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Abstract. A reachable set computation method for dynamical systems
with an integral constraint over the input set is proposed. These models
are typical in robustness analysis when studying the impact of bounded
energy noises over a system response and can also model a large fam-
ily of complex systems. The reachable set is over-approximated using a
guaranteed set-based integration method within the interval arithmetic
framework.

A Runge-Kutta guaranteed integration scheme with pessimistic
bounds over the input provides a first conservative bound over the reach-
able tube. Then, the integral constraint is used to define a contractor over
the reachable tube. This contractor and a propagation step are succes-
sively applied on the over-approximation until a fixed point is reached.
We evaluated our algorithm with DynIbex library to simulate a delayed
system, i.e., an infinite dimensional system that can be modeled as a
linear time-invariant system subject to an integral quadratic constraint.
Our approach is shown to be tractable and enables the use of inter-
val arithmetic and guaranteed integration for a richer set of dynamical
systems.

Keywords: Numerical integration · Dynamical systems with integral
constraint · Interval arithmetic

1 Introduction

In this paper, we present a method to compute the flowpipe of a dynamical
system with an integral inequality constraint between an unknown input distur-
bance and the state trajectory. The interval arithmetic and guaranteed simula-
tion frameworks are used. With additional assumptions about the dynamic of
the disturbance, the integral constraint gives bounds over the set of disturbances.
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A contractor over the set of reachable states is defined out of these bounds. This
contractor is then used in a fixed point algorithm with a propagation step (as
described in [1]). Our algorithm is implemented using DynIbex library [2] and
applied to overapproximate the flowpipe of a dynamical system with an inner
delay.

In dynamical system’s analysis, two signal norms are frequently used: the
∞-norm (that corresponds to the maximum vector norm over the time domain)
and the 2-norm (that corresponds to the signal’s energy). A signal with a 2-norm
bound can be equivalently defined with an integral constraint. Disturbances with
∞-norm bounds are naturally handled by guaranteed integration frameworks.
Disturbances with 2-norm have been less studied by the community despite
their modeling power. In control theory, many relationships between signals and
systems are expressed in terms of 2-norm gains. In Hybrid systems analysis,
2-norm input-output gains have been derived (as in [21]) and can be used to
compute overapproximation of the reachable set. [7] proposes the use of model
reduction methods to verify large systems. No error bound is used during the
verification of the approximated system. In fact, such bounds exist and can be
expressed as a 2-norm gain relationship with the input signal. Many complex
systems can be, as well, described by a linear time-invariant dynamical system
disturbed by a 2-norm bounded signal [17].

Related Works. In the first paragraph, we motivate our choice of model with a
challenging application: differential equation with inner delays. The next para-
graphs review works in reachability analysis for dynamical systems with integral
constraints.

Simulation of differential equations with inner delays is a notoriously com-
plex problem [26,28]. In [8], the author propose to compute an inner and outer
approximation of a delayed system’s flowpipe. The solution to the differential
delay equation is obtained by integrating ordinary differential equations (ODE)
over small steps. The solutions over these time intervals are recursively used
until the final time of integration is reached. The infinite dimensional state of
the delay (i.e. the memory of the delay) is sampled in time. Taylor series and
a classical integration method are used to solve the ODE. In [6], the simulation
trace is obtained with a similar approach. Along the simulation trace, a bound
over the numerical integration error is derived by solving an optimization prob-
lem. In [30], set-boundary based reachability analysis method initially developed
for ODE is extended to delay differential equations. A sensitivity analysis is used
get an inner and outer approximation of the reachable set. In [6,8,26,28,30], an
outer approximation of past states is used to solve the delay differential equa-
tion, local properties (Taylor remainder, local contraction of the flowpipe and
sensitivity analysis) are used to get guaranteed bound over the reachable state.
In [25], the stability of linear systems with constant delays is studied. The state
of the delay operator is expressed as a weighted sum of polynomials functions
and a remaining noise signal. It can be shown that these weights are solution of
a linear time-invariant system subject to a disturbance. The disturbance satis-
fies an energetic constraint. Delays modeled as an integral quadratic constraint
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have also been used for reachability analysis of delay systems in [20]. The reach-
able tube is overapproximated using a time-varying ellipsoidal set with time-
dependent polynomial radius and center. The overapproximating relationship
can be expressed as the positivity of a polynomial over the state and time space.
An SDP solver is used to find a solution. The SDP solver provide a certificate of
positivity for all positive polynomial and thus the overapproximation relation-
ship can be guaranteed. In this work, the system with delay is as well modeled by
an integral quadratic constraint to build a contractor. An initial reachable tube
can be roughly overapproximated using guaranteed integration tools. Then, the
contractor is used to reduce the pessimism of this reachable tube. To apply this
contraction, we use forward propagation of the reachable set as in [22].

