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Watershed-based attribute profiles for pixel
classification of remote sensing data

Deise Santana Maia, Minh-Tan Pham, and Sébastien Lefèvre

Univ. Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France

Abstract. We combine two well-established mathematical morphol-
ogy notions: watershed segmentation and morphological attribute profile
(AP), a multilevel feature extraction method commonly applied to the
analysis of remote sensing images. To convey spatial-spectral features
of remote sensing images, APs were initially defined as sequences of fil-
tering operators on the max- and min-trees computed from the original
data. Since its appearance, the notion of APs has been extended to other
hierarchical representations including tree-of-shapes and partition trees
such as α-tree and ω-tree. In this article, we propose a novel extension
of APs to hierarchical watersheds. Furthermore, we extend the proposed
approach to consider prior knowledge from training samples, leading to
a more meaningful hierarchy. More precisely, in the construction of hi-
erarchical watersheds, we combine the original data with the semantic
knowledge provided by labeled training pixels. We illustrate the relevance
of the proposed method with an application in land cover classification
using optical remote sensing images, showing that the new profiles out-
perform various existing features.

1 Introduction

Mathematical morphology has a long history with the processing and analysis
of remote sensing images, as attested by earlier surveys on this topic [20]. In
particular, in the past decade, special attention has been given to a multi-level
feature extraction method, known as Attribute Profile (AP)[8], which relies on
hierarchical image representations to convey spatial-spectral features of remote
sensing images.

In this article, we study the relevance of hierarchical watersheds for remote
sensing applications. Our contributions are two-fold: (1) the introduction of the
Watershed-AP, which is an extension of AP to hierarchical watersheds; and (2)
an investigation on the use of prior knowledge in the construction of hierarchical
watersheds for the classification of remote sensing images.

This article is organized as follows. In section 2, we recall the definitions of
graphs, hierarchical watersheds and AP, and we review the literature on prior
knowledge for image processing. Section 3 introduces the Watershed-AP and our
method to integrate semantic knowledge in its construction. Finally, experiments
with remote sensing images are given in section 4.
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Fig. 1. (a): A weighted graph G = (V,E,w). (b): A tree representation of the hierar-
chical watershed H of G for the sequence (C,A,B,D) of minima of G.

2 Background notions

In this section, we first review graphs and hierarchical watersheds. Then, we
review the literature on the use of prior knowledge and markers in the field of
image processing. Finally, we recall the definition of Attribute Profile (AP).

2.1 Graphs and hierarchical watersheds

Watershed segmentation was proposed in the late 70’s and, since then, this con-
cept has been extended to several frameworks and implemented through a variety
of algorithms. The intuition behind the various definitions of the watershed seg-
mentation derive from the topographic definition of watersheds: dividing lines
between catchment basins, which are, in their turn, areas where collected pre-
cipitation flows into the same regional minimum. These notions can be extended
to gray-scale images and graphs, leading to different definitions of watershed
segmentation. In this paper, we focus on watershed-cuts and hierarchical water-
sheds defined in the context of edge-weighted graphs, as formalized in [5,6]. In
the remainder of this section, we present the notions of graphs, hierarchies of
partitions and hierarchical watersheds.

A (edge) weighted graph is a triplet G = (V,E,w) where V is a finite set, E
is a subset of V × V , and w is a map from E into R. The elements of V and E
are called vertices and edges (of G), respectively. Let G = (V,E,w) be a weighted
graph and let G′ = (V ′, E′, w) be a graph such that V ′ ⊆ V and E′ ⊆ E. We say
that G′ is a subgraph of G. A sequence π = (x0, . . . , xn) of vertices in V ′ is a path
(in G′) from x0 to xn if {xi−1, xi} is an edge of G′ for any 1 ≤ i ≤ n. If x0 = xn
and if there are no repeated edges in π, we say that π is a cycle (in G′). The
subgraph G′ of G is said to be connected if, for any x and x′ in V ′, there exists
a path from x to x′. Moreover, we say that G′ is a connected component of G if:

1. for any x and x′ in V ′, if {x, x′} ∈ E then {x, x′} ∈ E′; and
2. there is no edge e = {y, y′} ∈ E such that y ∈ V \ V ′ and y′ ∈ V ′.

