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. We introduce the ring of hyperbolic integers Z h as a sub f -ring of the ring Z D of integers of D. We prove that Z h is the unique, up to ring isomorphism, Archimedean f -ring of quadratic integers. Our study focuses on arithmetic properties of Z h related to its lattice-ordered structure. We show that many of basic properties of the ring of integers Z such as primes, unique factorization theorem and the notions of floor and ceiling functions can be extended to Z h . A surprising fact is that prime numbers seen as hyperbolic integers are semiprimes. We also obtain some properties of hyperbolic Gaussian integers . As an application, we discuss the Dirichlet divisor problem using hyperbolic intervals.

Introduction

In order to solve problems concerning certain classes of integers, number theorists of the XIX century are led to study generalizations of the usual arithmetic of the natural numbers in more general settings. In these analogous of Z, concepts like unique factorization into prime elements, Euclidean division and modular arithmetic are developed. One can cite, for instance, Gaussian integers Z[i] and Kummer's cyclotomic integers Z[exp(2πi/n)] whose interest came about little by little.

In a process of generalization of the above constructions, Dedekind [START_REF] Dedekind | Theory of algebraic integers[END_REF] introduced the notion of ring of integers O K of a number field K. The ring of integers Z is the simplest ring of integers. Namely, Z = O Q where Q is the field of rational numbers. The ring of Gaussian integers Z[i] is the ring of integers of the number field Q(i). And, the ring of cyclotomic integers Z[exp(2πi/n)] is the ring of integers of the cyclotomic field Q(exp(2πi/n)).

Another structure of the ring of integers Z is useful, it corresponds to its order structure : it's clear that one has to take into account the relation between its divisibility and its order properties as the existence of a unique positive gcd and the existence of unique factorization into product of positive primes. In this paper Z is seen as an Archimedean f -ring. Indeed, the general notion of f -algebra is simultaneously a Riesz space (or vector lattice) and an associative real algebra that fulfills certain "positivity" conditions. A typical example of f -algebras is the linear space of real valued continuous functions on a topological space. Obviously, the fundamental example of Archimedean f -algebras is the field of real numbers.

The purpose of this paper is to answer the following general question: can we extend the order structure of Z to some of its generalizations in a way compatible with its arithmetic characteristics ?

The first element of answer is given by Theorem 3.1. We prove that there is no analogous of positivity in the ring O K . Actually, we prove a more general result concerning ring extensions of Q. This leads us to consider non division extension of reals numbers. More precisely, we consider the ring of hyperbolic numbers D = z = x + jy : x, y ∈ R, j / ∈ R; j 2 = 1 .

(1.1)

Hyperbolic numbers (also called duplex numbers) are an extension of real numbers defined in the same way that complex numbers C but with an imaginary unit j satisfying j 2 = 1 (instead of i 2 = -1). It's clear that D is not a division algebra. However, it enjoys an important order structure which makes it into the unique (up to an isomorphism) two dimensional Archimedean f -algebra. Therefore, basic notions of real analysis as sign, absolute value, Archimedean and Dedekind completeness are extended to hyperbolic numbers [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]. Note that complex numbers and hyperbolic numbers are the only real commutative Clifford algebras:

D ∼ = Cl R (1, 0) and C ∼ = Cl R (0, 1)
The notion of partial order on D stimulates many authors and leads to interesting applications in different areas of mathematics. Alpay et al. [START_REF] Alpay | Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis[END_REF] investigated the D-normed bicomplex modulus. In probability theory it is shown in [START_REF] Alpay | Klomogrov's axioms for probabilities with values in hyperbolic numbers[END_REF] that Kolmogrov's axioms and Bays theorems holds in the context of D-valued probabilities. Kumar et al. [START_REF] Kumar | Orlicz Spaces with Bicomplex Scalars[END_REF] introduced the notion of D-valued measure on a sigma algebra. As an Application to fractal geometry, a concept of Cantor sets in hyperbolic numbers was developed by Balankin et al. [START_REF] Balankin | Cantor-type sets in hyperbolic numbers[END_REF] and Téllez-Sánchez et al. [START_REF] Téllez-Sánchez | More about Contor like sets in hyperbolic numbers[END_REF]. Recently, the authors of the present paper used in [START_REF] Gargoubi | Bicomplex numbers as a normal complexified f -algebra[END_REF] lattice-theoretical results to go further in the development of the theory of bicomplex zeta function. Further applications can be found in [START_REF] Kumar | Bicomplex Weighted Hardy Spaces and Bicomplex C * -algebra[END_REF][START_REF] Kumar | Topological Bicomplex modules[END_REF][START_REF] Luna-Elizarraras | On linear functionals and Hahn-Banach theorems for hyperbolic and bicomplex modules[END_REF][START_REF] Luna-Elizarraras | On the Laurent series for bicomplex holomorphic functions: Complex Var[END_REF][START_REF] Rochon | Bicomplex quantum mechanics II. The Hilbert Space[END_REF].

The aim of this paper is to investigate a lattice-ordered ring ( -ring) of algebraic integers where we are able to generalize many of the basic divisibility and order properties of Z. Our main result (Theorem 3.2) is the existence of a unique, up to ring isomorphism, Archimedean f -ring of quadratic integers called the ring of hyperbolic integers denoted Z h . Namely, Z h is the ring of integers of the extension Q(j) = {α + jβ ; α, β ∈ Q}.

The present paper is organized in the following way: In section 2, we recall some notions and terminology concerning -groups, f -rings and f -algebras and present basic notions and properties of hyperbolic numbers that will be used throughout this article. Section 3 introduces the lattice-ordered ring Z h of hyperbolic algebraic integers, and various of its properties are established. We introduce the notions of hyperbolic floor and ceiling functions which generalize that of real numbers. Section 4 and 5 are devoted to the divisibility in Z h . Many of the basic concepts of the arithmetic of Z are extended to Z h : the Euclidean division, the existence of a unique positive gcd, the existence of a unique factorization into a product of positive primes. In section 6, we establish some properties of the hyperbolic Gaussian integers as a subring of Z h . As an application, we discuss the Dirichlet divisor problem using hyperbolic intervals.

