
HAL Id: hal-03198508
https://hal.science/hal-03198508

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

What we count dictates how we count: A tale of two
encodings

Hippolyte Gros, Jean-Pierre Thibaut, Emmanuel Sander

To cite this version:
Hippolyte Gros, Jean-Pierre Thibaut, Emmanuel Sander. What we count dictates how we count:
A tale of two encodings. Cognition, 2021, 212, pp.104665. �10.1016/j.cognition.2021.104665�. �hal-
03198508�

https://hal.science/hal-03198508
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Title page 

What we count dictates how we count: A tale of two encodings

Hippolyte Gros1,* · Jean-Pierre Thibaut2 · Emmanuel Sander1 

1University of Geneva· 2University of Bourgogne Franche-Comté 

Abstract: 

We argue that what we count has a crucial impact on how we count, to the extent that even adults may 

have difficulty using elementary mathematical notions in concrete situations. Specifically, we 

investigate how the use of certain types of quantities (durations, heights, number of floors) may 

emphasize the ordinality of the numbers featured in a problem, whereas other quantities (collections, 

weights, prices) may emphasize the cardinality of the depicted numerical situations. We suggest that 

this distinction leads to the construction of one of two possible encodings, either a cardinal or an ordinal 

representation. This difference should, in turn, constrain the way we approach problems, influencing 

our mathematical reasoning in multiple activities. This hypothesis is tested in six experiments (N = 

916), using different versions of multiple-strategy arithmetic word problems. We show that the 

distinction between cardinal and ordinal quantities predicts problem sorting (Experiment 1), perception 

of similarity between problems (Experiment 2), direct problem comparison (Experiment 3), choice of 

a solving algorithm (Experiment 4), problem solvability estimation (Experiment 5) and solution validity 

assessment (Experiment 6). The results provide converging clues shedding light into the fundamental 

importance of the cardinal versus ordinal distinction on adults’ reasoning about numerical situations. 

Overall, we report multiple evidence that general, non-mathematical knowledge associated with the use 

of different quantities shapes adults’ encoding, recoding and solving of mathematical word problems. 

The implications regarding mathematical cognition and theories of arithmetic problem solving are 

discussed.  
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Introduction 

Mathematical skills are frequently used in everyday life (Northcote & Marshall, 2016). Whether someone is 

calculating a bus fare, estimating the duration of the ride, deciding whether to go up the stairs or take the elevator, 

assessing if the added weight of everyone in the elevator is below the weight limit, counting how many cookies 

to buy for the coworkers, or evaluating at which height to put the cookie jar so that the kids won’t reach it, people 

use mathematics in many aspects of their lives. However, being able to perform those quick calculations on a 

daily basis requires the ability to use mathematical knowledge in very tangible situations (Schoenfeld, 2009). 

Mastering such a skill is the focus of a long learning process taking place in school, notably involving 

mathematical word problems (Daroczy, Wolska, Meurers, & Nuerk, 2015; Stacey, 2005; Verschaffel, 

Schukajlow, Star, & Van Dooren, 2020). But while using arithmetic knowledge in daily-life might seem effortless 

to most adults, we argue that some underlying pervasive influence remains: in fact, even when using the most 

elementary mathematical skills, we have reasons to believe that what we count has a deep impact on how we 

count. This entails that even adults may be significantly better at using certain fundamental mathematical skills in 

situations involving bus rides, elevator trips or cookie jar heights than in situations pertaining to bus ticket prices, 

elevator weight limits or cookie counting. In this paper, we argue that such concrete situations evoke one of two 

distinct conceptions of numerical situations; they either emphasize the cardinal property of numbers or their 

ordinal property (see below). This difference leads to one of two possible encodings, which in turn constrain the 

way we represent word problems, influencing our mathematical reasoning in multiple activities.  

An ontological distinction between cardinal and ordinal situations 

This distinction between cardinality and ordinality is fundamental in mathematics, especially in set theory 

(Dantzig, 1945; Frege, 1980; Russell, 1919; Simon, 1997; Suppes, 1972). In common usage, ordinal numbers 

describe the numerical position of an object in an ordered sequence (i.e. 1st, 2nd, 3rd, etc.), whereas cardinal 

numbers refer to the general concept of quantity by designating the total number of entities within a set (Fuson, 

1988; Wasner, Moeller, Fischer, & Nuerk, 2015). But this distinction has far-reaching implications beyond set 

theory and mathematics and, we believe, influences the very way humans comprehend numerosity in the world.  

According to Piaget (1941/1965), the relationship between cardinality and ordinality is central to the notion 

of number (Fuson, 1988). Indeed, the two ideas are necessarily intertwined, since the cardinal and ordinal 

meanings of numbers are two sides of the same coin, two properties intrinsically tied to our use of numbers. As 

Fuson (1988, p. 363) puts it, “any ordinal number refers to the particular entity within a linear ordering that is 
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preceded by a cardinal number one less than it”. However, this interdependency between ordinality and cardinality 

does not preclude that a crucial difference between conceiving of numbers as cardinal count values or as order 

labels could exist.  