Computing the reachable set of dynamical systems with integral constraints
can be expressed as an optimal control problem as in [10,16]. A state belongs to
the reachable set if the maximum integral value satisfies the positivity constraint
along its trajectory. Standard tools from optimal control can then be used. This
optimization problem can be locally solved (see, e.g., with the Pontryagin Max-
imum Principle -PMP-, see [9,10,16,29]) leading to a local description of the
reachable set boundary. It also can be solved globally (using Hamilton-Jacobi-
Bellman -HJB- viscosity subsolutions, see [27]) leading to global constraints over
the reachable set. These methods rely on numerical integration of (partial) dif-
ferential equations and are often subject to numerical instabilities.

HJB and PMP based methods propagate the constraints along the flow of
the dynamical system. Occupation measures and barrier certificates methods aim
at finding constraints over the reachable tube of a dynamical system: [21] uses
integral constraints for verification purposes using barrier certificates where the
positivity of the integral is ensured by using a nonnegative constant multiplier:
[11,14] use an occupation measure approach where the integral constraint can
be incorporated as a constraint over the moment of the trajectories. A hierarchy
of semi-definite conditions is derived for polynomial dynamics. Then, off-the-
shelf semi-definite programming solvers are used to solve the feasibility problem.
Optimization-based methods do not usually take advantage of the model struc-
ture as they consider a large class of systems (convex, Lipschitz or polynomial
dynamics for example).

For linear system subject to Integral Quadratic Constraints (IQC), the reach-
ability problem can be expressed as the classical Linear Quadratic Regulator
problem [24]. Optimal trajectories belong to a time-varying parabolic surface,
whose quadratic coefficients are the solution to a Riccati differential equation.
[10,23] describes the reachable set of LTI systems with terminal IQC. [13] for-
malizes the problem with a game theory approach. Recent works showed that the
ellipsoidal method developed in [15] can be extended to a so-called Paraboloid
method [22] to get the exact characterization of the reachable set of such systems.

Contributions:

– we developed a framework to analyze systems with integral constraints
between an unknown disturbance and the state. We make an additional
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assumption about the disturbance dynamic. This assumption asserts that
the variation of the disturbance is bounded. We then define a contractor over
the set of trajectories. This contractor is used in a fixed point algorithm.

– we use models from robust control theory into guaranteed numerical integra-
tion.

Plan: In Sect. 2, we define the system of interest. Guaranteed numerical integra-
tion for unconstrained systems is presented in Sect. 3. The main contribution of
this work is presented in Sect. 4. Since the integral constraint cannot be directly
handled by guaranteed integration software such as DynIbex, we make further
assumptions about the disturbance dynamic. These hypotheses are then used to
define a narrowing operator out of the integral constraint. In Sect. 5, our app-
roach is used to compute the reachable set of a dynamical system with inner
delays. We compare this method to a set-based method.

Notations. IR is the set of intervals over R, interval vectors are noted in bold
letters. Let the norm of [x] ∈ IR

n be [[x]] = maxx∈[x]‖x‖. For an interval [x] ∈ IR,

let [x] = supx∈[x] x. For n ∈ N and an interval I of R, L
2
loc(R

+; Rn) is the set of
locally square integrable functions from I to R

n.

2 System with Integral Constraint over the State

Let the following system: {
ẋ = f(t, x, w)

x(0) ∈ x0

(1)

where w is an unknown disturbance in L
2
loc(R

+; Rm) that satisfies the integral
constraint, for any τ ≥ 0:

∫ τ

0

‖w(s)‖2
ds ≤

∫ τ

0

g(s, x(s))ds (2)

where g : R
+ × R

n is a given function.
Many systems can be modeled in such way. The robust control community

makes frequent use of this model where the integral constraint overapproximates
the behavior of complex systems, e.g., saturations, delays and bounded non-
linearities to cite few of them.

Remark 1. The integral constraint does not give any bounds on the disturbance
as it can be easily understood from the unit energy disturbed system

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = −x + w

x(0) = 0

1 ≥
∫ 1

0

w2(τ)dτ

. (3)

4



Let w be defined for any ǫ > 0 by

⎧
⎨
⎩

w(τ) =
1

ǫ
when τ ∈ [0, ǫ]

w(τ) = 0 otherwise.