Preliminaries

In this section, we recall basic facts which we will use throughout this paper.

Basic lattice concepts

We recall some notions and terminology about -groups, f -rings [START_REF] Bigard | Groupes et Anneaux Réticulés[END_REF][START_REF] Steinberg | Lattice-ordered Rings and Modules[END_REF] and f -algebras [START_REF] Zaanen | Riesz Spaces II[END_REF]. Let G be a group which is also a partially ordered set. The group operation is denoted additively even if G is not assumed abelian, and so the identity element and the inverse of a ∈ G are denoted by 0 and -a, respectively. G is called a partially ordered group if the partial order ≤ satisfies: for any a, b ∈ G,

a ≤ b ⇒ a + c ≤ b + c and c + a ≤ c + b for all c ∈ G.
In the partially ordered group G, an element a is called positive if a ≥ 0. The set G + of all positive elements is called the positive cone of G. The partially ordered group G is said to be Archimedean if for each nonzero a in G the set {na : n ∈ Z} has no upper bound in G; equivalently, a, b ∈ G + and na ≤ b for all n ∈ N ⇒ a = 0. The partially ordered group G is a lattice-ordered group (an -group) if the partial order is a lattice order (i.e., the supremum a ∨ b and the infimum a ∧ b exist in G for all a, b ∈ G). Every element a in an -group G can be written as a = a + -a -, where a + = a ∨ 0 and a -= -a ∨ 0. The absolute value of a is defined as |a| = a ∨ (-a) = a + + a -. Any Archimedean -group is abelian. A real vectorial space V is said to be a vector lattice or Riesz space if V as a group is an -group satisfying the property: for any a, b ∈ V, a ≤ b ⇒ αa ≤ αb for all α ∈ R + . A ring R is called an f -ring if R is an -group and for any a, b ∈ R + ,

ab ∈ R + and a ∧ b = 0 ⇒ ac ∧ b = ca ∧ b = 0 for all c ∈ R + .
An f -ring is Archimedean if its underlying group is Archimedean. For each element a in an f -ring we have a + a -= 0. Two f -rings R and S are called -isomorphic if there exists a ring isomorphism ϕ from R to S satisfying ϕ(a∨b) = ϕ(a)∨ϕ(a) and ϕ(a∧b) = ϕ(a)∧ϕ(a) for all a, b ∈ R. An associative real algebra is an f -algebra if it is an f -ring and its underlying group is a vector lattice. We give above some examples of partially order groups, -groups and f -rings. 1. The additive group G = Z, Q, or R is an Archimedean totally -group with the usual order between real numbers, and |x| = x ∨ (-x) = max{x, -x} for all x ∈ G. 2. Let (G, P ) be the partially order group R × R with positive cone P .

• If P = {(x, y) : x > 0 or x = 0 and y ≥ 0}, then (G, P ) is a totally ordered group which is not Archimedean since for any n ∈ N, n(0, 1) ≤ (1, 0). The absolute value in (G, P ) is given by |(x, y)| = max{(x, y), (-x, -y)}.

• If P = {(x, y) : x > 0 and y > 0 or (x, y) = (0, 0)}, then (G, P ) is an Archimedean partially ordered group but not an -group.

• If P = {(x, y) : x ≥ 0 and y ≥ 0}, then (G, P ) is an Archimedean -group, and |(x, y)| = (|x|, |y|).

Let Z[ε]

= {z = x + εy : x, y ∈ Z, ε / ∈ R; ε 2 = 0} be the ring of dual Gaussian integers. Let z ∈ Z[ε] belongs to the positive cone P of Z[ε] if Re(z) > 0 or Re(z) = 0 and Im(z) ≥ 0. Then (Z[ε], P ) is a totally f -ring but not Archimedean, and the absolute value is given by.

|z| = max{z, -z} = z if z ≥ 0 -z if z ≤ 0 4. The ring Z[i]
of Gaussian integers cannot be made into an f -ring since i 2 = -1 (the squares in any f -ring are positive). Nevertheless, there is a partial order on Z[i] that makes it into an Archimedean -group; namely, z ≤ w in Z[i] if and only if Re(z) ≤ Re(w) and Im(z) ≤ Im(w). Thus, for any z ∈ Z[i], the absolute value is

|z| = |Re(z)| + i|Im(z)|.
It is worth noticing that both |z| and the modulus √ z z are generalizations of the usual absolute value in the sens that they coincide on real numbers. However, the first one belongs to Z[i] as an -group, and the second is a positive real number which represents the euclidean distance from z to the origin 0 as a lattice point.

Hyperbolic numbers

We recall basic properties of hyperbolic numbers equipped by its natural Archimedean f -algebra structure (see [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). Hyperbolic numbers defined by (1.1) is a commutative ring with group of units defined by

D * = z ∈ D : z h = 0 ,
where z h := z z = x 2 -y 2 denotes the hyperbolic square-norm of z = x + jy, (x, y ∈ R) and z is the conjugate of z given by exchanging y ←→ -y. The hyperbolic plane has an important basis {e 1 , e 2 } where

e 1 = 1 + j 2 , e 2 = 1 -j 2 .
e 1 and e 2 are mutually complementary idempotent zero divisors, i.e., e 2 1 = e 1 ; e 2 2 = e 2 ; e 1 + e 2 = 1; e 1 e 2 = 0.

(2.1)

In this basis, each hyperbolic number z can be written as

z = π 1 (z)e 1 + π 2 (z)e 2 , (2.2) 
where the maps π 1 , π 2 : D → R are a pair of surjective ring homomorphisms defined by

π 1 (x + jy) = x + y and π 2 (x + jy) = x -y.
From the representation (2.2), called the spectral decomposition [START_REF] Sobczyk | The hyperbolic number plane[END_REF], algebraic operations correspond to coordinate-wise operations, the square norm of z is the product π 1 (z)π 2 (z) and its conjugation is given by exchanging π 1 (z) ↔ π 2 (z). Moreover, we can define a partial order ≤ on D that makes it into Archimedean f -algebra, where

z, w ∈ D; z ≤ w if and only if π k (z) ≤ π k (w), k = 1, 2. (2.3)
From this ordering the lattice operation are

z ∨ w = max{π 1 (z), π 2 (z)}e 1 + max{π 1 (z), π 2 (z)}e 2 , z ∧ w = min{π 1 (z), π 2 (z)}e 1 + min{π 1 (z), π 2 (z)}e 2 .
Moreover, z ∨ w and z ∧ w can be expressed as a I(D)-combination of z and w, where I(D) means the set of all idempotent elements of D. More precisely, this property is formulated in the following result.

