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Abstract

WGMODE is a MATLAB toolbox aimed at studying Whispering Gallery Modes (WGM)
in spherical optical micro-resonators. Whispering gallery modes are specific resonances of
an optical wave trapped inside a dielectric cavity with smooth edges due to continuous
total internal reflection of light. The novelty of the work stands in the implementation
of analytical formulas to compute the volume of a WGM in a spherical cavity while only
approximate asymptotic expressions or purely numerical computations based on the Finite
Element Method where previously available. The toolbox also provides MATLAB programs
to compute and visualize WGM.
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1 Physical and mathematical background

The WGMODE toolbox provide various MATLAB scripts to study WGM in a spherical optical
micro-resonator. For a spherical dielectric cavity, an analytical expression of the electromagnetic
field

E(r,t) = Re[E(r) exp(iwt)], B(r,t) = Re[B(r) exp(iwt)] (1)

corresponding to a WGM (w denotes the resonance frequency) is obtained from Maxwell’s har-
monic equations using the so-called Hansen’s method [I]. We denote by N the optical index
of the dielectric cavity and by R its radius. We set ky = w/c and k = kgN. Using Hansen’s
method, it is found that there exists two kinds of electromagnetic field with different polarization



termed TE (transverse electric) and TM (transverse magnetic) defined in spherical coordinates
(r,0,¢), see Fig. 1] as follows [2, B]. For TE modes, the mode field can be expressed as
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where ¢, m are integers such that —¢ < m < /¢, Xy, Yo and Zy,, denote the Vector Spherical
Harmonics defined from the Scalar Spherical Harmonics Y™ as

Zom =Y" €, Yo =7 VY, Xpn=VY"Ar (4)

and 9y and (; denote respectively the Ricatti-Bessel functions of first and third kinds. They are
related to the Bessel function J,, 1 and Hankel function Héi)l respectively by [4] [5]
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The Spherical Surface Harmonics of degree ¢ and order m is defined as, see [0],
Y0, p) = Com P (cos(8)) e™? —(<m</{ [(eN (6)

where the normalization constant Cy,, is taken to be
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Note that the mode field (E,B) given by f is defined up to a normalization constant.

Moreover, Hankel function Hg 1, and its Riccati-Bessel counterpart ¢, used in 7, express
2

outward-propagating spherical-wave solutions of the spherical wave equation for the sign con-

vention +iwt used here for the frequency in .
For TM modes, we have
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Figure 1: Definition of the spherical coordinate system used.

Here again, the mode field (E, B) given by f@ is defined up to a normalization constant.

Resonance frequencies w are obtained by solving the so-called modal equation [2, [3]
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where P = N for TE modes and P = 1/N for TM modes. As a consequence, a mode is described
in terms of three integers: the integer ¢ involved in the modal equation , one integer n used
to label the solutions of the modal equation for a fixed value of £ and the integer m involved
in the expression of the electromagnetic field of the mode, see f and f@. Note that
this underscores a mode degeneracy since there exists 2¢ + 1 modes with the same values of £
and n, and therefore with the same resonance frequency w, but with a different value for m and
therefore with a different expression for the electromagnetic field. It can be shown that the polar
mode number ¢ is equal to the number of wavelengths taken to travel around the sphere and
that the radial mode number n is equal to the number of intensity maxima of the mode in the
radial direction e,. The index m is called the azimuthal mode number. It can take 2¢ + 1 values
from —¢ to ¢ and it is related to the sinusoidal variation of the mode with the azimuthal angle .
Negative values of m signifies counter-propagating modes. Moreover, ¢ — |m| + 1 is the number
of intensity maxima in the polar direction eg. Thus modes with index n = 1 correspond to the
best confined modes in the radial direction and modes for which m = ¢ are the best confined
in the polar direction. The mode satisfying these conditions and corresponding to the highest
value of £ for which the modal equation has a solution is termed the fundamental mode.
WGM refers in the literature to modes with polar index ¢ close to the highest possible value for
which the modal equation has a solution, together with a small difference ¢ — |m| and n
close to unity [2].

P

(10)

Frequencies w obtained as solutions to the modal equation are complex valued. It is
usual in the study of WGM in optical micro-resonators to introduce the radiative quality factor
as the ratio of the real part of the resonance frequency w and its imaginary part:

_ Re(w)
Im(w)

(11)

The smaller losses by radiation are, the smaller Im(w) is and therefore the higher is the radiative
quality factor. We wish to emphasize that the quality factor of an optical micro-resonator usually
takes into account other losses phenomena, that can be predominant [7, 8, 2]. Therefore, it
is likely to happen that the radiative quality factor is not close to the true, experimentally
measured, quality factor.



In practice, spherical optical micro-resonators often correspond to resonators with a large
radius compared to the resonance wavelength A = w/c of interest in the optical domain. For
such resonators, the solutions to the modal equation corresponding to WGM are related
to large values of the polar mode index ¢. For example, if we consider a 50 um radius silica
sphere at a wavelength A ~ 1.5 um, we obtain the highest values of ¢ greater than 300, see
Section [4l As a consequence, for such a mode the radiative leakage of the energy is small and
a good approximation consists in assuming the radiative part outside the sphere as negligible.
From a mathematical point of view, this approximation consists in considering the following
asymptotic expansions of Bessel’s functions for large order /¢, see e.g. [4, formula 10.19.2] :
Co(z) = ixe(z) where x,; denotes Riccati-Bessel function of the second kind with order ¢ related

to Bessel function Y, 1 by
T
xel@) =~/ 5 Vi1 (a). (12)

Analytical formulas for modes volume in spherical optical micro-resonators presented in the
next section and implemented in the WGMODE toolbox were obtained under this assumption,
mathematically restrictive but very realistic from a practical viewpoint.

