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Abstract: Remote sensing tools have been long used to monitor landscape dynamics inside and
around protected areas. Hereto, scientists have largely relied on land use and land cover (LULC)
data to derive indicators for monitoring these dynamics, but these metrics do not capture changes
in the state of vegetation surfaces that may compromise the ecological integrity of conservation
areas’ landscapes. Here, we introduce a methodology that combines LULC change estimates with
three Normalized Difference Vegetation Index-based proxy indicators of vegetation productivity,
phenology, and structural change. We illustrate the utility of this methodology through a regional
and local analysis of the landscape dynamics in the Cerrado Biome in Brazil in 2001 and 2016. Despite
relatively little natural vegetation loss inside core protected areas and their legal buffer zones, the
different indicators revealed significant LULC conversions from natural vegetation to farming land,
general productivity loss, homogenization of natural forests, significant agricultural expansion, and
a general increase in productivity. These results suggest an overall degradation of habitats and
intensification of land use in the studied conservation area network, highlighting serious conservation
inefficiencies in this region and stressing the importance of integrated landscape change analyses to
provide complementary indicators of ecologically-relevant dynamics in these key conservation areas.

Keywords: conservation units; interface areas; landscape approach; land use and land cover change;
vegetation dynamics; NDVI-based landscape metrics; MODIS time-series; Landsat

1. Introduction

Protected areas (PAs) currently cover around 15% of the world’s land and inland waters and
remain the cornerstone of global biodiversity conservation strategies [1]. However, the capacity of
PAs to preserve biodiversity greatly relies on the ability to maintain the ecological processes that span
beyond their boundaries [2,3].

The anthropogenic-driven landscape dynamics in the PAs and surroundings (hereafter referred to
as ‘interface areas’) highly influence the ecological processes that extend across these areas, such as
those related to wildlife movement (e.g., population dynamics [4] or gene flows [5]), the ecosystem
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functions on which they rely, and the ecosystem services they provide [2,3]. These landscape dynamics
can reflect both conservation efforts and the expansion and intensification of human land use, the
latter being responsible for the largest negative impact on the conservation status of wildlife species
worldwide [6].

To gain insight into the biodiversity status of interface areas and the effectiveness of conservation
strategies and magnitude of anthropogenic pressures within them, it is critical to map and quantify
the multiple spatiotemporal dimensions of landscape dynamics, and evaluate their relationship with
different ecological processes and drivers of change. Yet, a recent review on the last 30 years of research
on interface areas showed that only a low proportion of papers focused on landscape and habitat
analyses [7]. The limited development of diversified and relevant indicators of landscape change
for conservation biology research might partly explain the scarce landscape and habitat analyses in
interface areas.

Although satellite remote sensing (SRS)-based methods allow scientists to derive a wide variety of
environmental indicators for monitoring landscape dynamics, landscape change analyses in interface
areas are currently mostly based on land use and land cover change (LULCC) indicators (e.g., [8–13])
and mainly assess changes in the surface area of forests, as an indicator of habitat loss (e.g., [14–17]).
However, LULCC analysis does not allow scientists to derive indicators on changes in the state or
biophysical conditions of the vegetation formations (e.g., forest aboveground biomass decline), which
may be also relevant for conservation biology research.

In particular, changes in the phenology (seasonality), productivity, or structure of vegetation
surfaces can have significant consequences for important ecological processes, ecosystem functions
and services in interface areas (e.g., carbon cycle, resource availability, population dynamics,
biological diversity, species distributions, and interactions) [18–20]. SRS vegetation indices (VI)-based
landscape metrics allow scientists to locate and quantify the magnitude of these changes by providing
proxy-estimates of phenology, productivity, and structural change. Moreover, VI-based landscape
metrics can be relevant indicators of the indirect and direct factors driving these changes at different
spatiotemporal scales (e.g., agricultural practices [21], selective logging [22], bush encroachment [23],
rainfall/temperature regimes [24]). VI-based metrics can, therefore, improve the understanding of the
major drivers of change in and around PAs and help locate and estimate the magnitude of their effects.

VI-based change detection can, therefore, complement LULCC analysis with fine-scale (pixel-level)
estimates of potentially ecologically relevant changes, especially in areas that cannot be monitored
using only LULCC analysis (i.e., areas where the LULC type remains unchanged). VI-based change
detection is, however, rarely used in combination with LULCC in landscape change analysis and is
still underused to assess landscape dynamics in interface areas, although some studies have shown its
valuable contribution to conservation effectiveness (e.g., [25,26]), biodiversity (e.g., [19]), and ecosystem
functioning (e.g., [27]) assessments.

The main objective of this paper is to introduce a two-step methodology to perform integrated
landscape change analyses of interface areas using complementary SRS change detection methods.
First, LULC data is used to analyze the major landscape composition changes, and second, three
VI-based metrics based on MODIS and Landsat data are used to analyze the productivity, phenology,
and structure changes of different natural and anthropogenic vegetation areas where the cover type
has remained unchanged. This study also aims to fill a knowledge gap on the landscape dynamics
of the Cerrado Biome’s interface areas, a critical conservation area network on which we apply the
methodology to perform a regional analysis, complemented by a local case study analysis.

Integrated landscape change analyses, like the one presented here, offer large-scale spatially
explicit information on the different types and magnitude of changes experienced both by native
vegetation remnants and the surrounding transformed surfaces. They therefore represent a valuable
tool to improve the monitoring capacity of the landscape dynamics in interface areas.
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2. Materials

2.1. Study Areas and Period

The Brazilian Cerrado Biome is home to a large number of species and is characterized by a
high level of endemism [28]. It is also highly vulnerable to habitat change, having experienced
large-scale landscape transformation over the last decades, especially due to the fast expansion of
cattle ranching and crop farming areas [29,30]. Between 2001 and 2013, the Cerrado Biome has lost its
natural vegetation at an approximate rate of 0.41% (i.e., 772,000 ha) per year, while pastureland and
cropland have increased by 11% [31]. Despite this pressure, environmental laws and policies remain
less restrictive than in the neighboring Atlantic Forest and Amazon biomes [32].

We selected the Cerrado Biome’s PAs (both core conservation units (hereafter, CUs) (Section 2.1.1)
and buffer zones (hereafter, BZs) (Section 2.1.2) as an illustrative case study for a regional-level
landscape change analysis, due to their critical role in preserving one of the world’s biodiversity
hotspots from the threats it is facing [28] and the little knowledge available on the LULC conversion
types and vegetation dynamics (other than the proportion of native vegetation loss (e.g., [33,34])) in
these areas. One of these CUs, the Parque Estadual das Nascentes do Rio Taquari, and its BZ were
additionally used as an illustrative local case study to highlight the usefulness of our methodology in a
spatially explicit way and within a more specified context.

We carried out the landscape change analysis over two years, 2001 and 2016. This two-year study
period meets the following criteria: i) it allows a long-term analysis of landscape dynamics using
homogeneous or analogous datasets (i.e., the same type of LULC and satellite data, presented in
Sections 2.2 and 2.3, could be used for monitoring both years), which enables a more robust analysis;
and ii) the two analyzed years did not present rainfall anomalies (Appendix A presents the rainfall
anomalies analysis).

2.1.1. Conservation Units

The Brazilian National System of Conservation Units considers 12 different categories of PAs,
classed into two major groups: five categories of CUs with a ‘strictly protected’ status, where biodiversity
conservation is the main objective, and seven categories of CUs with a ‘sustainable use’ status, where
resource exploitation is allowed in addition to biodiversity conservation objectives [35].

In our study we focused on the 61 CUs belonging to the Cerrado Biome (as registered by the
official managing agencies and bodies in the Brazilian National Register of Conservation Units [36])
designated before 2001 and classified as ‘strictly protected’. A complete list of the 61 CUs retained for
this study and their characteristics are presented in Appendix B. Most of the spatial boundaries of
the 61 CUs were acquired from the official spatial layer ‘Conservation Units of Brazil’ of the Brazilian
Ministry of Environment [37]. Since spatial boundaries were missing for the Parque Estadual Gruta da
Lagoa Azul, Parque Estadual de Mirador and Parque Estadual do Cerrado, we extracted or digitized
them from alternative sources [38–40].

2.1.2. Buffer Zones

According to the current Brazilian legislation [41], all CUs, except ‘environmental protection areas’
and ‘private natural heritage reserves’ (APA and RPPN, for their respective Portuguese acronyms),
must have a BZ, defined as “the surroundings of a CU, where human activities are subject to specific
rules and restrictions, to minimize the negative impacts on the unit”, which must be spatially delimited
in the CUs’ management plans. In addition, the National Environment Council’s (CONAMA, for
its Portuguese acronym) resolution on environmental licensing around CUs [42] defined 10 km BZs
around CUs, where any activity that may affect the biota must be licensed and authorized by the
governmental agency responsible for the CU’s management. However, due to the reactions from the
productive sector [43], the legal resolution of CONAMA (n◦13/90) was modified 20 years later with
resolutions n◦428 [44] and n◦473 [45], which reduce the 10 km radius BZ to 3 km.
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Since 41% of the selected 61 CUs do not have, to date, an approved management plan (Appendix B),
and a clear delimitation of the BZ is missing from the majority of management plans, we decided
to use the 10 km radius as defined by the earlier, more restrictive, resolution for the delimitation of
the BZs. Our resultant study areas extend over 90,747 km2, spanning across twelve Brazilian states.
Figure 1 shows the location of the study areas, and Figure 2 shows the location and landscape in 2001
and 2016 of the local case study.
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Figure 2. Red-Green-Blue composites of Landsat images (L7/ETM+ of the 09/07/2001 and L8/OLI of the
10/07/2016) showing the landscape of the Parque Estadual das Nascentes do Rio Taquari (boundaries
are represented by the yellow outline), its 10 km buffer zone (boundaries are represented by the dashed
black outline), and the location of the park (highlighted by the red circle).

