action by multiplication π1(Σ) y G/F2 (with Haar measure).
It is a longstanding question of [Gab00, Question VI.2] whether treeable groups
are strongly treeable2 (ST), i.e., whether all their free p.m.p. actions are treeable.
This question has been open for twenty years, even for π1(Σ) (see [Gab02b, Question
p. 176]), and we solve it in this case. This is our first main result:

Theorem 1. Surface groups are strongly treeable. More generally, finitely generated
groups admitting a planar Cayley graph are strongly treeable.

A more general statement can be found in Theorem 4.4.
The introduction of the notion of “measurable free factor” in [Gab05], led to

the production of some new examples of treeable groups, such as branched surface
groups. These are examples from a family that we will discuss now. The elemen-
tarily free groups are those groups with the same first-order theory as the free

1For precise definitions of the various notions of treeability, see Appendices A and B
2Observe that unfortunately for consistency of terminology, in [Gab00] the terms “arborable” and

“anti-arborable” are used instead of the current better terms “strongly treeable” and “non-treeable”
respectively, that we will adopt here.
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group F2. We shall use their description (when finitely generated) as fundamental
groups of certain tower spaces (according to the results of [Sel06] and [KM98], made
utterly complete in [GLS20] – see §5 for more details). A careful analysis of their
virtual structure allowed [BTW07] to apply results from [Gab05] to a finite index
subgroup in order to achieve their treeability. The question of their strong treeability
has remained open since then; we resolve it:

Theorem 2. Finitely generated elementarily free groups are strongly treeable.

Strong treeability has a number of consequences which do not follow from tree-
ability. In particular, if Γ is a strongly treeable group, then by [Gab00, Prop. VI.21]
Γ satisfies the fixed price conjecture [Gab00, Question I.8]. The groups having a pla-
nar Cayley graph appearing in Theorem 1, such as the cocompact Fuchsian triangle
groups, give the first new examples of groups of fixed price greater than 1 since
[Gab00]. (The cocompact Fuchsian triangle groups admit finite index subgroups
which are surfaces, but both strong treeability and fixed price are not known to pass
to finite index super-groups.)

The arguments developed for the above theorem gave us as a by-product the fol-
lowing interesting claim (Corollary 5.11). Let r ≥ 3 and Γ1,Γ2, · · · ,Γr be countable
groups and let γi ∈ Γi be an infinite order element for each i = 1, 2, · · · , r. If the
Γi are all treeable or strongly treeable, then the same holds not only for their free
product, but also for its quotient by the normal subgroup generated by the product
of the γi: (Γ1 ∗ Γ2 ∗ · · · ∗ Γr) /〈〈

∏r
i=1 γi〉〉.

It is worth mentioning that treeability has also had an impact in the theory of
von Neumann algebras. Popa’s discovery [Pop06] of the first II1 factor with trivial
fundamental group (namely the group von Neumann algebra L(SL(2,Z)⋉Z

2)) used
his rigidity-deformation theory to establish uniqueness of the HT Cartan subalgebra,
thereby reducing the problem to the study of the orbit equivalence relation of the
treeable action of SL(2,Z) on the 2-torus. Later on, Popa and Vaes extended drasti-
cally the class of groups whose free p.m.p. actions lead to uniqueness of the Cartan
subalgebra [PV14a, PV14b], and thus the study of the group-measure space von Neu-
mann algebra of these actions boils down to that of the action up to OE. This class
contains free groups, non-elementary hyperbolic groups, their directs products and
all groups that are ME with these groups. The class of countable groups satisfying
2-cohomology vanishing for cocycle actions on II1 factors is speculated to coincide
with the class of treeable groups [Pop18, Remarks 4.5].

However, it is far from the case that all countable groups are treeable. The first
examples of non-treeable groups are the infinite Kazhdan property (T) groups [AS90]
and the non-amenable cost 1 groups [Gab00, Th. 4], and more generally all non-

amenable groups with β
(2)
1 = 0 [Gab02a, Proposition 6.10]. The random graph

formulation of treeability is the existence of an invariant probability measure sup-
ported on the set of spanning trees on the group; in [PP00], Pemantle and Peres
prove that a non-amenable direct product of infinite groups can have no such proba-
bly measure. The non treeability of non-amenable direct products also follows from
the theory of cost [Gab00].