This approximation leads to consider the following form for the modal equation

p ViER) _ Xi(koR) (13)
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that admits real solution kg.

The WGMODE toolbox was primarily written to compute the mode volume V of a WGM in
a spherical micro-resonator. The mode volume is defined as the ratio of the total energy stored
inside the resonator for that mode and the maximum energy density of the mode [9, Sec. 1.6],

[10, Sec. 2.7]:
= /// ( I1E( )H2+T IB(r )|2> dr (14)

where E and B are respectively the electric field and magnetic induction of the mode, p and € are
respectively the magnetic permeability and electric permittivity and || || denotes the euclidean
norm in C3. The volume integral is normalized by

e(r) 5, 1 2
M = s (5D IB@IE + 50 1B

the maximum of the energy density of the optical mode. Note that the definition of the
mode volume is open to question since integrating over the entire space leads to a diverging
integral since modes of an optical micro-resonator grow exponentially at infinity. This issue is
mostly ignored in the literature and overcome by integrating over a finite integration domain.
Such an approach can result in relatively small errors when dealing with modes of high quality
factor. We refer to [I1] for a detailed discussion of the issue and nevertheless adopt formula
as expression of the mode volume. The novelty of the WGMODE toolbox is to provide tools to
compute the volume of a WGM in a spherical optical micro-resonator based on an analytical
approach to evaluate the volume integral in ([14]). This ensures both accurate results and fast
computation times. Here we make the assumption that the dielectric cavity is non-magnetic, i.e.
its magnetic permeability u is the one of vacuum (u = pp). When we assume that the energy
losses by diffraction and diffusion can be neglected, the energy conservation law implies that the
contribution of the electric field and the magnetic field to the energy density are equal [12]:

JIL 2 i = [[[ i an )



As a consequence, the volume of a WGM is most often computed in the literature from the

following formula:
2
V= ey /)o@l ar 1o

where EF.x denotes the maximum value of the Euclidean norm of the electric field. Formula
is well suited for the computation of the mode volume of a TE mode in a spherical optical
micro-resonator because of the simple expression of the electric field for TE mode, see . It
should be noted however that the normalization constant is not the same in and in .

For TM modes, computation of the mode volume from is a little more tricky because
it is the magnetic induction that has the simplest expression, see @ Thanks to , it is
however possible to express the integral in in terms of B. Unfortunately, the normalization
constant in can’t be expressed in terms of B and changing for max,gs || B(r)||? it would
not be consistent when comparing volumes of TE and TM modes. Thus, we will compute the
volume of TM mode from the following formula

NQEI%aX /// IB(x)|* dr (17)

where c is the speed of light in free space.

2  Numerical issues addressed in the WGMODE toolbox

Computation of WGM in a spherical optical micro-resonator must address the following issue.
Resonance wavelengths (corresponding to the visible spectrum) are obtained by solving the
modal equation that relies on the polar mode index ¢ € N. If one set any value for the
integer £, there is a strong possibility that the solutions to the modal equation (if they
exist) do not correspond to wavelengths in the visible spectrum and even fewer to WGM. In
practice, one is interested by WGM around a given wavelength, say A =~ 1.5 um. However, if one
set the value of A and solves the modal equation for the polar mode index ¢ there will be
little chance that the value of £ will be an integer. To overcome this issue, we have to proceed
in two steps.

1. In a first step, we set the value of the wavelength A corresponding to a rough approximation
of the wavelength of the WGM sought after and we solve the modal equation for the polar
mode index £. We obtain a set of solutions that are not integer.

2. In a second step, we choose one of the solution (say the highest for the fundamental mode)
and we round it to the nearest integer. We solve once again the modal equation with this
integer value of ¢ to determine the resonance wavelengths. Because of the continuity of
the solutions to the modal equation with respect to the equation’s parameters, the first
solution (corresponding to a radial mode index n = 1) will be closed to the target value.

Another important issue lies in the solving of the modal equation . Indeed, because
Riccati-Bessel function of the third kind (just as Hankel’s functions) is complex valued, solutions
to the modal equation are complex numbers (the imaginary part of which takes into account
losses and is required to compute the Q-factor). From a numerical point of view, it is much more
difficult to solve a non-linear equation in the complex plane than in the real line. Therefore,
we proceed in two steps. We first solve the approximated modal equation on the real line.
Then, each real solution of the approximated modal equation is used as an initial guess for
the iterative method implemented in the MATLAB fsolve routine to solve the modal equation
. We would like to draw attention to the fact that the solutions to the modal equation ([10))



are complex numbers with a very small imaginary part compared to its real part and that solving
equation represents a stiff problem from a numerical point of view. The user should pay
attention to the information returned by MATLAB fsolve routine used to solve equation
to decide on the reliability of the radiative quality factor value. Moreover, even if computed
accurately, this value can differ significantly from the experimentally measured quality factor
because of intrinsic loss sources not taken into account in the radiative quality factor but that
can be predominant compared to radiative losses.