Let G = (V,E,w) be a graph and let G′ = (V ′, E′, w) be a connected subgraph
of G. If the weight of any edge in E′ is equal to a constant k and if w(e) > k
for any edge e = {x, y} such that x ∈ V ′ and y ∈ V \ V ′, then G′ is a (local)
minimum of G.
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For instance, Figure 1(a) illustrates a weighted graph with four minima de-
limited by the dashed lines.

Important remark: in the remainder of this section, G = (V,E,w) denotes
a connected weighted graph and n denotes the number of minima of G.

Let G′ = (V ′, E′, w) be a subgraph of G. A Minimum Spanning Forest (MSF)
of G rooted in G′ is a subgraph G′′ = (V,E′′, w) of G such that:

1. for every connected component X ′′ of G′′, there is exactly one connected
component X ′ of G′ such that X ′ is a subgraph of X ′′;

2. every cycle in G′′ is a cycle in G′; and
3.

∑
e∈E′′ w(e) is minimal among all graphs which satisfy conditions (1) and (2).

A partition of V is a set P of disjoint subsets of V such that the union of the
elements in P is V . The partition of V induced by a graph G′ is the partition P
such that every element of P is the set of vertices of a connected component of G′.
A hierarchy of partitions of V is a sequence H = (P0, . . . ,Pn) of partitions of V
such that Pn = {V } and such that, for any 0 < i ≤ n, every element of Pi is
the union of elements of Pi−1.

Any hierarchy of partitions H can be represented as a tree whose vertices
correspond to the regions of H and whose edges link nested regions. For instance,
Figure 1(b) shows a tree representation of the hierarchy H = (P0,P1,P2,P3),
where P0 = {{a, b}, {c, d}, {e, f}, {g, h}}, P1 = {{a, b}, {c, d}, {e, f, g, h}}, P2 =
{{a, b, c, d}, {e, f, g, h}} and P3 = {{a, b, c, d, e, f, g, h}}.

Let S = (M1, . . . ,Mn) be a sequence of n distinct minima of G such that,
for any 0 < i ≤ n, we have Mi = (Vi, Ei, w). The hierarchy of Minimum
Spanning Forests of G for S, also known as hierarchical watershed of G for S, is
a hierarchy H = (P1, . . . ,Pn) of partitions of V such that each partition Pi is
the partition induced by the MSF of G rooted in the graph (

⋃
j≥i
Vj ,

⋃
j≥i
Ej , w).

A hierarchical watershed of the graph G of Figure 1(a) for the sequence
(C,A,B,D) of minima of G is illustrated in Figure 1(b).

2.2 Prior knowledge for image processing

Unsupervised data pre-processing methods, such as watershed segmentation and
image filtering (e.g. Sobel, Laplacian and morphological filters), are successfully
employed in several computer vision tasks, including classification and detec-
tion problems. Moreover, when prior knowledge is provided, this can be used to
provide further improvements.

In the context of image segmentation, a widespread method to introduce prior
knowledge in the results is to consider user-defined markers, which are subsets of
image pixels indicating the locations of objects of interest. Such markers guide
the segmentation algorithm and assure that the objects of interest are segmented
into distinct regions. The notion of markers has been especially explored in wa-
tershed segmentations, in which catchment basins are grown from input markers
instead of the regional minima of an image (or graph) [2].
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The use of markers in a watershed segmentation can go beyond the intro-
duction of new regional minima. The values or spectral signatures of the marked
pixels can provide further knowledge about the objects we aim to segment. For
instance, in [10,11], the authors use the spectral signature of training samples in
the construction of watershed segmentations of multi-spectral images. First, the
spectral signature of training pixels is used to train a classifier, which is then ap-
plied on the whole image and used to obtain a probability map per class. Then,
those maps are combined and used to obtain a single watershed segmentation.
Another use of supervised classification for watersheds has been proposed in [15],
where the watershed segmentation is computed from user-defined markers com-
bined with probability maps computed for each targeted class. More precisely,
catchment basins are grown from different markers, and the probability maps,
combined with the original data, are used simultaneously in the process. In re-
mote sensing, the later approach has been applied to the detection of buildings [1]
and shorelines [17] in multi-spectral images. Finally, in [9], prior knowledge from
markers is employed on several interactive image segmentation methods, includ-
ing watersheds, in the framework of edge-weighted graphs. Edge weights are
defined as a linear combination of the weights obtained from two sources: from
the pixel values and from the classification probability maps computed from the
markers that are incrementally provided by the users.

