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This article introduces temporal proximity spaces as a framework to observe surface shapes as well as geometric shapes that change over time.

A surface shape has a boundary and a non-empty interior, which is approximated by a geometric shape that lies within the boundary of a surface shape recorded in a video frame. Temporally close shapes (briefly, δ ∆t shapes) persist over the some temporal interval. Those surface shapes that appear withing the same video frame are strongly self-similar as well as temporally close. The rate of change of self-similar shapes shE, shE ′ is represented by ∇(shE), ∇(shE ′ ) pairs. Temporally close shapes that appear during the same temporal interval may or may not be spatially or descriptively close to each other. Persistent as well as spatially close shapes share belong to the same era and also overlap along their boundaries or withing their interiors. Overlapping appearances of shapes such as vortexes occur within temporal CW (Closurefinite Weak) spaces (briefly, tCW spaces), which are an extension of the CW spaces introduced by J.H.C. Whitehead during the 1940s. Because of their simplicity, tCW space provide a workable setting for the study of δ ∆t surface as well as geometric shapes in sequences of video frames.

Introduction

The study of nearness or apartness of shapes began a consideration of spatial closeness [START_REF] Cech | Topological spaces[END_REF][START_REF] Efremovič | The geometry of proximity I (in Russian)[END_REF][START_REF] Ju | On proximity spaces[END_REF][START_REF] Naimpally | Near and far. A centennial tribute to Frigyes Riesz[END_REF][START_REF] Naimpally | Proximity spaces[END_REF][START_REF] Concilio | Proximity: A powerful tool in extension theory, functions spaces, hyperspaces, boolean algebras and point-free geometry[END_REF] and later focused on descriptive as well as spatial closeness [START_REF]Near sets. Special theory about nearness of objects[END_REF][START_REF] Peters | Applications of near sets[END_REF][START_REF] Peters | Near sets. General theory about nearness of sets[END_REF][START_REF]Local near sets: Pattern discovery in proximity spaces[END_REF][START_REF]Proximal relator spaces[END_REF][START_REF] Peters | Spatial and descriptive isometries in proximity spaces[END_REF][START_REF] Di Concilio | Descriptive proximities. properties and interplay between classical proximities and overlap[END_REF]. Both forms of closeness are unified here with the introduction temporally close shapes, which can either be spatially or descriptively close. A shape is a bounded region that has a nonvoid interior. Two forms of shapes are considered here, namely, surface shapes and geometric shape. A surface shape is a bounded physical region with a nonempty interior recorded in a video frame. A geometric shape in the Euclidean plane is a bounded cell complex with a nonempty interior. Cell complexes live in what are known as CW spaces. Briefly, a CW space is a Hausdorff space (distinct points reside in distinct neighborhoods) that has two main properties, namely, containment (the closure of a set of cells in the space is also in the space) and intersection (the intersection of any pair of cell complexes in the space is also in the space). In a planar CW topology, there 3 types of cells in the formation of any cell complex, namely, vertex (0-cell), edge (1-cell), and filled triangle (2-cell). In a planar, closure-finite weak (CW) topological space, a cell complex is collection of cells attached to each other. Incarnation of both forms of shapes appear in triangulated video frames in computer vision [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF], which provide an ideal hunting ground spatial, descriptive as well as temporal proximities.

Geometric shapes in triangulated video frames offer a straightforward means of approximating surface shapes that appear either within the same video frame or which appear in separate frames. In this work, the focus is on geometric shapes in the form of vortexes that lie with the borders of a trianulated surfaces shapes. Surface shapes that appear within the same video frame exhibit strong self-affinities, temporally, as well as possible self-affinities descriptively.