2.2. Land Use and Land Cover Data

The land use and land cover (LULC) maps of 2001 and 2016 of the Brazilian Land Cover and Use
Collection 4.0 Map Series of the MapBiomas project [46] were acquired for analyzing land use and land
cover changes (LULCC) in the study areas (presented in Section 3.1). The potential of these remote
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sensing-based maps to locate and quantify large-scale LULC changes remains largely unexplored by
the scientific community, and only a few recent studies have attempted to do so (e.g., [47–50]).

These maps, produced at a 30 m spatial resolution over the entire Brazilian territory, are obtained
through annual automatic processing and classification of Landsat imagery. For our study, we used the
levels 2 and 3 of the 2001 and 2016 classifications (a detailed explanation of the processing chain and
validation methods used can be found in [51], and the results of the accuracy assessment are presented
in Table 1).

Table 1. Results of the accuracy assessment of the levels 2 and 3 of the 2001 and 2016 classifications of
Collection 4.0 MapBiomas land use and land cover maps (for information on quantity and allocation
disagreement statistics see [52]).

Accuracy Statistics 2001 2016

Level 2 Level 3 Level 2 Level 3

Overall accuracy (%) 88.1 85.7 87.6 85.4
Quantity disagreement (%) 2.6 4.1 3.5 4.5

Allocation disagreement (%) 9.3 10.2 8.9 10.1

We extracted the data corresponding to our study areas from the original raster maps, and, to
provide a synthetic overview of the trajectories related to the main LULC types, we reclassified the
original maps to create a simplified version containing ten categories of the original classification
(Table 2). Due to pixels with missing values in the 2001 and/or 2016 layers, we were unable to analyze
a total of 164 km2, which represents 0.18% of the study area.

Table 2. Three-level hierarchy of land use and land cover categories in the 2001 and 2016 MapBiomas
Collection 4.0 maps (‘Original classification’) and the reclassified categories used in this study (‘Final
classification’). Only the categories present inside the study areas are included in the ‘Original
Classification’ list.

Original Classification
Final Classification

Level 1 Level 2 Level 3

1. Forest 1.1. Natural Forest
1.1.1. Forest Formation Natural Forest

1.1.2. Savanna Formation Natural Forest

1.2. Forest Plantation - Forest Plantation

2. Non-Forest Natural
Formation

2.1. Wetland - Non-Forest Natural Formation

2.2. Grassland - Non-Forest Natural Formation

2.3. Rocky Outcrop - Other Non-Vegetated Area

2.4. Other Non-Forest
Natural Formation - Non-Forest Natural Formation

3. Farming

3.1. Pasture - Pasture

3.2. Agriculture

3.2.1. Annual and
Perennial Crop Agriculture

3.2.2. Semi-perennial
Crop Agriculture

3.3. Mosaic of
Agriculture and Pasture - Mosaic of Agriculture and

Pasture

4. Non-Vegetated Area

4.1. Urban Infrastructure - Urban Infrastructure

4.2. Mining - Mining

4.3. Other
Non-Vegetated Area - Other Non-Vegetated Area

5. Water 5.1. River, Lake, and
Ocean - Water
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2.3. Satellite Data

Part of our study aims to examine the vegetation dynamics of various vegetation cover types,
including natural and anthropogenic vegetation cover. SRS vegetation indices have long been used for
this purpose, the Normalized Difference Vegetation Index (NDVI) being the most widely used due
to its strong relationship with vegetation biophysical parameters such as leaf area index, green leaf
biomass, and leaf photosynthetic activity [53]. Although NDVI is affected by shadows, and is more
affected by noise (e.g., aerosol effects) and by radiometric saturation over high biomass vegetation
than other vegetation indices [54], it allows scientists to efficiently capture the vegetation dynamics of
a wide range of vegetation cover types at short time scales. This is due to its high sensitivity to slight
variations in the quantity and state of photosynthetic vegetation [55].

We used two different datasets of NDVI data: one dataset composed of MODIS time series,
with a high temporal resolution to capture the vegetation dynamics at a fine temporal scale, and
a complementary dataset consisting of high spatial resolution Landsat data. All the images were
projected to the common Projected Coordinate System ‘SIRGAS 2000/Brazil Polyconic (EPSG: 5880)’.

2.3.1. MODIS Data

Two annual time series of the MODIS Terra Vegetation Indices 16-Day Global 250 m product
(MOD13Q1 v.5) [56] were obtained from the collection ‘MODIS/MOD13Q1’ of the Earth Engine Data
Catalog through the Google Earth Engine (GEE) platform [57]. Although the MOD13Q1 version
6.0 collection extends the series of data beyond 2017 (when MOD13Q1 version 5.0 stopped being
produced by the NASA Land Processes Distributed Active Archive Center), it currently presents issues
related to “unexpected missing data, incorrect instances of No Data and spikes in the NDVI values and
Usefulness band values not correctly assigned” (https://lpdaac.usgs.gov/products/mod13q1v006). We
therefore downloaded the first and the last annual time series of the MOD13Q1 Version 5.0 product
with a full-year coverage (23 composite images per year) for 2001 and 2016. This product is processed
as 16-day syntheses of the daily surface reflectance series ‘MOD09’, and provides an NDVI band at 250
m resolution with minimized atmospheric and directional effects [56,58].

To reduce any potential remaining atmospheric effects, we applied the noise-reduction algorithm
presented in [59] adapted from the iterative Savitzky–Golay smoothing algorithm developed by Chen
et al. [60]. To ensure the noise reduction is also applied to the first and last images of the time series,
we downloaded five extra images at both extremes of the two annual time series.

Finally, to linearly interpolate the smoothed time series pixel-wise, and place their values at
regular intervals of 16 days, we used the Composite Day of Year (CDOY) band of the MOD13Q1
product, that contains the acquisition date of the pixels retained to produce the original composite
images [56]. This step ensured a uniform sampling of the NDVI for each of the evaluated years. The
different pre-processing steps applied to the MODIS data are shown in Figure 3.

To attain a valid NDVI range from 0.0 to 1.0, a scale factor of 0.0001 was applied to all the bands in
the 2001 and 2016 annual NDVI time series.

2.3.2. Landsat Data

We used Landsat data to obtain high spatial resolution images representing the landscapes of
each CU and their BZs in 2001 and 2016. The choice of Landsat scenes was made according to these
four criteria: 1. Scenes had to be cloud-free over the studied areas; 2. The number of scenes per CU
and its corresponding BZ was minimized; 3. If multiple scenes were needed to cover a CU and its
BZ, the dates of acquisition between scenes needed to be the closest possible in time; 4. For the same
CU and BZ, the acquisition date of the 2001 scene(s) needed to be the closest possible in time to the
acquisition date of the 2016 scene(s).

https://lpdaac.usgs.gov/products/mod13q1v006
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Figure 3. MODIS data collected and preprocessing steps. 1 The original data derives from 5 MODIS
tiles h12v10, h12v11, h13v09, h13v10, h13v11, which have been cropped to the extent of the study areas
and mosaicked to a single image mosaic per date (i.e., 23 mosaics per year). 2 The final annual time
series start and end on the day-of-year 1 and 353, respectively.

A total of 113 scenes were selected (the acquisition details and identification of the Landsat scenes
are presented in Appendix C). Since no single Landsat mission was operational in both 2001 and 2016
(except for the Landsat 7 mission in which, however, the Enhanced Thematic Mapper Plus (ETM+)
sensor is failing since 2003 [61]), the scenes were selected from three missions and sensors of the
Landsat Data Continuity Mission: Landsat 5 Thematic Mapper (TM) and Landsat 7 ETM+ scenes for
the year 2001 and Landsat 8 Operational Land Imager (OLI) scenes for 2016.

Despite the inherent differences between the three sensors due to the design improvements and
adjustments between successive missions, the latest Tier-1 Surface Reflectance collections are considered
suitable for time-series analysis since they include the Landsat scenes with the highest available data
quality, which are consistent and inter-calibrated across the different Landsat instruments [62–64].

The Near-Infrared (NIR) and Red (R) bands of the selected scenes were retrieved through the GEE
platform from the following collections:

• Landsat 5 TM Tier-1 Surface Reflectance Collection (‘LANDSAT/LT05/C01/T1_SR’), Band 3 (R),
Band 4 (NIR);

• Landsat 7 ETM+ Tier-1 Surface Reflectance Collection (‘LANDSAT/LE07/C01/T1_SR’), Band 3 (R),
Band 4 (NIR);

• Landsat 8 OLI TM Tier-1 Surface Reflectance Collection (‘LANDSAT/LC08/C01/T1_SR’), Band 4
(R), Band 5 (NIR).

In the GEE cloud-computing platform, the NDVI was subsequently computed from the NIR and
Red bands of the 113 scenes that share a common spatial resolution of 30 m, and were mosaicked to
a single 2001 Landsat TM/ETM+ mosaic and a 2016 Landsat OLI mosaic. Finally, the mosaics were
cropped to a 300 m buffer from the study areas’ limits (to avoid edge effects when calculating the
landscape metric related to the spatial variability of NDVI, presented in Section 3.2).

3. Methods

3.1. Land Use and Land Cover Change Analysis

The reclassified 2001 and 2016 MapBiomas LULC maps (Section 2.2) were used to determine the
LULC transitions in the study areas (presented in Section 4.1.1). The analysis was carried out from
pixel-area estimates and separately for the CUs (total area evaluated = 2,755,413 ha) and BZs (total area
evaluated = 6,302,902 ha), by applying two widely used tools:
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• Transition matrices (also known as cross-tabulation matrices) [65,66], in which each row represents
the LULC category in 2001, each column the LULC category in 2016, each entry represents the
surface area experiencing LULCC or maintaining the same LULC type, and the last column and
row represent the total area covered by each LULC category in 2001 and 2016, respectively.

• Sankey diagrams [67,68], derived from the transition matrices, in which the total area covered by
each LULC category in 2001 and 2016 is represented as stacked vertical bars (the height of each bar
representing the relative proportion of each LULC type in the study areas), and in which transition
lines, connecting each sequential pair of bars, represent the surface area experiencing LULCC or
maintaining the same LULC type (the thickness of each line is proportional to the total surface area
experiencing the corresponding LULC transition or remaining unchanged). The ‘sankeyNetwork’
function of the ‘networkD3’ R package v.0.4. [69,70] was used to derive the Sankey diagrams.