ONE-ENDED SPANNING SUBFORESTS AND TREEABILITY OF GROUPS 5

The study of non-treeable groups must involve higher dimensional geometric ob-
jects. Recall that the geometric dimension of a countable group Γ is the smallest
dimension of a contractible complex on which Γ acts freely. Analogously, the second
author introduced in [Gab02a, Déf. 3.18] the geometric dimension of a p.m.p.
standard equivalence relation R on a probability measure space (X,µ) as the small-
est dimension of a measurable bundle of contractible simplicial complexes over X
on which R acts smoothly, i.e., for which there exists a Borel fundamental domain
for the action of R. The ergodic dimension of a group Γ [Gab02a, Déf. 6.4] is
the smallest geometric dimension among all of its free p.m.p. actions (see [Gab21]
for more on this notion). Being infinite treeable is thus a synonym of having ergodic
dimension 1. The ergodic dimension of a group is an ME-invariant, it is bounded
above by its virtual geometric dimension is non-increasing when taking subgroups.

We say that Γ has strong ergodic dimension d if all its free p.m.p. actions
have geometric dimension d. Honesty and humility force us to admit our ignorance:
not a single group is known with two free p.m.p. actions having different geometric
dimensions.

By Ornstein-Weiss [OW80], all infinite amenable groups have strong ergodic di-
mension 1. Recall that non vanishing of ℓ2-Betti numbers produces lower bounds for
the ergodic dimension (see [Gab02a, Prop. 5.8, Cor. 3.17]). It follows for instance
that (with pi ≥ 2) Γ = Fp1 ×Fp2 ×· · ·×Fpd or Γ = (Fp1 ×Fp2 ×· · ·×Fpd)∗Fk have
strong ergodic dimension d [Gab02a, pp. 126-127] while Γ × Z has strong ergodic
dimension d+1 and Out(Fn) has strong ergodic dimension 2n− 3 [GN21, Theorem
1.6, Theorem 1.1].

It is not hard to check that the 3-dimensional manifolds with one of the eight
geometric structures of Thurston have ergodic dimension at most 2. For instance
the fundamental group of a closed hyperbolic 3-dimensional manifold is a cocompact
lattice in SO(3, 1). It is ME with non-compact lattices in SO(3, 1), which have
geometric dimension 2 and zero first ℓ2-Betti number, and thus they have ergodic
dimension at most 2. We prove a strong dichotomy theorem for the ergodic dimension
of fundamental groups of aspherical manifolds of dimension 3.

Theorem 3 (Theorem 6.2). Suppose Γ is the fundamental group of a closed (i.e.,
compact without boundary) aspherical (possibly non-orientable) manifold of dimen-
sion 3. Then either

(1) Γ is amenable, or
(2) Γ has strong ergodic dimension 2.

If one removes the assumption of asphericity, the Kneser-Milnor theorem [Kne29,
Mil62] decomposes the fundamental group of an orientable closed 3-dimensional man-
ifold as a free product of amenable groups and groups to which Theorem 3 applies.
It follows that

Theorem 4. If M is an orientable closed 3-dimensional manifold, then Γ = π1(M)
has strong ergodic dimension ∈ {0, 1, 2}.

Considering the orientation covering, one deduces that the ergodic dimension is at
most 2 if M3 is non-orientable. However, strongness also holds in this case, but this
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shall be treated elsewhere [Gab21]. This touches the delicate open question whether
strong ergodic dimension is an invariant of commensurability. If one allows M to
have boundary components, then we loose a priori the strongness but we still obtain
that every p.m.p. free action of Γ = π1(M) has geometric dimension at most 2.

It is worth noting that all our results are proved without appealing to the recent
progress in Thurston’s geometrization theorem. In higher dimensions, we also obtain
a non-trivial bound :

Theorem 5 (Theorem 6.1). Suppose Γ = π1(M) is the fundamental group of a
compact aspherical manifold M (possibly with boundary) of dimension at least 2.
Then all free p.m.p. actions of Γ have ergodic dimension at most dim(M)− 1.

