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Introduction

Deep neural networks allow to perform complex non-linear transforms. In image coding, these transforms are learned end-to-end [START_REF] Ballé | End-to-end optimized image compression[END_REF] to minimize a rate-distortion cost. This leads to compression performance competitive with the image coding configuration of VVC [START_REF] Chen | Algorithm description for versatile video coding and test model[END_REF], the latest ITU/MPEG video coding standard. Video coding is a more challenging task than image coding due to the additional temporal redundancies, often removed through motion compensation. It consists in computing a temporal prediction from already decoded frames to only send the unpredictable part. Frames coded using already decoded ones are called inter frames, others are called intra frames.

The unpredictable content is often conveyed through residual coding i.e. by sending the difference between the frame and its temporal prediction. In the literature, this results in a two-codec approach, with an inter-frame codec dedicated to residual signal and an intra-frame codec for image-domain signal [START_REF] Agustsson | Scale-space flow for end-to-end optimized video compression[END_REF][START_REF] Yang | Learning for video compression with hierarchical quality and recurrent enhancement[END_REF][START_REF] Yilmaz | End-to-end ratedistortion optimization for bi-directional learned video compression[END_REF]. Moreover, previous learned video coders [START_REF] Agustsson | Scale-space flow for end-to-end optimized video compression[END_REF][START_REF] Lu | DVC: an end-to-end deep video compression framework[END_REF][START_REF] Yang | Learning for video compression with hierarchical quality and recurrent enhancement[END_REF] are designed to operate under a single rate constraint (i.e. a single quality level). As such, having several quality levels available requires the storage of one decoder per quality level, which is not practical for real world application. This article introduces an end-to-end learned factorized system. It is claimed to be a practical video coder as it provides some essential real-world features. First, a single coder processes intra and inter frames, allowing to use any GOP structures (intra/inter arrangement). Second, a single coder allows to continuously select the rate of each frame, enabling the accurate optimization of each frame RD cost.

The coding scheme is based on two networks, MOFNet and CodecNet [START_REF] Ladune | Conditional coding for flexible learned video compression[END_REF]. MOFNet conveys side-information (prediction parameters, coding mode) while CodecNet transmits the unpredictable content. Both networks use conditional coding to exploit the decoder-side information while being resilient to its absence. This enables the processing of inter and intra frames with the same coder. Gain vectors [START_REF] Guo | Variable rate image compression with content adaptive optimization[END_REF] are added at the quantization step of both networks to adapt to different rate constraints. The system is shown to be competitive with the video coding standard HEVC [START_REF] Sullivan | Overview of the high efficiency video coding (hevc) standard[END_REF] under the CLIC21 video test conditions [START_REF]Workshop and Challenge on Learned Image Compression[END_REF].

Coding Scheme

Let x i ∈ R C×H×W , i ∈ N be a video with C color channels of height H and width W 1 . In this work, videos are encoded using one intra frame (I-frame) followed by several Groups of Pictures (GOP). A GOP is a fixed pattern of inter-frames, made of P-frames (use one already decoded frame as reference) and B-frames (use two references). The Fig. 1 shows an I-frame and two different GOP structures. [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] and is omitted for clarity. Attention modules are implemented as proposed in [START_REF] Cheng | Learned image compression with discretized gaussian mixture likelihoods and attention modules[END_REF] and f = 192. There are 28 millions learnable parameters {φ, θ}.

Video sequences are compressed to minimize a ratedistortion trade-off weighted by λ:

L λ = t D(x t , x t ) + λR(x t ), (1) 
with D a distortion measure between the original frame x t and the coded one xt and R(x t ) the rate associated to xt . Following the CLIC21 video test conditions, D is based on the MS-SSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF]:

D(x t , x t ) = 1 -MS-SSIM(x t , x t ).