For numerical purposes it is more convenient to express the modal equation in terms of
Bessel functions of first and second kind. We obtain
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For a given mode number ¢, the wavelengths A for which resonance occurs are obtained by
solving equation , that is to say by looking for the zeros of the modal function
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In the WGMODE toolbox, the zeros of this non-linear function on the real line are computed
thanks to MATLAB’s fzero function. It is very useful from a practical point of view to use the
following bounds for the solutions corresponding to WGM provided in [9], p. 25]. For a given A,
the mode numbers ¢ corresponding to solutions to the modal equation are such that

27T(R—|—5p) 1 27T<R+(SP)
_ {+ = N ——= 20
A s ftg s A (20)
where dp ~ ﬁ \/%. We found by numerical experiments that there is no solution ¢ to ((13))

greater than the upper bound value in and that there are some solutions lower that the
lower bound value, but they do not correspond to WGM. Relation implies that for a fixed
value of £ the wavelengths A for which resonance occurs are such that

2TR 2rRN
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where & = P/(NVN? —1). The WGMODE toolbox uses relations and in the root
finding process but one can easily ignore these bounds and provide its own bounds by setting
the expert_mode variable to the value 1 in the main program. In order to be sure to compute
all the solutions to the approximated modal equation , the interval defined by the above
lower and upper bounds is discretized with a very small step-size and sign changes in the values
taken by the non-linear function are detected. Then, MATLAB’s fzero routine is used to
accurately compute each solution in the interval it has been located.

To compute the quality factor, one has to solve the exact modal equation in the complex
plane. This is achieved by using MATLAB’s fsolve routine with an initial guess for the iterative
algorithm used in fsolve given by the (real) solution obtained by solving the approximated
modal equation modified by adding a very small imaginary part (MATLAB documentation
recommends to set a complex initial point when using the non-linear equation solver fsolve
in the complex plane). This approach is implemented in the script gfact.m of the WGMODE
toolbox. Since solving the modal equation amounts to locate the zeros of an analytical
function, this can be achieved by computing by quadrature contour integrals in the complex
plane according to the Delves-Lyness Method [13| [I4]. This approach is implemented in the
script qfactn.m of the WGMODE toolbox.



A particular attention has been paid to the numerical computation of E2_ . the maximum

max
value of the euclidean norm of the electric field by optimization methods. Since optimization
methods such as the ones implemented in MATLAB fminunc routine can’t make a distinction
between local maxima and the global maximum and because in general convergence is only
ensured when the initial guess is sufficiently close to the global maximum, we first have to
compute a reliable initial guess. To this purpose, we compare the values of E2_ over a coarse
grid of the optimization domain (the interval [0, 7] for TE modes or the set [0, R] x [0, 7] for
TM modes). Then, the global maximum of E2__ is computed by using the fminunc routine
for unconstrained optimization problem where a Trust Region algorithm is chosen. The Trust
Region method requires that the gradient of E2__ is provided. Since the fminunc routine could
sometimes converge to a local maximum, we compare the maximum provided by fminunc to
the value of the objective function with the initial guess. If the two values differ too much, we
consider more reliable and safe to use a brute force method to compute the global maximum
that consists in comparing the values of E2,  over a very fine grid of the optimization domain.
Finally, to overcome the possible absence of the optimization toolbox in the user MATLAB
installation, we test if the toolbox is available and if this is not so, we use the above mentioned

brute force method to compute the global maximum.

3 WGMODE toolbox contents

The WGMODE toolbox is constituted of various MATLAB scripts aimed at studying WGM in
spherical optical micro-resonators. They allow to explore resonance conditions for TE or TM
modes, to visualize WGM in a micro-sphere and to compute the volume and quality factor of
any given mode. Namely, the WGMODE toolbox contains the following MATLAB scripts :

- ELLRES computes, for a given wavelength, the values of the mode index ¢ for which a reso-
nance occurs (note that the solutions ¢ are real numbers);

- WVLRES computes, for a given polar mode index ¢ the values of the wavelength for which a
resonance Occurs;

- VOLMOD computes the volume of a whispering gallery mode in a micro-sphere;

- QFACT computes for a given whispering gallery mode its quality factor by solving the modal
equation by fsolve;

- QFACTN computes for a given whispering gallery mode its quality factor by solving the modal
equation by the Delves-Lyness Method;

- PLTMOD plot a whispering gallery mode.

The general organization of the WGMODE toolbox is depicted in Fig. The toolbox also
provides a collection of special functions:

SLEGEND associated Legendre function with Schmidt semi-normalization

SBESSELJ spherical Bessel function of the first kind

SBESSELY spherical Bessel function of the second kind

SBESSELH spherical Bessel function of the third kind (Hankel function)

DSLEGEND derivative of the associated Legendre function with Schmidt semi-normalization

DSBESSELJ derivative of the spherical Bessel function of the first kind
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Figure 2: General organization of the WGMODE toolbox. R denotes the sphere radius, N its
optical index. A is the resonance wavelength of the mode and ¢, m its indexes. The scripts
ELLRES and WVLRES are used to compute the resonant mode features around a wavelength
target value. The scripts QFACT, VOLMOD can be used to compute key attributes of the
mode. PLTMOD allows to display the mode.