Proposition 2.1 (Proposition 3.1 in [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). For any z, w ∈ D there exist unique u, v ∈ I(D)

satisfying uv = 0 and u + v = 1 such that z ∨ w = uz + vw and z ∧ w = vz + uw.
The Riesz space D is Dedekind complete i.e. every nonempty subset A that is bounded above (resp. below), has a supremum sup A (resp. infimum inf A), and

sup A = sup π 1 (A)e 1 + sup π 2 (A)e 2 , (2.4 
)

inf A = inf π 1 (A)e 1 + inf π 2 (A)e 2 .
(2.5)

In the ring of hyperbolic numbers there is a multiplicative group S called group of signs given by

S = 1, -1, j, -j ∼ = Z/2Z × Z/2Z. (2.6)
Theorem 2.1 (Theorem 5.1 in [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). Let z ∈ D, then there exists an element ε ∈ S such that εz ≥ 0.

If z h = 0 then ε is unique, called sign of z, denoted sgn(z) and given by

sgn(z) = z |z| .
The f -algebra D under the norm

z R := min α ∈ R + : α ≥ |z| = |z| ∨ |z| for all z ∈ D,
is a unital Banach lattice algebra, i.e. the norm . R satisfies the properties:

(i) |z| ≤ |w| implies z R ≤ w R ; (ii) zw R ≤ z R w R and 1 R = 1. As |z| ∨ |z| = max{|π 1 (z)|, |π 2 (z)
|}, then using the standard basis {1, j} an explicit expression of z R is given by the formula

x + jy R = max{|x + y|, |x -y|} for all x, y ∈ R.
The Banach algebra structure allows us to define the exponential of z, for any hyperbolic number z, as

e z := ∞ n=0 z n n! = e π 1 (z) e 1 + e π 2 (z) e 2 .
The hyperbolic exponential function exp is a group homomorphism from the additive group D to the multiplicative group D * . But unlike complex numbers, the hyperbolic exponential function is one-to-one with exp

(D) = D + * = {z = z 1 e 1 + z 2 e 2 : z 1 , z 2 ∈ R * + }. Therefore, exp : D -→ D +
* is a group isomorphism, and this leads to define the hyperbolic logarithm function as the inverse isomorphism ln = exp -1 . Given z ∈ D + * and α ∈ D. Define the hyperbolic exponentiation z α as z α := e α ln(z) = e π 1 (α) ln(π 1 (z)) e 1 + e π 2 (α) ln(π 2 (z)) e 2 .

Write z = z 1 e 1 + z 2 e 2 , α = α 1 e 1 + α 2 e 2 . Then from the above formula we obtain

z α := z α 1 1 e 1 + z α 2 2 e 2 .
(2.7)

Finally, let us mention that we will use the following notation: for any z, w ∈ D we write

z ≺ w if and only if w -z ∈ D + * . Therefore, if z, w ∈ R then z < w in R if and only if z ≺ w in D.
3 Hyperbolic integers

Basic definitions and properties

Let R be a ring extension of Q with degree n, i.e., a unital commutative ring in which its underling group is a Q-vector space with dimension n. Therefore, each α ∈ R is an algebraic number ( i.e., a root of a polynomial P ∈ Z[X]) since it satisfies an equation

a n α n + a n-1 α n-1 + • • • + a 0 = 0, a i ∈ Z.
If in addition a n = 1, α is said to be an algebraic integer. The set O R of all algebraic integers of R is a ring [21, Chap 2 ] called the ring of integers of R. In particular, a finite field extension K of Q is usually refereed as a number field. The ring O K of its integers is Notherian but in general is not a unique factorization domain see [START_REF] Ireland | A Classical Introduction to Modern Number Theory[END_REF]Chap 12]. In lattice-ordered rings framework we obtain the following result. Theorem 3.1. Let R be a ring extension of Q with degree = 1. If R is an integral domain then its ring of integers O R cannot be made into Archimedean f -ring.

Proof. Let R be an integral ring extension of Q with degree d > 1. Suppose that O R can be made into Archimedean f -ring. Let x ∈ O R then x + = 0 or x -= 0 since x + x -= 0 and O R is an integral domain. This means that x ≥ 0 or x ≤ 0, since x can be written as x = x + -x -with x + , x -≥ 0. It follows that for any u, v ∈ O R , either u -v ≥ 0 or u -v ≤ 0, and hence u ≥ v or u ≤ v; that is, O R is totally ordered group. Therefore, from Hölder theorem [5, Theorem 2.6.3], O R is isomorphic to a subgroup of R. This yields a contradiction since dim Q R = 1. This completes the proof.

The aim of this paper is the characterization of all Archimedean f -rings of quadratic integers. From Theorem 3.1, these rings must be non integral domains. In fact, we show that, up to an -isomorphism, there is only one Archimedean f -rings of quadratic integers., namely the ring of integers of the extension Q(j) = {α + jβ ; α, β ∈ Q}. Theorem 3.2 (Hyperbolic integers). The ring of integers of Q(j) is given by

Z h := Ze 1 + Ze 2 ,
and it is the unique, up to order an ring isomorphism, Archimedean f -ring of quadratic integers called the ring of hyperbolic integers.

Proof. The Z-module Z h = Ze 1 + Ze 2 is a subring and sublattice ( closed under ∨ and ∧) of the Archimedean f -algebra D. Therefore it's an Archimedean f -ring under the partial order induced from D, and for any u = ne 1 + me 2 and v = pe 1 + qe 2 we have

u ∨ v = max{n, p}e 1 + max{m, q}e 2 and u ∧ v = min{n, p}e 1 + min{m, q}e 2 . (3.1)
We prove now that Z h is the ring of integers of Q(j). To do this, we will use the decomposition Q(j) = Qe 1 + Qe 2 that follows from the identities: e 1 + e 2 = 1 and e 1 -e 2 = j. 