Since
∫ 1

0
w2(τ)dτ = 1, the inequality in Eq. (3) is verified for every ǫ > 0, however

no bounds can be determined for w since w (0) → ∞ when ǫ → 0. Please
note that the system defined in Eq. (3) has a bounded reachable set even if the
disturbance cannot be bounded at any given time (see [4, Chap. 8.1.2]).

3 Interval Analysis and Guaranteed Numerical

Integration

A presentation of the main mathematical tools is given in this section. First, the
basics of interval analysis is provided in Sect. 3.1. Then, a short introduction of
validated numerical integration is presented in Sect. 3.2.

3.1 Interval Analysis

The simplest and most common way to represent and manipulate sets of values
is interval arithmetic (see [18]). An interval [xi] = [xi, xi] defines the set of reals
xi such that xi ≤ xi ≤ xi. IR denotes the set of all intervals over reals. The size
(or width) of [xi] is denoted by w([xi]) = xi − xi.

Interval arithmetic extends to IR elementary functions over R. For instance,
the interval sum, i.e., [x1] + [x2] = [x1 + x2, x1 + x2], encloses the image of the
sum function over its arguments.

An interval vector or a box [x] ∈ IR
n, is a Cartesian product of n intervals.

The enclosing property basically defines what is called an interval extension or
an inclusion function.

Definition 1 (Inclusion function). Consider a function f : R
n → R

m, then
[f ] :IRn → IR

m is said to be an inclusion function of f to intervals if

∀[x] ∈ IR
n, [f ]([x]) ⊇ {f(x),x ∈ [x]} .

It is possible to define inclusion functions for all elementary functions such as
×, ÷, sin, cos, exp, etc. The natural inclusion function is the simplest to obtain:
all occurrences of the real variables are replaced by their interval counterpart and
all arithmetic operations are evaluated using interval arithmetic. More sophis-
ticated inclusion functions such as the centered form, or the Taylor inclusion
function may also be used (see [12] for more details).
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Example 1 (Interval arithmetic). A few examples of arithmetic operations
between interval values are given

[−2, 5] + [−8, 12] = [−10, 17]

[−10, 17] − [−8, 12] = [−10, 17] + [−12, 8] = [−22, 25]

[−10, 17] − [−2, 5] = [−15, 19]

[−2, 5]

[−8, 12]
= [−∞,∞]

[3, 5]

[8, 12]
=

[
3

12
,
5

8

]

[
3

12
,
5

8

]
× [8, 12] =

[
2,

15

2

]

In the first example of division, the result is the interval containing all the real
numbers because denominator contains 0.

As an example of inclusion function, we consider a function p defined by

p(x, y) = xy + x .

The associated natural inclusion function is

[p]([x], [y]) = [x][y] + [x],

in which variables, constants and arithmetic operations have been replaced by
its interval counterpart. And so p([0, 1], [0, 1]) = [0, 2] ⊆ {p(x, y) | x, y ∈ [0, 1]} =
[0, 2]. �

In the constraint programming community, complex equality and inequality
constraints can be handled using so-called contractors. A contractor is an oper-
ator that associates to a set one of its subset that contains all the points where
the constraint is verified (see [5]).

Definition 2. For a constraint f that maps R
n to a truth value, a contractor

Ctc of f associates to a subset of R
n to a subset of R

n. For any [b], [b′] ∈ IR
n,

Ctc must verifies the following properties:

– the contractance: Ctc ([b]) ⊆ [b],
– the conservativeness: ∀x ∈ [b]\Ctc ([b]) , f(x) is not satisfied,
– the monotonicity: [b′] ⊆ [b] ⇒ Ctc ([b′]) ⊆ Ctc ([b])

3.2 Validated Numerical Integration Methods

Mathematically, differential equations have no explicit solutions, except for few
particular cases. Nevertheless, the solution can be numerically approximated
with the help of integration schemes such as Taylor series [19] or Runge-Kutta
methods [2,3].
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In the following, we consider a generic parametric differential equation as an
interval initial value problem (IIVP) defined by

⎧
⎪⎨
⎪⎩

ẏ = F (t,y,x,p,u)