- DSBESSELY derivative of the spherical Bessel function of the second kind

- DSBESSELH derivative of the spherical Bessel function of the third kind (Hankel function)
- HANSENM Hansen solution MJ" of the spherical vectorial wave equation

- HANSENN Hansen solution Nj"* of the spherical vectorial wave equation

Lastly, the WGMODE toolbox contains low level internal functions:

- MODEQEL Modal equation for TE or TM modes for a fixed wavelength and a variable
mode index

- MODEQWYV Modal equation for TE or TM modes for a fixed mode index £ and a variable
wavelength

- CMODEQWYV Modal equation for TE or TM modes for a fixed mode index ¢ and a
variable wavelength

- PLOTD plot a discontinuous function removing the draw line at function discontinuity jumps
- VSHNOR computes the square of the euclidean norm of the vector spherical harmonics

- FOPTE/FOPTM objective function (and its gradient) required to compute the maximum of
the square of the euclidean norm of the electric field for TE/TM modes

- MODEFIELD computes the electromagnetic field (electric field and magnetic induction) of a
given mode

- INTGDL integrand in the Delves-Lyness Method used to solve the modal equation in the
complex plane

4 A comprehensive test run under MATLAB

In order to illustrate the use of the WGMODE toolbox, we consider a micro-sphere of radius
50 um and optical index 1.5, see [3]. We are interested in resonance conditions around a wave-
length of 1500 nm. First, we use the script entitled ellres to determine the solutions ¢ to the
approximated modal equation for wave numbers k and ko corresponding to a wavelength
of 1500 nm and to a TE mode.

>> ellres

Micro-sphere radius [micro-m] = 50
Optical index of the micro-sphere = 1.5
Wavelength [nm] = 1500

TE or TM mode ? (TE/TM) : TE

Polar mode indexes ell:

| 1 | 302.418 | | 7 | 261.233 | | 13 | 233.160 |
| 2| 293.024 | | 8 | 256.086 | | 14 | 228.991 |
| 3 | 285.350 | | 9 | 251.163 | | 15 | 224.932 |
| 4 | 278.578 | | 10 | 246.432 | | 16 | 220.977 |
| 5 | 272.399 | | 11 | 241.867 | | 17 | 217.125 |
| 6 | 266.649 | | 12 | 237.448 | | 18 | 213.356 |



0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Note that an expert mode can be activated by setting the variable expert mode to 1 in the

ellres program. It provides a plot of the modal function
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the zero of which are the sought out solutions.
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The use of the ellres program in expert mode is illustrated below.

>> ellres

Micro-sphere radius [micro-m] = 50
Optical index of the micro-sphere

Wavelength [nm] = 1500
TE or TM mode ? (TE/TM)

Polar mode indexes ell:

302.418
293.024
285.350
278.578
272.399
266.649
261.233
256.086
251.163
246.432
241.867
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Figure 3: Modal function F) defined in for A = 1500nm over the interval [0, 400] on the left
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and zoom on the interval [213,303] on the right.

As can be seen above, the mode indexes ¢ obtained as solutions to the modal equation ((10))
are not integers. Thus, we have to round up the values to the nearest integer. But doing so,
the couple (A, ?) doesn’t anymore satisfies the modal equation. For each rounded values for ¢,
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we have to compute the resonance wavelength by solving once again the modal equation. This
time, £ is fixed and we look for A. Computation is achieved with the MATLAB script named
wvlres. As an example, we consider the first value for ¢ (302.418), rounded to 302.

>> wvlres

Micro-sphere radius [micro-m] = 50
Optical index of the micro-sphere = 1.5
Mode index ell = 302

TE or TM mode ? (TE/TM) : TE

Wavelength intervalle of interest found [nm] = [1041.6229 , 1564.7545]

Radial mode number and resonance wavelength [nm]:

| 1 | 1502.024424 | | 10 | 1260.273611 | | 19 | 1128.758252 |
| 2 | 1457.369250 | | 11 | 1242.923923 | | 20 | 1116.755046 |
| 3 | 1422.192876 | | 12 | 1226.431024 | | 21 | 1105.138953 |
| 4 | 1392.096286 | | 13 | 1210.700903 | | 22 | 1093.888044 |
| 5 | 1365.368812 | | 14 | 1195.656160 | | 23 | 1082.984747 |
| 6 | 1341.115707 | | 15 | 1181.232108 | | 24 | 1072.412699 |
| 7 | 1318.793286 | | 16 | 1167.373999 | | 25 | 1062.143903 |
| 8 | 1298.039229 | | 17 | 1154.035012 | | 26 | 1052.121851 |
| 9 | 1278.596368 | | 18 | 1141.174768 | | 27 | 1042.266580 |

An expert mode can be activated by setting the variable expert_mode to 1 in the wvlres
program. It allows to compare the resonance wavelengths to the one obtained from the Eikonale
approach, see e.g. [3,[9], which basically relies on asymptotic expansion for Bessel’s functions of
large order. It also provides a plot of the modal function Fy defined by

Y, _1(koR) Ji 1 (kR) B ( 1 P> (23)
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the zero of which are the sought out solutions.

>> wvlres

Micro-sphere radius [micro-m] = 50

Optical index of the micro-sphere = 1.5

Mode index ell = 302

TE or TM mode ? (TE/TM) : TE

Interval of interest for the wavelength search [nm]: [1040,1600]

Radial mode number and resonance wavelength [nm]:

I 1 | 1502.024424 | | 10 | 1260.273611 | | 19 | 1128.758252 |
| 2 | 1457.369250 | | 11 | 1242.923923 | | 20 | 1116.755046 |
| 3 | 1422.192876 | | 12 | 1226.431024 | | 21 | 1105.138953 |
| 4 | 1392.096286 | | 13 | 1210.700903 | | 22 | 1093.888044 |
| 5 | 1365.368812 | | 14 | 1195.656160 | | 23 | 1082.984747 |
| 6 | 1341.115707 | | 15 | 1181.232108 | | 24 | 1072.412699 |
| 7 | 1318.793286 | | 16 | 1167.373999 | | 25 | 1062.143903 |
| 8 | 1298.039229 | | 17 | 1154.035012 | | 26 | 1052.121851 |
| 9 | 1278.596368 | | 18 | 1141.174768 | | 27 | 1042.266580 |