Just take an example of video, in which an object seems to be moving from one point to another within a video frame. If we consider only one video frame, then we will perceive the motion as stationary. But if we will play these static video frames at some definite rate and in a proper sequence, then our mind itself will develop the sense of apparent motion happening in the video. While watching video, our mind unconsciously matches the points of the spatial domain (i.e., coordinates of the character in each video frame) with nearby points in the temporal domain. As a result of this phenomena in which our mind unconsciously connects points in spatial domain and look for nearby descriptively close points in the time domain, we perceive the motion of objects in video. This article introduces two types of temporal closeness of changing triangulated surface shapes in the form of vortexes that overlap temporally during their appearance.

Preliminaries

In this section, we briefly present a framework for δ ∆t (temporally-near) cell complexes in tCW spaces.

For our analysis, we will take voxel as basic entity which is defined in [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF] as 'Each picture element in a video frame is a 3D object called a voxel with coordinates v (x,y,t) , where t (in fractions of a second) is the elapsed time from first frame to the current frame and x,y corresponds to coordinates of any object in video'. This idea of voxels can be easily extended for real life objects having 3-D coordinates (x, y, z). Voxel in such case will form a Quaternion of v (x,y,z,t) . But for sake of simplicity and compatibility with video processing literature, we will limit our discussions to
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Voxels v 1 , v 2 , ..., v n in a video will provide us with a nonempty set of points on which we will constitute a topology. We will define our topology as follow,

(1) T r (p) = (v 1 , v 2 , ..., v n ∈ V | d i=1 (v i -p i ) 3 < r 3 )
where p i ∈ R 3 . So, our topology will be a set of all voxels which lie within certain radius of sphere defined by value of r and this collection T of subsets of V satisfies following,

• ∅, V ∈ T • if {C i | i ∈ I} ⊂ T then ∪ i∈I C i ∈ T • if C i ∈ T f ori = 1, 2, ..., n, then ∩ n i=1 C i ∈
T Therefore, we will define voxel topological space as ϑ = (V, T ). In our ϑ voxel topological space, a nonvoid collection of cell complexes K is a Closure finite Weak CW space, provided K is Hausdorff (every pair of distinct cells is contained in disjoint neighbourhoods [11, 5.1, p. 94]) and the collection of cell complexes in K satisfy the Whitehead [25, pp. 315-317], [26, 5, p. 223] CW conditions, namely, the closure of each cell complex is in K and the nonempty intersection of cell complexes is in K. For the details, see App. 5. A CW space K is temporal (briefly, tCW), provided cell complexes appear, disappear and possibly reappear during temporal intervals. In other words, cell complexes in a tCW space change over time, appearing momentarily and eventually disappearing over varying temporal intervals.

The focus here is on cell complexes that are vortexes. These are cell complexes that naturally arise, for example, within the boundaries of changing surface shapes in video frames. Definition 1. A planar vortex vorE is a finite cell complex, which is a collection of path-connected vertices in nested, filled 1-cycles in a CW complex K. A 1-cycle in vorE (denoted by cycA) is a sequence of edges with no end vertex and with a nonempty interior. A geometric realization of vorE is denoted by |vorE| on |K| in the Euclidean plane.

Temporal Proximities

In [START_REF] Le | The experience and perception of time[END_REF], [START_REF] Friedman | About time: Inventing the fourth dimension[END_REF], [START_REF] William | Memory for the time of past events[END_REF] authors have compared two different theories how a human could perceive time or data from temporal domain. According to strength model, which is based on memory trace, nearness or farness of events depends on trace which persists or diminishes over time. While the inference model suggests that information of near or far events is perceived in comparison of any reference event whose time is known to us. Our model of temporal proximity is more similar to strength model, since we create a trace of structure under observation and then try to find similarity of shape in later frames, we look for that trace in proximity of provided temporal interval.

A nonempty set X equipped with the relation δ ∆t is a temporal Čech proximity space (denoted by (X, δ ∆t )), provided temporal form of the Čech axioms in Appendix are satisfied. When write, for example, vorE δ ∆t vorE ′ in tCW space K, we mean that vorE persists over a temporal interval ∆t = [t 0 , t end ] that overlaps with a temporal interval ∆t ′ = [t ′ 0 , t ′ end ] over which a vortex vorE ′ persists. Example 1. In Fig. 1, vorE δ ∆t vorE ′ in the temporal CW space K, since vortex vorE persists over a temporal interval that overlaps the temporal interval over which vortex vorE ′ persists.