0 = G(t,y,x,p,u)

y(0) ∈ Y0,x(0) ∈ X0,p ∈ P,u ∈ U , t ∈ [0, tend] ,

(4)

with F : R × R
n × R

m × R
r × R

s �→ R
n and G : R × R

n × R
m × R

r × R
s �→ R

m.
The variable y of dimension n is the differential variable while the variable x is
an algebraic variable of dimension m with an initial condition y(0) ∈ Y0 ⊆ R

n

and x(0) ∈ X0 ⊆ R
m. In other words, differential-algebraic equations (DAE)

of index 1 are considered, and in the case of m = 0, this differential equation
simplifies to an ordinary differential equation (ODE). Note that usually, the
initial values of algebraic variable x are computed by numerical algorithms used
to solve DAE but we consider it fixed here for simplicity. Variable p ∈ P ⊆ R

r

stands for parameters of dimension r and variable u ∈ U ⊆ R
s stands for a

control vector of dimension s. We assume standard hypotheses on F and G to
guarantee the existence and uniqueness of the solution to such problem.

A validated simulation of a differential equation consists in a discretization
of time, such that t0 � · · · � tend, and a computation of enclosures of the set of
states of the system y0, . . . ,yend, by the help of a guaranteed integration scheme.
In details, a guaranteed integration scheme is made of

– an integration method Φ(F, G,yj , tj , h), starting from an initial value yj at
time tj and a finite time horizon h (the step-size), producing an approximation
yj+1 at time tj+1 = tj +h, of the exact solution y(tj+1;yj), i.e., y(tj+1;yj) ≈
Φ(F, G,yj , tj , h);

– a truncation error function lteΦ(F, G,yj , tj , h), such that

y(tj+1;yj) = Φ(F, G,yj , tj , h) + lteΦ(F, G,yj , tj , h).

Basically, a validated numerical integration method is based on a numerical
integration scheme such as Taylor series [19] or Runge-Kutta methods [2,3] which
is extended with interval analysis tools to bound the local truncation error,
i.e., the distance between the exact and the numerical solutions. Mainly, such
methods work in two stages at each integration step, starting from an enclosure
[yj ] ∋ y(tj ;y0) at time tj of the exact solution, we proceed by:

i. a computation of an a priori enclosure [ỹj+1] of the solution y(t;y0) for all
t in the time interval [tj , tj+1]. This stage allows one to prove the existence
and the uniqueness of the solution.

ii. a computation of a tightening of state variable [yj+1] ∋ y(tj+1;y0) at time
tj+1 using [ỹj+1] to bound the local truncation error term lteΦ(F, G,yj , tj , h).

A validated simulation starts with the interval enclosures [y(0)], [x(0)], [p]
and [u] of respectively, Y0, X0, P, and U . It produces two lists of boxes:
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– the list of discretization time steps: {t0, . . . , tend};
– the list of state enclosures at the discretization time steps: {[y0], . . . , [yend]};
– the list of a priori enclosures: {[ỹ0], . . . , [ỹend]}.

Figure 1 represents the enclosures [ỹi] and [yi] and their membership properties
with the trajectories of the dynamical system.

[ỹi]

[yi]
[yi+1]

ti ti+1

t

y(t)

Fig. 1. The trajectories (in light gray) are overapproximated by [yi] (thick line seg-
ment) at time step ti. The a priori enclosure [ỹi] (in gray) contains the trajectories
over the time interval [ti, ti+1].

4 Dynamical Systems with Integral Constraints

This section presents the main contribution of our work. For system described
by Eq. (1) subject to the integral constraint defined by Eq. (2), we compute an
overapproximation of its flowpipe over the time domain [0, T ], where the time
horizon T > 0 is given. A first overapproximation of the flowpipe is computed
using pessimistic bounds over the disturbances. The integral constraint in Eq. (2)
is used to derive contractor. This contractor and a propagation step are applied
in a fixed point algorithm until a contraction factor is reached. We run the
algorithm over a simple example.

4.1 Extended System

We extend the system’s state with the integral value corresponding to the integral
constraint in Eq. (2):

{
ż(t) = g(t, x(t)) − ‖w(t)‖2

z(0) = 0
(5)

Then, Eq. (2) can be equivalently expressed for z:

∀t ∈ R
+, z(t) ≥ 0. (6)

As mentioned in Remark 1, no L∞ bounds can be derived for L2 bounded
signals. To study such systems, we make further assumptions about the distur-
bance:
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Assumption 1. w is continuous, differentiable and of continuous derivative
over R

+.