Compare results to the Eikonale equation ? [y/n] : y

11



Radial mode number and resonance wavelength from the Eikonale equation [nm]:

| 1 | 1503.055224 | | 10 | 1275.318420 | | 19 | 1158.248551 |
| 2 | 1459.367360 | | 11 | 1259.647429 | | 20 | 1147.739023 |
| 3 | 1425.603936 | | 12 | 1244.819012 | | 21 | 1137.589781 |
| 4 | 1397.066421 | | 13 | 1230.736727 | | 22 | 1127.776064 |
| 5 | 1371.970312 | | 14 | 1217.321303 | | 23 | 1118.275745 |
| 6 | 1349.387338 | | 15 | 1204.506580 | | 24 | 1109.068956 |
| 7 | 1328.754707 | | 16 | 1192.236621 | | 25 | 1100.137776 |
| 8 | 1309.697904 | | 17 | 1180.463600 | | 26 | 1091.465969 |
| 9 | 1291.951468 | | 18 | 1169.146228 | | 27 | 1083.038776 |
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Figure 4: Modal function F; defined in for £ =302 and X € [1040,1600].

It is possible thanks to the pltmod script in the WGMODE toolbox to draw the WGM
field. Three different plots of the euclidean norm of the electric field |[E(r, 0, ¢)|| and magnetic
induction ||B(r,0,¢)|| are proposed. They correspond to a 1D-plot in the radial direction, to
a 2D-plot in an azimuthal plane ¢ = cste and to a 2D-plot in a polar plane § = cste. We
have depicted in Fig. [5] the radial variation of the electric field and magnetic induction for
(0,¢) = (3,0) corresponding to the TE mode with polar index ¢ = 302 and radial index n = 5.
It has a resonance wavelength of 1365.36812 nm. Note that the unit is arbitrary since the mode
field is defined up to a multiplicative constant. One can clearly see in the figure the five expected
maxima in the radial direction for a mode with radial index n = 5. One can observe that both
the electric field and magnetic induction are continuous across the sphere border as expected
for TE modes. This would not be the case for a TM mode.

>> pltmod
Micro-sphere radius [micro-m] R = 50
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Optical index of the micro-sphere = 1.5
TE or TM mode : TE
Wavelength [nm] = 1365.36812
Mode number ell = 302
Mode number m = 302

Drawing options :

(A) 1D-plot in the radial direction

(B) 2D-plot in an azimuthal plane phi=cste
(C) 2D-plot in a polar plane theta=cste
Your choice (A/B/C) = A

Minimum radial distance (% value of R)
Maximal radial distance (% value of R)

Il
(0]
o

110

Norm of the electric field

0.8 — -
N
S 06— |
g
©
S04 _
13
o
=
02 — -
0 | |
40 45 50 55
Radial position in mu-m
. Norm of the magnetic induction
0.8 — |
.“é’
506 — ]
g
©
€04 _
E
o
z
0.2 — |
0 | |

40 45 50 55
Radial position in mu-m
Figure 5: Radial behavior of the TE mode with polar index ¢ = 302 and radial index n = 5 of
a micro-sphere with radius R = 50 pm and optical index N = 1.5.

The pltmod script also allows to draw the WGM field in an azimuthal plane ¢ = cste as
shown in Fig. [7] where we have represented the euclidean norms of the electric field and magnetic
induction in the plane ¢ = 0 for the WGM with indexes ¢ = 302, m = 300,n = 1 in the case of a
spherical cavity with radius R = 50 um and optical index N = 1.5. Note that the norms of the
electric field and magnetic induction are given in arbitrarily units since the WGM field is defined
up to a multiplicative constant. Since a zoom in the area of interest in the MATLAB graphical
window induces a loss in the image rendering, an expert mode is provided in the pltmod script
(obtained by turning the variable expert mode to the value 1 in the script). Fig. m was obtained
using this feature with the following bound: » € [0.8 R,1.1 R] and 6 € [0.8F,1.2F]. When
this option is chosen it is possible to indicate the bounds of the area to plot (bounds for the
polar angle 6 and radial distance r). One can see in Fig. E] that for the chosen data, we have
¢ —|m| + 1 = 3 which is the number of intensity maxima in the polar direction ey as stated on
p- Similarly, it is possible with the pltmod script also allows to draw the WGM field in an
azimuthal plane 6§ = cste.
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>> pltmod
Micro-sphere radius [micro-m] R = 50
Optical index of the micro-sphere = 1.5
TE or TM mode : TE
Wavelength [mnm] = 1502.024424
Mode number ell = 302
Mode number m = 300

Drawing options

(A) 1D-plot in the radial direction

(B) 2D-plot in an azimuthal plane phi=cste
(C) 2D-plot in a polar plane theta=cste
Your choice (A/B/C) = B
Azimuthal angle [radian] : phi = 0