From a developmental perspective, the seminal work of Gelman and Gallistel (1978) on counting principles 

introduced the idea that the understanding of the cardinal and ordinal properties of numbers could develop 

separately in children. In their work, Gelman and Gallistel proposed that three counting principles need to be 

mastered by children in their efforts to become proficient counters. First, the “one-to-one correspondence 

principle”, describes the fact that each of the items to be counted needs to be assigned one, and only one, counting 

word. Then, the “stable-order principle” is a necessary step in the development of ordinality, since it entails that 

children must learn that the list of words used to count needs to be said in a definite and stable order, each word 

having the same predecessor and the same successor over trials. Finally, the “cardinal principle” states that, 

provided that the one-to-one and the stable-order principles have been respected, the counting word allocated to 

the ultimate item in a collection represents the total number of items in that collection. Put together, these three 

principles called the “how-to-count” principles make it possible to understand the cardinality of numbers. Ever 

since this work, investigations have been conducted to study how children learn to master both the cardinal and 

the ordinal properties of numbers. 

Children’s ability to comprehend and use the notion of cardinality in counting was thus scrutinized by 

numerous studies who showed its slow and sequential development over the first years of life (e.g. Bermejo, 1996; 

Condry & Spelke, 2008; Le Corre & Carey, 2007; Sarnecka & Lee, 2009; Wynn, 1992). As for the development 

of the ordinal meaning of numbers, it has been suggested that children do not learn to use ordinal labels such as 

“first” and “second” before they are 4 or 5 years old (Fischer & Beckey, 1990; Miller, Major, Shu, & Zhang, 

2000; Miller, Marcovitch, Boseovski, & Lewkowicz, 2015). In recent years, the comparison of the developmental 

trajectories of the sense of cardinality and the sense of ordinality has received increasing research interest, with 

converging results showing that children tend to use cardinality before succeeding in ordinality tasks (Colomé & 

Noël, 2012; Meyer, Barbiers, & Weerman, 2016; Wasner et al., 2015). Further evidence for the importance of this 

distinction can be found in the brain; Delazer and Butterworth (1997) reported that a patient who suffered a 

cerebral lesion was left with impaired access to the cardinal meaning of numbers, but a selectively preserved 

access to their ordinal meaning. On the other hand, Turconi and Seron (2002) reported that a patient suffering 

from lesions in the right parietal occipital junction and in the left posterior parietal cortex struggled to judge 

ordinal relationships between numbers whereas he remained able to understand cardinality to a certain extent, as 
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shown by his successful completion of number comparison tasks. A similar dissociation was found by Chen, Xu, 

Shang, Peng, and Luo (2014) who reported that lesions in the left parietal lobe resulted in a selective impairment 

of order meaning among one of their patients. This dissociation between the two meanings of numbers was further 

supported by EEG studies who found that event-related potentials differed both in terms of timing and topography 

between order and quantity tasks (Rubinsten, Dana, Lavro, & Berger, 2013; Turconi, Jemel, Rossion, & Seron, 

2004). Furthermore, an fMRI study by Lyons and Beilock (2013) showed that while cardinal and ordinal 

judgments tasks involved a similar frontoparietal network for non-symbolic quantities (i.e. dot arrays), the use of 

symbolic numbers (i.e. numerals) led to the activation of different networks for cardinal and ordinal tasks. 

Similarly, Matejko, Hutchison, and Ansari (2019) found evidence of ordinal processing in the left inferior parietal 

cortex of adults, while no such evidence was found for cardinal processing. 

In recent years, behavioral studies have used distinct ordinality and cardinality tasks to investigate the 

orthogonality of these two sides of number processing. Using digit ordering and number comparison tasks, they 

showed that basic numerical measures of ordinal and cardinal processing differentially predict arithmetic 

performance and math achievement scores (Goffin & Ansari, 2016; Sasanguie, Lyons, De Smedt, & Reynvoet, 

2017). Overall, these studies show the importance of the distinction between cardinality and ordinality in 

numerical cognition. Processing the cardinality and ordinality of numerical symbols involves distinct neural 

underpinnings, each equally important and each predicting independent variance in arithmetic and mathematical 

proficiency. As Lyons, Vogel, and Ansari put it (2016), while research has initially focused on cardinal processing, 

“overlooking the contribution of ordinality to how we process numbers is likely a major oversight” (p. 206). 

Despite this growing body of research on cardinal and ordinal tasks, little is known about adults’ ability to 

perceive either the cardinality or the ordinality of complex numerical situations evoking those two sides of 

numbers. Can situations sharing the same mathematical deep structure highlight either cardinality or ordinality, 

depending on the daily-life knowledge they are imbued with? This paper aims at answering this crucial issue, by 

focusing on adults’ ability to use basic mathematical skills in situations meant to emphasize either the cardinal or 

the ordinal aspect of numbers. Indeed, we propose to investigate whether the presence of different quantities (e.g. 

weights versus durations) in the wording of otherwise mathematically identical problems may lead even adults to 

build either a cardinal or an ordinal encoding of the depicted situations. We thus scrutinize the claim that this 

distinction will, in turn, lead to clear-cut differences in the way these problems are categorized, compared, and 

solved.  
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The role of semantic knowledge in problem representation 