An interest in overlapping temporal intervals leads to the introduce of the temporal intersection between cell complexes such as vortexes vorE, vorE ′ that overlap in time (denoted by vorE ∩ ∆t vorE ′ ). Definition 2. Let vorE, vorE ′ be vortexes in a temporal CW space K. Also let ∆ vorE t be a temporal interval over which vorE appears and persists and let ∆ vorE ′ t ′ be a temporal interval over which vorE ′ appears and persists. Then

vorE ∩ ∆t vorE ′ = instant t : t ∈ ∆ vorE t ∩ ∆ vorE ′ t ′ . Example 2. In Fig. 1, vorE ∩ ∆t vorE ′ , since ∆ vorE t ∩ ∆ vorE ′ = ∅,
since the pair of vortexes persist over the interval [t ′ , t end ].

Temporal Čech Axioms (tP.0): All nonempty subsets in X are temporally far from the empty set, i.e., A δ ∆t ∅ for all A ⊆ X.

(tP.1): A δ ∆t B ⇒ B δ ∆t A. (tP.2): A ∩ ∆t B = ∅ ⇔ A δ ∆t B. (tP.3): A δ ∆t (B ∪ C) ⇒ A δ ∆t B or A δ ∆t C.
Lemma 1. Unlike the Čech Axiom P.2, the temporal proximity Axiom tP.2 is an equivalence between overlapping temporal intervals and the δ ∆t proximity of subsets in the space (X, δ ∆t ). 

Temporal proximities between shapes in video frame sequences

This section introduces the application of temporal proximity in terms of the similarities between surface shapes recorded in video frames over short periods of time. First we consider a ball bouncing across the screen between different frames of video. Following images show different frames of video, in which we can see how the ball is bouncing as video frames pass by. In the beginning of this video, the ball starts appearing. During video, the ball strikes and bounces back from surface/ground multiple times. While the ball strikes and bounces back from the surface/ground, it shows slight deformation in structure, like a plastic or rubber ball. By the end of the video, the ball disappears on the other side of the video frame.

A convenient way to show the position of any object in 2D frames at different times is by use of 3D spatial temporal plot. Therefore, to show the position of the ball in each video frame, we identified the centroid of the ball and plotted its position in 2D Cartesian plane which was extended to 3D by adding a temporal domain of video frames. Figure (3.1) shows the required spatial temporal plot for bouncing ball video under processing.

After that we detected corners, next we combined these corners with centroids found earlier to get a set of seed points. We then generated mesh of Delaunay Triangulation using those set of seed points. Then we identified the vertex in the mesh which had most triangles connected with it, to get Maximal Nucleus Cluster (MNC). Using the barycentre of the maximal nucleus cluster, we created a vortex cycle inside the ball. Another vortex cycle was formed on the edges of the ball. These two cycles were connected using bridge segments (shown in white colored 2). Those two vortex cycles which are interconnected with bridge segments lays the foundation for most basic shape referred as Optical Vortex Nerve, whose properties we will be comparing between different frames to determine descriptive and temporal proximity. Figure (3.2) shows the formation of vortex cycles and their interconnection using bridge segments on one frame of bouncing ball video. More details on optical vortex nerve, maximal nucleus cluster, Delaunay mesh etc can be studied in [START_REF]Computational geometry, topology and physics of digital images with applications. Shape complexes, optical vortex nerves and proximities[END_REF] To analyze the appearance or disappearance of any specific optical vortex nerve, we selected two descriptive parameters to observe which are the number of bridge segments and area. Area is computed as the sum of binary image pixels of optical vortex nerve. To visualize the behavior of area and number of bridge segments of optical vortex nerve, we generated a 3D scatter plot between time/number of video frames, area and number of bridge segments. This provided us with a set of points as shown in figure (4.1). Looking directly at this scatter plot does not provide us with any meaningful information but we can observe some trends or behaviors if we observe things for number of bridge segments versus time as shown in figure (4.2) and area of optical vortex nerve versus time as shown in figure (4.3). Figure (4.4) shows a plot of points between the number of bridge segments and area of optical vortex cycle in which we can clearly identify three regions of clusters highlighted by blue, green and yellow colored boxes. These three cluster regions are identifying the appearance or disappearance of three different shapes of optical vortex nerves that existed between the whole video. In the beginning, we mentioned about three different positions of video. First one was the appearance of the ball in the beginning and disappearance of the ball at the end of the video. Second one being when the ball is normally moving in air. Last one was, when the ball strikes the ground or surface and due to the plastic/rubber type nature of the material of the ball it undergoes a bit of deformation of shape. So, these three regions are easily distinguished using the figure (4.4). But an important question yet remains to be answered which is timings of appearance or disappearance of each region shape in video and how temporal proximity is present between each shape.