The theory of measure equivalence has been extended beyond countable discrete
groups to include all unimodular locally compact second countable (lcsc) groups
(see the nice survey [Fur11] and see [KKR17] for basic invariance properties). The
investigation about their treeability began with a result of Hjorth [Hjo08, Theorem
0.5] stating that the products G1 ×G2 of infinite lcsc groups are non treeable unless
both are amenable. He observed that amenable groups are strongly treeable and
asks which other lcsc groups satisfy this property [Hjo08, p. 387]. We produce the
first progress in this study since then:

Theorem 6 (See Corollary 4.2). Isom(H2), PSL2(R), and SL2(R) are all strongly
treeable, as are all of their closed subgroups.

While the notion of treeability extends in the natural way to orbit equivalence
relations of actions G y (X,µ) of lcsc groups, an equivalent way of conceiving a
treeing in this context is by introducing a cross section B ⊆ X (see section A) to
which the restriction R↾B of the orbit equivalence relation RGy(X,µ) has countable
classes and is treeable.

This result gives as a by-product the first examples of non trivial fixed price for
connected lcsc groups (Definition A.9). In contrast, fixed price 1 for the direct prod-
uct of some lcsc groups with the integers is obtained in [AM21]. Once a Haar measure

is prescribed on G, the quantity
cost(R↾B)−1
covolume(B) does not depend on the cross section B,

since the restrictions are pairwise stably orbit equivalent (Proposition A.8). A re-
markable consequence of Theorem 6 is that this quantity is also independent of the
free p.m.p. action G y (X,µ), for each of these groups:

Theorem 7 (See Corollary 4.2 and Remark 4.3). The groups G = Isom(H2),
PSL2(R), and SL2(R), and their closed subgroups have fixed price

A central fascination in our study is, given a graphing, the hunt for a subgraphing
all of whose connected components are acyclic and have exactly one end (hereafter
named a one-ended spanning subforest, since several connected components are
usually necessary for covering a single class). Besides their intrinsic interest, one-
ended spanning subforests prove to be extremely useful in our applications, e.g.,
Theorems 3.6, 5.1, 6.1, and 6.2.

Much of the technical work in the paper consists of finding new techniques for
constructing Borel a.e. one-ended spanning subforests of locally finite Borel graphs.
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In particular, in the case of locally finite p.m.p. graphs, we give a complete charac-
terization of what graphs admit Borel a.e. one-ended spanning subforests.

Theorem 8 (Theorem 2.1). Suppose that G is a measure preserving aperiodic locally
finite Borel graph on a standard probability space (X,µ). Then G has a Borel µ-a.e.
one-ended spanning subforest T ⊆ G iff G is µ-nowhere two-ended.

Here, µ-a.e. one-ended spanning subforest means that the set of vertices of
the one-ended trees of T has full µ-measure in X; while µ-nowhere two-ended
means that the set of vertices of the two-ended connected components of G has
measure zero in X.

The search for subtrees or subforests has attracted enormous attention in another
but related mathematical field: the theory of random graphs and percolation (al-
ready alluded to in our introduction to non-treeable groups). Thus, for example
Pemantle [Pem91] introduced the spanning forest FUSF for Zd, obtained as the lim-
iting measure of the uniform spanning tree on large finite pieces of the lattice. He
proved that it is connected if and only if d ≤ 4. The use of various subforests such
as the (wired and free) minimal spanning forests (WMSF, FMSF) or the (wired
and free) uniform spanning (WUSF, FUSF) forests are of crucial significance in the
theory of percolation on graphs [BLPS01, LPS06]. The WMSF is an instance of
a random one-ended spanning subforest. The authors of [LPS06] have shown the
equivalence of WMSF 6=FMSF with the famous conjecture of Benjamini-Schramm
[BS96] whether pc 6= pu. The mean valency of the FUSF equals two plus twice
the first ℓ2-Betti number [Lyo09, Corollary 4.12]. If we knew that adding a random
graph of arbitrarily small mean valency could make the FUSF forest connected, then
it would solve the cost vs first ℓ2-Betti number question of [Gab02a, p. 129]. See
also [GL09] and [Tim19] for further connections between treeability and percolation.