Let υ = αe 1 + βe 2 ∈ Qe 1 + Qe 2 then υ ∈ O Q(j) if and only if there exists (a, b) ∈ Z 2 such that υ 2 + aυ + b = 0, i.
α = -a + √ a 2 -4b 2 = n 2 and β = -a - √ a 2 -4b 2 = m 2 , (3.2) 
where n, m, α + β and αβ are integers, so that n+m 2 , nm 4 ∈ Z. This holds only if n and m are even, i.e., from (3.2) α, β ∈ Z.

Hence Z h = O Q(j) . Let O R be the ring of integers of a quadratic ring extension R of Q. Suppose that O R is an Archimeadean f -ring. Then it contains an element b with u 1 = b + = 0 and u 2 = b -= 0.
Otherwise, v + = 0 or v -= 0 for every v ∈ O R , and so it's a totally ordered Archimedean group which implies (by Hölder theorem [5, Theorem 2.6.3]), that O R is isomorphic to a subgroup of R, which is a contradiction. As O R is an f -ring we must have u 1 u 2 = b + b -= 0 which implies that {u 1 , u 2 } are linearly independent over Q. Indeed, αu 1 +βu 2 = 0 implies αu 2 1 = 0 and βu 2 2 = 0 and so α = β = 0 since any unital Archimedean f -ring is semiprime (i.e., 0 is the only nilpotent element). Let

α 1 , α 2 ∈ Q be such that 1 = α 1 u 1 + α 2 u 2 . Thus (v 1 , v 2 ) := (α 1 u 1 , α 2 u 2
) is a basis of R and satisfying the properties

1 = v 1 + v 2 , v 1 v 2 = 0 =⇒ v 2 1 = v 1 , v 2 2 = v 2 . (3.3) Let now υ = αv 1 + βv 2 ∈ R = Qv 1 + Qv 2 then from (3.
3), a similar reasoning to that of

Q(j) = Qe 1 + Qe 2 shows that υ ∈ O R if and only α, β ∈ Z, that is, O R = Zv 1 + Zv 2 .
We claim that it is an Archimedean f -ring under the partial order (nv 1 + mv 2 ) ≤ (pv 1 + qv 2 ) if and only if n ≤ p and m ≤ q in Z. It is clear that the positive cone is closed under multiplication. Also, O R is an -group and for any two elements

u = nv 1 + mv 2 and v = pv 1 + qv 2 , u ∨ v = max{n, p}v 1 + max{m, q}v 2 and u ∧ v = min{n, p}v 1 + min{m, q}v 2 . (3.4) 
The Archimedean property follows from that of Z with the usual order. For the f -ring property, we will prove that for any positive elements u, v and w we have wu 

∧ v = 0 whenever u ∧ v = 0. Write u = n 1 v 1 + n 2 v 2 , v = m 1 v 1 + m 2 v 2 and w = p 1 v 1 + p 2 v 2 with n 1 , n 2 , m 1 , m 2 , p 1 , p 2 ∈ Z + . Let c 1 = min{p 1 , p 2 ,
ϕ : nv 1 + mv 2 → ne 1 + me 2 .
Clearly ϕ is bijective and ( by (3.1), (3.4)), it preserves ∨ and ∧. Moreover it follows from (2.1) and (3.3) that ϕ is also a ring homomorphism. Therefore ϕ is an -isomorphism between the two f -rings. 

D = e 1 Z R ⊕ e 2 Z R
. Indeed, an hyperbolic number α is an algebraic integer if and only if α 1 = π 1 (α) and α 2 = π 2 (α) are real algebraic integers. From this point of view the ring of hyperbolic integers Z h can be seen as the smallest (with respect to inclusion) sub f -ring of Z D containing {e 1 , e 2 }.

As for integers of a quadratic field Q( √ d), every hyperbolic integer a is the root of a monic polynomial P ∈ Z[X] given by P (X) = X 2 -2Re(a)X + a h , where a h = aā and Re(a) is the real part of a. However, Z h has zero divisors which are the multiples ne of e ∈ {e 1 , e 2 } with n ∈ Z \ {0}. For the units of Z h we have.

Proposition 3.1. The units of Z h coincides with the group of signs of D (2.6); that is

U (Z h ) = S = 1, -1, j, -j .
Proof. The units of Z h are characterized by all υ ∈ Z h such that υ h = ±1 since the square norm . h is multiplicative and υ satisfies: In the hyperbolic plane D ≡ R 2 , Z h is a 'square' full lattice [START_REF] Martinet | Perfect Lattices in Euclidean Spaces[END_REF] with the fundamental parallelepiped P = {z ∈ D : 0 ≤ z ≺ 1} and minimal elements ±e 1 , ±e 2 . (ii) If A is bounded from below and closed under ∧, then it has a smallest element.

Proof. (i) If

A is finite, it is clear that max A = a∈A a. Otherwise, A is a countable set which means that A can be viewed as a sequence (a n ). Let

z n = a 0 ∨ • • • ∨ a n for n = 0, 1, • • • . Then, (z n ) n≥0
is an increasing sequence of A which is bounded above. It follows that (z n ) become constant, i.e., there exists an integer N ∈ N such that z n = z N for all n ≥ N . Hence max A = z N .

(ii) We apply (i) for -A and use the duality formula inf A = -sup(-A).

Ideals of Z h

In this subsection, we establish some properties involving ideals of Z h .

Proposition 3.3. For every ideal I in the ring Z h there exists a unique positive element g I such that I = g I Z h . Moreover, I is a sublattice of Z h .

Proof. Let I be an ideal of the ring Z h . Since for every k = 1, 2 the map π k is a surjective ring homomorphism from Z h to Z, then π k (I) is an ideal of the principal ideal domain Z. Therefore, there is a unique positive integer n k such that π k (I) = n k Z. Thus, the element g I = n 1 e 1 + n 2 e 2 generates I and it is the only positive one. It follows from Proposition 2.1 that I is a sublattice of Z h .