This assumption seems reasonable in the case of real systems modeling since
disturbances modeled by integral constraints correspond to physical quantities.
Since the continuity of a function over a closed interval implies its boundedness,
Assumption 1 implies that the signal w is bounded and of bounded variation
over [0, T ]. Therefore, there exists [w] ∈ IR

m and [w′] ∈ IR
m such that for all

t ∈ [0, T ]: {
w(t) ∈ [w]

ẇ(t) ∈ [w′]
(7)

Using Assumption 1 and Eq. (5), the following system will be studied:

S :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = f(t, x(t), w(t))

ż(t) = g(t, x(t), w(t)) − ‖w(t)‖2

ẇ(t) ∈ [w′]

x(0) ∈ [x0]

z(0) = 0

0 ≤ z(t)

w(t) ∈ [w]

(8)

where [x0] ∈ IR
n is the set of initial states. We use the following notation

(x, z, w) ∈ S iff (x, w) ∈ L
2
loc([0, T ]; Rn) × L

2
loc([0, T ]; R) × L

2
loc([0, T ]; Rm) is a

trajectory of S.
Equation (7) gives prior bounds over the disturbance w. They can be used

to propagate the trajectories using standard guaranteed integration frameworks.
Thanks to this, we get a first a priori overapproximation of the reachable set. In
the next section, we use this first overapproximation and a contractor (defined
out of the integral inequality) in a fixed point algorithm in order to get a tighter
overapproximation of the reachable set.

4.2 Bounds over w

In this section, Eq. (7) and the integral constraint in Eq. 6 are used to derive
bounds over the disturbance w. These bounds are then used to define a contractor
over the a priori enclosure of the trajectories.

We present a preliminary result to Property 2:

Property 1. For [v] ∈ IR
p, p ∈ N and r > 0, if [[v]] ≤ r then [v] ⊂ [−r, r]p.

Proof. In an Euclidean space, the norm 1 and norm 2 satisfies
√

v2
1 + · · · + v2

p ≤
|v1| + · · · + |vp| for any (v1, . . . , vp) ∈ R

p. �

When w satisfies Eq. (7) and a given integral constraint, hard bounds (mean-
ing in ∞-norm) can be derived over w:

9



Property 2. For a w ∈ L
2
loc([0, h]; Rm) defined over an interval of length h > 0.

If w satisfies Eq. (7) (with given bounds [w], [w′] ∈ IR
m), then for any r > 0:

∫ h

0

‖w(τ)‖2
dτ ≤ r ⇒ ∀τ ∈ [0, h], w(τ) ∈ [Wr],

where [Wr] = [−k, k]n with k =
√

r
h

+ h
2 [[w′]] (where [[w′]] is the maximum

Euclidean norm over the elements of [w′]).

Proof. By applying the Cauchy-Schwartz inequality between the signal w and
t �→ 1 for the inner product of square integrable function, we have:

∥∥∥∥∥

∫ h

0

w(τ)dτ

∥∥∥∥∥

2

≤ h

∫ h

0

‖w(τ)‖2
dτ ≤ hr.

By Eq. (7), w(τ) = w0 +
∫ τ

0
w1(κ)dκ with w0 ∈ [w] and w1(·) ∈ [w′]. Using the

reverse triangular inequality, we have:

∥∥∥∥∥

∫ h

0

w0dτ

∥∥∥∥∥ ≤
√

rh +

∥∥∥∥∥

∫ h

0

∫ τ

0

w1(κ)dκ

∥∥∥∥∥ .

Then, we get:

‖hw0‖ ≤
√

hr +
h2

2
[[w′]]. (9)

This relationship is derived over [0, h] but is also valid for any time interval
[t, t + h] of width h, t > 0. Therefore, by using Property 1 and Eq. (9), we have:
∀τ ∈ [0, h], w(τ) ∈ [Wr]. �

We then use Property 2 to derive bounds in the specific case of Eq. (5). Let
a system trajectory (x, z, w) ∈ S, such that at a given t ∈ [0, T ] and h > 0 s.t.
t + h ∈ [0, T ], and for all τ ∈ [t, t + h]:

{
(x(t), z(t), w(t)) ∈ [yt]

(x(τ), z(τ), w(τ)) ∈ [ỹt]
where

{
[yt] = [xt] × [zt] × [wt]

[ỹt] = [x̃t] × [z̃t] × [w̃t]
. (10)

The trajectories belong to [yt] at t and are in [ỹt] between [t, t + h]. At t + h,
for a given t ≥ 0 and a given h ≥ 0, Eq. (8) implies that z satisfies:

z(t + h) = z(t) +

∫ t+h

t

g(t, x(t))dτ −
∫ t+h

t

‖w(τ)‖2
dτ.