Theorem 8 relies on Elek and Kaimanovich’s characterization of when a locally
finite p.m.p. graph G is µ-hyperfinite (i.e., when there exists a µ-conull subset X0

of X such that the connectedness equivalence relation RG of G is hyperfinite once
restricted to X0). On the contrary, we say G is µ-nowhere hyperfinite if there
does not exist a positive measure subset A of X such that (RG)↾A is hyperfinite.

We also use Theorem 8 to give an interesting dual statement to the well-known
part (1) of the following theorem that a graph is µ-hyperfinite if and only if it has
complete sections of arbitrarily large measure whose induced subgraphs are finite.

Theorem 9 (Theorem 1.3). Let G be a locally finite p.m.p graph on a standard
probability space (X,µ).

(1) G is µ-hyperfinite if and only if for every ǫ > 0, there exists a Borel complete
section A ⊆ X for RG with µ(A) > 1 − ǫ so that G↾A has finite connected
components.

(2) G is µ-nowhere hyperfinite if and only if for every ǫ > 0 there exists a Borel
complete section A ⊆ X for RG with µ(A) < ǫ such that G↾A is µ↾A-nowhere
hyperfinite.

By significantly relaxing the measure preserving hypothesis, we arrived at the
study of Borel graphings and their behavior with respect to various Borel probability
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measures that are not necessarily measure preserving. Although the measure µ is
not a priori related to the Borel equivalence relation E under consideration, some
properties may hold up to discarding a set of µ-measure 0. In this non p.m.p.
context, we obtain one-ended spanning subforests out of Borel planar graphs (see
Definition 3.5).

Theorem 10 (See Corollary 3.7). Let G be a locally finite Borel graph on X whose
connected components are planar. Let µ be a Borel probability measure on X. If G
is µ-nowhere two-ended, then G has a Borel a.e. one-ended spanning subforest.

Without the “µ-nowhere two-ended” assumption, one still gets the existence of a
spanning subforest on a µ-conull set (see Theorem 3.6).

We say that a Borel equivalence relation E on X is measure treeable if for
each Borel probability measure µ on X, there a µ-conull subset X0 of X such that
the restriction of E to X0 is Borel treeable (Definition A.1). Observe that when the
classes of E are countable then each such µ is dominated by a quasi-invariant measure
µ′ =

∑∞
i=1 2

−igi∗µ, where {gi}
∞
i=1 is an enumeration of some countable group G that

generates E (see [FM77]). Note that µ and µ′ have the same E-invariant null sets.
See also Proposition A.4.

A lcsc group G is called measure strongly treeable (MST) if all orbit equiv-
alence relations generated by all free Borel actions of G are measure treeable (Defi-
nition B.1).

In this context, using Theorem 10, our Theorems 1, 2 and 6 take indeed a much
stronger non p.m.p. form (see Corollary 4.2, Corollary 4.4, and Theorem 5.1):

Theorem 11. The following groups are measure strongly treeable

(1) Isom(H2), PSL2(R), and SL2(R), and all of their closed subgroups.
(2) Finitely generated groups admitting a planar Cayley graph.
(3) Finitely generated elementarily free groups.

Our proof follows an idea from [BLPS01] (also used in [Gab05]) of finding an a.e.
one-ended spanning subforest in the planar dual (see §3). Suppose G is a locally finite
graph admitting an accumulation-point free planar embedding into R

2. Then it is
easy to see that subtreeings of G are in one-to-one correspondence with one-ended
subforests in the planar dual of G. We use this correspondence to show the measure
treeability of the above groups G by converting the problem of treeing an action of
G into finding an a.e. one-ended spanning subforest of the planar dual of graphings
of the action which are Borel planar.

Acknowledgments: The authors would like to thank Agelos Georgakopoulos for
helpful conversations about planar Cayley graphs and Vincent Guirardel for useful
discussions about elementarily free groups. We are grateful to Gilbert Levitt for
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circulated.
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1. Elek’s refinement of Kaimanovich’s Theorem for measured graphs

If G is a locally finite Borel graph on a standard probability space (X,µ), then
the (vertex) isoperimetric constant of G is the infimum of µ(∂GA)/µ(A) over
all Borel subsets A ⊆ X of positive measure such that G↾A has finite connected
components. Here, ∂GA denotes the set of vertices in X A which are G-adjacent to
a vertex in A. If the measure µ is RG-quasi-invariant then the isoperimetric constant
of G can be equivalently phrased in terms of the associated Radon-Nikodym cocycle
(see [KM04, §8]).