Recall that an -subgroup C (i.e., subgroup and sublattice) of an -group G is said to be convex if 0 ≤ a ≤ b in G and b ∈ C imply a ∈ C. An -ideal of an -ring R is a convex -subgroup of R that is also an ideal of R. The following characterizes -ideals of the -ring Z h . Proposition 3.4. An ideal of Z h is an -ideal if and only if it is generated by an idempotent element.

Proof. Let I be an ideal of Z h with positive generator g I . Proposition 3.3 means that I is an -subgroup of Z h . So, I is an -ideal if and only if I is convex. Suppose that g I is an idempotent element, i.e., g I ∈ {0, 1, e 1 , e 2 }. It is obvious that I is convex if g I = 0 or g I = 1. Assume that g I = e ∈ {e 1 , e 2 } that means I = eZ h = eZ. Let a, b ∈ Z h be such that 0 ≤ a ≤ b and b ∈ I. Then a = αe for some real α, since eR is an order ideal of D (see Theorem 3.5 in [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]). We must also have α ∈ Z, because a ∈ Z h . Hence, a ∈ I and this proves that I is convex. Conversely, assume that I is convex. We have to prove that the generator g I of I is an idempotent element. We distinguish two cases: (i) if g I h = 0 the case g I = 0 is trivial. Suppose that g I = ne for some e ∈ {e 1 , e 2 } and some integer n ≥ 1. Then, we have 0 ≤ e ≤ ne with ne ∈ I which implies that e ∈ I = neZ. Thus, nk = 1 for some k ∈ Z. This yields that n = 1, and hence g I = e.

(ii) if g I h = 0, then 0 ≤ 1 ≤ g I with g I ∈ I which means that 1 ∈ I, i.e., I = Z h . Therefore, g I = 1.

Proposition 3.5. Let I be an ideal of Z h with the positive generator g I = n 1 e 1 + n 2 e 2 . Then,

Z h /I Z/n 1 Z × Z/n 2 Z.
In particular, Z h /I Z if and only if I is a nontrivial -ideal.

Proof. Let I be an ideal in Z h with the positive generator g I = n 1 e 1 + n 2 e 2 . One can easily see that the mapping

Z h /I ȧ → π 1 (a), π 2 (a) ∈ Z/n 1 Z × Z/n 2 Z, establishes an isomorphism of Z h /I with Z/n 1 Z × Z/n 2 Z.
In particular, from Proposition 3.4, Z h /I Z if and only if I is a nontrivial -ideal. By (2.4) and (2.5), we derive that

Hyperbolic floor and ceiling functions

z D = π 1 (z) e 1 + π 2 (z) e 2 and z D = π 1 (z) e 1 + π 2 (z) e 2 . (3.5) Therefore z -1 ≺ z D ≤ z ≤ z D ≺ z + 1 for all z ∈ D. (3.6)
Let as consider a hyperbolic closed interval (see [START_REF] Balankin | Cantor-type sets in hyperbolic numbers[END_REF] and [START_REF] Téllez-Sánchez | More about Contor like sets in hyperbolic numbers[END_REF] ) defined by As on real numbers, the functions . D and . D allows one to determine the number N Z h (I) of hyperbolic integers in a hyperbolic interval I by considering the four types above.

Proposition 3.6. Let α, β ∈ D be such that α ≤ β then

N Z h ([α, β] D ) = β D -α D + 1 h , N Z h ([α, β) D ) = β D -α D h , N Z h ((α, β] D ) = β D -α D h , N Z h ((α, β) D ) = β D -α D -1 h .
Proof. Let us denote by

I 1 = [α, β] D , I 2 = [α, β) D , I 3 = (α, β] D and I 4 = (α, β) D . Then the sets Z h ∩ I k are bijectively mapped onto Z 2 ∩ ϕ(I k ) via the map from D to R 2 defined by ϕ(z) = (π 1 (z), π 2 (z)). Thus, for k = 1, . . . , 4, N Z h (I k ) = #Z 2 ∩ R k where R k = ϕ(I k ) are the rectangles R 1 = [π 1 (α), π 1 (β)] × [π 2 (α), π 2 (β)] , R 2 = [π 1 (α), π 1 (β)) × [π 2 (α), π 2 (β)) R 3 = (π 1 (α), π 1 (β)] × (π 2 (α), π 2 (β)] , R 4 = (π 1 (α), π 1 (β)) × (π 2 (α), π 2 (β)) .
Therefore,

N Z h (I 1 ) = ( π 1 (β) -π 1 (α) + 1) ( π 2 (β) -π 2 (α) + 1) , N Z h (I 2 ) = ( π 1 (β) -π 1 (α) ) ( π 2 (β) -π 2 (α) ) , N Z h (I 3 ) = ( π 1 (β) -π 1 (α) ) ( π 2 (β) -π 2 (α) ) , N Z h (I 4 ) = ( π 1 (β) -π 1 (α) -1) ( π 2 (β) -π 2 (α) -1) .
Finally, the results follows from (3.5) and the propriety z h = π 1 (z)π 2 (z).

Divisibility

First properties

Divisibility in Z h is defined in a natural way: we say b divides a , or a is a multiple of b (and write b|a) if a = bc for some c ∈ Z h . In this case, we call b a divisor of a. (iii) a|b and b|a if and only if a = εb for some unit ε, i.e., (by Proposition 5.1 in [START_REF] Gargoubi | f -Algebra Srtucture On Hyperbolic Numbers[END_REF]) if and only if |a| = |b|.

Hyperbolic euclidean division and congruence

Theorem 4.1. Let a, b ∈ Z h with b h = 0, then there exist unique q, r ∈ Z h such that

a = bq + r, 0 ≤ r ≺ |b|.
The hyperbolic integers q and r are called, respectively, the quotient and the remainder of the division of a by b.