Overview

Let x t be a frame to code. To reduce its rate, the system leverages up to two reference frames denoted as (x p , xf ). The proposed coding scheme, shown in Fig. 2, is split between two convolutional networks, MOFNet and Codec-Net. MOFNet takes (x t , xp , xf ) as inputs to compute and convey two optical flows (v p , v f ), a pixel-wise prediction weighting β and a pixel-wise coding mode selection α. Each optical flow represents a pixel-wise motion from x t to one of the reference, used to interpolate the reference using a bilinear warping. Both reference warpings are summed and weighted by β to obtain a temporal prediction xt :

xt = β w(x p ; v p ) + (1 -β) w(x f ; v f ), (2)
where w is a bilinear warping, a pixel-wise multiplication,

β ∈ [0, 1] H×W and v p , v f ∈ R 2×H×W .
The coding mode selection α ∈ [0, 1] H×W arbitrates between two coding modes: Skip mode (direct copy of xt ) or CodecNet to transmit x t using information from xt to reduce the rate. The contributions from the two coding modes are summed to obtain the reconstructed frame xt :

xt = (1 -α) xt Skip + c(α x t , α xt ) CodecNet . (3) 
The total rate is the sum of MOFNet and CodecNet rate. When there is no reference available, MOFNet is bypassed, xt is set to 0 and α to 1: image coding is de facto used.

Conditional Coding

MOFNet and CodecNet rely on conditional coding [START_REF] Ladune | Conditional coding for flexible learned video compression[END_REF] to better exploit decoder-side information than residual coding. Conditional coding supplements the analysis and synthesis transforms of the auto-encoder architecture [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF] with a shortcut transform. The shortcut transform retrieves information from the references (i.e. at no rate) as latents y . Thus, the analysis transform sends only the information not present at the decoder as latents y. Finally, the synthesis transform concatenates both latents as inputs to compute its output. After training, conditional coding is flexible enough to work with zero, one or two references. This makes the proposed coder able to process all types of frames, allowing to use any GOP structure composed of I, P and B-frames.

Variable rate

The system operates at variable rates using scaling operations in the quantization stage [START_REF] Guo | Variable rate image compression with content adaptive optimization[END_REF]. The coder is trained simultaneously for N rate constraints {λ 1 , . . . , λ N }. Each λ i is associated to a pair of learned feature-wise gain vectors Γ enc i , Γ dec i ∈ R Cy , with C y the number of channels of the latents ŷ. The gain vectors are applied through feature-wise multiplication (see Fig. 4). 1 , corresponding to two rate constraints λ 0 (higher rate) and λ 1 (lower rate). The graphs present the gain vectors associated to I, P and B-frames.
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The gain vectors can be thought of as feature-wise adapted quantization steps. Since the quantization steps of I, P and B frames may be different, a dedicated gain vector pair is learned for each frame type and for each rate constraint, for both MOFNet and CodecNet. After training, it is possible to operate under any continuous rate constraint r ∈ [1, N ] by interpolating the gain vectors through a weighted geometric averaging:

Γ r = Γ 1-l r Γ l r , with l = r -r . (4) 

Training

The purpose of the training phase is to prepare the system to code I, P and B-frames under N = 6 rate constraints. To this effect, it is trained on the smallest coding structure featuring the 3 types of frames i.e. an I-frame followed by a GOP2 (see Fig. 1). For each training iteration, a rate index i ∈ {1, N } is randomly selected. Then the 3 frames are coded using the corresponding Γ i , followed by a single back-propagation to minimize the rate-distortion cost of eq. ( 1) using λ i . The N rate constraints are chosen to be distributed around the 1 Mbit/s rate target of CLIC21.

The learning process is performed through a ratedistortion loss. No element of the system requires a pretraining or a dedicated loss. Moreover, coding the 3 frames in the forward pass makes the system able to deal with coded references, leading to better coding performance.