In [Kai97], Kaimanovich established the equivalence between µ-hyperfiniteness of
a measured equivalence relation R and vanishing of the isoperimetric constant of all
bounded graph structures on R. In [Ele12], Elek sharpened Kaimanovich’s Theorem
by establishing the following characterization of hyperfiniteness for a fixed measured
graph G.

Theorem 1.1 (Elek [Ele12]). Let G be a locally finite Borel graph on a standard
probability space (X,µ). Then G is µ-hyperfinite if and only if for every positive
measure Borel subset X0 ⊆ X, the isoperimetric constant of G↾X0

is 0.

While the theorem in [Ele12] is stated for measure preserving bounded degree
graphs, it can easily be extended to all locally finite graphs which are not necessarily
measure preserving. For the convenience of the reader we indicate the proof.

Proof of Theorem 1.1. Suppose first that G is µ-hyperfinite. Let X0 ⊆ X be a Borel
set of positive measure and let H = G↾X0

. Then H is µ-hyperfinite, so after ignoring
a null set we can find finite Borel subequivalence relations R0 ⊆ R1 ⊆ · · · with
RH =

⋃
nRn. Since H is locally finite, given ǫ > 0, we may find n large enough so

that µ(An) > µ(X0)(1− ǫ), where An = {x ∈ X0 : Hx ⊆ [x]Rn
} and Hx denotes the

set of H-neighbors of x. Then H↾An
⊆ Rn, so H↾An

has finite connected components.
In addition, µ(∂HAn)/µ(An) < ǫ/(1 − ǫ), so as ǫ > 0 was arbitrary this shows the
isoperimetric constant of H is 0.

Assume now that for every positive measure Borel subset X0 ⊆ X the isoperimet-
ric constant of G↾X0

is 0. To show that G is µ-hyperfinite it suffices to show that for
any ǫ > 0 there exists a Borel set Y ⊆ X with µ(Y ) ≥ 1− ǫ such that G↾Y has finite
connected components (since then we can find a sequence of such sets Yn, n ∈ N,
with µ(Yn) ≥ 1 − 2−n, so by Borel-Cantelli RG = lim infnRG↾Yn

is µ-hyperfinite).
Given ǫ > 0, by Zorn’s Lemma we can find a maximal collection A of pairwise
disjoint nonnull Borel subsets of X subject to

(i) G↾
⋃

A has finite connected components;
(ii) µ(∂G(

⋃
A)) ≤ ǫµ(

⋃
A);
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(iii) If A,B ∈ A are distinct, then no vertex in A is adjacent to a vertex in B.

Let Y =
⋃

A. We now claim that the set X0 = X (Y ∪ ∂GY ) is null. Otherwise,
by hypothesis we may find a Borel set A0 ⊆ X0 of positive measure such that G↾A0

has finite connected components and µ(∂G↾X0
A0) < ǫµ(A0). But then the collection

A0 = A∪{A0} satisfies (i)-(iii) in place of A, contradicting maximality of A. Thus,
µ(Y ) = 1− µ(∂GY ) ≥ 1− ǫµ(Y ) ≥ 1− ǫ, and G↾Y has finite connected components,
which finishes the proof. �

Remark 1.2. We have used the vertex isoperimetric constant, whereas [Ele12] uses
the edge isoperimetric constant. The relationship is as follows. Let G be a graph on
(X,µ) and let Mr be the Borel σ-finite measures on G given by Mr(D) =

∫
X
|Dx| dµ.

The edge isoperimetric constant of G is the infimum of Mr(∂
e
GA)/µ(A) over

all Borel subsets A ⊆ X of positive measure such that G↾A has finite connected
components. Here, ∂e

GA is the set of all edges of G having one endpoint in A and one
in X A. (Note that since ∂e

GA is symmetric, one obtains the same definition if in

place of Mr one uses the measure Ml(D) =
∫
X
|Dx| dµ.) It is then easy to see that if

µ is G-quasi-invariant, and if G is bounded (meaning that G is bounded degree and
the Radon-Nikodym cocycle ρ : RG → R

+ associated to µ is essentially bounded
on G) then for any positive measure Borel subset X0 ⊆ X, the edge isoperimetric
constant of G↾X0

vanishes if and only if the vertex isoperimetric constant of G↾X0

vanishes.