Our main hypothesis is that the distinction between cardinal quantities and ordinal quantities will lead to clear-

cut differences in the way arithmetic word problems are categorized, compared, and solved. This claim builds 

upon the literature on content effects in arithmetic word problems, which suggests that mathematically irrelevant 

semantic information may induce specific problem representations and that may interfere with arithmetic word 

problem solving. In 1995, Bassok, Wu, and Olseth showed that semantic knowledge linked to the different entities 

featured in a problem statement influenced analogical transfer between problems. They taught participants the 

algorithmic solution of a problem whose cover story depicted either objects assigned to people (e.g. computers 

given to secretaries) or people assigned to other people (e.g. doctors from one hospital assigned to doctors from 

another hospital). They then evaluated how well participants performed on problems sharing the same objective 

mathematical structure (i.e. what we call the problems’ deep structure). Depending on whether the entities in the 

transfer problem had typically symmetrical roles (people and people) or typically asymmetrical roles (objects and 

people), participants’ performance varied. Those results suggested that variations of semantic knowledge lead to 

different representations being abstracted. These interpreted structures either facilitated or hindered transfer 

depending on how well they mapped onto the problems’ mathematical structure. Similarly, Bassok, Chase, and 

Martin (1998) asked participants to create addition or division word problems using specific sets of entities, either 

linked by a functional semantic relation (e.g. the container/content relation between fruit baskets and oranges) or 

by a collateral relation (e.g. oranges and apples belonging to the same superordinate “fruit” category). They 

showed that participants tended to propose division problems when the semantic knowledge induced by the 

entities evoked a functional relation, whereas they created addition problems when the entities were different 

kinds of fruits or other collateral elements.  

Thus, the semantic knowledge induced by the entities described in the problem statement seems to influence 

the representation that participants encode. Bassok (2001) theorized this process by stating that an interpreted 

mathematical structure is abstracted by the participants, based on the semantic relations depicted in the problem 

statements (e.g. container/content or assigned/receiver relations). This interpreted structure can be semantically 

aligned or misaligned with the objective mathematical structure of the problem, depending on whether the two 

structures can be mapped onto each other (Bassok, 2001). For instance, the interpreted structure of a problem 

involving oranges and baskets will be semantically aligned with division, whereas the interpreted structure of a 

problem involving oranges and apples will be semantically aligned with addition instead. In support of this view, 

Bassok, Pedigo and Oskarsson’s work (2008) on the priming of addition facts by different pairs of words is 
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enlightening. They showed that categorically related words (e.g. tigers and cheetahs) prime addition facts, whereas 

unrelated words (e.g. lungs and statues), as well as functionally related words (e.g. bears and claws), do not exert 

such priming. In other words, pairs of words semantically aligned with addition elicit an automatic retrieval of 

addition facts, whereas words misaligned with the structure of addition do not. Taken together, those studies 

suggest that the semantics induced by the entities manipulated in the problem statements influence the 

representational processes at play: non-mathematical properties of said entities constrain the operations selected 

by the participants. 

Preliminary works on arithmetic word problem representations 

In this paper, we push this point several steps further in the context of the cardinal-ordinal distinction. We 

investigate, with adults, the claim that the semantic knowledge about the entities described in a problem can evoke 

either an ordinal or a cardinal representation of the described situation, subsequently shaping mathematical 

reasoning. Regarding this matter, a study by Verschaffel, De Corte, and Vierstraete (1999) showed that upper 

elementary school pupils made specific errors when attempting to solve problems with ordinal numbers that they 

did not make on problems involving only cardinal numbers, thus suggesting that ordinality may interfere with 

arithmetic word problem solving processes. More recently, Gamo, Sander, and Richard (2010) undertook a study 

focusing on the perception of cardinality and ordinality in arithmetic word problems among 4th and 5th graders. 

The present paper builds upon Gamo et al.’s study, in which the authors created multiple-solution word problems 

sharing the same mathematical structure but differing in the type of quantities they used. Their problem statements 

revolved around, respectively, the number of family members in a hotel (family problems), the price of a series 

of items (price problems) or the age of a protagonist (age problems) (see Table 1). Gamo et al. hypothesized that 

family problems and price problems would both lead to a cardinal encoding of the situation described, whereas 

age problems would lead to an ordinal encoding of the situation. Consider the family problem (Table 1, left 

column). Gamo et al. showed that most participants solved it using a 3-step algorithm: 9 – 5 = 4; 5 – 3 = 2; 4 + 2 

= 6. Note, however, that this problem can also be solved with a one-step algorithm: 9 – 3 = 6. Using this algorithm 

requires the participant to realize that since the Roberts are present at the hotel during both vacations, then the 

difference between the number of people in the Richards’ and in the Dumas’ families is equal to the difference 

between the total number of people at the hotel. Thus, calculating the number of people in the Roberts’ family (9 

– 5 = 4) or the number of people in the Dumas’ family (5 – 3 = 2) is not necessary to find the solution.  

 

Table 1: Family, price and age problems used in Gamo et al. (2010). 
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Family problem Price problem Age problem 

In the Richards’ family, there are 5 

persons. When the Richards go on 

vacation with the Roberts, there are 9 

persons at the hotel. In the Dumas’ 

family, there are 3 people less than in 

the Richards’ family. The Roberts go 

on vacation with the Dumas. How 

many will they be at the hotel? 

John bought an 8-Euro exercise book 

and a pair of scissors. He paid 14 

Euros. A pen costs 3 Euros less than 

the exercise book. Paul bought scissors 

and a pen. How much did he pay? 