On the basis of figure (4.4), we determined some threshold values to distinguish the three regions and using relation between temporal and spatial domains of points in figure (4.1) we generated a persistence diagram as shown in figure [START_REF] William | Memory for the time of past events[END_REF]. At each video frame there exists an event which is part of one of the three distinct classes In our video under process, multiple events happen which include appearance of first car in frame as shown in figure (6.1). After some time, second car makes its appearance while first car is still in frame. In figure (6.2), at this instance two events are occurring simultaneously within same video frame in temporal domain. First car disappears after few frames, later, after few frames in which only second car is present, third car shows up while second car is till in video frame. Again, for few frames, two simultaneous events are happening in temporal domain as shown in figure (6.4). Few frames from set of events mentioned earlier are provided in figure (6) Again, to observe the appearance or disappearance of any shape at any instance of time, we will observe the persistence of optical vortex nerve as demonstrated in In the scatter plot between time, number of bridge segments and area of cycle for optical vortex nerve, green points are showing appearance of first object in frame while red points are signifying second object which is present in parallel with temporal proximity of first object. In plot between bridge segments and area of cycle, on right side there are multiple long persistent lines which are showing appearance of same optical vortex nerve for comparatively longer period. 

Temporally Close Shapes Across Segmented Video Frames

This section introduces a fine-grained approach to detect temporal proximities between shapes in terms of segmented video frames. To accomplish this, we divided each frame in eight equal frame segments along the horizontal axis which records the number of shapes in each frame. Then we determined the appearance and disappearance of our foreground objects in each frame segment against time domain. As a result, we obtained a persistence diagram shown in figure [START_REF] Naimpally | Proximity spaces[END_REF] illustrating occurrence of foreground objects in different frame segments. Considering our definition for temporal proximity, we can easily observe simultaneous occurrences of multiple objects at different instances of time or video frame depicting strong temporal proximity between those foreground objects. Next, we wanted to know more about the existence of different kinds of shape in each video frame. Therefore, we observed the descriptive proximity via physical properties (area and perimeter) of observed foreground shapes in the video frames and produced a scatter plot between area of shape and perimeter of shape as illustrated in figure [START_REF] Naimpally | Topology with applications. Topological spaces via near and far[END_REF]. All the points in the plot between two observed physical properties shown in figure [START_REF] Naimpally | Topology with applications. Topological spaces via near and far[END_REF] can be distinctively divided into two clusters represented by blue and orange boxes. These two boxes correspond to two different classes of shapes present in the whole video. Points of cluster in blue boxes are representing instances of shape when it is full in frame while points in orange box are showing those moments of objects when it is either appearing in frame or disappearing from frame.