3.2. Vegetation Change Analysis

To analyze the vegetation dynamics of the major vegetation cover types (i.e., ‘Natural Forest’,
‘Non-Forest Natural Formation’, ‘Pasture’, and ‘Agriculture’), we first extracted the pixels belonging to
these vegetation cover types in both years from the 2001 and 2016 MapBiomas LULC maps (i.e., the
areas where the vegetation cover type remained unchanged).

To assess the dynamics of each vegetation cover type separately (i.e., measuring the “within-class”
dynamics) and considering that the landscape metrics used for this purpose are calculated at the
MODIS spatial resolution of 250 m, we narrowed down the analysis to exclusively ‘pure pixels’ (i.e.,
250 m resolution pixels with a uniform vegetation cover type).

To this end, the mask of “unchanged vegetation cover type pixels” at the original MapBiomas
30 m resolution was overlapped by a regular square-grid fitting the 250 m resolution MODIS cells.
The grid cells overlapping different vegetation cover types’ pixels or any missing values were used as
a mask, applied to all of the satellite imagery to discard ‘mixels’ and missing values for subsequent
analysis. By doing this, we avoided the mixed signals from cells covering heterogeneous vegetation
types and ensured that the observed vegetation dynamics corresponded exclusively to the targeted
vegetation types under evaluation. A total of 438,348 cells, equivalent to approximately 27,397 km2

were retained for the vegetation change analysis.
The masked satellite imagery was used to calculate the following three NDVI-based landscape

metrics that provide complementary information on the spatiotemporal dynamics of the four major
vegetation cover types.

A first landscape metric (NDVIinter) was derived from the 2001 and 2016 annual MODIS NDVI time
series to evaluate the magnitude and overall trend of the inter-annual change of the four vegetation
cover types. This first landscape metric was calculated pixel-wise as the difference between the
annual mean NDVI in 2016 and 2001 (Figure 4a shows a schematic representation of the calculation
of NDVIinter):

NDVIinter(Xt, X0) = Xt −X0 =
1
n

n∑
i=1

(Xt,i −X0,i) (1)

where X0 and Xt are the images in the first and last annual time series, respectively, and n is the number
of images in the annual time series. The valid range of NDVIinter is from –2 to 2.

Considering that the NDVI is a well-established and widely-used spectral-based proxy for
above-ground vegetation productivity (e.g., [71–76]), NDVIinter was therefore considered here as an
indicator of vegetation productivity change: negative values represent areas where the mean annual
productivity has decreased, and conversely, positive values indicate a general increase in the mean
annual productivity.
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Figure 4. Schematic representation of the calculation of the three landscape metrics at the pixel level:
(a) example of calculation of NDVIinter from two time series of three images each, where µ corresponds
to the annual mean of the pixel values; (b) example of calculation of NDVIintra from two time series
of three images each (i.e., n = 3), where |∆| corresponds to the absolute differences between each pair
of consecutive images in the annual time series; (c) example of calculation of NDVIspatial from two
high spatial resolution images (in this example a coarse-resolution pixel contains four high-resolution
pixels), where σ corresponds to the standard deviation of the high-resolution pixel values.

A second landscape metric (NDVIintra) was derived from the 2001 and 2016 annual MODIS NDVI
time series to evaluate the magnitude and overall trend of the intra-annual variability change of the
vegetation cover types.

We first calculated pixel-wise the cumulative intra-annual variations of NDVI in 2016 (i.e., the
sum of the absolute differences between each pair of consecutive images in the annual time series), and
divided the result by the number of sequential image pairs in the annual time series (i.e., 22) to obtain
an average estimate of the intra-annual variability in 2016. We then repeated the same operation for
the 2001 series and calculated the difference between the 2016 and 2001 results.

This second landscape metric was calculated pixel-wise as follows (Figure 4b shows a schematic
representation of the calculation of NDVIintra):

NDVIintra(Xt, X0) =
1

n− 1

n−1∑
i=1

(∣∣∣Xt,i+1 −Xt,i
∣∣∣− ∣∣∣X0,i+1 −X0,i

∣∣∣) (2)

where X0 and Xt are the images in the first and last annual time series, respectively, and n is the number
of images in the annual time series. The valid range of NDVIintra is from –2 to 2.

The NDVIintra provides an estimate of the mean intra-annual variability change of NDVI, which
allows quantifying variations in the seasonal patterns of vegetation cover. Taking the definition of
‘Land Surface Phenology’, “the seasonal pattern of variation in vegetated land surfaces observed from
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remote sensing” [77], as a reference, the NDVIintra was considered here as an indicator of vegetation
phenology change.

Unlike threshold-based or change-detection-based phenology metrics [78], NDVIintra does not aim
to identify the changes in different phenological phases (e.g., start-of-season, green-up, peak of growing
season, etc.) but rather to quantify the changes in the overall oscillatory pattern. For instance, negative
values of NDVIintra indicate a decrease in the mean intra-annual variability of NDVI observations, due
to either a decrease in the amplitude or the number of seasonal oscillations. Conversely, positive values
indicate that seasonal oscillations have become more pronounced or numerous, therefore increasing
the mean intra-annual variability.

A third landscape metric (NDVIspatial) was derived from the 2001 Landsat TM/ETM+ and 2016
Landsat OLI mosaics to evaluate the magnitude and overall trend of the spatial variability change of
the vegetation cover types.

We first spatially overlapped the Landsat images with the 250 m resolution grid and calculated
the standard deviation of each set of Landsat pixels falling within each grid cell of 6.25 ha (i.e.,
approximately 64 Landsat pixels) for 2016 and 2001, separately. We then calculated pixel-wise the
difference between the standard deviation values in 2016 and 2001. This allowed us to summarize the
spatial NDVI variability change of the high-resolution Landsat data at the MODIS pixel size and bring
this metric to a common spatial sampling scale with the other two metrics.

This third landscape metric was calculated as follows (Figure 4c shows a schematic representation
of the calculation of NDVIspatial):

NDVIspatial(Yt, Y0) = σ(Yt) − σ(Y0) (3)

σ(Y0) =

√√√
1
n

n∑
j=1

(
Y0, j −Y0

)2
(4)

where Y0 and Yt are the set of high-resolution pixels within a coarse-resolution cell in the first and last
year images, respectively, and n is the number of high-resolution pixels that fit within a coarse-resolution
cell. The valid range of NDVIspatial is from ≈–1 to ≈1.

The landscape metric NDVIspatial, which estimates the spatial variability change of NDVI, was
used in this study as a proxy for vegetation structure change. Vegetation heterogeneity change (i.e.,
vegetation horizontal structure change) can be quantified through NDVI texture analysis techniques
(e.g., [79–81]), which measure the variability of pixel values in a given area [82]. A highly heterogeneous
vegetation cover, either in terms of the spatial distribution of plants or plant species composition
therefore presents a high variability in NDVI, whereas a homogeneous vegetation cover will present a
low variability [82].

The standard deviation of the NDVI in a given area provides a simple estimate of this spatial
variability and has thus been used in previous studies to estimate the heterogeneity of different
vegetation cover types (e.g., [76,83,84]) including landscapes in the Cerrado Biome from Landsat
data [85,86]. Negative values in NDVIspatial therefore indicate a homogenization of the vegetation
cover, and conversely, positive values depict areas that have become more heterogeneous.

The correlation between the three metrics for each vegetation cover type was calculated to test if
the three metrics contribute with complementary and non-redundant information on the vegetation
dynamics. The general trends of vegetation productivity, phenology, and structure change (as indexed
by the landscape metrics) of each vegetation cover type at the regional level are presented in Section 4.1.2
and Appendix E. To facilitate their interpretation and determine any differences in the trends according
to particular locations, their respective statistical distributions are represented in boxplots for the CUs
and BZs, separately, and per Brazilian state. In addition, the local vegetation dynamics trends of the
local case study are presented in Section 4.2.
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4. Results

4.1. Regional-level Results

4.1.1. Land Use and Land Cover Change Analysis Results

The LULC transition matrices of the 61 studied CUs and their BZs are presented in Appendix D
and summarized in Table 3 and Figure 5.

Table 3. Absolute and relative change in surface area of the 10 land use and land cover (LULC)
categories in the conservation units and their 10 km buffer zones between 2001 and 2016.

Absolute Change in Surface Area (ha) Relative Change in Surface Area (%)

Conservation Units Buffer Zones Conservation Units Buffer Zones

Natural Forest −14,851 −132,858 −1.1 −4.9
Non-Forest Natural Formation 14,676 −95,542 1.3 −7.0

Forest Plantation 545 57,248 40.1 71.4
Pasture −17,765 −152,747 −14.2 −10.4

Agriculture 22,494 303,452 967.9 94.2
Mosaic of Agriculture and Pasture −320 2635 −30.2 4.7

Urban Infrastructure 19 24,634 8.4 29.1
Mining 0 24 0.0 6.2

Other Non-Vegetated Area −2930 −7625 −9.4 −8.4
Water −1868 779 −5.2 0.8

In total, the absolute surface area changes (considering loss and gain) in the CUs and BZs summed
up to 75,468 ha and 777,544 ha, respectively, but a total of 348,463 ha in the CUs and 1,522,656 ha in the
BZs experienced some type of LULCC from 2001 to 2016. These LULCC represent 12% of the CUs’
surface area and 24% of the BZs’ surface area.

As shown in Figure 5a, the main LULCC that took place in CUs were changes between natural
forests (i.e., natural savannah and forest formations) and non-forest natural formations (i.e., grassland
and wetland vegetation formations). Accordingly, the natural vegetation (i.e., ‘Natural Forest’ and
‘Non-Forest Natural Formation’) inside CUs has experienced little absolute change in surface area
between 2001 and 2016 (Table 3). Moreover, in CUs, a large amount of pastures evolved to natural
vegetation in CUs (46,883 ha), and a large amount of natural vegetation in the CUs (51,787 ha) was
transformed to farming land (i.e., ‘Pasture’, ‘Agriculture’, and ‘Mosaic of Agriculture and Pasture’),
mostly pastures (32,010 ha) but also agriculture (19,741 ha).