By applying Eq. 6 at t + h implies that z(t + h) ≥ 0, we have the following
relationship: ∫ t+h

t

‖w(τ)‖2
dτ ≤ z(t) +

∫ t+h

t

g(τ, x(τ))dτ. (11)
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Let the function

q(z, x) = z +

∫ t+h

t

g(τ, x(τ))dτ. (12)

By using an interval evaluation [q] of q, the upperbound of q(z, x) can be evalu-
ated for z ∈ [zt] and x ∈ [x̃t]. We denote by [q]([zt], [x̃t]) this upperbound. For
any w ∈ L

2
loc([t, t + h], [w̃t]), Eq. 11 implies:

∫ t+h

t

‖w(τ)‖2
dτ ≤ [q]([zt], [x̃t]).

Then, Property 2 can be used to derive bounds over the disturbance w:

Property 3. For a w ∈ L
2
loc([t, t+h]; Rm) defined over an interval of length h > 0,

t > 0. If w satisfies Eq. (7) (with given bounds [w], [w′] ∈ IR
m), then for any

τ ∈ [t, t + h]:
w(τ) ∈ [Wq], (13)

where [Wq]([x̃t], [zt]) = [−r, r]m with r =

√
[q]([zt],[x̃t])

h
and q defined in Eq. (12).

Proof. This is a direct application of Property 2. �

We then define the operator over [yt] and [ỹt]

C([yt], [ỹt]) = ([yt] ∩ [Yg]([x̃t], [zt]), [ỹt] ∩ [Yg]([x̃t], [zt])) (14)

where [yt] and [ỹt] are defined in Eq. (10),

[Yg] = [−∞,∞]n × [0,∞] × [Wq],

with [Wq] defined in Property 3.

Proposition 1. C defined in Eq. (14) is a contractor.

Proof. By Property 3, we have, for τ ∈ [t, t + h],

w(τ) ∈ [Wq],

i.e., all the disturbance signals of S belongs to [Wq], so the contractor is con-
servative. Since the contractor is defined as an intersection with [yt] and [ỹt]
respectively, we have

([yt], [ỹt]) ⊆ C([yt], [ỹt]),

C is contractive. For any ([y′
t], [ỹ

′
t]) such that [y′

t] ⊆ [yt] and [ỹ′
t] ⊆ [ỹt],

C([y′
t], [ỹ

′
t]) ⊆ C([yt], [ỹt]),

i.e. C is monotone. �
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4.3 Integral Constraint Propagation

The contractor defined by Eq. (14) is used in a fixed point algorithm as in [1]. A
priori enclosure of the trajectory is computed using bounds Eq. (7) over w. The
integration algorithm gives

– the discretization time steps: {t0, . . . , tend};
– the state enclosure at the discretization time steps: Y0 = {[y0

0], . . . , [y
0
end]};

– the a priori enclosures: Ỹ0 = {[ỹ0
0], . . . , [ỹ

0
end]}.

We then apply the contractor over each couple of discretized time-step boxes
[y0

i ] ∈ Y0 and their associated a priori enclosures [ỹ0
i ] ∈ Ỹ0. These 2 steps are

repeated in a fixed point algorithm until the contraction factor is lower than a
given value. In this approach, time steps are computed at the first iteration of
the algorithm and are not updated.

Example 2. We study the following linear time-invariant system disturbed by an
unknown signal w constrained by a 2-norm inequality:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = −x(t) + w(t)
∫ t

0

w(τ)2dτ ≤
∫ t

0

0.01x(τ)2dτ

x(0) ∈ [−1, 1]

(15)

with [w] = [−1, 1] and [w′] = [−1, 1] in Eq. (7) for t ∈ [0, 2.5]. Figure 2 shows the
reachable set of this dynamical system computed with the method described in
this section.

Fig. 2. Computation of the overapproximation of the reachable set of Example 2 using
the algorithm presented in Sect. 4. Blue boxes corresponds to the a priori enclosures
at the first iteration of the algorithm Ỹ0, green boxes are the a priori enclosure at the
3rd iteration Ỹ3 of the algorithm. (Color figure online)
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5 Examples

In this part, we present applications of the method described in Sect. 4 for a
tank system (Subsect. 5.1) and a delayed system (Subsect. 5.2). The results are
discussed in the Subsect. 5.3.

