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The diffusion, “explosion” and “evaporation” of dimers and the subsequent coalescence are treated in a formal way

by identifying and solving the differential equations deduced from the respective behaviors of dimers in the different

cases. This study leads to analytic formulas allowing to calculate, in a simple and fast way, the size statistics obtained

after the coalescence of the dimers or their constituents once the dimers have completely disappeared. These formulas

are of capital interest to characterize systems in which the dimers initially present disappear.

1 Introduction

On December 29th, 1959, Richard Feynman gave a speech [1] on the still unexplored properties of infinitely
small objects. He specifies that by “small” he does not mean objects like millimeter-sized electric motors
which already exist in 1960, but of structures whose characteristic sizes are of the order of few nanometers.
Although the main part of his speech speaks about miniaturization, he foresees the quite singular properties
of the nanometric objects, making appear quantum effects. He also makes an allusion to the problem that
could constitute the diffusion for the stability of such objects.

Nowadays, the study of the properties of nanometric clusters of atoms has become common in various fields,
such as optics[2][3], magnetism[4], and heterogeneous catalysis[5]. The search for new properties has led
to the study of smaller and smaller metal particles, approaching, or even reaching the ultimate size of the
individual atom[6]. The use of nano-structured supports makes that, nowadays, many scientific studies
are conducted on cluster networks at critical sizes where diffusion is likely to occur[7][8][9][10][11]. When
depositing atoms on a nano-structured surface, the Poisson distribution[12] can be achieved by choosing
proper growth parameters (substrate temperature, deposition rate). This is interesting, not only because
of the satisfaction provided by the knowledge of the sample state, but also because it’s extremely useful
to deduce the properties of the clusters. Indeed, by measuring the activity of an assembly of particles
and by varying the quantities of deposited atoms, the knowledge of the Poisson distribution allows us to
deconvolute the signal to obtain the responses of the clusters as a function of their size. However, if during
the experiments, because of the temperature or the chemical environment, diffusion occurs, the initial well-
characterized system disappears leadingand is replaced by a new and inoperable system. The experimental
conditions can be sufficient to initiate the diffusion of monomers[8], dimers[13], but also larger clusters[9].
At present, the most common technique to determine the size statistics of very small clusters is to use an
STM (Scanning Tunneling Microscope) which provides safely the ratio between occupied and unoccupied
sites, i.e. the occupancy rate.

In the litterature, the most advanced formula to determine the occupancy rate after a deposition assuming
that monomers and dimers have diffused is given in an article by Liu et al.[14]. This formula gives the
occupancy rate Rocc assuming the initial distribution is known, but does not tell us anything about the final
size distribution.

Rocc = 1− P1 − P2 (1)

Where Pn are the known initial probabilities of having a site occupied by a cluster of n atoms. However, this
formula is eminently false since it does not take into account the formation of new particles of size greater
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than 2 during the coalescence of dimers with monomers or dimers with dimers. One can easily convince
oneself that by thinking about a deposit where only monomers and dimers are present, the occupancy rate
will be 0 after the diffusion. It is strange that such kind of bogus formula can be pulled out of a hat. It is
also amazing that this bogus formula is used to question the experimental measurements of another research
team.

2 Motivations

This study is motivated by the following concrete problem (which will serve as an experimental reference
when it will not be specified otherwise): One makes a deposit of atoms (for example, by condensation of a
flow of atoms coming from an evaporator) on a surface having nucleation centers distributed on a network.
In this case, the environment of each nucleation center is identical and the probability of capture of an atom
diffusing on the surface is the same whatever the nucleation center considered. The first question that can
be asked is "What is the size distribution of the clusters formed as a function of the mean number of atoms
per site deposited? In fact, the answer to this question is known: If an average of x atoms per nucleation
site have been deposited, the probability of having a cluster of n atoms follows the Poisson law[15]:

Pn(x) =
1

n!
xne−x (2)

The second question is: What is the new size distribution if during the experiments the monomers or the
dimers start to diffuse and disappear to leave only clusters of size greater than 2 atoms. The diffusion of
monomers is already addressed in an exact way[16], and I will focus here on the dimer diffusion.

3 How to get rid of dimers?

Before starting the calculations, it is good to think about the different scenarios that eliminate dimers from
the surface. Since the beginning of this article, the term "diffusion" is used regularly, because it is the most
natural thing that can happen to monomers and dimers. For monomers it is obvious: they have no other
possibility than to diffuse if they want to disappear (except to dissolve them in the substrate, which we
will not consider here: we will work with a constant quantity of matter, or in other words, with constant
number of atoms). The dimers can diffuse on the surface in the manner of monomers before going to meet
another cluster already present. However, even if it seems natural to think that this mechanism describes
what happens on the surface, one should not neglect other possibilities carrying out a theoretical study:
the dimers could for example "decompose" leading to the diffusion of the monomers resulting from this
"decomposition". There is also the last possibility (which I think unlikely): the dimer can "decompose",
and the interaction of one of the monomers with the surface can be such that only one of the released atoms
starts to diffuse.

Hereafter, I will call "diffusion" the process by which a dimer moves as a whole on the surface. The
"dislocation" followed by the diffusion of two individual atoms will be called "explosion" and finally, the
unlikely case where one of the atoms resulting from the "decomposition" remains fixed and that the other
diffuse will be called "evaporation".

We note here that, in the case where the dimer diffuses, nothing prohibits that the monomers are stable on
the surface. This case may seem really surprising, but in the calculations, this possibility can be considered
without adding additional complications.

4 Study assumptions.

Six assumptions will be made for this study:

1. Initial probabilities are known.
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2. Only dimers disappear.

3. The diffusion of dimers or constituents can be decomposed in two of tree steps according the scenario:

(a) If the dimer diffuses:

i. A dimer is removed from the set of dimers.

ii. The taken dimer is then placed randomly at the surface (i.e. on a nucleation site)

(b) If the dimer explode:

i. A dimer is removed from the set of dimers

ii. The first monomer is then placed randomly at the surface on a site holding a cluster.

iii. The second single atom is then also placed randomly on a site holding a cluster.

(c) If the dimer evaporates:

i. A dimer is removed from the set of dimers and a monomer is added to the set of monomers.

ii. A single atom is placed on a site on the surface.

4. The number N of nucleation sites is very large : 1/N ≪ 1

5. The mean free path of a diffusing atom is large in comparison of the distance of nucleation centers.

6. Finally, the size of a cluster is negligible in regard of the distance of nucleation center. This means
that the capture probability for an atom does not depend of the size of the cluster already present on
the nucleation center, and that condition 5 will be fulfilled.