In BZs, the changes between natural forests and non-forest natural formations were also widespread
(Figure 5b), but the most important LULCC (in number of hectares) was the conversion of natural forests
to pastures (202,690 ha). This decline of natural forests in BZs has been considerably counterbalanced
by a large amount of pastures being converted to natural forest (167,162 ha). These relatively balanced
and opposed conversions, which also took place between non-forest natural formations and pastures
(Figure 5b), result in relatively little net loss in natural vegetation in the BZs (Table 3). Agriculture,
on the other hand, experienced a considerable surface gain (Table 3). This important expansion of
seasonal and perennial crops was mostly due to conversion of pastures, but there was also substantial
conversion of natural vegetation to agriculture (Figure 5b).

In total, agriculture experienced the greatest expansion, and pastures experienced the greatest
surface loss in both the CUs and the BZs, due, to a great extent, to their conversion to agriculture but
mostly to natural vegetation (Table 3). Forest Plantations and Urban Infrastructures also expanded
considerably in BZs (Table 3), however, since these, and other LULCC were relatively small in
comparison with the aforementioned major transitions, further discussion will be focused on the results
of the latter.
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Figure 5. Sankey diagrams of the land use and land cover changes (LULCC) between 2001 and 2016 in
(a) the conservation units and (b) their 10 km buffer zones. The values beside the nodes correspond
to the number of hectares per LULC type in 2001 and 2016, respectively. Only the links representing
transitions of more than 100 ha are shown.
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Despite the changes, the great majority of the surface in the study areas did not experience
LULCC (Figure 5). The four major vegetation types (i.e., Natural Forest, Non-Forest Natural Formation,
Pasture, and Agriculture) remained unchanged in 75% of the surface area (6,821,747 ha) between
2001 and 2016. For example, 90.6% of the natural forests in the CUs and 81.5% in the BZs did not
experience LULCC, and 87.7% of the non-forest natural formations in the CUs and 71.2% in the BZs
also remained unchanged.

4.1.2. Vegetation Change Analysis Results

Figure 6 shows the distribution of the three landscape metrics for the 438,348 cells retained for the
vegetation change analysis (see Section 3.2). As expected, in all three cases, the actual empirical range
of the metrics was considerably lower than their theoretical range (see Section 3.2), the latter being
calculated considering maximal theoretical variability in NDVI, which is virtually impossible to reach
in real conditions.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 39 
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Figure 6. Histogram of the Normalized Difference Vegetation Index (NDVI)-based landscape metrics’
values. Total number of cells = 438,348.

Out of the analyzed cells, 57.3% belonged to natural forest areas, 27.3% to non-forest natural
formations, 8.3% to pastures, and 7.1% to agricultural land. For the four vegetation types, no important
relationships were found between the three landscape metrics: nearly all the landscape metrics
pair-wise Pearson correlation coefficients (r) were between –0.1 and 0.1, except for the NDVIintra and
NDVIspatial correlation for the pastures, the NDVIinter and NDVIspatial correlation for the natural forests
(r = 0.2), and the NDVIinter and NDVIintra correlation for the natural forests (r = 0.4). All correlations
were statistically significant with a p-value < 0.001. This suggests that each landscape metric provides
complementary information on their vegetation dynamics.

To provide a concise overview of the regional-level vegetation dynamics’ results, we only
exhaustively present and discuss the results for the Natural Forest category. The results for the other
three vegetation types are presented in Appendix E. The distributions of the landscape metrics’ values
for the Natural Forest are presented in Figure 7, for the whole study area (CUs and BZs, separately)
and for each of the twelve Brazilian states (CUs and BZs combined).
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Figure 7. Boxplots of the landscape metrics’ values of the cells belonging to the ‘Natural Forest’ category: (a) NDVIinter in the buffer zones (BZs) and conservation
units (CUs); (b) NDVIinter in each state; (c) NDVIintra in the BZs and CUs; (d) NDVIintra in each state; (e) NDVIspatial in the BZs and CUs; (f) NDVIspatial in each state.
Number of 250 m resolution (6.25 ha) cells located inside the 61 conservation units = 209,714 and in their buffer zones = 382,556. Number of cells in each Brazilian state
with n > 0: Tocantins (TO, 34,905), São Paulo (SP, 4,296), Paraná (PR, 220), Piauí (PI, 21,057), Pará (PA, 285), Mato Grosso (MT, 22,749), Mato Grosso do Sul (MS, 28,982),
Minas Gerais (MG, 73,836), Maranhão (MA, 39,514), Goiás (GO, 22,063), Distrito Federal (DF, 2,305), Bahia (BA, 982).
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The NDVIinter metric, showed a general productivity loss in both the CUs and the BZs (72.4% of
the analyzed Natural Forest cells in the BZs experienced a decrease in the annual average of NDVI and
71.9% in the CUs) (Figure 7a). This trend was widespread across the CUs and BZs of nearly all the
states, except for Distrito Federal and Bahia (where nearly 70% of their Natural Forests experienced an
increase in productivity), and was especially pronounced in the CUs and BZs of Piauí and Tocantins,
where 96.3% and 89.3% of the natural forests have loss productivity (Figure 7b).

The NDVIintra metric showed a slight trend towards a more stable NDVI throughout the year
for the natural forest areas (59.7% and 54.7% of the analyzed area in the BZs and CUs, respectively,
experienced a decrease in the intra-annual variability of NDVI) (Figure 7c). The natural forests
located in the CUs and BZs of Bahia were the most representative of this trend (with 73.8% of the
forests obtaining negative NDVIintra values), and on the other hand, the forests in Piauí followed a
clear opposite trend (83% of the forests experienced an increased intra-annual variability of NDVI)
(Figure 7d).

Furthermore, the general negative trend in the spatial variability of NDVI measured by NDVIspatial
(Figure 7e) suggested that the canopy of natural forests was, in general, experiencing homogenization.
This trend was followed by 96.8% and 92.4% of the forests in Paraná and São Paulo, respectively
(Figure 7f). A relatively smaller proportion of the forests in the other states follow this trend, except for
those in Bahia, which experienced the opposite trend at a larger proportion (i.e., the forest cover is
becoming more heterogeneous) (Figure 7f).

4.2. Local Case Study Results

The Parque das Nascentes do Rio Taquari and its BZ are dominated by natural forest, pasture,
and agriculture areas (Figure 8a). The great majority of these areas have not experienced LULCC
between 2001 and 2016 (Figure 8b), except for some forested areas having been cleared and transformed
into pasture (these areas, characterized by a loss in productivity, are highlighted by low NDVIinter
values e.g., top zoom of Figure 8c). Nevertheless, the results of the three landscape metrics over the
apparently stable areas show that different vegetation dynamics have taken place (Figure 8c–e). The
three landscape metrics are represented in Figure 8 as a continuous gradient over all types of LULC
(depicting both vegetation dynamics related to LULCC processes and other processes) but only the
masked satellite imagery (Section 3.2) is analyzed.

The NDVIinter results (Figure 8c) reveal that pastures have experienced different productivity
changes locally, 40.4% have increased their average annual NDVI while 59.6% have experienced loss in
productivity (the bottom-left zoom shows an example of loss in average annual NDVI of nearly 0.1).
Regarding forests, productivity trends also vary locally. As for agriculture, NDVIinter results (Figure 8c)
show that the majority of areas (67.6%) have increased their productivity (as in the bottom-left zoom,
where the mean annual NDVI has increased by nearly 0.2).

The NDVIintra results (Figure 8d) show that the magnitude of phenology change was the highest
in the agricultural land, in both positive and negative directions. This result reflects a change in the
number of annual crop cycles (shown in the zoom images and annual temporal profiles of NDVI in
Figure 8d). High positive NDVIintra values (in red) thus reflect an increase in the number of cropping
cycles and high negative values (in blue) show the opposite (Figure 8d).

The NDVIspatial results (Figure 8d) show an overall increase in the spatial variability of NDVI over
the pasture land (68% of the pastures have positive NDVIspatial values, indicating a general increase
in heterogeneity). They also show an overall decrease in the spatial variability over the agricultural
areas, where 60.4% is becoming more homogeneous, despite the contrasted changes over the edges
of the field plots (related to changes in their size and shape). However, the clearest trend reflected
by the NDVIspatial metric concerns the homogenization of the forest cover (represented by negative
values). This trend, which also represents the majority of forest areas at the regional level (Section 4.1.2),
represents 92.5% of the forest in this local case study, and suggests general densification of the forest
canopy (zoom image in Figure 8d).
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Figure 8. (a) Land use and land cover (LULC) in 2001 and 2016 at the Parque das Nascentes do Rio
Taquari and its buffer zone; (b) LULC change map; (c) NDVIinter results. Top zoom image: decrease in
productivity due to forest clearing. Bottom-left zoom image: decrease in productivity in pasture area.
Bottom-right zoom image: increase in productivity in agricultural area. Plots: average annual NDVI in
2001 and 2016 of one of the pixels inside the above pasture and agricultural areas; (d) NDVIintra results.
Left zoom image: increase in intra-annual variability in agricultural area due to the increase in the
number of crop cycles during the year. Right zoom image: opposite dynamic. Plots: profile of NDVI
against the day-of-year (DOY) in 2001 and 2016 of one of the pixels inside the agricultural areas in
the above zoom images; (e) NDVIspatial results. Zoom image: decrease in spatial variability reflecting
densification of forest cover.