More generally, knowledge from markers can be used by other kinds of pre-
processing methods beyond watershed segmentation. Namely, spectral signatures
of training pixels have been used in [4] to optimize the data pre-processing with
alternating sequential filters. Hence, training pixels are used for pre-processing
the input data, as well as for the final pixel classification. A related approach is
proposed in [23], where training pixels are used to optimize vector orderings for
morphological operations applied to hyperspectral images.

In the context of hierarchical segmentation, prior knowledge can play a role
in defining which regions should be highlighted at different levels of a hierarchy.
In [21], a marker-based hierarchical segmentation is proposed for hyperspectral
image classification. Labeled markers are derived from a probability classifica-
tion map, which is obtained from training samples, as done in [10,11,15]. Then,
those labeled markers guide the construction of a hierarchical segmentation by
preventing regions of different classes to be merged, and by propagating the la-
beled markers to unlabeled regions. Another related approach, proposed in [12],
uses prior knowledge to keep the regions of interest from being merged early in
the hierarchy, i.e., the details in the regions of interest are preserved at high
levels of the hierarchy.

Finally, in [16], the authors propose a knowledge-based hierarchical repre-
sentation for hyperspectral images. In their approach, a dissimilarity measure
learned from training pixels is employed in the construction of α-trees.

2.3 Attribute profiles

Attribute profile (AP) [8] is a multilevel feature extraction method commonly
applied to the analysis of remote sensing images. To convey spatial-spectral



Watershed-based attribute profiles 5

features of remote sensing images, APs were initially defined as sequences of
filtering operators on the max- and min-trees computed from the original data.
Let X : P → Z, P ⊆ Z2 be a gray-scale image. The calculation of APs on
X is achieved by applying a sequence of attribute filters based on a min-tree
(i.e. attribute thickening operators {φAk }Kk=1) and on a max-tree (i.e. attribute
thinning operators {γAk }Kk=1) as follows:

(X) =
{
φAK(X), φAK−1(X), . . . , φA1 (X), X,

γA1 (X), . . . , γAK−1(X), γAK(X)
}
,

(1)

where φAk and γAk are respectively the thickening and thinning operators with
respect to the attribute A and to the threshold k, and K is the number of selected
thresholds. More precisely, the thickening φAk (X) of X (resp. thinning γAk (X) of
X) with respect to an attribute A and to a threshold k is obtained as follows:
given the min-tree T (resp. max-tree T ) of X, the A attribute values (e.g. area,
circularity and contrast) of the nodes of T are computed. If the attribute A is
increasing, the nodes whose attribute values are inferior to k are pruned from
the tree T ; otherwise other pruning strategies can be adopted [18]. Finally, the
resulting image is reconstructed by projecting the gray levels of the remaining
nodes of T into the pixels of X.

Since its appearance, the notion of APs has been extended to other hierarchi-
cal representations including tree-of-shapes [7] and partition trees such as α-tree
and ω-tree [3]. To obtain a profile from a partition tree instead of a component
tree, some adaptations have to be made to the original definition of APs, as
discussed in [3]. For instance, the nodes of a partition tree are not naturally
associated to gray-level values, as it is the case of component trees. The strategy
adopted in [3] is to represent each node as its level in the tree or as the maximum,
minimum, or average gray-level of the leaf nodes (pixels) of this node. For more
details about APs’ extensions, we invite readers to refer to a recent survey [18].

3 Watershed-based attribute profiles

In this article, we extend the notion of AP to hierarchical watershed obtained
in the framework of edge-weighted graphs.

As mentioned in section 2.1, hierarchies of partitions, such as hierarchical
watersheds, can be equally represented a (partition) tree. Hence, the filtering
strategy of Watershed-APs is similar to the strategy described in [3] for the α-
and ω-APs.