Experimental Results

Gain Vector Visualization

The encoder gain vectors of CodecNet obtained after training are illustrated in Figures 3a (higher rate) and 3b (lower rate). Γ enc for the I-frames are always larger than those of the P-frames which are almost identical to those of the B-frames. As a bigger Γ enc translates to a more accurate quantization of y, it means that I-frames require more precision (i.e. more rate) than the P or B-frames. This is because I-frames are exclusively conveyed by CodecNet latents y c whereas P and B-frames rely on Skip Mode and CodecNet shortcut transform, allowing them to use a less accurate quantization step. Comparing Γ enc 0 and Γ enc 1 illustrates that rate control is achieved through changes in the quantization precision. As expected, a less accurate quantization is used at lower rate.

Rate-distortion Results

The rate and GOP structure flexibility provided by the coder allows to tune these two parameters to optimize the rate-distortion (RD) cost individually for each video. The Fig. 5 shows the RD curves of the coder on two sequences from the CLIC21 validations set for GOP4 and GOP8 structures. This example shows that there is no consistent best GOP structure. Thanks to its flexibility, the proposed coder can test different GOP structures during the encoding process and select the best for each sequence, resulting in better overall performances. Gain vectors interpolation presented in eq. ( 4) makes the coder able to target any rate, allowing to obtain continuous RD curves.

The proposed system is evaluated under the CLIC21 video test conditions. The objective is to get the highest MS-SSIM at about 1 Mbit/s. The CLIC21 validation set contains 100 videos with 60 frames. The coder flexibility is leveraged by optimizing the rate and the GOP structure of each sequence according to a global RD cost. The Figure 5: Rate-distortion curves on two CLIC21 sequences for two different GOP structures. The intra period is set to 32 frames for both GOP structures. The quality is measured as MS-SSIM dB = -10 log 10 (1-MS-SSIM), higher is better.

Hyperprior curve in Fig. 6 shows the performance of the coder against two implementations of the video coding standard HEVC: the widely used x265 2 and the HM 16.22, the reference HEVC coder. 2 ffmpeg -video size WxH -i in.yuv -c:v libx265 -pix fmt yuv420p -crf QP -preset medium -tune ssim out.mp4

CLIC21 Video Track

A system alike to the one described in this article has been submitted to the CLIC21 video track under the name E2E T OL. Because of the model size penalty, the number of convolution features f is reduced from 192 to 128. In order to ensure cross-platform arithmetic coding, the submitted coder rely on a simpler latents probability model, replacing the hyperprior mechanism with a factorized model [START_REF] Ballé | Variational image compression with a scale hyperprior[END_REF]. The degradation of compression efficiency associated to the factorized model is shown in Fig 6. 

Conclusion

This paper introduces a end-to-end learned video coder, integrating many features required for a practical usage. Thanks to conditional coding and quantization gain vectors, a single encoder/decoder pair is able to process all types of frame (I, P & B) at any continuous rate target. Aside from being more convenient, this flexibility brings performance gains through rate and GOP structure competition. The relevance of the proposed approach is proved by outperforming x265 on the CLIC21 video coding track.

Immediate future work will consist in the quantization of the network operations in order allowing the usage of hyperpriors in a cross-platform situation.
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 41 Figure 4: Usage of the quantization gain vectors.
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 3 Figure 3: Feature-wise value of the CodecNet gain vectors Γ enc 0 and Γ enc1 , corresponding to two rate constraints λ 0 (higher rate) and λ 1 (lower rate). The graphs present the gain vectors associated to I, P and B-frames.
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 6 Figure6: Rate-distortion curves on the CLIC21 video validation set. Two versions of the system are compared against two implementations of HEVC. The quality is measured as MS-SSIM dB = -10 log 10 (1-MS-SSIM), higher is better.
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  The proposed system offers compelling compression results, consistently outperforming x265 from 0.75 to 1.25 Mbit/s.
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Table 1 :

 1 CLIC21 leaderboard results validation set

	System name	MS-SSIM	Size [KBytes] Data Model	Decoding time [s]
	E2E T OL	0.97204	23769 45235	13356