The combinatorial core of the proof of the forward direction of Theorem 1.1 is the
fact that a graph G is µ-hyperfinite if and only if there are arbitrarily large sets on
which its restriction is finite. There is a dual statement for µ-nowhere hyperfiniteness.

Theorem 1.3. Let G be a p.m.p. locally finite Borel graph on a standard probability
space (X,µ).

(1) G is µ-hyperfinite if and only if for every ǫ > 0, there exists a Borel complete
section A ⊆ X for RG with µ(A) > 1 − ǫ so that G↾A has finite connected
components.

(2) G is µ-nowhere hyperfinite if and only if for every ǫ > 0 there exists a Borel
complete section A ⊆ X for RG with µ(A) < ǫ such that G↾A is µ↾A-nowhere
hyperfinite.

Proof. The new content of the theorem is the forward direction of (2). (In our proof
of Theorem 1.1 we indicated how to prove part (1)). A key point in our proof is
the use of Corollary 2.11 below on the existence of maximal hyperfinite one-ended
spanning subforests, which we establish later.

By Corollary 2.11 (whose assumption is satisfied when G is µ-nowhere hyperfinite)
we may find a Borel µ-a.e. one-ended spanning subforest T ⊆ G such that RT is µ-
maximal among the G-connected, µ-hyperfinite equivalence subrelations of RG .

Let A1 = X and for n ≥ 1 let An+1 = {x ∈ An : degT↾An
(x) ≥ 2}. Then

A1 ⊇ A2 ⊇ · · · and µ(
⋂

nAn) = 0 since T is one-ended, so after ignoring a null set
we may assume that

⋂
nAn = ∅. Observe that RT↾An

= (RT )↾An
for all n. Given

ǫ > 0, let n be so large that µ(An) < ǫ/2. Since G is µ-nowhere hyperfinite and



ONE-ENDED SPANNING SUBFORESTS AND TREEABILITY OF GROUPS 11

T is µ-hyperfinite, the set G RT meets almost every connected component of T .
We may therefore find a subset G0 ⊆ G RT which is incident with almost every
connected component of T such that the set B, of vertices incident with G0, has
measure µ(B) < ǫ/2n. (Finding G0 is easy when T is ergodic; in general we can
simply use the ergodic decomposition of T .)

Claim. T ∪ (G↾B) is µ-nowhere hyperfinite.

Proof of the claim. Suppose otherwise. Then we may find a non-null RT ∪(G↾B)-

invariant set D such that (RT ∪(G↾B))↾D is hyperfinite. Then the equivalence relation

Q := (RT ∪G↾B
)↾D⊔ (RT )↾(X D) is G-connected and µ-hyperfinite. By our choice of B,

each component of T ∪(G↾B) contains more than one component of T , so Q properly
contains RT since D is non-null. This contradicts the maximality of RT . �

For each x ∈ B let π(x) ∈ An denote the unique vertex in An which is closest to
x with respect to the graph metric in T , and let px denote the unique shortest path
through T from x to π(x). The length of each px is at most n−1, so if we let C denote
the set of all vertices which lie along px for some x ∈ B, then µ(C) ≤ nµ(B) < ǫ/2.
Let A = An ∪ C. Then µ(A) < ǫ and

RG↾A
⊇ RT↾A ∨ RG↾B

= (RT )↾A ∨RG↾B
⊇ (RT ∪(G↾B))↾A,

so that G↾A is µ↾A-nowhere hyperfinite since T ∪ (G↾B) is µ-nowhere hyperfinite. �

2. One-ended spanning subforests

In this section, we characterize exactly when a locally finite probability measure
preserving Borel graph has a one-ended spanning subforest.

Theorem 2.1 (For p.m.p. graphings). Suppose that G is a measure preserving ape-
riodic locally finite Borel graph on a standard probability space (X,µ). Then G has
a Borel a.e. one-ended spanning subforest iff G is µ-nowhere two-ended.