5.1 Tank System

We consider a 2-tanks system (see Fig. 3) described by the following dynamical
equation ⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḣ1 = −r1

√
h1 + w

ḣ2 = −r2

√
h2 + r1

√
h1

∫ τ

0

w(τ)2dτ ≤
∫ t

0

(
r2

√
h2(τ)

)2

dτ

, (16)

with initial conditions: {
h1(0) = 1

h2(0) = 0
.

r1 = 0.1 and r2 = 0.001 are given constants depending on the hole diameter, h1

and h2 are the respective level of water of tanks 1 and 2. The pump is operated
externally and is considered as an unknown disturbance, we model it as the set
of signals w that verify the integral constraint in Eq. (16).

The plot in Fig. 3 corresponds to the reachable set overapproximation com-
puted using the algorithm described in Sect. 4. The overapproximation of the
reachable set over h1 is larger that over h2. This is a consequence that the dis-
turbance is directly added into the Tank 1 (to h1) and is filtered by Tank 1
before influencing Tank 2. At t = 0.6, the reachable set over h1 computed with
the integral constraint is 9 times smaller than the reachable set computed with
only the prior bound over the unknown disturbance w (see Figs. 3a and b).

5.2 Delayed System with Integral Quadratic Constraint

For u, v ∈ L
2
loc(R

+; R), the delay operator Dh over an input signal u is defined
by the following relationship:

v = Dh(u) ⇔
{

v(t) = u(t − h) for all t ≥ h

v(t) = 0 otherwise.
(17)

Guaranteed integration of differential equation with delays is challenging. Since
they act as a memory of the past input signal over an interval of width h, the
state of the delay belongs to L

2
loc([0, h], R). The dimension of the system state

space is therefore non finite.
The stability of linear time-invariant (LTI) systems with internal delays is

studied in [25]. The state of the delay is projected over finite Legendre polyno-
mial basis. These projections are time-dependent values since the state of the

13



(a)

(b)

Tank 1

Tank 2

Pump

(c)

Fig. 3. The tank system described by Eq. (16) is represented in Fig. 3c. The algorithm
presented in Sect. 4 is used to compute the overapproximation of h1 (in blue) and h2

(in orange). In Fig. 3a, the prior overapproximation of the reachable set Ỹ0 is shown.

Figure 3b shows the a priori enclosures Ỹ5 at the 5th iteration of the algorithm. (Color
figure online)

delay is also time-varying. The time derivative of these projections only depends
on the input of the delay operator. Then the norm of the state is overapproxi-
mated using a Bessel inequality. By integrating this inequality, we get an Integral
Quadratic Constraint (IQC) between the output of the delay operator, its input,
the derivative of its inputs, the projections over the truncated basis of Legendre
polynomial and an error signal. The IQC models the energy of the Legendre
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expansion’s remainder (i.e. the error signal). In [25], the stability of the delayed
LTI system is assessed for all possible error signal which verifies the derived IQC.
We use this IQC to overapproximate the reachable set of such system.

In what follows, we use the first order of the IQC relationship described in
[25, Theorem 5]. The state ξ corresponds to the average value of the delay’s
state. The remaining energy of the state is bounded by an integral quadratic
constraint.

⎧
⎪⎨
⎪⎩

ξ̇(t) = −15ξ(t) + 1.5v(t) − w(t) with ξ(0) = 0

under the IQC

∫ t

0

w(s)2ds ≤
∫ t

0

[
0.0025v̇(s)2 − 0.75 (v (s) − ξ (s))

2
]
ds

(18)
The IQC system Eq. (18) is used to overapproximate the delay in the following

system: {
ẋ = −x − kcDh(x)

x(0) = 0
(19)

where kc = 4 and h = 0.01. Equations (17, 18 and 19) are then combined in a
unique linear time-invariant system with an integral quadratic constraint.

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = AX + Bww(t) + Buu(t)

X(0) =

[
0
0

]

∫ t

0

w(τ)2dτ ≤
∫ t

0

[
X(τ)
u(τ)

]⊤

M

[
X(τ)
u(τ)

]
(20)

where the matrices are defined by

A =

[
1.0417 15.6250

−6.0417 −15.6250

]
, Bw =

[
1.0000

−1.0000

]
, Bu =

[
1.0417

−0.0417

]

and

M =

⎡
⎣

−12.4566 −30.5990 0.0434
−30.5990 −68.3594 0.6510

0.0434 0.6510 0.0434

⎤
⎦ .

The bounds in Eq. (13) are [w] = [−10, 10] and [w′] = [−1, 1]. The initial noise
set is defined such that [w0] = [w].

Figure 4 corresponds to the flowpipe of the delayed system modeled with the
integral quadratic constraint. YIQC is the reachable tube of the corresponding
system.