Minimum radial distance (% value of R) = 80
Maximal radial distance (% value of R) = 110
Minimum polar angle [radian] = pi/2-0.2%pi/2
Maximal polar angle [radian] = pi/2+0.2%pi/2

|E| for ell=302, m=300, azimuth=0
T

rsin( 6) in micro-m

X

-50 -40 -30 -20 -10 0 10 20 30 40 50
z=rcos( 6)inmicro-m

|B| for ell=302, m=300, azimuth=0
T

rsin( 6) in micro-m

-50 -40 -30 -20 -10 0 10 20 30 40 50
r cos( ) in micro-m

Figure 6: Euclidean norms of the electric field and magnetic induction in the plane ¢ = 0 for
the WGM with indexes ¢ = 302, m = 300,n = 1 in the case of a spherical cavity with radius
R = 50 pm and optical index N = 1.5.
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|B| for ell=302, m=300, azimuth=0

r sin( 6) in micro-m

rcos( 0) in micro-m

|E| for ell=302, m=300, azimuth=0

) in micro-m

rsin(

X =

z=rcos( 0)inmicro-m

Figure 7: Fuclidean norms of the electric field and magnetic induction in the plane ¢ = 0 for
the WGM with indexes £ = 302, m = 300,n = 1 in the case of a spherical cavity with radius
R =50 pum and optical index N = 1.5.

With all the information at hand, we are now in position to compute the mode volume. For
the dielectric micro-sphere with radius R = 50 ym and optical index N = 1.5, let us consider
the WGM characterized by the mode indexes ¢ = 302, m = £ and n = 1 for which the resonance
wavelength has been found to be A = 1502.024424 nm. Thanks to the volmod script in the
WGMODE toolbox, we find that the volume of this WGM is 2259.6416 um? as detailed below.

>> volmod

Micro-sphere radius [micro-m] = 50
Optical index of the micro-sphere = 1.5
TE or TM mode ? (TE/TM) : TE
Wavelength [nm] = 1502.0244

Mode number ell = 302

Mode number m = 302

Local minimum possible.

fminunc stopped because the size of the current step is less than
the default value of the step size tolerance.

<stopping criteria details>
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Mode volume (in micron.m”3)= 2259.6416
CPU time for mode volume computations = 1.58 sec.

Always for this particular WGM, using the gfact script, the quality factor is find to be
1.57810'7. Note that this quality factor is not in accordance with the quality factor usually
observed experimentally because radiative losses are much lower than intrinsic losses for such
a micro-resonator. The tolerance values used to end iterations in the fsolve routine are set
by default to 10™9. These tolerance values can be modified using the expert mode by setting
the expert_mode variable to the value 1 in the gfact script. Because solving equation
represents a stiff problem from a numerical point of view, the user should pay attention to the
information returned by MATLAB fsolve routine to decide on the reliability of the quality factor
value.

>> gfact

Micro-sphere radius [micro-m] = 50

Optical index of the micro-sphere = 1.5

TE or TM mode ? (TE/TM) : TE

Mode index ell = 302

Approximated real value of the resonnance wavelength [nm] = 1502

Non-linear solver fsolve informations
Equation solved.

fsolve completed because the vector of function values is near zero
as measured by the selected value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

Complex resonance wavelength for the mode in [nm] = 1502.024424398681
-9.518987898596565e-151
Quality factor for the mode = 1.578e+17

Modifying the tolerance value of the fsolve solver using the expert mode can give informa-
tion on the accuracy of the computed solution.

>> gfact

Micro-sphere radius [micro-m] = 50

Optical index of the micro-sphere = 1.5

TE or TM mode ? (TE/TM) : TE

Mode index ell = 302

Approximated real value of the resonnance wavelength [nm] = 1502
Termination tolerance on the function value; TolFun = 1le-14
Termination tolerance on the solution value; TolX = 1E-14

Non-linear solver fsolve informations
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Equation solved, inaccuracy possible.

The vector of function values is near zero, as measured by the selected value
of the function tolerance. However, the last step was ineffective.

<stopping criteria details>

Complex resonance wavelength for the mode in [nm] = 1502.024424398681
-9.518987898596565e-151
Quality factor for the mode = 1.578e+17

When comparing to the result returned by the Delves-Lyness method, see below, we obtain
a very good agreement for the real part of the resonance wavelength but significantly different
results for the imaginary part. One should note that the ratio of the imaginary part and the real
part of the resonance is lower than the floating point accuracy and therefore the value returned
for the quality factor should be considered with caution.

>> gfactn

Micro-sphere radius [micro-m] = 50

Optical index of the micro-sphere = 1.5

TE or TM mode ? (TE/TM) : TE

Mode index ell = 302

Approximated real value of the resonance wavelength [nm] = 1502

One root (wavelength resonance) of the modal equation located in the disk
centered at 1502 nm with radius 1 nm

Complex resonance wavelength for the mode in [nm] = 1502.024424398667
-2.734045590480928e-131
Quality factor for the mode = 5.494e+15

5 A comprehensive test run under OCTAVE

In order to illustrate the use of the WGMODE toolbox under OCTAVE, we consider a micro-sphere
of radius 25 ym and optical index 1.453. We are interested in resonance conditions around a
wavelength of 800 nm for TM modes. Results presented in this section were obtained with GNU
Octave, version 4.0.0. First, we use the script entitled ellres to determine the solutions £ to the
approximated modal equation for wave numbers k and ko corresponding to a wavelength
of 1500 nm and to a TM mode.

>> ellres

Micro-sphere radius [micro-m] = 25
Optical index of the micro-sphere = 1.453
TE or TM mode 7 (TE/TM) : TM

Wavelength [nm] = 800
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Polar mode indexes ell:

| 1| 273.289 | | 6 | 238.780 | | 11 | 214.990 |
| 2| 264.217 | | 7 | 233.567 | | 12 | 210.780 |
| 3 | 256.809 | | 8 | 228.618 | | 13 | 206.723 |
| 4 | 250.277 | | 9 | 223.891 | | 14 | 202.823 |
| 5 | 244.319 | | 10 | 219.355 | | 15 | 199.010 |

The expert mode can be activated by setting the variable expert_mode to 1 in the ellres
program. It provides a plot of the modal function the zero of which are the sought out
solutions. The use of the ellres program in expert mode is illustrated below.