Proof. We consider first the uniqueness. Assume that

a = bq 1 + r 1 = bq 2 + r 2 , 0 ≤ r 1 , r 2 ≺ |b|. Then, 0 ≤ |q 1 -q 2 | = |r 1 -r 2 | |b| ≺ 1.
Hence, q 1 = q 2 which implies r 1 = r 2 . Consider now the existence. Put As for integers, congruences in Z h are defined using divisibility. Since congruence modulo 0 means equality and a|b if and only if |a| b, we usually assume the modulus is a nonzero positive element of Z h . 

(ii) if also a, b, v ∈ Z then a ≡ b mod v in Z h if and only if a ≡ b mod v in Z; (iii) a ≡ b mod v in Z h if and only if π k (a) ≡ π k (b) mod π k (v) in Z for k = 1, 2; (iv) a ≡ b mod v if and only if ā ≡ b mod v. Proof. Straightforward. Let v ∈ Z h , v
0. Then (by proposition 3.5), the number of the residue classes modulo v is its square norm v h . For instance, the four binary classes are the set

Z h /2Z h = { 0, 1, e 1 , e 2 }.
(4.2)

Positive gcd and positive lcm

According to Proposition 3.3, for every a, b ∈ Z h the ideals aZ h + bZ h and aZ h ∩ bZ h are generated by a unique positive element. This justifies the following result. As an immediate consequence of Theorem 4.2 we have the following properties of the gcd Z h and lcm Z h which are extension of the corresponding ones in Z. Proposition 4.3. For a, b ∈ Z h we have 

(i) gcd Z h (|a|, |b|) = gcd Z h (a, b) and lcm Z h (|a|, |b|) = lcm Z h (a, b); (ii) gcd Z h (a, b) lcm Z h (a, b) = |ab|; (iii) gcd Z h (a, b) = gcd Z h (ā, b) and lcm Z h (a, b) = lcm Z h (ā, b); (iv) gcd Z h (a ∨ b, a ∧ b) = gcd Z h (a, b) and lcm Z h (a ∨ b, a ∧ b) = lcm Z h (a, b),

Primes and irreducibles in Z h

In this section we characterize all prime and irreducible elements of Z h . We also extend the unique factorization theorem of Z to Z h . The set of all prime numbers: 2, 3, 5, 7, 11, • • • will be denoted by P. For basic notions and terminology about prime and irreducible elements we refer to [16, Chap II].

Characterization

Theorem 5.1 (Hyperbolic primes). The following statements are satisfied.

(i) Prime elements of Z h are u = εv where ε is a unit and v ∈ {e 1 , e 2 , pe 1 + e 2 , e 1 + pe 2 : p ∈ P}.

(ii) Irreducible elements of Z h are u = εv where ε is a unit and v is in (ii) It is well known that Gaussian primes are, up to units, prime numbers p with p ≡ 3 mod 4 or Gaussian integers z = a + ib with norm z z = a 2 + b 2 is a prime number. Similarly, (non-zero-divisor) hyperbolic primes are, up to units, hyperbolic integers υ with square norm υ h = υ ῡ = p, where p is a prime number. However, for each prime number p one has the decomposition p = p e 1 p e 2 . It is quite remarkable to see that p viewed as an hyperbolic integer is in fact "semiprime".

P h := {pe 1 + e 2 ,

Unique factorization theorem

The fundamental theorem of arithmetic states that every nonzero integers n can be written uniquely in the form

n = ε p∈P p vn(p) ,
where ε is a unit ( ε = sgn(n)) and v n : P -→ N with v n (p) = 0 for a finite number of p.

Using the hyperbolic exponentiation (2.7), the following statements show that this property can be generalized to hyperbolic integers.

Theorem 5.2. Every a ∈ Z h with a h = 0 can be written uniquely in the form

a = ε p∈P p va(p) ,
where ε is a unit and v a : P -→ Z + h with v a (p) = 0 for a finite number of p. Proof. Let a ∈ Z h with a h = 0. By Theorem 2.1, there is a unique unit ε ∈ S such that a = ε|a|. Let n 1 , n 2 ∈ N be such that |a| = n 1 e 1 +n 2 e 2 . Then, n 1 , n 2 = 0. By fundamental theorem of arithmetic, for every n ∈ N there is a unique application Theorem 5.3 (Unique factorization theorem). Every a ∈ Z h with a h = 0 can be written uniquely in the form a = ε

u∈P h u va(u) ,
where ε is a unit and v a : P h -→ N with v a (u) = 0 for almost all u.

Proof. The proof follows immediately from Theorem 5.2 by observing that hyperbolic primes are p e 1 and p e 2 with p ∈ P ( Theorem 5.1).

Hyperbolic Gaussian integers

By analogy to complex numbers, the hyperbolic Gaussian integers or more simply the h-Gaussian integers (also called split Gaussian integers [START_REF] Cifuente | The Ring of Integers in the Canonical Structures of the Planes[END_REF]) are the set

G h = Z[j] := x + jy : x, y ∈ Z .
It is a subring of Z h with zero divisors that are the multiples n(1 ± j), n ∈ Z \ {0}, and units that are 1, -1, j, and -j. From the four binary classes (4.2) of hyperbolic integers we have the following characterization of h-Gaussian integers. Observing that [-ρ, ρ] D is the closed ball B R (0, ρ) in (D, . R ) where . R is the lattice norm (2.2), then Eq (7.2) yields that there exists a hyperbolic integer a = ne 1 + me 2 0 such that a R = max{n, m} > ρ and a h = nm ≤ ρ. Therefore, from the identity nm = max{n, m} min{n, m} one has that ρ ≥ nm > ρ. Which is a contraction. Hence,

Z h ∩ D + (ρ) = Z h ∩ D + (ρ).
Let n be an integer Proof. From proposition 7.3 ∆(ρ) is given by ∆ -(ρ), and the error is the order of δ(ρ). Thus, the proof follows from the definition of δ by observing that d(n) = O(n ) for every > 0.

  e., from (2.1) (α 2 + aα + b)e 1 + (β 2 + aβ + b)e 2 = 0. This means that α and β are the roots of x 2 + ax + b. Then up to a permutation of the roots one has

1} and c 2 = max{p 1 , p 2 ,

 212 1}. Thus from (3.4), we get c 1 (u ∧ v) ≤ wu ∧ v ≤ c 2 (u ∧ v), and hence u ∧ v = 0 implies wu ∧ v = 0. It remains to prove that the f -rings O R and Z h are -isomorphic. Define the mapping

Remark 3 . 1 .