5. Discussion

Our study illustrates the potential of combining LULC change-detection with VI-based
change-detection methods to derive spatially explicit and complementary information on the landscape
changes taking place in PAs and their surrounding zones. Additionally, our combined approach
has supplemented current knowledge of the Brazilian Cerrado’s interface areas’ landscape changes
(e.g., [33,34]) with new information on the types of LULC and vegetation dynamics. We discuss these
in Sections 5.1 and 5.2, and in Section 5.3, we address some operational and research perspectives of
our work.
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5.1. Land Use and Land Cover Change Analysis in the Cerrado Biome’s Protected Areas and Buffer Zones

The regional-level LULCC analysis showed relatively little net loss in native vegetation, (especially
in the CUs) but underlying high levels of conversion, which raises concerns about the general
conservation effectiveness of these core PAs and their legally managed BZs. The major LULC
conversion between 2001 and 2016 in these areas, other than the conversion between different natural
vegetation types, was related to the transformation of natural vegetation to farming land: 51,787 ha in
the CUs, despite this conversion being forbidden in strictly protected CUs, and 446,155 ha in the BZs.

These natural habitats were mainly cleared to install new pastures for cattle ranching; however,
the conversion to crops was also responsible for a non-negligible portion of the deforestation. Even if a
nearly proportional amount of natural vegetation has increased over former pastures, especially in
CUs, secondary savannas recovered from abandoned pastures hardly return to the biodiversity levels
of old-growth savannas without active restoration interventions [87]. The proposed methodology
allows us to locate these areas, but complementary in situ monitoring would be relevant to investigate
how these areas are being managed and to assess their levels of biodiversity in comparison with
old-growth savannas.

The LULCC results have also highlighted the fast expansion between 2001 and 2016 of agricultural
land in the BZs (increase rate of 94%) and to a lesser extent within the CUs limits (around 22,000 ha in
15 years). This result echoes the alarming rate of agricultural expansion in the Cerrado Biome as a
result of increasing international demand for commodity crops [29,88,89]. Given that most areas in the
BZs correspond to private landholdings, that a considerable proportion of the CUs has not been yet
expropriated [90], and that many CUs still do not have approved management plans, this result may
suggest that the regulation of the landowners’ decisions to secure conservation targets in these areas
has been greatly limited. Yet, considering the rate of habitat loss in the sustainable use CUs reported by
Françoso et al. [34], the situation for the whole PA-network may be even worse than for the 61 strictly
protected CUs investigated here.

Complementary assessments of these landscape dynamics through comparative analysis of the
LULCC within interface areas and the rest of the Cerrado would provide further insight into the
effectiveness of these areas to reduce landscape composition transformation as compared to unprotected
land. Despite misclassifications, which are common in LULC data (especially between classes with
similar spectral properties), the regular and open remote sensing-derived LULC datasets provided by
the MapBiomas (https://mapbiomas.org/) and the TerraClass Cerrado [91] initiatives offer promising
tools for this type of large-scale analyses.

5.2. Contribution of the Vegetation Change Analysis

The results of the vegetation change analysis offered complementary indications on environmental
changes related to processes other than LULCC. Even if ground-surveys would ultimately be needed
to explain the local biophysical processes behind the observed trends, some general hypotheses may
be drawn from the main results.

The general Natural Forest productivity loss (as measured by the NDVIinter) in both in the CUs and
BZs suggests a general decline in above-ground biomass, which could reflect a potential degradation
of the savannah and forest ecosystems functions. Bustamante et al. [92] indicated that a decrease in
the primary productivity of the Cerrado was expected due to the projected climate and fire-regime
changes. Besides, the homogenization of the canopy cover, shown by the NDVIspatial results may
reflect the natural progression of the Cerrado vegetation from open to more closed formations with a
higher density of woody plants [93]. This pattern was observed in the local case study (Figure 8e) and
may suggest a general natural evolution towards late successional stages and forest encroachment
(e.g., [94]).

Furthermore, the local case study results have illustrated the potential of the landscape metrics
to monitor subtle changes in farming areas in a spatially explicit way. For example, the metrics
highlighted some dynamics that were also predominant at the regional level, such as a global increase

https://mapbiomas.org/


Remote Sens. 2020, 12, 1413 18 of 36

in crop productivity (Figures 8c and A4b), and a prevalent homogenization of the agricultural land
(Figures 8e and A4f), which may ultimately reflect a general intensification of the agricultural practices.
Moreover, NDVIintra allowed to identify changes in the number of crop cycles (Figure 8d). This metric
may, therefore, be relevant to identify areas with an increase in the number of annual cropping cycles,
as a complementary indicator of intensification of cropping systems (e.g., [95,96]).

Finally, the results showed a particularly high dispersion of the landscape metrics in the BZ
agricultural areas, as compared to the other evaluated vegetation types (Figure A4). This may
indirectly reflect a wide variety of agricultural practices, which likely results in highly differentiated
protected-area–agriculture interface landscapes. Additionally, the contrasting distributions per state of
some landscape metrics (e.g., Figure A2b), show strong regional variability in the dynamics of certain
vegetation types. To assess potential differences in the management of these areas (e.g., [34]), it is thus
important to conduct comparative landscape change analyses at the state level, as well as by type of
CU category or jurisdictional level.

5.3. Perspectives for Future Research in Remote Sensing and Interface Areas

Most studies on interface areas are still mostly using LULCC analysis to monitor landscape
dynamics (e.g., [8–17]). By combining LULCC analysis with VI-based change detection, we were able
to characterize LULCC and explore vegetation changes in areas where no LULCC was observed, thus
offering complementary information. This complementarity was particularly evident in our studied
areas, since 75% of the vegetation cover had not experienced LULCC during the study period, but
had experienced changes in phenology, productivity, and structural changes. It was further evident in
the local case study, where relatively little LULCC obscured substantial change in pastures, forests,
and cropland.

Our methodology, therefore, offers a practical and promising avenue for producing more detailed
assessments of landscape dynamics in interface areas. Integrated methodologies, such as the one
presented, can provide a more complete picture of functional landscape changes, which can, in turn,
improve our understanding about the links between landscape dynamics and ecological processes.

Beyond expanding the change detection capacity by allowing us to detect conditional change
in addition to transitional change [97], the presented NDVI-based metrics also offer the advantages
of pixel-based analyses. These advantages include temporal and spatial robustness, fine-scale
observations and a gradient-based representation of landscapes (especially relevant for fine structure
change detection [98]). However, unlike LULCC analysis, which provides simple and intuitive
information, field surveys are required to obtain precise interpretations of the local processes behind
observed vegetation dynamics. The NDVI-based metrics results can, nevertheless, help orientate field
surveys to sample areas where particular vegetation dynamics are observed or over a gradient of
dynamics to gain insight on the underlying social-ecological processes and their spatial distribution.

Through this procedure, NDVI-based metrics can offer valuable indications on some processes
that may be relevant for ecological assessments such as habitat simplification and degradation, or
intensification of agricultural practices. They can, therefore, help locate zones in the interface areas
that could be potentially experiencing loss in ecological functionality or could be prone to future land
conversion or degradation. This study, therefore, builds on the recent research exploring the use of
SRS-derived products as indicators of ecosystem function [99–101] and Essential Biodiversity Variables
(EBVs) [102–105] and could be potentially integrated into ecosystem services assessments [106],
ecosystem models [107], species distribution models (e.g., [100,108,109]), movement ecology studies
(e.g., [110]), and even social-ecological systems analyses (e.g., [111]).

From an operational point of view in the Brazilian context, this study shows the potential of
using existing SRS-derived LULC maps from the MapBiomas project (https://mapbiomas.org/) to
detect illegal deforestation within ‘strictly protected’ CUs. Alert systems such as the one proposed
by the MapBiomas initiative could include analyses at the CUs level and BZs to offer an operational
tool to alert the official managing agencies of these PAs. Moreover, the proposed methodology may

https://mapbiomas.org/
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represent a significant contribution to current information systems both in the interface areas in Brazil
(where it could be implemented in monitoring systems of the Chico Mendes Institute for Biodiversity
Conservation to complement in situ monitoring [112]), as well as in other world regions, since existing
systems are still mostly focused on monitoring habitat loss in forest areas [13].

The new cloud-computing platform GEE [57] offers unprecedented computing possibilities that
facilitate the reproduction of the proposed methodology. The applicability of the methodology and
its broad-scale operationalization is, however, limited by the availability of appropriate input data.
Especially, timely and reliable LULC maps must be available for the analysis, and while these products
are increasingly available, they are still missing in many regions and require a high-investment to
produce them. Additionally, the surface area over which the vegetation change analysis can be carried
out is limited by the spatial resolution of the landscape metrics and the LULC data (e.g., in our study,
a mask had to be applied to discard ‘mixels’ for the vegetation change analysis, due to the spatial
resolution mismatch of landscape metrics at 250 m and LULC data at 30 m).

In particular, the data from the Sentinel-2 constellation of the Copernicus program, which are
available at 10 m spatial resolution and 5 days temporal resolution, from 2017 onwards, alone or in
combination with other high spatial resolution data (e.g., [113]), are key products to overcome the
limitations of ‘mixel’ issues and will allow the monitoring of landscape dynamics over a larger extent,
including small, fragmented landscapes. Additionally, the new Landsat Tier-1 Collections [63,114] offer
an unprecedented opportunity for high-resolution time-series analyses with the improved usability
and consistency of the Landsat archives and could facilitate the upgrading of bi-temporal change
detection to continuous monitoring through time series or trajectory analysis [97]. The proposed
landscape metrics could provide valuable information on the exact timing of major landscape changes
and on subtler changes in the ecosystems’ conditions if they were calculated over successive years
for multiple-year periods. However, to reveal any additional processing that may be required for
time series analysis, studies evaluating the radiometric consistency of the vegetation indices and their
spatial variability from one instrument to another are still needed (e.g., [115–118]).

6. Conclusions

This study illustrates the potential of combining SRS-derived LULC data and NDVI-based
landscape metrics to obtain complementary, spatially explicit information on the landscape changes in
protected areas and their surrounding landscapes (interface areas). The presented methodology allows
the localization of major long-term land conversions in a network of interface areas in the Cerrado
Biome and the detection of trends in the productivity, phenology, and structure changes of the major
natural and anthropogenic vegetation cover types. This study allows us to fill a knowledge gap in this
geographic region in particular and opens new perspectives of the analysis of interface areas in general.
Ultimately, this work contributes to the development of satellite remote sensing tools to improve the
monitoring capacity and guide and support conservation planning in key conservation areas.
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Appendix A.