We further conjecture the following strengthening of this theorem for graphs which
are not necessarily measure preserving. In this more general setting, the correct
generalization of (µ-a.e.) aperiodicity is µ-nowhere smoothness of G; we say that
G is µ-nowhere smooth if there is no positive measure Borel subset of X which
meets each G-component in at most one point.

Conjecture 2.2 (Non necessarily p.m.p. graphings). Suppose that G is a µ-nowhere
smooth locally finite Borel graph on a standard probability space (X,µ). Then G has
a Borel a.e. one-ended spanning subforest iff G is µ-nowhere two-ended.

We know that the forward direction of the above conjecture is true by Lemma 2.4
below. The reverse direction is known to be true in the case when G is hyperfinite
by Lemma 2.10, and when G is acyclic by the following theorem of [CMTD16].

Theorem 2.3 (Non necessarily p.m.p. treeings [CMTD16, Theorem 1.5]). Suppose
that G is an acyclic, aperiodic locally finite Borel graph on a standard probability space
(X,µ). If G is µ-nowhere two-ended, then G has a Borel a.e. one-ended spanning
subforest.



12 CONLEY, GABORIAU, MARKS, AND TUCKER-DROB

We will begin by proving the forward direction of Theorem 2.1 (and also Con-
jecture 2.2). An easy argument shows that the graph associated to a free measure
preserving action of Z cannot have a Borel a.e. one-ended spanning subforest; such a
subforest must come from removing a single edge from each connected component of
the graph. This set of edges would witness the fact that the graph G is smooth, con-
tradicting our assumption that the action of Z is measure-preserving. Our argument
is a simple generalization of this idea.

Lemma 2.4. Suppose that G is a µ-nowhere smooth locally finite Borel graph on a
standard probability space (X,µ). If there is a set of positive measure on which G is
two-ended, then G does not admit a Borel a.e. one-ended spanning subforest.

Proof. By restricting to and renormalizing a Borel G-invariant subset of positive
measure, we may assume that G is everywhere two-ended and has a Borel a.e. one-
ended spanning subforest T . We will now show G is smooth. Let Y be the set
of connected C ∈ [RG ]

<N such that removing C from G disconnects its connected
component into exactly two infinite pieces. Recall that [RG]

<N is the Borel set of
finite subsets of X made of RG-equivalent points. By taking a countable coloring
of the intersection graph on Y (see [KM04, Lemma 7.3] and [CM16, Proposition
2]), we may find a Borel set Z ⊆ Y which meets every connected component of G
and so that distinct C,D ∈ Z are pairwise disjoint and if C and D are in the same
connected component, then |C| = |D|. By discarding a smooth set, we may assume
Z meets each connected component of G infinitely many times. Let H be the graph
on Z where C H C ′ if C and C ′ are in the same connected component of G and there
is no D ∈ Z such that removing D from G places C and C ′ in different connected
components. Note that H is 2-regular.

Now let Z ′ ⊆ Z be the set of C ∈ Z such that there exists a H-neighbor D of C
and a component F of T , such that C meets F , but D does not meet F .

It is easy to see that Z ′ meets each connected component of G and is finite (else
T is not a one-ended spanning subforest), but then G is smooth. �

Our proof of the reverse direction of Theorem 2.1 splits into two cases based on
Theorem 1.1. In particular, it will suffice to prove Theorem 2.1 for µ-hyperfinite
graphs, and graphs having positive isoperimetric constant.

2.1. Measure preserving graphs with superquadratic growth. We begin with
a lemma giving a sufficient condition for a graph to possess a one-ended spanning
subforest. (In fact, this condition can be shown to be equivalent to the existence of
such a subforest)

Let f be a partial function from a set X into itself, and let y ∈ X. The back-
orbit of y under f is the set of all x ∈ dom(f) for which there is some n ≥ 0 with
fn(x) = y.

Lemma 2.5. Suppose that G is a locally finite Borel graph on a standard probability
space (X,µ), and there are partial Borel functions f0, f1, . . . ⊆ G such that

(1)
∑

i µ(dom(fi)) < ∞
(2)

⋃
dom(fi) = X
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