 31 Using notations of [21, Chap 2 ] one can define the set Z D as the integral closure of Z in D i.e. the ring of algebraic integers of D. From Proposition 2.1, It is clear that Z D is a sublattice of D, under the induced partial order (2.3), and then an Archimedean f -ring. One can easy check that Z

υ 2 +

 2 av + b = 0, where a, b ∈ Z with a = 2Re(υ) and b = υ h . Write υ = ne 1 + me 2 , then υ h = nm = ±1 if and only if (n, m) ∈ {±(1, 1), ±(1, -1)}. As e 1 + e 2 = 1 and e 1 -e 2 = j, we get υ = ±1, ±j.

Figure 1 :

 1 Figure 1: Hyperbolic integers with fundamental parallelepiped P .

  (i) If A is bounded from above and closed under ∨, then it has a largest element.

Definition 3 . 1 .

 31 Let z ∈ D. Then the sets E + (z) := {k ∈ Z h : k ≤ z} and E -(z) := {k ∈ Z h : k ≥ z} are two nonempty sublattices of Z h . Thus from Proposition 3.2, the notions of floor . and ceiling . functions on real numbers can be extended to the hyperbolic numbers in the following way. The functions . D and . D from D to Z h defined byz D := max k ∈ Z h : k ≤ z , z D := min k ∈ Z h : k ≥ zare called, respectively, hyperbolic floor function and hyperbolic ceiling function.

Figure 2 :

 2 Figure 2: Non degenerate hyperbolic closed interval [α, β] D . similar way replacing ≤ by ≺ in left-right and left/right, respectively. However, all these intervals are empty if α -β h = 0. One has (α, β) D = [α, β] D \ (∂ α ∪ ∂ β ), (α, β] D =

Proposition 4 . 1 .

 41 For a, b ∈ Z h we have (i) a|b in Z h implies a h b h ∈ Z; (ii) a|b and b h = 0 implies |a| ≤ |b|; (iii) a|b and b|a if and only if |a| = |b|. Proof. (i) If a|b then b = ac which implies, by multiplicity of . h , that b h = a h c h . Hence, a h b h ∈ Z. (ii) If a|b and b h = 0, then b = ca for some c ∈ Z h with c h = 0 that means |c| ≥ 1. Therefore, |b| -|a| = (|c| -1)|a| ≥ 0.

D

  and r = a -bq, where ε = sgn(b) = |b| b and . D is the hyperbolic floor function (3.1). Then, we have q, r ∈ Z h and a = bq + r. It remains to prove that 0 ≤ r ≺ |b|. From (3.6) one has by -εb = -|b| and use r = a -bq to get the desired inequality.

Definition 4 . 1 .

 41 Let a, b, v ∈ Z h , we write a ≡ b mod v if and only if v|(a -b).

Proposition 4 . 2 .

 42 For a, b, c, v ∈ Z h one has (i) a ≡ b mod v and c ≡ d mod v implies a + c ≡ b + d mod v and ac ≡ bd mod v;

Theorem 4 . 2 .

 42 Every a, b ∈ Z h have a unique positive greatest common divisor gcd Z h (a, b) and a unique positive latest common multiple lcm Z h (a, b). Moreover, gcd Z h (a, b) = gcd(π 1 (a), π 1 (b))e 1 + gcd(π 2 (a), π 2 (b))e 2 , lcm Z h (a, b) = lcm(π 1 (a), π 1 (b))e 1 + lcm(π 2 (a), π 2 (b))e 2 .

Remark 4 . 1 .

 41 In view of Proposition 4.1, the quazi-order on Z + h defined by a ≤ b if and only if a|b, is a partial order, and under such order, Z + h is a lattice ordered multiplicative monoid with a ∧ b = gcd Z h (a, b) and a ∨ b = lcm Z h (a, b) for all a, b ∈ Z + h .

  µ n : P -→ N with µ a (n) = 0 for almost all p such that n = p∈P p µn(p) . Let v a : P -→ Z + h be the function defined by v a (p) = µ n 1 (p)e 1 + µ n 2 (p)e 2 . Therefore |a| = p∈P p va(p) .

DefineD

  (ρ) = D(ρ) ∩ [-ρ, ρ] D . Geometrically, D (ρ) is the square [-ρ, ρ] D if ρ ≤ 1, and D (ρ) [-ρ, ρ] D if ρ > 1 as represented in Figure 3.

Figure 3 : 1 2 j ln ρ . Proposition 7 . 1 .

 3171 Figure 3: A representation of D (ρ) for ρ > 1 with τ = √ ρe 1 2 j ln ρ .

≥ 2 .

 2 Define ξ k , λ k , µ k and η k such thatξ k = √ ρe jk 2n ln ρ , λ k = ξ k ∧ √ ρ, for k = 0, • • • , n; η k = ξ k ∨ ξ k-1 , µ k = ξ k ∧ ξ k-1 , for k = 1, • • • , n.Thus, and referring to Figure 4, proposition 7.1 yields that D - n (ρ) ≤ D(ρ) ≤ D + n (ρ), (7.3)

Figure 4

 4 Figure 4: .

Proposition 7 . 2 . 1 2 e 1 , λ k = ρ 1 2 e 1 + ρ n-k 2n e 2 , ξ k = ρ n+k 2n e 1 + ρ n-k 2n e 2 , η k = ρ n+k 2n e 1 N 2 ,N= ρ 1 2 2 + 2 ρ -ρ 1 2 -.Theorem 7 . 1 .