Both of the last two mentioned plots provide us information about temporal proximity of shapes and descriptive proximity of shapes individually but they do not allow us to decide both temporal and descriptive proximity simultaneously. To solve this problem, each video frame shape shE is defined by a continuous mapping a shE : R × R × R → R defined by ∇shE in terms of the rate of change of shE boundary bdyE, shE interior intE and shE disposition at any instant in time t, namely,

∇ shE = ∂shE ∂bdy + ∂shE ∂int + ∂shE ∂t A persistence barcode that records the value of ∇ShE is illustrated in figure [START_REF] Peters | Near sets. General theory about nearness of sets[END_REF]. This form of barcode makes it possible to determine temporal and descriptive From the ∇ persistence barcode in figure [START_REF] Naimpally | Proximity spaces[END_REF], from frame 255 to 265 there are two persistent shapes shE and shE as shown in figure [START_REF] Peters | Near sets. General theory about nearness of sets[END_REF], which are in different frame segments but at the same time they are co existing in same temporal domain. So, according to our definition, both shapes due to their simultaneous occurrence in time domain shE and shE lie in strong temporal proximity of each other. This provides us with descriptively close video frame shapes with comparable rates of change, where Φ(shE) = ∇shE. Consecutive frames or events happening in videos will always remain temporally close to each other but for video processing we are interested in temporal closeness of any particular shape. Therefore, the framework of temporal proximity helps in determining quantitatively for how long each shape persists over time and after how much time that shape reappeared in a series of consecutive events. If the time interval between disappearance and reappearance of shape under observation is less than certain threshold then we say those events are in a temporal proximity δ ∆t of each other. A strong temporal proximity δ ∆tstrong happens when the shapes under observation appear concurrently in time domain (the shapes may be spatially and descriptively far from each other). Depending on the setting of an experiment, one can choose to observe different parameters such as ∇shE to characterize the temporal closeness between distinct shapes that appear on either in the same frame or on different frames in a video. Let 2 π be the collection of all subsets in the Euclidean plane π. In the plane, a Whitehead Closure-finite Weak (CW) cell complex K ∈ 2 π has two properties, namely, C: A cell complex K is closure-finite, provided each cell e n α ∈ K is contained in a finite subcomplex of K. In addition, each cell e n α ∈ K has a finite number of immediate faces. One cell e n α is an immediate face of another cell e m α , provided e n α ∩ e m α = ∅ [START_REF] Switzer | Algebraic topology -homology and homotopy[END_REF] (also called a common face). W: The plane π has a weak topology induced by cell complex K, i.e., a subset S ∈ 2 π is closed, if and only if S ∩ e n α is also closed in e n α for each n, α [23, 5.3, p. 65]. A collection K ∈ 2 π is called a CW complex, provided it has the closure-finite property and π has the weak topology property induced by K.

Minimal cell planar complexes are given in Table 1. [START_REF] Whitehead | Simplicial spaces, nuclei and m-groups[END_REF], later formalized in [START_REF]Combinatorial homotopy. I[END_REF]. In this work1 , a cell complex K (or complex) [26, 4, p. 221] is a Hausdorff space (union of disjoint open cells e, e n , e n i ) such that the closure of an n cell e n ∈ K (denoted by cl(e n ) is the image of a map f : σ n → cl(e n ), where σ n is a fixed n-simplex and where the boundary bdy(e n ) (otherwise known as the contour of a complex) is defined by bdy(e n ) =

Complex contour → closure cl(e n ) minus Int(e n ) interior f (bdy(e n )) = cl(e n ) -int(e n ).
Notice that a subcomplex X ⊂ K has the weak topology, since X is the union of a finite number intersections X ∩ cl(e) for single cells e ∈ K [26, 5, p. 223]. From a geometric perspective, a cell complex is a triangulation of the CW space K [25, p. 246].

Appendix B. Shape Complexes

A shape complex has two basic parts, namely, contour and interior, introduced in [START_REF]Proximal planar shapes. correspondence between triangulated shapes and nerve complexes[END_REF]. Definition 4. A planar shape contour of a shape complex shE (denoted by bdy(shE)) is a simple , closed curve with no self-loops.