Antoine attended painting classes at 

the art school for 8 years and stopped 

when he was 17 years old. Jean began 

at the same age as Antoine and 

attended the course for 2 years less. At 

what age did Jean stop attending the 

classes? 

Similarly, most participants use a 3-step algorithm to solve the price problem (Table 1, middle column). This 

algorithm consists in calculating the price of the pen and the price of the scissors, and then adding them up: 14 – 

8 = 6; 8 – 3 = 5; 6 + 5 = 11. But a 1-step algorithm can also be used to solve this problem: 14 – 3 = 11. However, 

only participants who notice that John and Paul both bought scissors may also understand that the difference 

between the price of the exercise book and the price of the pen is equal to the difference between what John and 

Paul paid in total, and thus be able to find this 1-step algorithm. Lastly, the age problem (Table 1, right column) 

could also be solved using a 3-step algorithm (17 – 8 = 9; 8 – 2 = 6; 9 + 6 = 15) or a 1-step algorithm (17 – 2 = 

15). Gamo et al. (2010) found that participants used the 1-step algorithm more often on such problems, even 

though all three problems were isomorphic and shared the exact same mathematical structure (see Fig. 1).   

Fig. 1: The mathematical structure of the problems. 

The authors argued that the reason behind this difference in participants’ ability to use the shortest 1-step algorithm 

on all three problems was that the quantities used (family members, price, age) evoked different aspects of world 

knowledge that emphasized either the cardinal or the ordinal nature of the problems’ values. The interpretation 

was that price or family problems tend to be encoded as sets of unordered, disconnected elements that can be 

grouped and whose values can be added with no ontological order (Gamo et al., 2010). Such an encoding would 

lead participants to calculate the individual value of each part making the whole, and then add them up, resulting 

in a 3-step algorithm. On the other hand, due to participants’ experience of time represented along an oriented 

number line, the age values are seen as inherently ordered and can be represented as states (positions on an axis) 
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and transitions (intervals on a timeline). According to the authors, this type of encoding would make it easier to 

compare two sets sharing a common part: if Jean and Antoine started attending painting classes at the same age, 

and Antoine attended the class for 2 years less than Jean, then making the inference than Jean was 2 years younger 

than Antoine at the end of their respective classes seems especially natural.  

Interestingly, one of the specificities of the problems used by Gamo et al. (2010) was that depending on 

whether participants constructed a cardinal or an ordinal encoding of the situation, some of the problems’ values 

would become irrelevant information. Indeed, even though all 3 numerical values are needed to calculate the 

solution using the 3-step strategy, the value of Part 1 (see Fig. 1) becomes irrelevant for the 1-step strategy. The 

part played by the presence of such “conditionally irrelevant” information remains to be elucidated. 

Discriminating relevant from irrelevant information is known to be an arduous task (Carpenter et al., 1988; Kouba 

& Wearne, 2000; Low & Over, 1993). In fact, several studies have considered the influence of irrelevant 

information on participants’ performance; according to Hembree’s (1992) meta-analysis of 27 studies, lower 

performances are associated with the presence of “extraneous data” in the form of an irrelevant number in a 

problem. Besides, Cook and Rieser (2005) consider that irrelevant numerical information might be more difficult 

to handle than irrelevant contextual information, due to the similarity of the former to the relevant information. 

Similarly, Ng, Lee, and Khng (2017) also found that the use of irrelevant numbers in a problem may have a 

detrimental effect on performance, while contextual irrelevant information may not have such an effect. More 

recently, Vondrová (2020) brought converging evidence showing the negative influence of an irrelevant number 

on word problem difficulty. Considering how the presence of irrelevant numerical information in a problem 

statement was shown to impede performance, we decided to explore this issue in the last two experiments of our 

study, by using a modified version of the problems where the “conditionally irrelevant” value was removed, thus 

making it impossible to use the 3-step strategy. 

Current study 

Going beyond this preliminary work, our ambition for this paper is twofold. First, we aim at showing the critical 

influence that the distinction between cardinality and ordinality has on human understanding of situations 

involving numbers. We intend to demonstrate that, more than a question of learning how to enumerate collections, 

this is an ontological issue regarding the way numerosity is perceived. Second, we intend to build on this semantic 

distinction to investigate adults’ representations in the course of mathematical reasoning. Namely, we aim at 

showing that the nature of the entities staged in word problems interferes with their classification, comparison, 
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encoding, recoding and solving, thus presenting a range of effects falling beyond the scope of the current models 

of arithmetic problem solving. We designed a series of 6 experiments scrutinizing how the cardinal versus ordinal 

aspects of numerical situations influence adults’ reasoning in a variety of tasks.  

Overview of the experiments’ research questions 

We intend to show that the selection of a specific type of quantity to create a problem statement has an influence 

on the encoding of the problem into either a cardinal or an ordinal representation, which in turn fosters the use of 

one of the two existing solving algorithms (see Fig. 2 for a graphical summary of this hypothesis). We designed 

six experiments in order to examine the importance that the cardinal versus ordinal distinction holds in the 

representation of numerical situations. They were conducted with adults to underline the strength and 

pervasiveness of the reported effects. Below, we propose a brief overview of the research questions investigated 

in each experiment. The specific hypotheses for each experiment will be further described in their respective 

sections. 