 72111221212271 where D - n (ρ) = N Z h (0, √ ρ] D + 2N Z h ((α, τ ] D ) + 2 k=n k=2 N Z h ((λ k , ξ k-1 ] D ) , (7.4)D + n (ρ) = N Z h (0, √ ρ] D + 2N Z h ((α, τ ] D ) + 2 k=n k=1 N Z h ((λ k , η k ] D ) .(7.5)Let ∆ - n (ρ) and ∆ + n (ρ) be such that∆ - n (ρ) = D - n (ρ) -(ρ ln ρ + (2γ -1)ρ), ∆ + n (ρ) = D + n (ρ) -(ρ ln ρ + (2γ -1)ρ). Let δ(ρ) be a function defined for ρ > 1 by δ(ρ) = 0 if ρ / ∈ N and δ(ρ) = d(ρ) + χ N ( √ ρ),otherwise. One has lim supn→∞ (∆ + n (ρ) -∆ - n (ρ)) ≤ δ(ρ).Proof. We have∆ + n (ρ) -∆ - n (ρ) = D + n (ρ) -D - n (ρ) = 2 k=n k=1 N Z h ((µ k , η k ] D ) .Denote by J = Z h ∩(D (ρ)\γ * ρ ) where γ * ρ is the image of γ ρ (t) = √ ρe jt defined in 0, 1 2 ln ρ . Since J is a nonempty finite set one obtainsd γ * ρ = min h∈J d(h, γ * ρ ) = min h∈J inf ξ∈γ * ρ h -ξ > 0.Let N be an integer such that2 √ ρ sinh( ln ρ 4N ) cosh(ln ρ) < d γ * ρ .From the above inequality we have∆ - n (ρ) = ψ(ρ) + 2 k=n k=2 N Z h ((λ k , ξ k-1 ] D ) , ψ(ρ) = N Z h (0, √ ρ] D + 2N Z h ((α, τ ] D ) -(ρ ln ρ -(2γ -1)ρ).Straightforward calculations giveτ = ρe 1 + e 2 , α = ρ Z h ((α, τ ] D ) = ρ -ρ 1 Z h ((λ k , ξ k-1 ] (ρ ln ρ -(2γ -1)ρ).Finally ∆ -(ρ) = ψ(ρ) + 2 lim inf For every real > 0 we have ∆(ρ) = ψ(ρ) + 2 lim inf

  e 1 + pe 2 : p ∈ P}.where P h is defined as the set of hyperbolic prime numbers (or hyperbolic primes) , Proof. Let v = ne 1 + me 2 be a nonzero and nonunit positive element of Z h . (i) By Proposition 3.5, v is prime if and only if Z/n Z × Z/m Z is an integral domain, i.e, if and only if one of Z/n Z or Z/m Z is an integral domain and the other one is zero. It follows that (n, m) ∈ {(1, 0), (0, 1), (p, 1), (1, p) : p ∈ P}. Which means that v ∈ {e 1 , e 2 , pe 1 + e 2 , e 1 + pe 2 : p ∈ P}.(ii) If v is irreducible, then vZ h is a maximal ideal, since by Proposition 3.3, every ideal in the ring Z h is principal. Therefore, vZ h is a prime ideal which means that v is prime. So from (i), either v = e 1 or v = e 2 or v = pe 1 + e 2 or v = e 1 + pe 2 for some prime number p. We will prove that each non-zero-divisor prime element v is irreducible, since the atoms e 1 and e 2 are not. Let a, b ∈ Z h be such that v = ab. Then, taking the norm . h , we obtain p = a h b h . Since p is irreducible in Z it follows that a h = ±1 or b h = ±1. Hence, either a ∈ S or b ∈ S. Remark 5.1. (i) Theorem (5.1) shows that hyperbolic primes are positive non-zerodivisor prime elements of Z h and they are the hyperbolic integers of the form pe 1 +e 2 or e 1 +pe 2 with p ∈ P. Write p = pe 1 +pe 2 , then using the hyperbolic exponentiation (2.7) we have pe 1 + e 2 = p e 1 and e 1 + pe 2 = p e 2 . Thus hyperbolic primes are the set P h := {p e : (p, e) ∈ P × {e 1 , e 2 }}.
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Theorem 6.1. Let a ∈ Z h , then a ∈ G h if and only if either a ≡ 0 mod 2 or a ≡ 1 mod 2.

Proof. Let a = ne 1 + me 2 = n+m 2 + j n-m 2 ∈ Z h with n, m ∈ Z. So, a ∈ G h if and only if n ≡ m mod 2, i.e., if and only if either a ≡ 0 mod 2 or a ≡ 1 mod 2.

In view of Theorem 2.1 and by the fact that the units of G h are the set S one can see that G h is closed under absolute value. But, it is not an -subgroup of Z h , since 0 ∨ j = e 1 / ∈ G h . However, the next result gives under which condition the supremum of two incomparable (with respect to the order induced by

Proof. Let a, b ∈ G h be incomparable. Then, from Proposition 2.1 we can write

Proposition 6.2. Every a ∈ G h with a h = 0 can be written uniquely in the form

where ε a is a unit, v a : P -→ Z + h with v a (p) = 0 for almost all p and ν ∈ Z + h is such that ν = 0 if a ≡ 1 mod 2 and ν 0 if a ≡ 0 mod 2.

Proof. From Theorem 5.2, a can be uniquely expressed in the form

where ε a is a unit and P va -→ Z + h with v a (p) = 0 for almost all p and ν = v a (2) ∈ Z + h . Therefore, a ≡ 2 ν mod 2 since, p va(p) ≡ 1 mod 2 for p = 2 . It follows that ν = 0 if a ≡ 1 mod 2 and ν 0 if a ≡ 0 mod 2.

Dirichlet divisor problem

The Dirichlet divisor problem, arises from estimating D(ρ) := n≤ρ d(n), where d(n) is the number of positive divisors of n. A well known result is D(ρ) = ρ ln ρ+(2γ-1)ρ+∆(ρ), where γ is Euler's constant and ∆(ρ) is the error term. The Dirichlet divisor problem asks for the correct order of magnitude of ∆(ρ) as ρ -→ ∞ (see e.g. [START_REF] Krätzel | Lattice points[END_REF]Chap 5]). From a geometrical point of view D(ρ) is equal to the number of lattice points in the first quadrant under the hyperbola xy = ρ. Thus, this is equivalent to determine the number of hyperbolic integers a 0 with a h ≤ ρ, i.e.,

Then, for every n ≥ N and for every k

It follows from the inclusion above that

Thus, it follows from

This completes the proof.

-ρ