5 Dimer Diffusion

We will suppose here that the dimers leave their position and that, without breaking up, they diffuse until
they reach a nucleation site (already occupied or not).

Let us consider a starting situation in which we have the probability P0 of having an empty site, the
probability P1 of having a site with a monomer, P2 of having a site with a dimer... and Pn of having a
site with a cluster of n atoms. A priori, P1 should be equal to 0, but, as said above, we are going to keep
it, it won’t make the calculations more complicated, and it could allow us to "solve" the improbable but
not impossible problem where monomers, because of their enhanced interaction with the substrate, could be
more efficiently trapped on the surface defects than the dimers.

The diffusion of the dimer can be split into two steps: 1 - a dimer is removed from the surface; 2 - the dimer
is deposited on a randomly selected site. It will be noticed that the first half step of the diffusion will impact
only the number of empty sites and the number of sites containing a dimer. The second step will affect the
number of all other size classes.

Starting from Study assumptions, the calculations given in Appendix 1 - Calculations for dimer diffusion
lead to the following formulas summarizing the size statistics after dimer diffusion:

P0 = 1− (1− P0)e
−xa

n odd : Pn 6=0 = e−xa





1

(n/2)!
xn/2a (P0 − 1) +

n/2−1
∑

k=0

1

k!
xkaPn−2k





n even : Pn = e−xa





(n−1)/2
∑

k=0

1

k!
xkaPn−2k





with

xa =
P2

1− P0

(3)
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Pn being the initial probabilities before diffusion, and Pn the probabilities once all dimers have diffused and
coalesced.

6 Dimer explosion

While less plausible than the case treated in section 5, this case has to be solved, at least for the completeness
of the present study. The differences between the size histograms calculated here and those calculated
previously, when compared with experiments carefully carried out for this purpose, could allow to privilege
this explosion mechanism over the diffusion mechanism, and provide indications on the hierarchy of energies
involved in this or that system.

We suppose here that a dimer breaks up because of the temperature (or the chemical environment), and
that the two monomers formed will diffuse very quickly to stick on a pre-existing nucleus.

It is important to realize that we cannot have stable monomers, and that if the two released monomers meet,
it will be as if nothing had happened. We will therefore not consider this possibility.

Here the diffusion will take place in three steps: 1 - one dimer is removed from the surface; 2 - the first atom
is dropped on a site containing a sufficiently stable cluster (at least a dimer); 3 - the second atom is also
dropped on a sufficiently stable cluster.

The calculations detailed in Appendix 2 - Calculations for dimer explosion lead to the following formulas:

P 0 = P0 + xa

P 1 = 0

P 2 = 0

Pn≥3 =

[

Kn +
n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A− xa) ]

i

]

(A− xa)
2 − 2(n−2)(A− xa)

y

with

xa = A−
A2

A+ P2

K(n≥3) =
Pn + 2n−2A

A2
−

n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A) ]i

A = 1− P0

and K2 =
A+ P2

A2

(4)

With always Pn representing initial probabilities before the explosion, and Pn the probabilities once all
dimers have vanished.

7 Dimer evaporation

One can consider the situation in which one atom of the cluster is more strongly bound to the surface than
to the other atom of the dimer. In this case, the thermal energy necessary to break a dimer can be too weak
to activate the diffusion of one of the two atoms of the dimer: One of the atoms starts its random walk and
the other remains fixed on the original site.

In this case, the diffusion splits in two steps: a - A dimer disappears and a monomer appears, b - The atom
diffusing on the surface stops on a random site, be it empty, or occupied by a cluster of any size.
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From the calculations described in Appendix 3 - Calculations for dimer evaporation, we obtain the following
formulas reflecting the evaporation of dimers.

P 0 = P0e
−x

P 1 = 1− [1− P1 − xaP0]e
−xa

Pn≥2 =

[

n
∑

i=0

Pn−i
xia
i!

−
x
(n−1)
a

(n− 1)!

]

e−xa

with

xa =
(1− P1)−

√

(1− P1)2 − 2P0P2

P0
if P0 6= 0

xa =
P2

1− P1
if P0 = 0

(5)

Again Pn representing initial probabilities before the evaporation, and Pn the probabilities once all dimers
have vanished.

8 Discussion

It is almost obvious that the dimers will "disappear" after the monomers have diffused and, unless a physical
or chemical process is available to obtain a known size distribution on a surface with P1 = 0, it will be
necessary to use the formulas described in the paper on the diffusion of monomers[16] to handle the initial
distribution before using the formulas given in this work.

8.1 Experimental verification

One of the first papers reporting the use of nano-structured surfaces for the organization of metal clusters
gives enough details to make a comparison between an experimental result and the theoretical formulas
obtained here. In this article published in 2006, the team of T. Michely uses a moiré produced by graphene
on a surface (111) of an iridium (Ir) single crystal to organize Ir clusters. To know the deposited quantity
they examine the 2D islands formed where no graphene is present, which allows to calibrate the deposit in
a rather reliable way.
The table 1 allows to compare in a synthetic way the experimental results with the different theoretical
predictions. As expected, the trivial formula 1 disagrees more as the deposit is low and as there are essentially
monomers and dimers just after the deposit. The columns of the table labelled “dimer diffusion” and “dimer
explosion” are calculated from the probabilities given by the formulas obtained in the reference [16], which
are themselves calculated from the Poisson distribution corresponding to the values n of the average number
of atoms per site. Here we see that the diffusion of dimers gives a result quite close to the explosion of
dimers. We know anyway that in this case, it is the dimer diffusion that must be considered given the Ir-Ir
and Ir-graphene interaction energies.
For each experimental point, we calculate the quantity of Ir that should have been deposited to obtain, with
the theoretical formulas, the experimental coverage. This value is called "recalculated deposit". Here, it
is the comparison of the recalculated deposit with the experimental deposit that is used to compare the
experiment with the theory.
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Deposit n experimental formula 1 dimer recalculated/ dimer
θ M.L. Rocc diffusion 3 measured explosion 4

0.01 0.87 19.2% 5.8% 19.4% 0.988 21.1%
0.02 1.74 42.6% 25.3% 38.5% 1.109 40.9%
0.03 2.61 65.5% 48.4% 56.2% 1.195 58.3%
0.04 3.48 68.7% 67.5% 71.1% 0.954 72.3%
0.05 4.35 82.9% 80.9% 82.2% 1.014 82.8%

Table 1: Comparison of experimental occupancy rates Rocc with theoretical predic-
tions for the different formulas. The formula 1 is the one reported in [14]. The initial
distribution before any diffusion is assumed to be given by the Poisson law. To eas-
ily compare the theoretical and experimental results, the 6th column gives the ratio
between theoretical deposit and the experimental deposit.