Each shape complex shE has a nonempty interior that excludes all points on the shape contour. The fundamental parts of every shape complex are gathered together in the closure of a shape complex, definite using the Hausdorff distance [START_REF] Hausdorff | Grundzüge der mengenlehre[END_REF] (see, also, [7, 23, p. 128]) between all points in a CW complex K and a shape shE. Definition 6. Closure of a planar shape shE (denoted by cl(shE)) in a CW space K is defined by

Hausdorff distance D(x, shE) = inf { x -p : p ∈ shE}. cl(shE) = inf {x ∈ X : D(x, shE) = 0} .
In other words, we have the closure of a planar shape shE is a finite bounded region of the Euclidean plane such that cl(shE) includes its contour & its interior cl(shE) = bdy(shE) ∪ Int(shE).

Appendix C. Planar Vortexes

This section briefly looks at planar vortex structures in planar CW spaces. For simplicity, we consider only 2 cycle vortexes containing a pair of nested 1-cycles that intersect or attached to each other via at least one bridge edge. Definition 7. Planar 2 Cycle Vortex [START_REF]Ribbon complexes & their approximate descriptive proximities. Ribbon & vortex nerves, betti numbers and planar divisions[END_REF]. Let cycA, cycB be a collection of path-connected vertexes on nested filled 1-cycles (with cycB in the interior of cycA) defined on a finite, bounded, planar region in a CW space K. A planar 2 cycle vortex vorE is defined by

vorE = cl(cycB) is contained (nested) in the interior of cl(cycA). {cl(cycA) : cl(cycB) ⊂ int(cl(cycA))} .
A vortex containing adjacent non-intersecting cycles has a bridge edge attached to vertexes on the cycles. Definition 8. A vortex bridge edge is an edge attached to vertexes on a pair of non-interecting, filled 1-cycles.

Remark 2. From Def. 7, the cycles in a 2 cycle vortex can either have nonempty intersection (see, e.g., cycA ′ ∩cycB ′ = ∅ in |vorE ′ | in Fig. 14.2) or there is a bridge edge between the cycles (see, e.g., pq |vorE| in Fig. 14.1). In effect, every pair of vertexes in a 2 cycle vortex is path-connected. Lemma 2. Let K be a CW space, 2 V or(K) K, a collection of planar vortexes equipped with the proximity δ and let vorA, vorB ∈ V or(K). Then vorA ∩ vorB = ∅ implies vorA δ vorB.

Proof. Immediate from Axiom P.2.

Let (X, δ 1 ) and (Y, δ 2 ) be two Čech proximity spaces. Then a map f : (X, δ 1 ) → (Y, δ 2 ) is proximally continuous, provided A δ 1 B implies f (A) δ 2 f (B), i.e., if A, B are close in δ 1 proximity space X, then f (A), f (B) are close in the δ 2 proximity space Y [12, 1.4]. In general, a proximal continuous map preserves the nearness of pairs of sets in the pre-image space X for the corresponding pairs of set in the image space Y [11, 1.7,p. 16].

Theorem 2. Let K, K ′ be a pair of CW spaces, equipped with the proximities δ 1 , δ 2 , respectively and let f : (K, δ 1 ) → (K ′ , δ 2 ) be a proximally continuous map. If vortexes vorA, vorB ∈ 2 K are δ 1 close in space K, then f (vorA), f (vorB) are close in the δ 2 proximity space L ′ Proof. Given vorA δ 1 vorB in space K, then by definition of a proximally continuous map, f (vorA) δ 2 f (vorB) in space K ′ . Example 3. Let be vortexes vorA, vorB ∈ 2 K , each with same number of cycles, have overlapping cycles. In that case, vorA∩vorB = ∅. by Axiom P.2 vorA δ 1 vorB in space K. Let f : (K, δ 1 ) → (K ′ , δ 2 ) be a proximally continuous, defined for any vortex vorA by the identify map.

f (vorA ∈ K) = vorA inK ′ .
In that case, let vorE, vorE ′ ∈ K, then f (vorE) = vorA ∈ K ′ .f (vorE ′ ) = vorE ′ .vorE δ 1 vorB ⇒ f (vorE) δ 2 f (vorE ′ ).