Micro-sphere radius [micro-m] = 25

Optical index of the micro-sphere = 1.453

TE or TM mode ? (TE/TM) : TM

Wavelength [nm] = 800

Interval of interest for the mode indices search : [0,300]

Polar mode indexes ell:

| 1 | 273.289 | | 9 | 223.891 | | 17 | 188.954 | | 25 | 117.581 |
| 2 | 264.217 | | 10 | 219.355 | | 18 | 183.882 | | 26 | 101.623 |
| 3 | 256.809 | | 11 | 214.990 | | 19 | 177.135 | | 27 | 83.372 |
| 4 | 250.277 | | 12 | 210.780 | | 20 | 169.978 | | 28 | 82.016 |
| 5 | 244.319 | | 13 | 206.723 | | 21 | 161.857 | | 29 | 81.623 |
| 6 | 238.780 | | 14 | 202.823 | | 22 | 152.745 | | 30 | 57.124 |
| 7 | 233.567 | | 15 | 199.010 | | 23 | 142.836 | | 31 | 56.364 |
| 8 | 228.618 | | 16 | 195.030 | | 24 | 131.274 | | 32| 55.179 |

The OCTAVE graphic windows opens with the representation of the modal function F defined
in for A = 800nm over the interval [0, 300], see Fig.
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Figure 8: Modal function F) defined in for A = 800 nm over the interval [0, 300].

As can be seen above, the mode indexes ¢ obtained as solutions to the modal equation ({10))
are not integers. Thus, we have to round up the values to the nearest integer. But doing so,
the couple (A, ¢) doesn’t anymore satisfies the modal equation. For each rounded values for ¢,
we have to compute the resonance wavelength by solving once again the modal equation. This
time, £ is fixed and we look for A. Computation is achieved with the MATLAB script named
wvlres. As an example, we consider the first value for ¢ (264.217), rounded to 264.

>> wvlres

Micro-sphere radius [micro-m] = 25
Optical index of the micro-sphere = 1.453
TE or TM mode ? (TE/TM) : TM

Polar mode index ell = 264

Wavelength interval of interest found [nm] = [694.884 , 865.034]

Radial mode number and resonance wavelength [nm]:

| 1 | 827.336260 | | 8 | 706.231082 |

| 2 | 800.625109 | | 9 | 694.818246 | | 15 | 638.102578 |
| 3 | 779.659735 | | 10 | 684.086562 | | 16 | 630.111569 |
| 4 | 761.776557 | | 11 | 673.947165 | | 17 | 622.456282 |
| 5 | 745.938682 | | 12 | 664.330083 | | 18 | 615.122231 |
| 6 | 731.603396 | | 13 | 655.179180 | | 19 | 608.073387 |
| 7 | 718.440811 | | 14 | 646.448935 | | 20 | 601.206674 |

An expert mode can be activated by setting the variable expert mode to 1 in the wvlres
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program. It allows to compare the resonance wavelengths to the one obtained from the Eikonale
approach, see e.g. [3 9], which basically relies on asymptotic expansion for Bessel’s functions of
large order. It also provides a plot of the modal function F} defined by the zero of which
are the sought out solutions.

>> wvlres

Micro-sphere radius [micro-m] = 25

Optical index of the micro-sphere = 1.453

TE or TM mode ? (TE/TM) : TM

Polar mode index ell = 264

Interval of interest for the wavelength search [nm]: [700 900]

Radial mode number and resonance wavelength [nm]:

827.336260
800.625107
779.659734
761.776557
745.938679
731.603394
718.440808
706.231082

O NO O WN -

Compare results to the Eikonale equation 7 [y/n] : y
Radial mode number and resonance wavelength from the Eikonale equation [nm]:

827.939140 |
801.833970 |
781.749632 |
764.835172 |
750.006578 |
736.699653 |
724.572252 |
713.396692 |

0 ~No O WN -

The OCTAVE graphic windows opens with the representation of the modal function Fy defined
in for £ = 264 and X € [700,900] see Fig. [9]
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Figure 9: Modal function F; defined in for £ =264 and A € [700900].

The pltmod script of the WGMODE toolbox that was developed to draw the WGM field.
Three different plots of the euclidean norm of the electric field ||E(r, 0, ¢)|| and magnetic induc-
tion ||B(r, 0, ¢)|| are proposed. They correspond to a 1D-plot in the radial direction, to a 2D-plot
in an azimuthal plane ¢ = cste and to a 2D-plot in a polar plane § = cste. Note that the pltmod
script does not give a satisfactory results under OCTAVE due to an excessive computational time
in the evaluation of the WGM field at the grid points (call to the modefield function of the
WGMODE toolbox).

>> pltmod
Micro-sphere radius [micro-m] R = 25
Optical index of the micro-sphere = 1.453
TE or TM mode : TM
Wavelength [nm] = 827.336260
Mode number ell = 264
Mode number m = 262

Drawing options :

(A) 1D-plot in the radial direction

(B) 2D-plot in an azimuthal plane phi=cste
(C) 2D-plot in a polar plane theta=cste
Your choice (A/B/C) = A

Minimum radial distance (\% value of R)
Maximal radial distance (\}% value of R)

50
200

We have depicted in Fig. [I0] the radial variation of the electric field and magnetic induction
for (0,¢) = (5,0) corresponding to the TM mode with polar index ¢ = 264 and radial index
n = 1. Note that the unit is arbitrary since the mode field is defined up to a multiplicative
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constant. One can clearly see in the figure one maxima in the radial direction as expected for a
mode with radial index n = 1.
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Figure 10: Radial behavior of the TM mode with polar index ¢ = 264 and radial index n = 1 of
a micro-sphere with radius R = 25 pym and optical index N = 1.453.