The comparison of the "calculated/measured" ratio in column 6 of table 1 shows that over the five ex-
perimental values, a very good agreement for three of them is obtained. The 0.02 monolayer deposit is
in disagreement of 10% and this disagreement rises to 20% for the 0.03M.C. deposit. Can we incriminate
measurement imprecision during the deposition for two of these experiments ? In fact it is difficult to say,
however the experimenters are often confronted with experimental hazards not always controllable. The small
difference between the occupancy rate between the deposit for 0.03M.C. and the following one for 0.04M.C.
would tend to show that there is indeed an experimental under evaluation of the quantity deposited during
the third deposit. To this we must add that in 2006 the aim of this work was not to confirm any theory but
to prove that the type of substrate used made it possible to obtain particle arrays with a known distribution
(the Poisson distribution) allowing to characterize properly the sample. We can add that a wrong model
would certainly give increasing (or decreasing) deviations with respect to the coverage, which is not the case
here. The value for the deposit of 0.03ML distinguishes itself, but the other values are within the norm for
a study that was not conducted with the aim of a rigorous comparison with a theory. One can hope that
some experimenter will decide to accurately verify the conclusions of the formulas given here.

8.2 Diffusion Vs Explosion

While improbable (at least with atoms), one can envisage that experimentally a cluster would break before
diffusing. One may wonder if the formulas allow distinguishing between one or the other of these scenarios.
Since it is the dimers that will have a different behavior between both scenarios, one needs a distribution
that before diffusion or explosion maximizes the number of dimers.

Initial size distribution dimer diffusion dimer explosion

P0 0.0 0.0 0.0
P1 0.0 0.0 0.0
P2 α 0.0 0.0
P3 0.0 0.0 0.1931α
P4 0.0 0.1839α 0.1736α
P5 0.0 0.0 0.08876α
P6 0.0 0.1226α 0.0324α
P7 0.0 0.0 0.0093α
P8 0.0 0.0459α 0.0022α

Relative occupancy 1 e−1 ≃ 0.36787 1/2

Table 2: Comparative evolution of a dimer assembly under the effect of
diffusion or explosion
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If there are only dimers, the difference between diffusion and explosion is very important as shown in table 2.
If we can only access the occupancy rate, the ratio between the number of dimers deposited and the number
of particles obtained gives a clear signal to discriminate one or the other mechanism: indeed, counting 37
clusters or 50 clusters in an area where there were 100 dimers should be easy even taking into account the
uncertainty with only a single counting. If experimentally one can count the number of atoms in the clusters
obtained, the lack or the existence of clusters with an odd number of atoms is an infallible argument.

However, producing a sample with only dimers seems difficult unless one is depositing mass-sorted clusters.
In most cases, the deposition of atoms is made by evaporation and condensation. One would suppose that
in the case of our concern, one should make a deposit maximizing the number of dimers, but this is not
the case, because the monomers present on the surface will certainly diffuse before the dimers. The results
obtained by applying the formulas for monomer diffusion show that the ratio of dimers over the total number
of clusters is maximized when the amount deposited tends towards 0. The size distribution after monomer
diffusion[16] when θ → 0 is given by the following formula:

Pn =
n− 1

n!
(6)

Taking as a starting point this distribution we obtain the occupancies listed in the table 3. We notice that
the differences are less important but not negligible: Counting on a zone where 1000 particles were initially
found, we will find in one case 606 ± 25 clusters and in the other 666 ± 25 clusters.

initial size distribution dimer diffusion dimer explosion

P0 0 0 0
P1 0 0 0
P2 0.5 0.0 0.0
P3 0.333333 0.2021768 0.2443238
P4 0.125 0.1516326 0.2268339
P5 0.033333 0.1213061 0.1239769
P6 0.006944 0.0673922 0.0498425
P7 0.0011904 0.0361029 0.0160665
P8 0.0000144 0.0164087 0.0043355

relative occupancy 1 0.60653 0.66666

Table 3: Comparative changes under diffusion or explosion from the size
distribution given by formula 6.

9 Conclusion

While these formulae may be useful to discriminate different dimer disappearance scenarios, this is not their
main use. If one considers a set of clusters giving properties to a given sample, optical, magnetic, or catalytic
properties, the proper characterization of the proportion of clusters of such or such size is the only way to
deduce the individual properties depending on the cluster size. By recording the response of a sample as
a function of coverage, if monomer and dimer diffusion is involved, the formulas given in this study added
to the formulas given in [16] allow measuring the activities of clusters of size equal to or larger than 3 as a
function of their size. Although these formulas succeed in an experimental test, one can hope that they will
be confirmed (or invalidated) by dedicated studies, which would allow them to be used without fear as is
often done with the Poisson distribution. Lastly, the main object of this study was related to the diffusion
of atoms and dimers on a surface in the way it can occur in the systems studied in the field of nanosciences.
Nevertheless, these formulas can equally be applied to other domains where atoms or molecules would not
be on a surface but in a 3-dimensional matrix. The only importance is to respect the initial hypotheses
(Study assumptions).
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10 Appendix 1 - Calculations for dimer diffusion

10.1 Determining the recurrence formulas

10.1.1 P0

Let us consider a surface with a very large number N of nucleation centers. The number of empty sites N0

is such that N0 = N × P0. Removing a dimer is equivalent to increase P0 by 1/N . Indeed the number of
empty sites after the first step is N0

′ = N0 +1, N0 + 1 = P0
′ ×N which means that P0

′ = P0 +1/N . In the
rest of the document I will replace 1/N by ε to simplify the notation. The second step of the diffusion will
consist of dropping randomly this dimer on one of the sites of the surface. Obviously the probability that
the dimer “lands” on a site containing n atoms is Pn. Here we are interested in knowing what happens to P0.
At the second stage of the diffusion P0 is decreased by P0

′ × ε, i.e.: P0
′ = 1P0 = P0

′ − P0
′ × ε and finally :

1P0 = (P0 + ε)(1 − ε)

Noting aPn the value of Pn after a elementary diffusions.