First, we devised a free sorting experiment which aimed at showing the fundamental influence of the 

ordinal versus cardinal distinction on participants’ spontaneous categorization of problems, while also assessing 

the validity of our choice of materials. Second, we used an analogy identification experiment to determine whether 

the hypothesized encoding of cardinal and ordinal problems would predict how likely participants are to perceive 

the isomorphism between superficially dissimilar problem statements. Third, we designed a direct comparison 

task to evaluate the robustness of the second experiment’s findings regarding participants’ inability to perceive 

the analogous structure shared by cardinal and ordinal problems. Fourth, we proposed a solving task with cardinal, 

ordinal, and “hybrid” problems (problems with “ordinalized” cardinal quantities) to demonstrate that participants’ 

choice of a solving strategy depends on the semantics introduced in the problem. Fifth, we removed one of the 

problems’ numerical values and used a solvability-assessment task to determine whether participants could solve 

problems whose unique solution was incompatible with their initial encoding of the problems. Sixth, we used a 

solution-validity-judgment task to assess whether participants’ difficulty to find a problem’s unique solution in 

the fifth experiment could be overcome by the direct presentation of a candidate solution to evaluate. Altogether, 

these experiments pursued several related research questions, as they intended to validate the distinction between 

cardinal and ordinal situations, to show its influence on the encoding of numerical situations even among adults 

well past their schooling years, and to evaluate whether its influence could be so robust as to interfere with 

participants’ ability to use relatively basic arithmetic knowledge to solve 1-step arithmetic problems.  
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Fig. 2: Graphical summary of the content effects under scrutiny in this paper. Problems sharing the same 

mathematical structure are implemented with different quantities evoking different encodings, which in turn 

foster the use of one of the two solving algorithms. The problems all shared the same abstract mathematical 

structure, described in the “Mathematical structure” box, and the same pieces of information were provided in 

the same order across problems, as described in the “Cardinal problem” box and in the “Ordinal problem” 

box. 

In an attempt to maximize the generality of our findings, we selected 3 types of quantities thought to evoke an 

ordinal encoding of the situation and 3 types of quantities that we assumed evoked a cardinal encoding. The 

rationale behind the selection of those specific quantities is presented below; the relevance of this classification 

will notably be assessed by our first experiment. 

Overview of the selected ordinal quantities 

Durations. In English, spatial metaphors expressing durations along a unidimensional space such as “a long 

time” are prevalent (Casasanto, 2008). The same is true for French, in which the word to designate an extensive 

period of time corresponds to the literal concatenation of the terms standing for “long” (“long”) and “time” 

(“temps”): “longtemps”. In most western cultures, the idea that time evolves along an axis or a timeline is deeply 

rooted in human understanding of the world (Bonato, Zorzi, & Umiltà, 2012; Boroditsky, 2011; Droit-Volet & 
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Coull, 2015; Weger & Pratt, 2008). Despite cultural differences regarding the direction given to the axis of time 

(e.g. Fuhrman & Boroditsky, 2010), the fact remains that time is usually conceived of as a unidirectional axis on 

which values are ontologically ordered.  

Heights. Height is a spatial, unidimensional concept. Due to our living in a world where gravity constantly 

exerts its influence on physical objects, we quickly learn that objects fall in a straight line and we tend to think of 

height as being an oriented, vertical axis, with a bottom and a top (e.g. Hood, 1998; Hood, Santos, & Fieselman, 

2000; Kim & Spelke, 1992). Entities’ heights can easily be compared or stacked alongside this axis, and there is 

an ontological order in the values representing the heights of different entities placed atop each other.  

Floors. Building floors are stacked on top of each other and they are ordered in a fashion that cannot be 

altered. If one is to imagine an elevator going from one floor to another, it immediately comes to mind that to go 

from the 1st floor to the 3rd floor, the elevator must pass the 2nd floor first (Clément & Richard, 1997). 

Overview of the selected cardinal quantities 

Collections. Collections refer to groups of disconnected elements that can be counted as parts of a set. Be it 

a collection of blue marbles in a bag, a set of iguanas in a terrarium or a group of pupils in a bus, collections of 

similar elements usually have no ontological order. Fittingly, most studies on the development of cardinality in 

children’s early years resort to tasks consisting in counting collections of objects, such as the Give-N task (e.g. 

Condry & Spelke, 2008; Izard, Streri, & Spelke, 2014; Sarnecka & Carey, 2008).  

Weights. In daily-life, weight is often seen as a property of some definite element, and as such it has no 

ontological order. For instance, when considering the weight of a stack of dictionaries, it does not matter which 

one is on top and which one is at the bottom of the stack: computing the total weight simply requires adding the 

weight of each individual book. Specific weights are assigned to specific entities, and although weight can vary 

over time, it is rarely encoded along an axis in daily life.  

Prices. As with weight, price is usually considered the property of some unordered entities (Gamo et al., 

2010). To calculate the total price of a series of items in a store, one usually adds the individual price of each item, 

in no specific order. 

Problems wording 

Of note, in addition to the reasons given above, our selection of these 6 different quantities to create the problems 

was also motivated by a previous study we conducted, using the same quantities, in which we asked participants 

to solve problems using these quantities and to make a drawing of the situation each problem depicted (Gros, 
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Thibaut, & Sander, 2017). In this study, we showed that the drawings of adults and 5th graders alike tend to 

include more ordinal features (e.g. axes, graduations, intervals) than cardinal features (e.g. sets, collections of 

items, value assignations) for problems using one of the 3 selected ordinal quantities, whereas they include more 

cardinal features than ordinal features for problems using one of the 3 selected cardinal quantities.  