As discussed in [3], image reconstruction from partition trees is not straight-
forward as it is from component trees. For node representation, we adopt one of
the solutions proposed in [3] and already mentioned in section 2.3, in which a
node is represented by the average gray-level of the pixels belonging to it. We
highlight that, in the case of multiband images, the average grey level computed
on each band might lead to spectral values not present in the input image. How-
ever, in the context of attribute profiles used for pixel classification, our aim is
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not image filtering. Hence, the fact that new spectral values (a.k.a. false colors)
are created is not a problem as long as they allow us to distinguish between
different semantic classes.

Note that hierarchical watersheds are usually constructed from a gradient of
the original image, which contains more information about the contours between
salient regions than about the spectral signature of those regions. Hence, we
consider the original pixel values to obtain the nodes representation instead of
the image gradient.

Formally, let X : P → Z be a gray-scale image and let G = (V,E,w) be a
weighted graph which represents a gradient of X, i.e., V = P and, for every
edge e = {x, y} in E, the weight w(e) represents the dissimilarity between x
and y, e.g. w(e) = |X(x)−X(y)|. Let S be a sequence of minima of G ordered
according to a given criterion C, and let H be the hierarchical watershed of G
for the sequence S. Given the tree representation T of H, a Watershed-AP of X
for the criterion C is constructed as a sequence of image reconstructions from
filtered versions of T .

As discussed in section 2.2, user-defined markers and prior knowledge can
boost the performance of watershed segmentations. In this article, we extend
the use of prior knowledge to hierarchical watersheds. More specifically, we aim
to enforce regional minima at the regions with high probability of belonging to
any given ground-truth class. This is done through a combination of the methods
proposed in [10,11,15]. Given a dataset I (e.g. a panchromatic or a RGB image)
and its training set composed of c classes, we compute its hierarchical watershed
using prior knowledge as follows:

1. Train a classifier using the training set of I and compute per-pixel classifi-
cation probabilities (p1, . . . , pc) for all pixels of I;

2. Combine the classification probabilities into a single map µ : X → [0, 1] such
that, for any pixel x in X, µ(x) = 1−

√
p1(x)2 + . . . pc(x)2

3. Compute a 4- or 8-connected weighted graph GP = (V,E,wP ) from µ such
that, for any edge e = (x, y) in E, we have wP (e) = max(µ(x), µ(y));

4. Compute a 4- or 8- connected weighted graph GG = (V,E,wG) which rep-
resents a gradient of I. For instance, for any edge e = (x, y) in E, we may
have wG(e) = |I(x)− I(y)| or wG(e) = (I(x)− I(y))2;

5. Combine the weight maps wP and wG into a map wGP such that, for any
edge e in E, we have wGP = wP (e)× wG(e); and

6. Finally, compute the hierarchical watershed of GGP = (V,E,wGP ) for a given
sequence of minima of G.

In the first step of our method, we are aware that: (1) there might be sample
pixels of a given class whose spectral values are not represented in the training
set, and (2) there might be pixels in the training set with very similar spectral
signatures but which belong to distinct classes. In those cases, we expect the
classifier to assign low classification probabilities to such pixels. This means that
the watershed segmentation at those regions will be mostly guided by the original
gray-levels of the image gradient. Then, in the second step of our method, we



Watershed-based attribute profiles 7

combine the classification probability maps into a single probability map µ. We
expect this combination to provide flat zones of pixels with high probability of
belonging to any given class, i.e., subsets of pixels that should be merged early
in the resulting hierarchical watershed. In the extreme case where the classifier
assigns very high classification probabilities to all pixels of I, we would have a
single flat zone and, consequently, a hierarchy with a single segmentation level.
However, in that case, we might not need APs to improve the classification results
on the image I. In the third step, a weighted graph (V,E,wP ) is obtained from
the combined probability map µ. Our choice for computing edge weights as the
maximum between the probability values of neighbouring pixels was actually
heuristic and was based on a few experiments with the datasets described in the
next section. In the steps 4 and 5, a gradient (V,E,wG) of I is computed and then
combined with (V,E,wP ) as a multiplication of edge weights, similarly to [15].
We note that the proposed method is related to ones introduced in [12,16], the
main difference being the type of hierarchy under consideration and how the
original data is combined with the prior knowledge.