Trivially, we can extend this result. After a+1 diffusions :

a+1P0 = (aP0 + ε)(1 − ε) (7)

10.1.2 P1

As mentioned earlier, we expect P1 to be equal to 0 and remain so, but let’s make the calculation as if the
monomers were stable. The first step of the diffusion does not affect P1, but the second step decreases the
initial value of P1 by εP1. In an immediate and trivial way, we can write that at the end of the first diffusion
1P1 = P1(1− ε). This leads to the following recurrence formula:

a+1P1 =
aP1(1− ε) (8)

10.1.3 P2

The case of P2 is a bit more tricky because the probability of having dimers at step a + 1 depends on the
probabilities P0 and P2 at step a. Obviously, the first step of the diffusion decreases the probability P2 of ε
and we have P2

′ = P2 − ε. The second step will increase it by ε× P0
′ in the case that the dimer reaches an

empty site, or decrease it by ε × P2
′ if the dimer finishes its walk on a site occupied by another dimer. At

the end of the second step of the diffusion, we have:

1P2 = P2(1− ε)− ε+ εP0 + 2ε2

We can safely neglect the quadratic term in ε and write the following recurrence formula:

a+1P2 =
aP2(1− ε)− ε(1 − aP0) (9)

10.1.4 P3

P3 is handled almost like P1. Indeed the first step of the diffusion does not disturb the probability of having
a trimer, but the second step will subtract 1 from N3 in the situation where the dimer arrives on a site
containing a trimer. There is another way to modify P3, indeed if the dimer reaches a site containing a
monomer we will add 1 to N3. The new probability is consequently :
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1P3 = P3(1− ε) + P1ε

A formula that we will generalize to the following recurrence form:

a+1P3 =
aP3(1− ε) + εaP1 (10)

10.1.5 P4

The only difference between P3 and P4 is that if P1 was not altered by the first step of the diffusion, P2 is.
P4 increases by ε if the diffusing dimer meets another dimer. The probability of this event is the number of
dimers remaining after the first step of the diffusion, that is P2 − ε. Finally, we can write:

1P4 = P4(1− ε) + (P2 − ε)ε

i.e.:

1P4 = P4(1− ε) + εP2

once the quadratic terms removed. A formula that will be extended to the following recurrence formula:

a+1P4 =
aP4(1− ε) + εaP2 (11)

10.1.6 P5 and Pn≥5

The evolution of Pn for n ≥ 5 and P3 are strictly identical, in the sense that from size 5, the first step of the
diffusion will have no impact on P5: The evolution of P5 depends on P5 and P3 and we can add that for a
given size n Pn will only depend on Pn and Pn−2. It follows:

1Pn = Pn(1− ε) + εPn−2

That is extended to the following recurrence formula:

a+1Pn = aPn(1− ε) + εa Pn−2 (12)

10.2 Iterations

To derive the value of the different probabilities after a given number of single diffusions, one must iterate
the recurrence formulas obtained previously.

10.2.1 P0

Let’s see how P0 evolves. I recall the recurrence formula (7):

a+1P0 = (aP0 + ε)(1 − ε)

a+1P0 =
aP0(1− ε) + ε(1− ε)

= aP0(1− ε) + ε− ε2

in which we can remove the quadratic terms in ε :
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a+1P0 =
aP0 + ε(1 − aP0) (13)

The iterations result in:

1P0 = P0(1− ε) + ε
2P0 =

1P0(1− ε) + ε

= (P0(1− ε) + ε)(1 − ε) + ε

= P0(1− ε)2 + ε(1 − ε) + ε
3P0 =

2P0(1− ε) + ε

= P0(1− ε)3 + ε(1 − ε)2 + ε(1− ε) + ε
4P0 =

3P0(1− ε) + ε

= P0(1− ε)4 + ε(1 − ε)3 + ε(1− ε)2 + ε(1 − ε) + ε

it seems to emerge a fairly simple pattern that would give :

aP0 = P0(1− ε)a + ε

a−1
∑

i=0

(1− ε)i

We can easily prove that:

a
∑

i=0

αi =
αa+1 − 1

α− 1

hence:

a−1
∑

i=0

(1− ε)i =
(1− ε)a − 1

(1− ε)− 1
=

1− (1− ε)a

ε

and finally:

aP0 = 1− (1− P0)(1 − ε)a (14)

In the limit where ε tends towards 0, we can deduce a continuous formula by noticing that (1− ε)a = e−aε.
The continuous version of the formula(14) is then:

P0(x) = 1− (1− P0)e
−x (15)

writing x = aε which is nothing else than the number of diffusions per site (a/N)

10.2.2 A short break to think

We are interested here in the continuous versions of the evolution of probabilities. It is with them that we can
easily do calculations. Obtaining P0(x) required quite a lot of work, and it would be good to ask ourselves if
we could not get rid of the tedious discrete calculations to obtain an equivalent result, but in a simpler way.

For this, let us return to the formula (13) and see what it has to say. This formula is recalled here:

a+1P0 =
aP0 + ε(1 − aP0)
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Each new diffusion increases a by 1. Obviously, the number of elementary diffusions to reach a given state will
be proportional to the number N of sites considered, and we can introduce here the number x of diffusions
per site which is of course a/N . We have x = a/N , and making an additional diffusion increases x by a
small amount δx. Then we have: x+ δx = (a+1)/N . It follows that δx = ε. We can add that P0(x) is also
slightly modified by this additional diffusion. The formula (??) can thus be rewritten as follows:

P0(x) + δP0 = P0(x) + (1− P0(x))δx

Obviously in the limit where δx tends to 0 we have :

P0(x) + dP0 = P0(x) + (1− P0(x))dx (16)

The equation (16) allows us to find a differential equation for which the solution should be what we are
searching for:

dP0

dx
(x) = 1− P0(x)

i.e.:

P ′
0(x) = 1− P0(x) (17)

Solving this equation is straightforward at this point, since we already know the solution that was computed
earlier by the iteration method (15). We are going nevertheless to check that this is the correct solution:

P0(x) = 1− (1− P0)e
−x

P ′
0(x) = (1− P0)e

−x

1− P0(x) = 1− [1− (1− P0)e
−x]

= (1− P0)e
−x = P ′

0(x)

which satisfies the differential equation (17).