In the current study, we used those same 6 quantities to create a pool of 12 problems: 6 involved cardinal 

quantities (2 collection problems, 2 price problems, and 2 weight problems) and 6 featured ordinal quantities (2 

duration problems, 2 height problem and 2 floors problems). Those problems were created specifically for the 

sake of this study, they were designed to meet three criteria: (i) they did not present arithmetic operations that a 

4th grader would be unfamiliar with, (ii) they could be implemented either with cardinal quantities or with ordinal 

quantities, and (iii) they admitted two distinct solving strategies, each compatible with one of two encodings. 

Those problems were used as is in Experiments 1 to 3, while wording variations were introduced in Experiments 

4 to 6. The problems were written in French (original materials for all experiments are available online at 

https://osf.io/kz6gh/?view_only=2f3fb6b910844e238ae58fef3c61168a. English translation is provided in Tables 

2 and 3).  

 

Table 2: Cardinal problems used in Experiment 1. The numerical values respected the following rule: z < 4 < x 

< y < 15.  

Quantity used Pb. ID Problem statement 

Weight Pb. A 

A bag of pears weighs x kilograms.  

It is weighed with a whole cheese. 

In total, the weighing scale indicates y kilograms. 

The same cheese is weighed with a milk pack. 

The milk pack weighs z kilograms less than the bag of pears. 

How much does the weighing scale indicate now? 

Weight Pb. B 

Tom takes a Russian dictionary weighing x kilograms.  

He also takes a Spanish dictionary.  

In total, he is carrying y kilograms of books. 

Lola takes Tom's Spanish dictionary and a German dictionary. 

The German dictionary weighs z kilograms less than the Russian dictionary.  

In total, how many kilograms is Lola carrying? 

Price Pb. C 

In the first meal on the menu, there is a chocolate cake costing x euros. 

The meal also includes an omelet with mushrooms. 

In total, the first meal costs y euros. 

In the second meal on the menu, there is the same omelet with mushrooms, and an apple 

pie. 

The apple pie costs z euros less than the chocolate cake. 

How much does the second meal cost? 

Price Pb. D 

In the stationery shop, Antoine wants to buy a x-euro ruler.  

He also wants a notebook. 

In total, that will cost him y euros. 

Julie wants to buy the same notebook as Antoine, and an eraser. 

The eraser costs z euros less than the ruler. 

How much will Julie have to pay? 
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Collection Pb. E 

Paul has x red marbles. 

He also has blue marbles. 

In total, Paul has y marbles. 

Charlene has as many blue marbles as Paul, and some green marbles. 

She has z green marbles less than Paul has red marbles. 

How many marbles does Charlene have? 

Collection Pb. F 

Sarah owns x goldfish. 

Her other pets are all iguanas. 

In total, she owns y pets. 

Bobby is pet-sitting Sarah's iguanas during the holidays, he puts them with the turtles he 

owns. 

Bobby owns z turtles less than Sarah owns goldfish. 

How many pets are there at Bobby's? 

 

Table 3: Ordinal problems used in Experiment 1. The numerical values respected the following rule: z < 4 < x 

< y < 15. 

Quantity used Pb. ID Problem statement 

Duration Pb. G 

The construction of the cathedral took x years. 

Before constructing it, the plans had to be made. 

The construction of the cathedral was completed in year y. 

The construction of the castle started at the same time as the construction of the cathedral. 

The construction of the castle took z years less than the construction of the cathedral. 

When was the construction of the castle completed? 

Duration Pb. H 

Sophie travels for x hours. 

Her trip started during the day. 

Sophie arrives at y h. 

Fred leaves at the same time as Sophie. 

Fred's trip lasts for z hours less than Sophie's. 

What time is it when Fred arrives? 

Height Pb. I 

Slouchy Smurf is x-centimeter tall.  

He climbs on a table.  

Now he reaches y centimeters. 

Grouchy Smurf climbs on the same table as Slouchy Smurf. 

Grouchy Smurf is z centimeters shorter than Slouchy Smurf. 

What height does Grouchy Smurf reach when he climbs on the table? 

Height Pb. J 

Obelix's statue is x-meter tall. 

It is placed on a pedestal. 

Once on the pedestal, it reaches y meters. 

Asterix's statue is placed on the same pedestal as Obelix's. 

Asterix's statue is z meters shorter than Obelix's. 

What height does Asterix's statue reach when placed on the pedestal? 

Floors Pb. K 

Naomi takes the elevator and goes up x floors. 

She left from the floor where her grandparents live. 

She arrives at the y th floor. 

Her brother Derek also takes the elevator from their grandparents' floor. 

He goes up z floors less than Naomi. 

What floor does Derek arrive at? 

Floors Pb. L 

Karen takes the elevator and goes up x floors. 

She left from the floor where the gym is. 

She arrives at the y th floor. 

Yohan also takes the elevator from the floor where the gym is.  

He goes up z floors less than Karen. 

What floor does Yohan arrive at? 