The rainfall anomalies’ analysis was performed with the historical data from the Meteorological
Database for Teaching and Research (BDMEP) of the Brazilian National Institute of Meteorology
(INMET) [119]. This database contains the data collected by the ‘conventional meteorological stations’
from the INMET stations network. The rainfall anomalies’ analysis was carried out in 5 steps:

1. We collected the monthly total precipitation data (mm) of the BDMEP meteorological stations
that had a nearly complete 30 year time series of data from 1986 to 2016 (with no more than 1
consecutive month of missing records in the time series).

2. The data was transformed to spatial point data, using the meteorological stations’ geographic
coordinates, and the data from the meteorological stations closest to the 61 conservation units
(CUs) analyzed in this study was retained: the data from a total of 36 meteorological stations,
spanning from 60.0 ◦W to 35.0 ◦W and 0.1 ◦S to 23.5 ◦S, was selected.

3. The missing data gaps in the time series were temporally interpolated with the average value of
the previous and next months and the monthly data was aggregated to retrieve the annual total
precipitation (mm) for each year.

4. The Inverse Distance Weighting (IDW) algorithm implemented in the Interpolation Plugin of the
Quantum GIS (QGIS) software [120] was then applied to the annual total precipitation data to
obtain spatially continuous annual spatial interpolations over the whole study areas at a 5 km
spatial resolution. The Zonal Statistics Plugin [120] was then used to extract the total annual
precipitation values for the 30 year period for each CU centroid.

5. To evaluate the rainfall conditions in the two analyzed years (2001 and 2016), we used the
climatological normal (i.e., the average value of a meteorological element over 30 years) as a
reference base for the calculation of the Modified Rainfall Anomaly Index (mRAI) [121]. This
index, based on the Rainfall Anomaly Index (RAI) developed by van Rooy (1965), is well adapted
to short time periods of precipitation data [121], and thus to the length of our time series, and
allows to classify the rainfall anomalies into 9 classes (Table A1).

Table A1. Classification of the Modified Rainfall Anomaly Index (mRAI).

mRAI Value Description

1 ≥ 2.00 Extremely wet
2 1.50 to 1.99 Very wet
3 1.00 to 1.49 Moderately wet
4 0.50 to 0.99 Slightly wet
5 −0.49 to 0.49 Near normal
6 −0.99 to −0.50 Slightly dry
7 −1.49 to −1.00 Moderately dry
8 −1.99 to −1.50 Very dry
9 ≤ −2.00 Extremely dry

The mRAI was calculated as follows:

mRAIi = ±SF
(
Pi − P

)
/
(
E− P

)
(A1)

where, Pi is the total precipitation sum for the year i, P is the median of all annual precipitation sums of
the 30 year period, SF is the scaling factor of 1.7 for positive anomalies

(
Pi ≥ P

)
and −1.7 for negative

anomalies (Pi ≤ P), and E is the mean of the 10% most extreme precipitation annual sums. For positive
anomalies (Pi ≥ P), E is the mean of the annual precipitation sums of the 3 most rainy years of the 30
year period; for negative anomalies (Pi ≤ P), E is the mean of the annual precipitation sums of the 3
least rainy years of the 30 year period.
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The results show a significant positive correlation between the total annual rainfall in 2001 and
2016 for the 61 conservation units (Figure A1a), which suggests that both years received similar rainfall
amounts. In addition, the two evaluated years present similar mRAI results (Figure A1b), both years
being classed normal to moderately dry with regards to the 30 year period and thus do not present any
extreme rainfall anomalies.
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Figure A1. (a) Scatter plot showing significant positive linear correlation between the total annual
rainfall (mm) in 2016 and 2001 (r = 0.9, p-value < 0.001) over the 61 conservation units (Pearson
correlation coefficient is used); (b) Box plot showing the mRAI results for the 2001 and 2016 total annual
rainfall data over a 30 year period.

Appendix B.

List of the 61 conservation units (CUs) in the Cerrado Biome, designated before 2001 and with a
‘strictly protected’ status (Table A2).

Table A2. Characteristics of the 61 conservation units (CUs) retained for the landscape change analysis.
The data included in this table was extracted from the Brazilian National Register of Conservation
Units [37]. The following Portuguese terms are abbreviated: Estação Ecológica (E.E.), Monumento
Natural (M.N.), Parque Estadual (P.E.), Parque Nacional (P.N.), Parque Natural Municipal (P.N.M.), Reserva
Biológica (R.B.).

Name Category Jurisdictional
Level

Location
(State) Size (km2)

Management
Plan Approved

Year of
Designation as CU

E.E. de Acauã Ecological Station State Minas Gerais 64.55 No 1974
E.E. de Águas
Emendadas

Ecological Station State Distrito
Federal 91.81 Yes 1968

E.E. de Angatuba Ecological Station State São Paulo 13.63 Yes 1985
E.E. de Assis Ecological Station State São Paulo 17.48 Yes 1992

E.E. de Corumbá Ecological Station State Minas Gerais 3.10 No 1974
E.E. de Itapeva Ecological Station State São Paulo 0.99 Yes 1985

E.E. de Itirapina Ecological Station State São Paulo 22.06 Yes 1984
E.E. de Santa Bárbara Ecological Station State São Paulo 31.65 Yes 1984

E.E. do Jardim
Botânico Ecological Station State Distrito

Federal 45.03 Yes 1992

E.E. dos Caetetus Ecological Station State São Paulo 22.19 Yes 1976
E.E. Jataí Ecological Station State São Paulo 90.00 Yes 1982

E.E. Mata dos
Ausentes Ecological Station State Minas Gerais 4.55 No 1974

E.E. da Serra das
Araras Ecological Station Federal Mato Grosso 271.60 Yes 1982

E.E. de Pirapitinga Ecological Station Federal Minas Gerais 13.85 No 1987
E.E. de Uruçuí-Una Ecological Station Federal Piauí 1,351.24 No 1981
M.N. das Árvores

Fossilizadas
Natural

Monument State Tocantins 292.45 Yes 2000
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Table A2. Cont.

Name Category Jurisdictional
Level

Location
(State) Size (km2)

Management
Plan Approved

Year of
Designation as CU

M.N. Estadual Gruta
Rei do Mato

Natural
Monument State Minas Gerais 1.41 Yes 1984

P.E. Altamiro de
Moura Pacheco Park State Goiás 31.39 Yes 1992

P.E. Biribiri Park State Minas Gerais 170.03 Yes 1998
P.E. da Serra de
Caldas Novas Park State Goiás 121.59 Yes 1970

P.E. das Nascentes do
Rio Taquari Park State

Mato Grosso;
Mato Grosso

do Sul
305.97 Yes 1999

P.E. de Águas Quentes Park State Mato Grosso 15.07 No 1978
P.E. de Mirador Park State Maranhão 4 378.50 No 1980

P.E. de Terra Ronca Park State Goiás 569.82 No 1989
P.E. do Cerrado Park State Paraná 18.30 Yes 1992
P.E. do Juquery Park State São Paulo 19.78 No 1993

P.E. do Sumidouro Park State Minas Gerais 20.06 Yes 1980
P.E. dos Pirineus Park State Goiás 28.38 No 1987
P.E. Grão Mogol Park State Minas Gerais 283.91 No 1998

P.E. Gruta da Lagoa
Azul Park State Mato Grosso 125.13 Yes 2000

P.E. Lagoa do Cajueiro Park State Minas Gerais 207.35 No 1998
P.E. Mãe Bonifácia Park State Mato Grosso 0.77 No 2000

P.E. Massairo
Okamura Park State Mato Grosso 0.53 Yes 2000

P.E. Mata Seca Park State Minas Gerais 153.68 No 2000

P.E. Matas do Segredo Park State Mato Grosso
do Sul 1.77 Yes 2000

P.E. Pico do Itambé Park State Minas Gerais 65.21 Yes 1998
P.E. Rio Preto Park State Minas Gerais 121.85 Yes 1994

P.E. Serra Azul Park State Mato Grosso 110.07 Yes 1994
P.E. Serra das Araras Park State Minas Gerais 135.53 No 1998

P.E. Serra Negra Park State Minas Gerais 131.06 No 1998

P.E. Verde Grande Park State Minas
Gerais; Bahia 255.62 No 1998

P.E. Veredas do
Peruaçu Park State Minas Gerais 312.50 No 1994

P.E. Zé Bolo Flô Park State Mato Grosso 0.52 No 2000
P.N. Cavernas do

Peruaçu Park Federal Minas Gerais 564.48 No 1999

P.N. da Chapada dos
Guimarães Park Federal Mato Grosso 326.47 Yes 1989

P.N. da Chapada dos
Veadeiros Park Federal Goiás 2,405.84 Yes 1961

P.N. da Serra da
Bodoquena Park Federal Mato Grosso

do Sul 769.76 Yes 2000

P.N. da Serra da
Canastra Park Federal Minas Gerais 1,979.71 Yes 1972

P.N. da Serra do Cipó Park Federal Minas Gerais 316.39 Yes 1984

P.N. das Emas Park Federal
Goiás; Mato
Grosso do

Sul
1,327.85 Yes 1961

P.N. de Brasília Park Federal
Distrito
Federal;
Goiás

423.56 No 1961

P.N. do Araguaia Park Federal Tocantins;
Mato Grosso 5,555.03 Yes 1959

P.N. do Pantanal
Matogrossense Park Federal

Mato Grosso;
Mato Grosso

do Sul
1,359.23 Yes 1981

P.N. Grande Sertão
Veredas Park Federal Minas

Gerais; Bahia 2,308.53 Yes 1989

P.N.M. Salão de
Pedras Park Municipal Minas Gerais 8.58 Yes 1999

R.B. Culuene Biological Reserve State Mato Grosso 36.14 No 1989

R.B. do Cerradão Biological Reserve State Distrito
Federal 0.54 No 1998

R.B. do Gama Biological Reserve State Distrito
Federal 5.37 Yes 1988

R.B. do Guará Biological Reserve State Distrito
Federal 1.45 Yes 1988

R.B. Jaíba Biological Reserve State Minas Gerais 63.51 No 1973
R.B. Serra Azul Biological Reserve State Minas Gerais 38.43 No 1998
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Appendix C.