In Figure 2, we show that the proposed method can be effectively used to
highlight objects of interest (e.g. cars) in hierarchical watersheds. Given the
RGB image I of Figure 2(a) and the set of labeled training samples for the
car (in blue) and background (in red) classes of Figure 2(b), we compute the
probability map per class and combine them into the map µ of Figure 2(c), in
which dark regions are composed of pixels with high probability of belonging to
any given class. Then, the weighted graph GP = (V,E,wP ) is computed from
µ as described in the third step of our method. Next, we compute the gradient
GG = (V,E,wG) of the Red channel of I such that, for any edge e = (x, y) in E,
we have wG(e) = |I(x)− I(y)|. At this step, the Green and Blue channels could
have been chosen and other dissimilarity measures could be used as well. Then,
the weight maps wP and wG are combined into wPG as described previously.
Finally, to compare the hierarchies obtained with and without prior-knowledge,
we computed the area-based hierarchical watersheds H and H′ of GG and GGP ,
respectively. In Figures 2(d), (e) and (f), we show the reconstructions of the tree
representation of H after filtering the nodes with area inferior to 100, 500 and
1000, respectively. Those reconstructions are represented with random colors.
Similarly, Figures 2(g), (h) and (i) show the reconstructions performed on the
tree representation of H′ for the same filterings. We observe that, by imposing
regional minima at the location of the cars, we make those objects to appear
earlier in the hierarchy H′ when compared to H and, at the same time, to be
merged later to their surrounding regions. For instance, the dark blue car on the
top left appears as a single region in all reconstructions performed on the tree
representation of H′, which is not the case of H.

4 Experimental results

In this section, we evaluate the performance of Watershed-AP (computed with
and without prior-knowledge) in the context of land-cover classification of remote
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Fig. 2. (a): original image I. (b) training samples in red (background) and blue (cars).
(c) classification probability map µ. (d), (e) and (f): image reconstructions obtained
from a hierarchical watershed of I, by filtering the nodes with area inferior to 1000,
5000 and 10000, respectively. (g), (h) and (i): image reconstructions obtained from a
hierarchical watershed of the combination of I and µ, by filtering the nodes with area
inferior to 1000, 5000 and 10000, respectively.

sensing images. We first describe the panchromatic and RGB images considered
in our study, as well as the experimental settings used for evaluation. Finally, we
show that Watershed-AP outperforms AP and its variants including SDAP [7],
α-AP [3] and ω-AP [3], on both datasets.

4.1 Datasets

We validate our approach on two remote sensing datasets: the panchromatic
Reykjavik dataset and a RGB image of Zurich dataset [24].

The Reykjavik dataset is a panchromatic image of size 628 × 700 pixels ac-
quired by the IKONOS Earth imaging satellite with 1-m resolution in Reykjavik,
Iceland. This data consists of six thematic classes including residential, soil,
shadow, commercial, highway and road. The image was provided with already-
split training and test sets (22741 training samples and 98726 test samples). The
input image together with its thematic ground truth map are shown in Fig. 3(a).

The Zurich Summer dataset [24] is a collection of 20 NIR+RGB images of
various dimensions taken from a QuickBird acquisition of the city of Zurich,
Switzerland, in August 2002. The ground-truth provided for each image consists
of at most eight thematic classes: roads, buildings, trees, grass, bare soil, water,
railways and swimming pools. In our experiments, we only consider the RGB
channels of the first image zh1.tif of this dataset. The training set is composed
of 1% of the labeled pixels randomly extracted for each class. The input image
and its ground-truth are given in Fig. 3(b).
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(a) (b)

Fig. 3. Two data sets used in our experimental study. (a) The 628 × 700 Reykjavik
data. Left to right: panchromatic image, ground truth and training set including six
thematic classes: residential, shadow, highway, soil, commercial,

road. (b) The 610× 340 Zurich data. Left to right: RGB image and ground truth
including seven thematic classes: roads, buildings, trees, grass,
bare soil, railways, swiming pools.

4.2 Experimental settings

AP and its variants were computed on the Reykjavik and Zurich datasets with
the usual area and moment of inertia (MoI) attributes. The following ten area
thresholds and four MoI thresholds were adopted for both datasets: λarea =
{25, 100, 500, 1000, 5000, 10000, 20000, 50000, 100000, 150000} and λmoi = {0.2,
0.3, 0.4, 0.5}. For the Zurich dataset, the APs and their extensions are com-
puted independently on each of the RGB bands and are concatenated, leading
to Extended Attribute Profiles (EAP).