 

The problems all shared the same mathematical structure, they had the same number of sentences and their 
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numerical values were systematically mentioned in the same order. Cardinal and ordinal problems did not 

significantly differ in number of words; t(10) = 0.98, p = .35, independent t-test. The goal was to create cardinal 

and ordinal problems as comparable to each other as possible. The problems were isomorphic, and the numbers 

used were randomized across problems. The computation of the problems’ solving algorithms only required basic 

mathematical knowledge (additions and subtractions of values below 15) so that the performance differences 

could not be explained by computational difficulty or lack of knowledge about the arithmetic operations involved. 

Potential confounds and preliminary observations 

The idea behind the current study was to elicit either a cardinal or an ordinal encoding of problems sharing 

the same mathematical structure. Instead of resorting to digit ordering or magnitude comparison tasks to evaluate 

cardinal and ordinal understanding separately, we intended to show the relevance of these two dimensions within 

complex situations worded using natural language. Thus, despite some unavoidable wording variations from one 

problem to another, the main difference between cardinal and ordinal problems was meant to be the use of cardinal 

versus ordinal quantities. We were especially careful to avoid potential confounds such as a “garden path” effect 

in which participants are led to make an erroneous deduction about a sentence or a problem’s goal (Johnson, 

Moen, & Thompson, 1988; Tomasello & Herron, 1988). In our case, leading the participants “down the garden 

path” would have meant changing the problem statements’ structure to lead participants to calculate irrelevant 

values in some versions of the problems but not in others. On the contrary, we made sure to present the same 

pieces of information regarding the mathematical structure of the problems in the same order and within the same 

sentences across problems. For instance, the second sentence of the problems always introduced the Part 2 of the 

problems, both in cardinal problems (e.g. “He also has blue marbles”) and in ordinal problems (e.g. “He climbs 

on a table”). Our intent was to make sure that if participants were to calculate the value of Part 2 on cardinal 

problems but not on ordinal problems, then it would not be possible to attribute this difference to the order in 

which the different parts and wholes are mentioned in the problems. Instead, we believe that such a difference 

would necessarily come from the semantic distinction we introduced between the cardinal and ordinal problem 

statements. 

Similarly, we made sure that the difference between cardinal and ordinal problems would not boil down to a 

mere difference between the structural components (the schemata) of the problems. The schema theory (Kintsch, 

1988; Kintsch & Greeno, 1985; Rumelhart, 1980; Schank, 1975; Schank & Abelson, 1977) proposes that our 

ability to identify the algorithmic solution of a word problem depends on the activation of the appropriate schema 

in long-term memory (e.g. a change schema, a combine schema, a compare schema). According to this theory, 
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understanding a word problem equates to triggering the relevant schema and implementing it with numerical 

information from the text (Verschaffel & De Corte, 1997). For instance, solving a problem such as “Pete has 3 

apples. Ann also has some apples. Pete and Ann have 9 apples altogether. How many apples does Ann have?” 

would require possessing schematic knowledge about combine components and mapping the problem’s values 

onto it (De Corte & Verschaffel, 1985). With that in mind, and considering the prominence of the schema theory 

in the arithmetic word problem solving literature, we strove to create cardinal and ordinal problems that would 

not be confined to one specific schema, to avoid potentially problematic confounds. For instance, while the ordinal 

“number of floors” problem K (see Table 3) involves a change component (Naomi’s floor changes when she goes 

up the elevator), this is not necessarily the case for all ordinal problems. The ordinal duration problem G, for 

instance, does not involve any quantity changing. Instead, it features a combine component where the duration of 

the cathedral’s construction is combined to the time needed to make the plans. Similarly, the cardinal collection 

problem E (see Table 2) involves combine components (with sets of marbles being put together), whereas the 

cardinal weight problem A also involves a value changing over time (the weight indicated by the weighing scale). 

Additionally, all the problems featured a compare component in the problem’s fifth sentence. In other words, 

while the schema theory is an interesting framework to analyze some of the difficulties one can meet while 

attempting to solve one-step additive word problems, we believe that the cardinal versus ordinal distinction we 

introduced between these problems is not simply a matter of which schemata they could be interpreted through, 

but rather a question of how one will encode a given problem involving ordinal or cardinal quantities. 

Similarly, we believe that the distinction between ordinal quantities and cardinal quantities is not a matter of 

how continuous they are, but rather of how likely they are to emphasize, respectively, the order between the 

numerical values or their individual magnitudes. Although the difference between discrete and continuous 

quantities is relevant in arithmetic word problems and deserving of attention (see Bagnoud, Burra, Castel, Oakhill, 

& Thevenot, 2018), we believe it is a separate issue. In fact, quantities qualifying as “discrete” were featured both 

in cardinal problems (“collections” problems) and in ordinal problems (“number of floors” problems) and 

quantities usually qualifying as “continuous” were used both in cardinal problems (“prices” and “weights” 

problems) and in ordinal problems (“durations” and “heights” problems). Thus, no matter the relative continuity 

or discreteness of the numerical dimension used, the main factor we manipulated between cardinal and ordinal 

problems remained the cardinal-ordinal distinction. 
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Experiment 1 

The first experiment, a problem sorting task, was designed to assess whether the assumed difference between 

cardinal and ordinal quantities would lead to different encodings of the problems, reflected by categorization 

patterns consistent with this distinction. In other words, it intended to provide evidence for the existence of a 

fundamental distinction between cardinal and ordinal encodings derived from problems sharing an identical deep 

structure but differing in the quantities used in their problem statements. Indeed, we expected participants’ 

categories to reveal the hypothesized difference between cardinal and ordinal problem statements. The 

experimental design was modeled on the work from Chi, Feltovich, and Glaser (1981), who performed a series of 

sorting experiments with experts and novices. They showed that, when asked to sort physics problems, novices 

put together problems sharing similar surface features (e.g. problems featuring pulleys), whereas participants with 

higher proficiency in physics favored the use of abstract physics principles (e.g. problems that can be solved using 

Newton’s second law) to sort the problems. 