Let us now proceed to the computation of the TM mode volume characterized by the mode
indexes ¢ = 264, m = 262 and n = 1 of the dielectric micro-sphere with radius R = 50 ym and
optical index N = 1.453.

>> volmod

Micro-sphere radius [micro-m] = 25
Optical index of the micro-sphere = 1.453
TE or TM mode ? (TE/TM) : TM

Wavelength [nm] = 827.336260

Mode number ell = 264

Mode number m = 262

No optimization toolbox found

Maximization by values comparison launched

Mode volume (in micron.m”3)= 513.76

CPU time for mode volume computations = 1.567e+04 sec.

Note that the volmod script under OCTAVE provide the mode volume after a very long
computational time.

Always for this particular WGM, using the gfact script, the quality factor is find to be
1.57810'7. Note that this quality factor is not in accordance with the quality factor usually
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observed experimentally because radiative losses are much lower than intrinsic losses for such
a micro-resonator. The tolerance values used to end iterations in the fsolve routine are set
by default to 1079, These tolerance values can be modified using the expert mode by setting
the expert mode variable to the value 1 in the gfact script. Because solving equation
represents a stiff problem from a numerical point of view, the user should pay attention to the
information returned by MATLAB fsolve routine to decide on the reliability of the quality factor
value.

>> gfact

Micro-sphere radius [micro-m] = 25

Optical index of the micro-sphere = 1.453

TE or TM mode 7 (TE/TM) : TM

Mode index ell = 264

Approximated real value of the resonance wavelength [nm] = 827

Complex resonance wavelength for the mode in [nm] = 827.3362584354486
+8.973945396233738e-141
Quality factor for the mode = 9.219e+15

When comparing to the result returned by the Delves-Lyness method for the computation
of the quality factor using the script qfactn, we obtain a very good agreement for the real
part of the resonance wavelength but significantly different results for the imaginary part. One
should note that the ratio of the imaginary part and the real part of the resonance is lower than
the floating point accuracy and therefore the value returned for the quality factor should be
considered with caution.

>> gfactn

Micro-sphere radius [micro-m] = 25

Optical index of the micro-sphere = 1.453

TE or TM mode ? (TE/TM) : TM

Mode index ell = 264

Approximated real value of the resonance wavelength [nm] = 827

One root (wavelength resonance) of the modal equation located
in the disk centered at 827 nm with radius 1 nm

Complex resonance wavelength for the mode in [nm] = 827.3362584354487
-4.254327798283179e-161
Quality factor for the mode = 1.945e+18

6 Additional comments

In the normal mode for using the WGMODE toolbox (obtained by setting to zero the variable
expert_mode defined on the first lines of the scripts of the WGMODE toolbox), relation
is used in the script ellres to have bounds for the interval where the solutions ¢ to equation
have to be sought out. Similarly, relation is used in the script ellres to have bounds
for the interval where the solutions kg to equation have to be sought out. These bounds
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have been established in [9] p. 25] for WGMs in ordinary spherical cavities. It may happen that
for some reason (e.g. spherical cavity with unusual characteristics), no solution is found in the
given interval. Using the expert mode, the user can overcome this issue by providing his own
bounds as illustrated below.

Example under the normal mode. (We first check the value of variable expert_mode in file
ellres.m.

>> Imore wvlres.m

ZWVLRES COMPUTES THE WAVELENGTH AT RESONANCE

%  WVLRES computes, for a given mode index, the values of the wavelength
% for which a resonance occurs

clear
close all
expert_mode=0; % set to 1 for using the programm in expert mode

>> wvlres

Micro-sphere radius [micro-m] = 5
Optical index of the micro-sphere = 1.2
Polar mode index ell = 5

TE or TM mode 7 (TE/TM) : TE

Wavelength intervalle of interest found [nm] = [7868.8473 , 10213.9819]
No solution found ...

The same example under the expert mode. The variable expert_mode in the file ellres.m
must be set to the value 1. We check its value before running the script.

>> Imore wvlres.m

%WVLRES COMPUTES THE WAVELENGTH AT RESONANCE

%  WVLRES computes, for a given mode index, the values of the wavelength
% for which a resonance occurs

clear
close all
expert_mode=1; 7 set to 1 for using the programm in expert mode

>> wvlres

Micro-sphere radius [micro-m] = 5

Optical index of the micro-sphere = 1.2

TE or TM mode ? (TE/TM) : TE

Polar mode index ell = 5

Interval of interest for the wavelength search [nm]: [0,1500]

Radial mode number and resonance wavelength [nm]:

| 1329.243684 |
| 799.753111 |
| 571.385200 |
| 63.492062 |

| 59.701492 |

| 56.338029 |

|

|
|
|
I
I
|
| 53.333334 |

~N O O WN -
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8 | 51.949475 |
9 | 47.058824 |
10 | 42.105263 |
11 | 21.544059 |
12 | 11.267605 |
13 | 6.400000 |
14 | 5.281225 |

Compare results to the Eikonale equation ? [y/n] : n
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