For each dataset I, hierarchical watersheds were computed from two 4-
connected edge-weighted graphs: from the graph GG = (V,E,wG) obtained from
a gradient of the original data I (without any prior-knowledge from markers),
and the second one computed from the combination of the graph GG with the
classification probability map obtained from the training set of I, as described
in Section 3. For every edge e = (x, y) in E, we define wG(e) as |I(x)− I(y)|.

Supervised pixel classification was performed twice, once for obtaining the
classification probability map and then to provide the final land-cover pixel clas-
sification. Both were performed using a Random Forest classifier with 100 trees.
The number of variables used for training was set to the square root of the
feature vectors length. The different approaches are compared using the overall
accuracy (OA), average accuracy per class (AA) and κ coefficient, as done in [8].
For each tested method, we report the average and standard deviation of the
classification scores over ten runs.

As defined in section 2.1, hierarchical watersheds can be computed for any
given ordering on the minima of a weighted graph. In our experiments, such
orderings are obtained from extinction values [14,22] based on the area, dynamics
and volume attributes.

5 Results and discussion

Tables 1-4 present the classification results of the Reykjavik and Zurich datasets.
We compare the performance of the following methods: AP-maxT and AP-minT
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Table 1. Classification result of Reykjavik dataset obtained by different methods using
the default 4-connectivity and 1-byte quantization.

Method Dimension Classification result

OA (%) AA (%) κ× 100

Panchromatic 1 63.86± 0.01 53.35± 0.05 52.70± 0.00

AP-maxT [8] 16 76.01± 0.23 69.15± 0.10 68.89± 0.29

AP-minT [8] 16 72.90± 0.48 64.01± 0.56 64.97± 0.61

AP [8] 30 84.45± 0.43 78.22± 0.37 80.11± 0.53

SDAP [7] 16 81.51± 0.37 74.83± 0.34 76.45± 0.45

α-AP [3] 16 74.99± 0.14 66.48± 0.22 67.90± 0.19

ω-AP [3] 16 75.06± 0.22 66.69± 0.38 67.99± 0.30

Area-WS-AP 16 85.84 ± 0.33 81.30 ± 0.5 81.87 ± 0.41

Dyn-WS-AP 16 75.96± 0.13 66.86± 0.18 69.20± 0.14

Vol-WS-AP 16 85.62± 0.20 80.13± 0.31 81.54± 0.27

Area-PWS-AP 16 84.63± 0.09 79.05± 0.12 80.21± 0.07

Dyn-PWS-AP 16 82.93± 0.36 76.29± 0.55 77.99± 0.48

Vol-PWS-AP 16 83.86± 1.22 79.15± 1.25 79.41± 1.51

obtained by filtering the max- and min-tree, respectively; AP [8], obtained as a
concatenation of AP-maxT and AP-minT; SDAP [7]; α-AP and ω-AP [3]; and
the Watershed-AP computed with and without prior knowledge. To simplify
the notations, Watershed-AP computed without and with prior knowledge are
denoted respectively as A-WS-AP and A-PWS-AP, where A is the attribute
used in the construction of the hierarchical watersheds, namely Area, Dynamics
(Dyn) and Volume (Vol).

For the Reykjavik dataset, Watershed-AP constructed with the area and vol-
ume attributes outperform all other methods. As shown in Table 1, the best clas-
sification result, obtained with Area-WS-AP, outperforms AP by 1.39%, 3.08%
and 1.76% in terms or OA, AA and κ, respectively. Moreover, considering only
the APs obtained from partition trees (α-AP, ω-AP and Watershed-AP), the
Watershed-AP outperform both α- and ω-APs by more than 10% with respect
to OA, AA and κ. In terms of classification results per class (see Table 2), the
highest scores are achieved by Watershed-AP and AP, except for the shadow
class, for which none of those methods where able to outperform the classifica-
tion based only on panchromatic pixel values.

Let us now analyse the influence of the use of prior knowledge in the perfor-
mance of Watershed-AP. For the Watershed-AP computed with the dynamics
attribute, the use of prior knowledge led to an improvement of 6.97%, 9.43% and
8.79% in terms of OA, AA and κ, respectively, and better accuracy scores for
all six semantic classes. Whereas, the same did not happen for the Watershed-
AP computed with area and volume, for which the overall classification results
decreased by more than 1%.