Table A3. Acquisition details of the selected Landsat scenes (the areas affected by cloudiness are located
outside the limits of the studied areas.).

Landsat
Mission/Sensor

Acquisition
Date

Solar Zenith
Angle (◦)

Solar Azimuth
(◦)

Scene Cloud
Cover (%)

217/72 L5/TM 01/08/2001 50.01 46.95 34.0
L7/ETM+ 10/09/2001 38.26 57.50 0.0

L8/OLI 10/08/2016 44.59 44.64 0.0

217/73 L7/ETM+ 10/09/2001 39.23 56.21 10.0
L8/OLI 10/08/2016 45.78 43.87 0.0

218/70 L7/ETM+ 15/07/2001 48.52 42.92 2.0
L8/OLI 16/07/2016 46.63 40.70 0.0

218/71 L5/TM 09/09/2001 39.35 60.33 0.0
L7/ETM+ 15/07/2001 49.73 42.27 18.0

L8/OLI 16/07/2016 47.87 40.05 0.0
L8/OLI 17/08/2016 41.68 47.44 2.2

218/72 L5/TM 09/09/2001 40.47 59.03 0.0
L8/OLI 17/08/2016 42.82 46.51 6.2
L8/OLI 18/09/2016 33.37 58.23 1.7

218/73 L5/TM 09/09/2001 41.20 57.81 0.0
L7/ETM+ 15/07/2001 52.17 41.11 15.0

L8/OLI 16/07/2016 50.37 38.88 0.0
L8/OLI 17/08/2016 43.98 45.64 3.3
L8/OLI 18/09/2016 34.34 56.66 2.3

218/74 L5/TM 25/09/2001 37.45 63.23 26.0
L7/ETM+ 15/07/2001 53.40 40.59 7.0

L8/OLI 18/09/2016 35.33 55.20 0.0

219/70 L5/TM 14/07/2001 50.11 44.68 0.0
L8/OLI 07/07/2016 47.40 39.29 0.0

219/71 L5/TM 14/07/2001 51.29 44.03 0.0
L7/ETM+ 17/04/2001 41.03 51.75 0.0

L8/OLI 18/04/2016 39.52 48.72 0.1

219/73 L7/ETM+ 08/09/2001 39.83 55.44 0.0
L8/OLI 09/09/2016 37.14 52.96 0.0

219/74 L7/ETM+ 06/07/2001 54.11 39.35 0.0
L7/ETM+ 07/08/2001 49.61 45.04 0.0

L8/OLI 07/07/2016 52.48 37.14 0.4
L8/OLI 08/08/2016 47.46 42.70 0.0

219/76 L7/ETM+ 03/05/2001 50.03 41.94 0.0
L8/OLI 04/05/2016 48.89 39.23 12.4

220/64 L5/TM 19/06/2001 43.52 46.62 1.0
L8/OLI 28/06/2016 40.29 42.89 0.2

220/65 L5/TM 19/06/2001 44.67 45.71 0.0
L8/OLI 28/06/2016 41.50 41.96 0.0

220/66 L7/ETM+ 24/04/2001 37.02 54.54 0.0
L8/OLI 25/04/2016 35.33 51.56 0.6

220/69 L7/ETM+ 26/05/2001 45.57 41.73 0.0
L8/OLI 27/05/2016 44.18 39.14 0.0
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Table A3. Cont.

Landsat
Mission/Sensor

Acquisition
Date

Solar Zenith
Angle (◦)

Solar Azimuth
(◦)

Scene Cloud
Cover (%)

220/70 L7/ETM+ 08/04/2001 38.49 57.55 0.0
L7/ETM+ 26/05/2001 46.79 41.02 0.0

L8/OLI 09/04/2016 36.78 54.50 9.1
L8/OLI 27/05/2016 45.44 38.45 0.0

220/71 L7/ETM+ 08/04/2001 39.45 56.25 0.0
L8/OLI 09/04/2016 37.80 53.19 0.0

220/74 L5/TM 06/08/2001 51.30 46.77 0.0
L8/OLI 15/08/2016 45.69 44.34 9.6

220/75 L7/ETM+ 08/04/2001 43.56 51.84 0.0
L7/ETM+ 11/06/2001 54.95 37.37 0.0

L8/OLI 09/04/2016 42.12 48.79 0.0
L8/OLI 12/06/2016 53.66 35.07 3.2

220/76 L7/ETM+ 13/07/2001 56.10 39.40 6.0
L8/OLI 14/07/2016 54.42 37.20 12.3

220/77 L7/ETM+ 18/01/2001 33.16 90.19 35.0
L8/OLI 20/01/2016 31.09 88.64 25.9

221/64 L5/TM 12/07/2001 43.40 49.25 33.0
L8/OLI 19/06/2016 40.11 42.22 22.4

221/65 L5/TM 26/06/2001 44.89 46.12 0.0
L8/OLI 19/06/2016 41.33 41.31 0.2

221/69 L7/ETM+ 02/06/2001 46.49 40.97 13.0
L8/OLI 03/06/2016 45.07 38.47 2.4

221/70 L7/ETM+ 02/06/2001 47.72 40.30 0.0
L8/OLI 03/06/2016 46.34 37.81 0.1

221/71 L7/ETM+ 21/08/2001 42.82 51.31 0.0
L8/OLI 22/08/2016 40.33 48.98 1.6

221/72 L7/ETM+ 20/07/2001 50.38 42.53 0.0
L8/OLI 21/07/2016 48.46 40.31 0.0

221/76 L7/ETM+ 15/04/2001 46.14 47.95 0.0
L7/ETM+ 05/08/2001 52.42 43.40 20.0

L8/OLI 16/04/2016 44.84 44.97 0.0
L8/OLI 06/08/2016 50.38 41.07 0.0

221/77 L7/ETM+ 15/04/2001 47.28 47.19 12.0
L8/OLI 16/04/2016 46.02 44.23 0.7

222/65 L7/ETM+ 27/07/2001 41.35 49.92 0.0
L8/OLI 28/07/2016 39.07 47.81 0.0

222/71 L7/ETM+ 06/04/2001 39.13 57.33 0.0
L7/ETM+ 27/07/2001 48.18 44.61 0.0

L8/OLI 07/04/2016 47.45 54.27 0.4
L8/OLI 28/07/2016 46.11 42.36 0.0

222/76 L7/ETM+ 11/07/2001 56.28 39.14 7.0
L8/OLI 12/07/2016 54.63 36.93 7.5

223/67 L7/ETM+ 02/07/2001 45.65 43.14 0.0
L8/OLI 03/07/2016 43.86 40.88 0.0

223/68 L7/ETM+ 02/07/2001 46.85 42.37 1.0
L8/OLI 03/07/2016 45.09 40.13 0.0
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Table A3. Cont.

Landsat
Mission/Sensor

Acquisition
Date

Solar Zenith
Angle (◦)

Solar Azimuth
(◦)

Scene Cloud
Cover (%)

224/71 L7/ETM+ 06/05/2001 44.63 44.54 0.0
L8/OLI 07/05/2016 43.30 41.73 0.2

224/72 L7/ETM+ 09/07/2001 51.44 40.75 2.0
L8/OLI 10/07/2016 49.70 38.53 0.0

224/73 L7/ETM+ 09/07/2001 52.68 40.21 4.0
L8/OLI 10/07/2016 50.97 38.00 0.0

225/70 L7/ETM+ 27/04/2001 41.80 48.52 0.0
L8/OLI 28/04/2016 40.35 45.57 19.3

225/74 L7/ETM+ 27/04/2001 46.39 45.05 1.0
L8/OLI 28/04/2016 45.11 42.18 23.0

226/70 L7/ETM+ 08/08/2001 44.79 48.37 0.0
L8/OLI 09/08/2016 42.48 46.11 1.4

226/71 L7/ETM+ 18/04/2001 41.23 51.29 0.0
L7/ETM+ 09/09/2001 37.58 58.43 13.0

L8/OLI 19/04/2016 39.72 48.26 0.0
L8/OLI 10/09/2016 34.80 56.14 0.1

226/74 L7/ETM+ 07/07/2001 54.05 39.47 0.0
L8/OLI 24/07/2016 50.49 39.70 0.0

226/75 L7/ETM+ 07/07/2001 55.31 39.03 0.0
L8/OLI 24/07/2016 51.74 39.18 0.0

227/71 L7/ETM+ 12/06/2001 49.98 39.31 1.0
L8/OLI 13/06/2016 48.55 36.94 0.0

227/72 L7/ETM+ 30/07/2001 48.84 44.57 0.0
L8/OLI 31/07/2016 46.76 42.31 0.0
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Appendix D.

Land use and land cover (LULC) transition matrices of the 61 studied conservation units (CUs) (Table A4) and their buffer zones (BZs) (Table A5).

Table A4. LULC transition matrix of the CUs. Entries correspond to the surface area expressed in hectares.

2016

Natural
Forest

Non Forest
Natural

Formation

Forest
Plantation Pasture Agriculture

Mosaic of
Agriculture
and Pasture

Urban
Infrastructure Mining

Other Non
Vegetated

Area
Water Total 2001

Natural Forest 1,263,963 111,766 485 11,550 5566 32 3 0 190 1328 1,394,883
Non Forest

Natural
Formation

93,609 1,020,959 34 20,460 14,175 4 26 0 10,871 3428 1,163,566

Forest
Plantation 36 31 1264 21 5 0 0 0 3 0 1360

Pasture 19,188 27,695 97 73,342 3834 231 15 0 437 124 124,963
Agriculture 350 496 1 387 1072 0 0 0 14 4 2324
Mosaic of

Agriculture
and Pasture

511 6 2 74 1 464 1 0 0 0 1059

Urban
Infrastructure 17 11 0 9 0 5 181 0 3 0 226

Mining 0 0 0 0 0 0 0 0 0 0 0
Other Non

Vegetated Area 269 12,794 22 1277 146 0 19 0 16,724 24 31,275

2001

Water 2089 4484 0 78 19 3 0 0 103 28,981 35,757
Total 2016 1,380,032 1,178,242 1905 107,198 24,818 739 245 0 28,345 33,889
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Table A5. LULC transition matrix of the BZs. Entries correspond to the surface area expressed in hectares.