5.3 Discussion

The main motivation of this work is to use Integral quadratic constraint (IQC)
models in a guaranteed integration framework. IQC models are widely used in
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Fig. 4. Computation of the flowpipe of the system Eq. (20) using guaranteed numerical
integration framework described in Sect. 3 and the contractor C introduced in Sect. 4.
y (the blue line) corresponds to the response of the delayed system. YIQC is the exact
flowpipe of system computed using the paraboloid method presented in [22]. (Color
figure online)

the robust control community for stability analysis of dynamical systems. When
the IQC system is stable, there exists an invariant over the set of states (x, z)
and the maximal reachable z value (i.e. the maximal integral value reachable) is
bounded for any trajectory.

In our approach, such an invariant does not exists. The overapproximation of
the maximal reachable z is constantly increasing. Consequently, bounds provided
by the fixed point algorithm are also strictly increasing. When these bounds
reach the prior bounds given by Eq. (7) over the disturbance, the reachable set
tends to the reachable set computed without the integral constraint. Figure 5
corresponds to the reachable set of Example 2 for a larger horizon of integration.
The integral constraints provide bounds over w. However, when the energy level
is too high, these bounds are strictly included in bounds given by Eq. (7). At
t = 15 s, the reachable set converges to the reachable set of the system with no
integral constraint between the disturbance and the state.

The bounds of the noise input depends on the result of the used guaranteed
set integration method. Therefore, if the later are too pessimistic, the proposed
contraction method will only rely on the bounds [w] and [w′] of Eq. (7).

In our approach, a larger class of systems is considered compared to the
linear case treated in [22]. Contrary to IQC models, only the dependence in the
disturbance needs to be quadratic for the integral constraint.

In term of scalability, our approach needs the state of the original dynamical
system to be extended from n variables to p = n+m+1 variables (m states for w,
1 state for z). Since the noise signal span in a subspace of Rn, m is always smaller
than n. Since m is often close to 1 (the delay modeled as an integral quadratic
constraint introduce a 1 dimensional noise signal), p is close to n (or 2n in the
worst case). However only the integration part can suffer from the dimension of
the system. Based on the advantage of our approach, a less expansive integration
method can be used for large systems for a similar result.
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We presented 2 examples. A non-linear system in Sect. 5.1 and a linear sys-
tem with delay in Sect. 5.2. A similar approach could be applied to non-linear
system with delay since the integration method can handle non-linear differential
equations.

Fig. 5. Computation of the flowpipe of the system Eq. (3) in Example 2 over [0, 20] using
guaranteed numerical integration framework described in Sect. 3 and the contractor C
introduced in Sect. 4. In blue, the reachable set when only Eq. (7) is used (i.e., when
the integral constraint is not used). In green, the reachable set of the system when the
integral constraint is taken into account. (Color figure online)

6 Conclusion

We presented a method to compute an overapproximation of the reachable tube
for dynamical systems with integral constraints over the input set. The integral
constraint is expressed as a contractor over the set of trajectories and used in a
fixed point algorithm together with a propagation process.

The method developed in this work is guaranteed (we compute an overap-
proximation of the reachable tube). However, our overapproximations tend to
constantly grow in size, even when the reachable set is known to be bounded.
At each time instant, the integral term of the integral constraint is overapprox-
imated by an interval, its upper bound is used to compute bounds over distur-
bances. For a trajectory, the worst case disturbance consumes all the integral
constraint and the best case disturbance consumes none of it. So the integral
level is always growing and at the same time, the reachable set is overapproxi-
mated with the worst case disturbance level. In future works, a template based
scheme will be used to overapproximate the maximum reachable integral value
of the constraint.

Models with integral constraints are a classical tool from the robust control
community. In this field, they represent energy gains between signals of the
system and a disturbance signal. Many complex systems can be analyzed in
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this way. In future works, more applications will be discussed. More specifically,
error bounds over reduced models can be expressed as a 2-norm constraints
with the input signal of the system. Simplification of models is very appealing
for guaranteed integration since the computational time is mainly dependent on
the system dimension. Being able to reduce the order of the system and to bound
the error with a 2-norm gain would lead to more efficient algorithm.

Our method provides ways to verify physical systems where the sensors are
subject to energy bounded disturbances. Currently, most of these noise models
are bounds over the signal. Such models are problematic when they disturb
an integrating dynamic. Energy bounded noises might lead to more realistic
noise models and therefore to better overapproximation of dynamical system
reachable set. Future work will include verification of robotic systems subject to
sensor noises.
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