On the Zurich dataset, the Watershed-APs outperform all other methods
(see Table 3). The best method, Vol-PWS-AP, outperforms SDAP by 3.11%,
3.16% and 4.21% in terms of OA, AA and κ, respectively. Similar to the Reyk-
javik dataset, the Watershed-AP yielded the best results per class, except for the
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Table 2. Classification result of Reykjavik dataset obtained by different methods using
the default 4-connectivity and 1-byte quantization.

Method Dim. Classification results per class

Residential Soil Shadow Commercial Highway Road

Panchromatic 1 6.02± 0.36 73.81± 0.00 90.94 ± 0.01 77.86± 0.09 16.60± 0.00 54.87± 0.01

AP-maxT [8] 16 44.55± 0.42 79.64± 1.29 88.28± 0.01 88.41± 1.51 51.15± 0.15 62.88± 0.18

AP-minT [8] 16 30.79± 0.68 85.55± 0.22 81.04± 0.73 81.89± 0.16 39.93± 6.37 64.89± 3.42

AP [8] 30 62.11± 0.57 91.29± 1.52 76.58± 1.61 92.79 ± 0.36 74.45± 0.32 72.08 ± 0.27

SDAP [7] 16 56.73± 1.11 89.57± 1.17 78.50± 0.89 90.45± 0.12 62.77± 0.24 70.94± 1.20

α-AP [3] 16 45.68± 1.33 88.45± 0.39 81.40± 0.08 82.11± 0.05 69.34± 0.37 31.93± 0.58

ω-AP [3] 16 47.15± 1.24 88.60± 0.38 81.39± 0.06 82.02± 0.16 69.20± 0.31 31.75± 1.66

Area-WS-AP 16 79.23 ± 1.39 94.98 ± 0.28 87.38± 0.66 89.33± 0.08 87.99± 1.52 48.88± 1.65

Dyn-WS-AP 16 47.16± 1.08 89.74± 0.15 80.26± 0.16 84.47± 0.48 71.68± 0.19 27.85± 0.41

Vol-WS-AP 16 74.41± 0.82 95.98± 0.19 84.00± 0.70 89.85± 0.04 87.62± 1.33 48.90± 2.07

Area-PWS-AP 16 71.05± 0.11 91.08± 0.08 80.67± 0.50 91.90± 0.13 88.09 ± 0.00 51.54± 0.34

Dyn-PWS-AP 16 65.70± 1.17 94.87± 0.23 80.81± 0.67 88.55± 0.22 77.99± 0.19 49.84± 3.51

Vol-PWS-AP 16 75.05± 0.16 89.91± 3.24 79.50± 0.45 90.27± 0.16 84.89± 3.37 55.29± 5.31

Table 3. Classification result of Zurich dataset obtained by different methods using
the default 4-connectivity and 1-byte quantization.

Method Dimension Classification result

OA (%) AA (%) κ× 100

RGB 3 80.21± 0.03 69.32± 0.07 73.18± 0.04

AP-maxT [8] 48 88.44± 0.02 87.13± 0.04 84.37± 0.03

AP-minT [8] 48 87.90± 0.04 81.56± 0.07 83.69± 0.05

AP [8] 90 92.83± 0.04 92.43± 0.10 90.34± 0.05

SDAP [7] 48 93.78± 0.04 92.17± 0.10 91.61± 0.05

α-AP [3] 48 92.55± 0.05 86.10± 0.15 89.96± 0.07

ω-AP [3] 48 92.48± 0.03 85.79± 0.14 89.86± 0.04

Area-WS-AP 48 96.61± 0.03 95.30± 0.03 95.44± 0.04

Dyn-WS-AP 48 93.88± 0.03 88.70± 0.12 91.76± 0.04

Vol-WS-AP 48 96.79± 0.02 95.09± 0.11 95.69± 0.03

Area-PWS-AP 48 96.73± 0.04 95.46± 0.08 95.60± 0.05

Dyn-PWS-AP 48 94.07± 0.04 88.60± 0.16 92.01± 0.06

Vol-PWS-AP 48 96.89 ± 0.05 95.33 ± 0.17 95.82 ± 0.06

‘swimming pools’ class (see Table 4). Moreover, on this dataset, the use of prior
knowledge in the construction of hierarchical watersheds led to small improve-
ments for all three Watershed APs. More precisely, we observed an improvement
of up to 0.25% in terms of OA, AA and κ for the Watershed-APs constructed
with the area, dynamics, and volume attributes.