In other words, if vortexes vorE, vorE ′ ∈ K are close, then f (vorE), f (vorE ′ ) ∈ K ′ are close.

  Proof. ⇒: Assuming that temporal intervals for A, B ∈ 2 X overlap (i.e., A ∩ ∆t B = ∅), then by definition, A δ ∆t B. ⇒: A δ ∆t B means that A and B persist over the same temporal interval ∆ A∈2 X B∈2 X t. Hence, A ∩ ∆t B = ∅. Theorem 1. (K, δ ∆t ) be a tCW proximity space and let vortexes vorE, vorE ′ ∈ 2 K , i.e., vortexes vorE, vorE ′ are sub-complexes in the collection of cell complexes in space K. Then vorE ∩ ∆t vorE ′ = ∅ ⇔ vorE δ ∆t vorE ′ . Proof. Immediate from Lemma 1.
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Figure ( 9 )

 9 Figure (9) shows position of optical vortex nerve in each video frame for cars present in video. In set-A from frame number 200 to 230 two events are temporally overlapping with each other. Two optical vortex nerves for two cars shown in this set demonstrate temporal proximity of two different cars. Similarly, in set-B from frame number 250 to 280 again there are two events are temporally overlapping with each other demonstrating temporal proximity between another set of cars.
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  Then we have th = selected threshold. shE, shE ′ = selected pair of shapes Φ(shE) = ∇shE, shE δ Φ shE ′ , provided |∇shE -∇shE ′ | < th.
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 13 Figure 13. Strong temporal proximity

Definition 5 .

 5 Shape complex interior. Set of points bounded by shE contour int(shE) = shE \ bdyE.
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Table 1 .

 1 Minimal Planar Cell Complexes

	Minimal Complex Cell e n : n ∈ {0, 1, 2} Planar Geometry	Interior
	e 0	Vertex	nonempty
	e 1	Edge	line segment w/o end points
	e 2	Filled triangle	nonempty triangle interior w/o edges
	Remark 1. Closure finite cell complexes with weak topology (briefly, CW com-
	plexes) were introduced by J.C.H. Whitehead	

Here, we use cl(e n ) (closure of a cell) and bdy(e n ) (contour of a cell) used in this paper, instead of Whitehead's ēn and ∂(e n ).

Definition 3. A cell subcomplex shE := {e n α } ∈ 2 K (shape complex) is a closed subcomplex, provided the subcomplex includes both a nonempty interior (denoted by int(e n α )) and its boundary (denoted by bdy(e n α )). In effect, shE is closed, provided shE = int(shE) ∪ bdy(shE) (Closed subcomplex).

Appendix D. Čech Proximity Spaces

This section briefly introduces Čech proximity spaces, paving the way for temporal proximity spaces.

The simplest form of proximity relation (denoted by δ) on a nonempty set was intoduced by E. Čech [START_REF] Cech | Topological spaces[END_REF]. A nonempty set X equipped with the relation δ is a Čech proximity space (denoted by (X, δ)), provided the following axioms are satisfied.

Čech Axioms (P.0): All nonempty subsets in X are far from the empty set, i.e., A δ ∅ for all A ⊆ X.

Given that a nonempty set E has k ≥ 1 features such as Fermi energy E F e , cardinality E card , a description Φ(E) of E is a feature vector, i.e., Φ(E) = (E F e , E card ). Nonempty sets A, B with overlapping descriptions are descriptively proximal (denoted by A δ Φ B). The descriptive intersection of nonempty subsets in

Let 2 X denote the collection of all subsets in a nonvoid set X. A nonempty set X equipped with the relation δ Φ with non-void subsets A, B, C ∈ 2 X is a Čech proximity space, provided the Čech axioms are satisfied.