2016

Natural
Forest

Non Forest
Natural

Formation

Forest
Plantation Pasture Agriculture

Mosaic of
Agriculture
and Pasture

Urban
Infrastructure Mining

Other Non
Vegetated

Area
Water Total 2001

Natural Forest 2,230,019 181,520 26,046 202,690 75,460 4843 3870 68 7671 4274 2,736,461
Non Forest

Natural
Formation

185,568 969,975 6689 98,476 64,452 234 6596 27 23,953 7043 1,363,013

Forest
Plantation 1205 286 77,447 304 683 129 38 0 103 21 80,216

Pasture 167,162 82,764 22,916 968,606 180,682 22,251 14,219 70 6246 1310 1,466,226
Agriculture 4899 2387 1479 18,253 293,811 373 308 1 439 237 322,187
Mosaic of

Agriculture
and Pasture

7623 133 2118 11,809 2960 30,248 874 6 40 53 55,864

Urban
Infrastructure 828 1605 11 1660 126 307 79,400 41 697 53 84,728

Mining 7 7 1 28 2 1 161 110 62 7 386
Other Non

Vegetated Area 2758 22,268 569 10,856 7075 32 3842 70 41,411 1751 90,632

2001

Water 3534 6526 188 797 388 81 54 17 2385 89,219 103,189
Total 2016 2,603,603 1,267,471 137,464 1,313,479 625,639 58,499 109,362 410 83,007 103,968



Remote Sens. 2020, 12, 1413 28 of 36

Appendix E.

Results of the three landscape metrics’ values for the ‘Non-Forest Natural Formation’ (Figure A2),
‘Pasture’ (Figure A3), and ‘Agriculture’ (Figure A4) vegetation cover types for the whole study area
(CUs and BZs, separately) and per Brazilian state (CUs and BZs combined).
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Figure A2. Boxplots of the landscape metrics’ values of the cells belonging to the ‘Non-Forest Natural
Formation’ category: (a) NDVIinter in the buffer zones (BZs) and conservation units (CUs); (b) NDVIinter

in each state; (c) NDVIintra in the BZs and CUs; (d) NDVIintra in each state; (e) NDVIspatial in the BZs
and CUs; (f) NDVIspatial in each state. Number of 250 m resolution (6.25 ha) cells located inside the 61
conservation units = 77,430 and in their buffer zones = 42,286. Number of cells in each Brazilian state
with n > 0: Tocantins (TO, 47,905), São Paulo (SP, 39), Piauí (PI, 2302), Pará (PA, 1), Mato Grosso (MT,
7910), Mato Grosso do Sul (MS, 1198), Minas Gerais (MG, 11,902), Maranhão (MA, 13,653), Goiás (GO,
20,502), Distrito Federal (DF, 1691), Bahia (BA, 12,613).

The non-forest natural formations experienced divergent dynamics in the BZs and CUs in terms
of productivity change, as shown by the opposed distribution of their NDVIinter values (Figure A2a).
In the BZs, 58.9% of the grassland and wetland areas were characterized by a decrease in the annual
average of NDVI, whereas in the CUs, 60.4% of these areas experienced an increase in NDVI. However,
in Figure A2b, we can observe a clear disparity of trends depending on the location of these areas.
For example, the near totality (90.5%) of this vegetation type in Piauí has experienced a decrease in
productivity, while the opposite trend can be observed in Bahia, where the non-forest natural vegetation
productivity has increased in 92.8% of the sampled cells.

Similarly, the results for the NDVIintra metric were diverse according to the location of the
non-forest natural formation areas (Figure A2d). Hence, at the Cerrado level, these areas did not
present a clear trend inside the BZs and slightly tended to an increase in the intra-annual variability of
NDVI in the CUs (59.9% of the analyzed cells in the CUs followed this trend) (Figure A2c).
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The non-forest natural vegetation obtained similar results to the natural forest areas for the
NDVIspatial metric (Figure A2e), suggesting a general homogenization of its surface. This trend is
representative of a larger proportion of surface area in the CUs (65.3%) than in the BZs (53.1%).
However, the magnitude of change is relatively low (Figure A2e; Figure A2f).Remote Sens. 2020, 12, x FOR PEER REVIEW 31 of 39 
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Figure A3. Boxplots of the landscape metrics’ values of the cells belonging to the ‘Pasture’ category:
(a) NDVIinter in the buffer zones (BZs) and conservation units (CUs); (b) NDVIinter in each state; (c)
NDVIintra in the BZs and CUs; (d) NDVIintra in each state; (e) NDVIspatial in the BZs and CUs; (f)
NDVIspatial in each state. Number of 250 m resolution (6.25 ha) cells located inside the 61 conservation
units = 1319 and in their buffer zones = 34,832. Number of cells in each Brazilian state with n > 0:
Tocantins (TO, 436), São Paulo (SP, 3147), Paraná (PR, 45), Mato Grosso (MT, 5488), Mato Grosso do Sul
(MS, 6666), Minas Gerais (MG, 13,444), Goiás (GO, 5233), Distrito Federal (DF, 673), Bahia (BA, 1019).

Pastures in the BZs generally experienced a loss in productivity (64.8% of the analyzed cells in
the BZs experienced a decrease in the annual average of NDVI) (Figure A3a), the most affected areas
being located in the state of Bahia (where 93% of the pasture cells have a negative NDVIinter value)
(Figure A3b). In the CUs, the number of pasture cells analyzed was limited to 1319 cells (approximately
8244 ha), 57.2% of which have experienced a gain in the annual average of NDVI.

Regarding the intra-annual variability of the pastures (as measured by the NDVIintra, presented
in Figure A3c), no clear trend is noticeable except locally, in the CUs and BZs of Bahia, where the
intra-annual variability of NDVI decreased in 82.3% of the analyzed pastureland (Figure A3d).

The spatial variability of NDVI in pastures did not follow any clear trend (Figure A3e). A slight
trend towards a general increase in the spatial variability of NDVI is noted within the pasture areas
in the BZs (Figure A3e), which is influenced by the dynamic of the pastures in the states of Bahia,
Tocantins, and Mato Grosso do Sul (Figure A3f).
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Figure A4. Boxplots of the landscape metrics’ values of the cells belonging to the ‘Agriculture’ category:
(a) NDVIinter in the buffer zones (BZs) and conservation units (CUs); (b) NDVIinter in each state; (c)
NDVIintra in the BZs and CUs; (d) NDVIintra in each state; (e) NDVIspatial in the BZs and CUs; (f)
NDVIspatial in each state. Number of 250 m resolution (6.25 ha) cells located inside the 61 conservation
units = 41 and in their buffer zones = 31,246. Number of cells in each Brazilian state with n > 0: São
Paulo (SP, 5161), Paraná (PR, 913), Piauí (PI, 153), Mato Grosso (MT, 2394), Mato Grosso do Sul (MS,
8489), Minas Gerais (MG, 1282), Maranhão (MA, 2202), Goiás (GO, 7464), Distrito Federal (DF, 627),
Bahia (BA, 2602).

The results of the monitored agricultural areas in the BZs (Figure A4a) show a general trend of
productivity increase (64.6% of the analyzed Agriculture cells in the BZs experienced an increase in the
annual average of NDVI, thus a positive NDVIinter value). This trend is especially clear in the states of
Goiás and Distrito Federal, where the proportion of agricultural areas with an increased productivity
accounted for 82.4% and 84.7%, respectively (Figure A4b).

However, the agricultural land in the BZs showed the highest dispersion of NDVIinter values
(Figure A4a) of all the four vegetation types, reflecting the rich diversity of cropping systems. This
variability in the NDVIinter results is illustrated by the different trends followed by the agricultural
land in the different states, and by the high dispersion of values within each state (Figure A4b). The
few agricultural areas monitored within the CUs’ limits (41 cells or 256 ha) did not show a clear trend
(Figure A4a).

Just as for NDVIinter, the agricultural land in the BZs exhibited the highest dispersion of NDVIintra
values of all vegetation types (Figure A4c). However, in this case, the high diversity of results at
the state level (Figure A4d), resulted in a lack of a common trend at the biome level. Nevertheless,
the agricultural land of the study areas in Distrito Federal and Piauí, exhibited a clear, increased
intra-annual variability of NDVI trend (accounting for 88.5% and 79.7% of their total agricultural area,
respectively), even if the sampled surface area was relatively small for both states (3918 ha for Distrito
Federal and 956.25 ha for Piauí). Conversely, most of the limited sample of agricultural land inside the
CUs (73.2%) experienced a decrease in the intra-annual variability of NDVI (Figure A4c).

As for the other landscape metrics, the agricultural land in the BZs exhibited a greater dispersion
of the NDVIspatial values than the rest of vegetation cover types (Figure A4e), and, in this case, a
slight trend towards a general homogenization of the agricultural landscapes is observed. This trend
represented 58.7% of the monitored agricultural land in the BZs and was representative of the general
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changes observed in the Piauí, Bahia, and Mato Grosso states (Figure A4f). The few agricultural areas
in the CUs seemed to have become slightly more heterogeneous.

The dispersion of the NDVIspatial values varies considerably from one state to another (Figure A4f),
Minas Gerais being the state with the most contrasted agricultural landscape in terms of magnitude
of vegetation structure change, and in contrast, the agricultural land in the Distrito Federal has
experienced contrasted changes but all of limited magnitude.
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