6 Conclusion

We proposed the Watershed-AP as an extension of AP to hierarchical water-
sheds computed from (edge) weighted graphs. Besides, we investigate the rele-
vance of using semantic prior knowledge in the construction of such hierarchies.
We validated our approach on the pixel classification of two remote sensing im-
ages, which showed the potential of hierarchical watersheds in this field. On
both datasets, Watershed-APs, computed with and without prior-knowledge,
presented the highest evaluation scores when compared to the standard APs.
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Table 4. Classification result of Zurich dataset obtained by different methods using
the default 4-connectivity and 1-byte quantization.

Method Dim. Classification result per class

Roads Buildings Trees Grass Bare Soil Railways Swimming Pools

RGB 3 71.79± 0.15 79.14± 0.12 51.16± 0.19 91.76± 0.06 95.69± 0.10 5.87± 0.37 89.85± 0.43

AP-maxT [8] 48 85.88 ± 0.12 90.65 ± 0.09 56.41 ± 0.20 93.26 ± 0.07 99.30 ± 0.03 84.72 ± 0.14 99.66 ± 0.26

AP-minT [8] 48 78.62 ± 0.17 85.22 ± 0.13 77.31 ± 0.20 96.29 ± 0.04 97.64 ± 0.05 43.51 ± 0.44 92.37 ± 0.28

AP [8] 90 88.12 ± 0.19 93.49 ± 0.07 76.74 ± 0.20 96.53 ± 0.05 99.48 ± 0.02 93.75 ± 0.23 98.90 ± 0.43

SDAP [7] 48 90.94 ± 0.12 94.35 ± 0.07 79.42 ± 0.14 97.09 ± 0.04 99.56 ± 0.01 84.94 ± 0.54 98.92 ± 0.41

α-AP [3] 48 88.00 ± 0.11 95.25 ± 0.07 82.01 ± 0.26 95.30 ± 0.05 98.64 ± 0.03 58.07 ± 0.83 85.42 ± 0.46

ω-AP [3] 48 88.14 ± 0.10 95.12 ± 0.06 82.19 ± 0.34 95.21 ± 0.04 98.68 ± 0.04 55.65 ± 0.60 85.53 ± 0.70

Area-WS-AP 48 95.83 ± 0.08 97.32 ± 0.05 88.20 ± 0.11 97.88 ± 0.04 99.87 ± 0.01 94.55 ± 0.19 93.44 ± 0.24

Dyn-WS-AP 48 90.01 ± 0.10 96.24 ± 0.11 84.01 ± 0.14 96.18 ± 0.05 99.28 ± 0.03 67.94 ± 0.61 87.25 ± 0.50

Vol-WS-AP 48 96.27 ± 0.06 97.57 ± 0.05 88.74 ± 0.13 97.95 ± 0.03 99.89 ± 0.01 93.40 ± 0.34 91.79 ± 0.98

Area-PWS-AP 48 94.86 ± 0.09 97.71 ± 0.05 88.65 ± 0.16 98.14 ± 0.04 99.74 ± 0.06 94.90 ± 0.40 94.23 ± 0.40

Dyn-PWS-AP 48 90.23 ± 0.14 96.06 ± 0.07 85.25 ± 0.20 96.58 ± 0.04 99.22 ± 0.05 65.26 ± 0.63 87.64 ± 0.74

Vol-PWS-AP 48 95.11 ± 0.11 97.90 ± 0.04 89.10 ± 0.21 98.31 ± 0.04 99.82 ± 0.02 93.28 ± 0.67 93.77 ± 0.81

As future work, we will to explore the versatility of hierarchical watersheds
by considering other methods to obtain the gradient of remote sensing images, as
well as different ways of including prior knowledge in the computation of those
hierarchies. We are also interested in theoretical properties of the Watershed-
AP, namely its link with other related methods such as Feature Profiles [19] and
Extinction Profiles [13].
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