10.2.3 P1

From the recurrence formula (8) for P1 let’s try to determine the differential equation that governs P1(x).
We have:

a+1P1 =
aP1(1− ε)

P1(x) + dP1(x) = P1(x)− P1(x)dx

dP1(x)

dx
= −P1(x)

That can simply be written:

P ′
1(x) = −P1(x) (18)

The result is immediate:

P1(x) = K1e
−x

for x = 0 ; P1(0) = K1 = P1 ; and finally:

P1(x) = P1e
−x (19)
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10.2.4 P2

P2 is a bit more complicated because it depends not only on P2 but also on P0. The recurrence formula (9)
is arranged as follows:

a+1P2 =
aP2 −

aP2ε+
aP0ε− ε

= aP2 + (aP0 −
aP2 − 1)ε

The resulting differential equation is :

P ′
2(x) = −P2(x) + P0(x)− 1

And since we know the solution for P0(x) (15), we finally obtain the differential equation that we will attempt
to solve:

P ′
2(x) = −P2(x)− (1− P0)e

−x (20)

We will assume that P2(x) = f(x)e−x. We then have:

P ′
2(x) = f ′(x)e−x − f(x)e−x

= (f ′(x)− f(x))e−x

but (20) leads to:

P ′
2(x) = −P2(x)− (1− P0)e

−x

= −f(x)e−x − (1− P0)e
−x

= [−f(x)− (1− P0)]e
−x

If the solution has the form that we assume, we must have:

−f(x)− (1− P0) = f ′(x)− f(x)

that is
f ′(x) = −(1− P0)

it follows trivially :

f(x) = −(1− P0)x+K2

i.e.

P2(x) = [K2 − (1− P0)x]e
−x

As P2(0) = P2, we finally find:

P2(x) = [P2 − (1− P0)x]e
−x (21)

10.2.5 P3

P3 is not more complicated than P2. Indeed, from the recurrence formula (10) we derive the following
differential equation:
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P ′
3(x) = −P3(x) + P1(x) (22)

We will once again assume that the solution has the following form f(x)e−x, and it comes :

P ′
3(x) = (f ′(x)− f(x))e−x = (−f(x) + P1)e

−x

with the differential equation to solve:

f ′(x) = P1

the solution, once the limit for x = 0 is included, is f(x) = P3 + xP1, from which we conclude:

P3(x) = [P3 + P1x]e
−x (23)

10.2.6 P4

The differential equation deduced from the formula (11) giving the evolution of P4 is :

P ′
4(x) = −P4(x) + P2(x)

Again using the same approach, P4(x) = f(x)e−x, we get :

f ′(x) = P2 − (1− P0)x

and finally:

P4(x) = [P4 + P2x−
1

2
(1− P0)x

2]e−x (24)

10.2.7 Pn

The point here is to understand why the generic solution Pn(x) = f(x)e−x works to find the solution to the
differential equation from the formulas giving the evolutions of the probabilities. the evolution of Pn (12)
gives us the following differential equation :

P ′
n(x) = −Pn(x) + Pn−2(x)

Taking Pn(x) = fn(x)e
−x, we will systematically obtain P ′

n(x) = (f ′
n(x)− fn(x))e

−x, and if by chance, Pn−2

is such that Pn−2 = fn−2(x)e
−x, we will always have to solve:

(f ′
n(x)− fn(x))e

−x = −fn(x)e
−x + fn−2(x)e

−x

which will always be simplified to:

f ′
n(x) = fn−2(x) (25)

which will have as a solution:

fn(x) = Pn +

∫ x

0
fn−2(y)dy (26)
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In order to make Pn−2(x) of the form fn−2(x)e
−x, we need Pn−4(x) to be of the form fn−4(x)e

−x. And in
order to make Pn−4(x) of the form fn−4(x)e

−x, we need Pn−6(x) to be of the form fn−6(x)e
−x.... this until

we find a value of n for which we know it is true. This is precisely the case since for n = 1 and n = 2 we
have: P1(x) = P1e

−x and P2(x) = [P2 − (1− P0)x]e
−x.

From what has just been said, we can very simply give the successive fn(x) by integrating from one step to
the next fn−1(x) :

f2(x) = P2 − x(1− P0)

f4(x) = P4 + xP2 −
x2

2
(1− P0)

f6(x) = P6 + xP4 +
x2

2
P2 −

x3

6
(1− P0)

f8(x) = P8 + xP6 +
x2

2
P4 +

x3

6
P2 −

x4

4!
(1− P0)

f10(x) = P10 + xP8 +
x2

2
P6 +

x3

6
P4 +

x4

4!
P2 −

x5

5!
(1− P0)

f12(x) = P12 + xP10 +
x2

2
P8 +

x3

6
P6 +

x4

4!
P4 +

x5

5!
P2 −

x6

6!
(1− P0)

fn(x) = Pn + xPn−2 +
1

2
x2Pn−4 +

1

6
x3Pn−6 +

1

24
x4Pn−8 + ...

+
1

(n/2− 1)!
xn/2−1P2 −

1

(n/2)!
xn/2(1− P0)

and the probability for n even can be summarized by:

Pn 6=0(x) = e−x





1

(n/2)!
xn/2(P0 − 1) +

n/2−1
∑

k=0

1

k!
xkPn−2k





P0(x) = 1− (1− P0)e
−x

(27)

For n odd, successive integrations of fn(x) lead to :

f1(x) = P1

f3(x) = P3 + xP1

f5(x) = P5 + xP3 +
1

2
x2P1

f7(x) = P7 + xP5 +
1

2
x2P3 +

1

6
x3P1

f9(x) = P9 + xP7 +
1

2
x2P5 +

1

6
x3P3 +

1

24
x4P1

f11(x) = P11 + xP9 +
1

2
x2P7 +

1

6
x3P5 +

1

4!
x4P3 +

1

5!
x5P1

fn(x) = Pn + xPn−2 +
1

2
x2Pn−4 +

1

6
x3Pn−6 +

1

24
x4Pn−8 + ...

+
1

[(n− 1)/2 − 1]!
x(n−1)/2−1P3 +

1

[(n− 1)/2]!
x(n−1)/2P1

and the probability for n odd can be summarized by:

Pn(x) = e−x





(n−1)/2
∑

k=0

1

k!
xkPn−2k



 (28)
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10.3 Diffusion termination

Of course, as we are dealing here with the diffusion of dimers, the process will stop when the number of
dimers is equal to 0. This is summarized by the condition P2(x) = 0. The value of xa for which P2(xa) = 0
is easily calculated:

xa =
P2

1− P0
(29)

10.4 Diffusion summary.

To conclude, the size distribution after dimer diffusion is summarized in the following formulas:

P0 = 1− (1− P0)e
−xa

n pair : Pn 6=0 = e−xa





1

(n/2)!
xn/2a (P0 − 1) +

n/2−1
∑

k=0

1

k!
xkaPn−2k





n impair : Pn = e−xa





(n−1)/2
∑

k=0

1

k!
xkaPn−2k





with

xa =
P2

1− P0

(30)
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11 Appendix 2 - Calculations for dimer explosion

11.1 Determination of increments, of differential equations, and of probabilities

11.1.1 P0

The first step of the diffusion increases P0 by ε. The following steps do not influence P0, since once deposited,
the atom will diffuse very quickly to an already occupied site. So we get :

P ′
0 = P0 + ε

P ′′
0 = P ′

0

P ′′′
0 = P ′′

0

that is:

1P0 = P0 + ε

The differential equation is:

P ′
0(x) = 1 (31)

P0(x) is very easy to find in this case:

P0(x) = P0 + x (32)

11.1.2 P1

Here, monomers are definitely prohibited, and no matter what happens :

P1(x) = 0 (33)

11.1.3 P2

P2 is affected by each of the three steps of the diffusion: Step 1 removes ε from P2 the two following steps
add ε according to the probability of the released monomers to fall on a dimer. One must be extremely
careful here because the probability that an atom lands on a dimer is not equal to the probability of having
a dimer (P2): Indeed, in the case we are interested in here, putting an atom on an empty site does not make
sense, it can only stabilize while waiting for the next diffusion on a site already occupied. After the first step
of the diffusion, the number of occupied sites is (1 − P ′

0) = 1 − P0 − ε. The sequence of the three diffusion
steps thus modifies the probability of having a dimer as follows:

P ′
2 = P2 − ε

P ′′
2 = P ′

2 −
P ′
2ε

1− P0 − ε

P ′′′
2 = P ′′

2 −
P ′′
2 ε

1− P0 − ε

Once expanded and negligible terms dropped we obtain :

1P2 = P2 −
2P2

1− P0
ε− ε
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Resulting in the following differential equation:

P ′
2(x) = −

2P2(x)

1− P0(x)
− 1

which becomes when replacing P0(x) given by the formula (32) :

P ′
2(x) = −

2P2(x)

1− P0 − x
− 1 (34)

To simplify the notation, we will assume here and for the following 1−P0 = A. We can rewrite the previous
equation:

P ′
2(x) = −

2P2(x)

A− x
− 1 (35)

This differential equation is not easy to solve. One can for example iterate the individual diffusions to give
clues. An other method, more direct, is to note that since we have the term −

2P2(x)
A−x in the equation, a

solution that could work would be of the form:

P2(x) = f2(x)(A− x)2

so:

P ′
2(x) = (A− x)2f ′

2(x)− 2(A− x)f2(x)

= (A− x)2f ′
2(x)−

2P2(x)

A− x

The equation (35) results in :

(A− x)2f ′
2(x) = −1

that is to say :

f ′
2(x) = −(A− x)−2

leading to

f2(x) = −(A− x)−1 +K2

hence

P2(x) = −(A− x) +K2(A− x)2

We must have P2(0) = P2, which determines the constant K2 :

K2A
2 −A = P2

=⇒

K2 =
A+ P2

A2
(36)

finally
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P2(x) =
A+ P2

A2
(A− x)2 − (A− x) (37)

And substituting A with 1− P0 :

P2(x) =
1− P0 + P2

(1− P0)2
(1− P0 − x)2 − (1− P0 − x) (38)

The verification of this solution can be found in paragraph Validation of the formula (38) for P2(x) in the
supplementary information.

We can now know when the diffusion of dimers will end, obviously, there are two solutions to annul P2(x) :

x1 = A

and

x2 = A(1 −
A

A+ P2
)

The first solution seems not very realistic since it depends only on P0, and we expect it, at least, to depend
on P2. Note that A ≥ 0 and P2 ≥ 0 leading to [1−A/(A+P2)] ≤ 1 . x2 is then necessarily smaller than x1
since it is the result of x1 multiplied by a factor smaller than 1. x2 will be the first value to be reached during
the explosion process, and we can forget about the solution x1 which is obviously not a physical solution. x2
has the expected behaviour: it starts from 0 when P2 = 0 and grows by increasing P2. This is the solution
we shall use to determine the end of the "diffusion" of the dimers.

xa = (1− P0)(1−
1− P0

1− P0 + P2
) (39)

11.1.4 P3

The 3 steps of diffusion alter the probability of having a trimer in the following way:

P ′
3 = P3

P ′′
3 = P ′

3 −
P ′
3ε

1− P0 − ε
+

P ′
2ε

1− P0 − ε

P ′′′
3 = P ′′

3 −
P ′′
3 ε

1− P0 − ε
+

P ′′
2 ε

1− P0 − ε

Once all the negligible terms removed, we obtain the following differential equation:

P3(x)
′ =

2

1− P0(x)
(P2(x)− P3(x))

substituting P0(x) and P2(x) with the previously determined expressions (32) and (38), and still substituting
1− P0 with A we get :

P ′
3(x) =

2

A− x

[

A+ P2

A2
(A− x)2 − (A− x)

]

− 2
P3(x)

A− x

or,once reduced:
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P ′
3(x) = 2

[

A+ P2

A2
(A− x)− 1

]

− 2
P3(x)

A− x
(40)

We note that P ′
3(x) depends on 2P3(x)/(A − x) which leads us, as for P2(x), to a solution of the form:

P3(x) = f3(x)(A− x)2.

P ′
3(x) = (A− x)2f ′

3(x)− 2(A− x)f3(x)

= (A− x)2f ′
3(x)−

2P3(x)

A− x

thus:

(A− x)2f ′
3(x) = 2

[

A+ P2

A2
(A− x)− 1

]

f ′
3(x) = 2

A+ P2

A2

1

A− x
−

2

(A− x)2

f3(x) = −2
A+ P2

A2
ln(A− x)−

2

(A− x)
+K3

leading to:

P3(x) = f3(x)(A − x)2

= (A− x)2
[

−2
A+ P2

A2
ln(A− x)−

2

(A− x)
+K3

]

= −2
A+ P2

A2
ln(A− x)(A− x)2 − 2(A − x) +K3(A− x)2

as P3(0) = P3

P3 = −2
A+ P2

A2
ln(A)A2 − 2A+K3A

2K3 =
P3 + 2A

A2
+ 2

(A + P2)

A2
ln(A)

K3 =
P3 + 2A

A2
+ 2

(A+ P2)

A2
ln(A) (41)

finally:

P3(x) = −2
A+ P2

A2
ln(A− x)(A− x)2 − 2(A − x) +

P3 + 2A

A2
(A− x)2 + 2

(A+ P2)

A2
ln(A)(A− x)2

= −2
A+ P2

A2
ln(A− x)(A− x)2 +

P3 + 2A

A2
(A− x)2 + 2

(A + P2)

A2
ln(A)(A− x)2 − 2(A− x)

=

[

−2
A+ P2

A2
ln(A− x) +

P3 + 2A

A2
+ 2

(A+ P2)

A2
ln(A)

]

(A− x)2 − 2(A− x)

=

[

P3 + 2A

A2
+ 2

(A+ P2)

A2
ln(A)− 2

A+ P2

A2
ln(A− x)

]

(A− x)2 − 2(A− x)

=

[

P3 + 2A

A2
+ 2

A+ P2

A2
( ln(A)− ln(A− x) )

]

(A− x)2 − 2(A− x)
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that is :

P3(x) =

[

P3 + 2A

A2
+ 2

A+ P2

A2
( ln(A)− ln(A− x) )

]

(A− x)2 − 2(A− x)

with A = 1− P0

(42)

One can be convinced of the validity of this formula looking at the section : Verification of the formula (42) for P3(x)
in the supplementary materials

Before going further we can rearrange this solution in terms of ln(A− x); (A− x); and (A− x)2 :

P3(x) = −2
A+ P2

A2
ln(A− x)(A− x)2 − 2(A − x) +

P3 + 2A

A2
(A− x)2 + 2

(A+ P2)

A2
ln(A)(A− x)2

=

[

P3 + 2A

A2
+ 2

(A+ P2)

A2
ln(A)

]

(A− x)2 − 2
A+ P2

A2
ln(A− x)(A− x)2 − 2(A− x)

Recalling the values of K2 (36) and K3 (41) we obtain:

P3(x) = K3(A− x)2 − 2K2ln(A− x)(A− x)2 − 2(A− x) (43)

11.1.5 P4 and Pn≥3

The 3 steps of the diffusion change the probability of having an cluster of 4 atoms in the following way:

P ′
4 = P4

P ′′
4 = P ′

4 −
P ′
4ε

1− P ′
0

+
P ′
3ε

1− P ′
0

P ′′′
4 = P ′′

4 −
P ′′
4 ε

1− P ′
0

+
P ′′
3 ε

1− P ′
0

Once all the negligible terms are cleared, we obtain the following differential equation:

P4(x)
′ =

2

1− P0(x)
[P3(x)− P4(x)]

We will notice first that, starting from P3, the differential equations are all of the same form:

Pn(x)
′ =

2Pn−1(x)

A− x
−

2Pn(x)

A− x
(44)

We will also remark that assuming that Pn(x) = fn(x)(A− x)2 the term −
2Pn(x)
A−x appears in P ′

n(x):
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Pn(x)
′ =

[

fn(x)(A− x)2
]′
= f ′

n(x)(A− x)2 − 2fn(x)(A− x)

= f ′
n(x)(A− x)2 −

2fn(x)(A − x)2

A− x

= f ′
n(x)(A− x)2 −

2Pn(x)

A− x

(45)

From (44) and (45) it follows :

f ′
n(x)(A− x)2 =

2Pn−1(x)

A− x

that is :

f ′
n(x)(A− x)2 =

2fn−1(x)(A − x)2

A− x

which yields to the following relationship for n ≥ 3 :

f ′
n(x) =

2fn−1(x)

A− x
(46)

Starting from f2(x), multiplying by 2
(A−x) and integrating, will give us the solutions we are searching for,

and this from the size 2 for which the generic differential equation (44) starts to apply. We will make it
simpler by noting that :

([ln(A− x)]n)′ = −n
[ln(A− x)]n−1

A− x

and then:

∫

[ln(A− x)]n

A− x
= −

1

n+ 1
[ln(A− x)]n+1

and also, in a less stressful way:

∫

1

(A− x)2
=

1

A− x

Thus, the solution sequence begins as follows:
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f2(x) = K2 −
1

A− x

2
f2(x)

A− x
=

2K2

A− x
−

2

(A− x)2

f3(x) = K3 +

∫

2K2

A− x
−

∫

2

(A− x)2

= K3 − 2K2ln(A− x)−
2

A− x

2
f3(x)

A− x
=

2K3

A− x
−

4K2ln(A− x)

A− x
−

4

(A− x)2

f4(x) = K4 +

∫

2K3

A− x
−

∫

4K2ln(A− x)

A− x
−

∫

4

(A− x)2

= K4 − 2K3ln(A− x) +
4K2[ln(A− x)]2

2!
−

4

A− x

2
f4(x)

A− x
=

2K4

A− x
−

4K3ln(A− x)

A− x
+

8[K2ln(A− x)]2

2!(A − x)
−

8

(A− x)2

f5(x) = K5 +

∫

2K4

A− x
−

∫

4K3ln(A− x)

A− x
+

∫

8K2[ln(A− x)]2

2!(A − x)
−

∫

8

(A− x)2

= K5 − 2K4ln(A− x) +
4K3[ln(A− x)]2

2!
−

8K2[ln(A− x)]3

3!
−

8

A− x

We notice that from one step to the other the term [ln(A − x)]n] turns into −2
(n+1) [ln(A − x)]n+1, and that

the term 1
A−x turns into 2

A−x . This allows us to obtain the following general law:

f(n≥3)(x) = Kn +

[

n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A− x) ]i

]

−
2(n−2)

A− x
(47)

Knowing that Pn = Pn(0) = fn(0)A
2 we deduce the value of the constants :

K(n≥3) =
Pn + 2n−2A

A2
−

n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A) ]i (48)

The correctness of the general formula (47) is proved in the section Validation of the formula (47) for Pn≥3(x)
of supplementary materials.

11.2 Explosion recap

In the end, we will summarize in these few following lines the statistics after the "explosion" of all dimers:
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P 0 = P0 + xa

P 1 = 0

P 2 = 0

Pn≥3 =

[

Kn +
n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A− xa) ]

i

]

(A− xa)
2 − 2(n−2)(A− xa)

with

A = 1− P0 ;

K(n≥3) =
Pn + 2n−2A

A2
−

n−2
∑

i=1

Kn−i
(−2)i

i!
[ ln(A) ]i ;

K2 =
A+ P2

A2
;

and

xa = A−
A2

A+ P2

(49)

Where the values of Pn(xa) are written Pn.
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12 Appendix 3 - Calculations for dimer evaporation

12.1 Modification of the probabilities

In the same manner as we did in the two previous sections, we will determine the variations of the probabilities
according to ε and derive laws that apply to all sizes. Always noting « ’ » the situation after the first step
and « ” » the situation after the second step. The situation is the same as for “diffusion” in the sense that, as
all sites are eligible to receive a monomer, there will not be the decrease in the possibilities that introduced
the logarithms in the case of the "explosion" of dimers.
The transformations of the probabilities can be summarized as follows:

P0 −→ P ′
0 = P0 −→ P ′′

0 = P0 − εP0

P1 −→ P ′
1 = P1 + ε −→ P ′′

1 = P1 + ε− ε(P1 + ε) + εP0

P2 −→ P ′
2 = P2 − ε −→ P ′′

2 = P2 − ε− ε(P2 − ε) + ε(P1 + ε)

P3 −→ P ′
3 = P3 −→ P ′′

3 = P3 − εP3 + ε(P2 − ε)

P4 −→ P ′
4 = P4 −→ P ′′

4 = P4 − εP4 + εP3

Pn −→ P ′
n = Pn −→ P ′′

n = Pn − εPn + εPn−1

(50)

Discarding the negligible terms we have:

P ′′
0 = P0 − εP0

P ′′
1 = P1 + ε− εP1 + εP0

P ′′
2 = P2 − ε− εP2 + εP1

P ′′
3 = P3 − εP3 + εP2

P ′′
n = Pn − εPn + εPn−1

(51)

12.2 Differential equation and their solutions

From the formulas (52) one deduces the following differential equations:

P ′
0(x) = −P0(x)

P ′
1(x) = 1 + P0(x)− P1(x)

P ′
2(x) = −1 + P1(x)− P2(x)

P ′
3(x) = P2(x)− P3(x)

P ′
n(x) = Pn−1(x)− Pn(x)

(52)

Here we are exactly in the same case as in the section Dimer Diffusion. We have the derivative P ′
n(x)

which involves −Pn(x) and the natural solution is Pn(x) = fn(x)e
−x. In the same way as in the section

Dimer Diffusion, we will have:

P ′
n(x) = f ′

n(x)e
−x − Pn(x)

These differential equations are easily solved:

12.2.1 P0

P ′
0(x) = f ′

0(x)e
−x − P0(x) = −P0(x) ⇔ f ′

0(x)e
−x = 0
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The obvious solution is f0(x) = P0 and then we have:

P0(x) = P0e
−x (53)

12.2.2 P1

We have to solve :
P ′
1(x) = 1 + P0(x)− P1(x)

assuming that P1(x) = f1(x)e
−x, The differential equation For P1 can be summarized as:

f ′
1(x)e

−x = 1 + P0(x)

that is not difficult to solve:

f ′
1(x)e

−x = 1 + P0e
−x

f ′
1(x) = ex + P0

leading trivially to:

f1(x) = K1 + ex + xP0

and

P1(x) = K1e
−x + 1 + xP0e

−x

Of course, K1 is such as P1(0) = P1

P1 = K1 + 1

K1 = P1 − 1

finally:

P1(x) = 1− [1− P1 − xP0]e
−x (54)

12.2.3 P2

For P2, we have:
P ′
2(x) = −1 + P1(x)− P2(x)

f ′
2(x)e

−x = −1 + P1(x)

f ′
2(x) = −ex +

{

1− [1− P1 − xP0]e
−x

}

ex

= −ex + ex − [1− P1 − xP0]

= P1 + xP0 − 1

In a trivial way :

f2(x) = K2 + xP1 +
1

2
x2P0 − x

and simply K2 = P2, which results in:
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P2(x) =

[

P2 + xP1 +
1

2
x2P0 − x

]

e−x (55)

12.2.4 Pn≥3

From P3, the differential equations are all the same: (P ′
n(x) = Pn−1(x) − Pn(x)). Moreover, P2(x) has the

form of a simple polynomial in powers of x multiplied by a factor e−x. The solution: f ′
n(x)e

−x = Pn−1(x)e
−x

will always lead to f ′
n(x) = Pn−1(x) which require fn(x) to be a polynomial as well: fn(x) = Pn(x). The

successive solutions of fn(x) are therefore polynomials whose constant will necessarily be equal to Pn since
all the other terms are factors of a power of x and that e0 = 1.

P2(x) =

[

P2 + xP1 +
1

2
x2P0 − x

]

e−x

P3(x) =

[

P3 + xP2 +
1

2
x2P1 +

1

3!
x3P0 −

1

2
x2

]

e−x

P4(x) =

[

P4 + xP3 +
1

2
x2P2 +

1

3!
x3P1 +

1

4!
x4P0 −

1

3!
x3

]

e−x

(56)

And the appropriate generalization for Pn(x) is:

Pn≥2(x) =

[

n
∑

i=0

Pn−i
xi

i!
−

x(n−1)

(n− 1)!

]

e−x (57)

12.3 halting evaporation

Dimer evaporation stops naturally when all dimers have finally disappeared. This condition is achieved when
P2(x) = 0.

P2(x) = 0 ⇔ P2 + xP1 +
1

2
x2P0 − x = 0 (58)

There are two solutions to annul P2(x)

x =
(1− P1)±

√

(1− P1)2 − 2P0P2

P0

We will notice two things. First, 1 − P1 ≥ 0 and P0P2 ≥ 0, and if (1 − P1)
2 − 2P0P2 ≥ 0, then

√

(1− P1)2 − 2P0P2 ≤ (1− P1). From these remarks it follows that:

(1− P1)−
√

(1− P1)2 − 2P0P2

P0
≤

(1− P1) +
√

(1− P1)2 − 2P0P2

P0

The solution we are looking for is therefore the first one encountered, i.e.:

xa =
(1− P1)−

√

(1− P1)2 − 2P0P2

P0
(59)

Note that if P0 tends towards 0, then we can either do a Taylor expansion of
√

(1− P1)2 − 2P0P2:

lim
P0→0

√

(1− P1)2 − 2P0P2 = (1− P1)−
2P0P2

2
√

(1− P1)2
= (1− P1)−

P0P2

(1− P1)
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leading to:

lim
P0→0

xa =
(1− P1)− (1− P1) +

P0P2

(1−P1)

P0
=

P2

(1− P1)

Simpler, we can take the condition 58 and set P0 = 0 :

P2 + xaP1 − xa = 0

Leading by chance to the same formula:

xa =
P2

1− P1

A priori, if the probability of having dimers is such that we use these formulas, the probability of having
empty sites will certainly not be equal to 0.

12.4 Summary of the evaporation

The probabilities after evaporation of the dimers are summarized by the following formulas:

P 0 = P0e
−x

P 1 = 1− [1− P1 − xaP0]e
−xa

Pn≥2 =

[

n
∑

i=0

Pn−i
xia
i!

−
x
(n−1)
a

(n− 1)!

]

e−xa

with

xa =
(1− P1)−

√

(1− P1)2 − 2P0P2

P0
if P0 6= 0

xa =
P2

1− P1
if P0 = 0

(60)
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