Our prediction regarding such problem statements was that the adults’ understanding of the problems would 

neither be strictly limited to literal features, as was the case for Chi et al.’s (1981) lay participants, nor would it 

be guided by the mathematical deep structure of the problems. Rather, we hypothesized that participants would 

sort these problems sharing the same mathematical structure depending on whether they encode them as 

emphasizing ordinality versus cardinality. We predicted that participants would tend to group together problems 

evoking a cardinal encoding (collection, price, and weight problems) and that they would group together problems 

evoking an ordinal encoding (duration, height, and number of floors problems), regardless of the problems’ other 

features. In other words, despite collection problems being as dissimilar from price problems than from duration 

problems with regards to their surface features, we expected participants to group collection problems with price 

problems more often than they would with duration problems, due to them constructing a cardinal encoding for 

collection and price problems and an ordinal encoding for duration problems.” 

Method 

Participants. Participants were recruited on a voluntary basis in the university library. Data collection took 

place over the course of one week, at the end of which a total of 85 participants had agreed to participate in the 

experiment (54 women and 31 men, M = 24.31 years, SD = 8.33). All participants spoke French fluently. None 

had previously participated in any similar experiment. 

Materials and procedure.  
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In this experiment, each of the 12 word problems was printed on a separate card. As in Chi et al.’s (1981) 

experiment, the task was to sort the problems into groups based on similarities of solving strategies. The following 

instructions were given to the participants:  

Here are 12 arithmetic word problems. Please read and study carefully each of them. Your task is to sort 

the problems into groups based on similarities of solution. You can make as many groups of problems 

as you deem necessary. This is not a speed test: take your time to read and understand each of these 

problems. Translated from French.  

We chose to use instructions similar to those given by Chi et al. (1981), in that we did not allow participants to 

use a pen and paper so they were less tempted to actually solve the problems before sorting them, nor did we 

specify a set number of problem categories to be made. We hypothesized that the cardinal versus ordinal 

distinction would be so influential that it would tend to appear even if participants were not explicitly instructed 

to sort the problems into only two categories. Participants all completed the task in less than an hour. 

Results 

The categories created by each participant were coded with a co-occurrence matrix describing how many times 

two problems were sorted together within the same category. A proximity matrix was then elaborated based on 

the co-occurrence matrix, describing the average perceived proximity between each problem (see Fig. 3). This 

matrix specifies which problems were sorted together most frequently; the higher the value between two problems, 

the higher the proportion of participants who considered these two problems similar. We tested the hypothesis 

that problems evoking a similar encoding (either ordinal-ordinal pairs or cardinal-cardinal pairs) would be 

categorized together more frequently than problems whose encoding is dissimilar (pairs made of one cardinal and 

one ordinal problem). Results showed that cardinal-cardinal pairs were given a higher proximity score on average 

(M = 0.90, SD = 0.03) than cardinal-ordinal pairs (M = 0.75, SD = 0.02); t(49) = 21.31, p < .001, independent t-

test. Similarly, ordinal-ordinal pairs were attributed a higher proximity score on average (M = 0.91, SD = 0.04) 

than cardinal-ordinal pairs; t(49) = 20.60, p < .001, independent t-test. In fact, the perceived proximity between 

any pair of problems whose hypothesized encoding is similar (ordinal-ordinal or cardinal-cardinal) was 

systematically higher than the perceived similarity between any pair of problems whose hypothesized encoding 

is dissimilar (cardinal-ordinal).  
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Fig. 3: Co-occurrence proximity matrix between problems. A higher number (and darker hue) indicates a 

higher co-occurrence frequency. 

To better understand participants’ classification patterns, we undertook a hierarchical cluster analysis displaying 

the global taxonomy of the collected categories, using the R package pvclust (Suzuki & Shimodaira, 2006). Fig. 

4 details the clusters appearing in the dataset. For each cluster, the Approximately Unbiased (AU) p-value can be 

interpreted as follows: if AU > .95, the hypothesis that “the cluster does not exist” can be rejected at the 

significance level of .05. This suggests that these clusters do not reflect clustering noise and may be observed in 

a stable manner. 

 

Fig. 4: Cluster dendrogram of the problems. Values are Approximately Unbiased (AU) p-values (orange, left) 

computed by multiscale bootstrap resampling, Bootstrap Probability (BP) values (green, right) computed by 

normal bootstrap resampling, and cluster labels (grey, bottom). Clusters with AU ≥ 95 are highlighted by the 

grey rectangles and are considered to be strongly supported by the data. Number of bootstrap samples = 

10,000. 
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All the problems sharing the same quantities (e.g. the two weight problems, the two duration problems, etc.) were 

grouped in the same lower clusters. This was expected since they both evoked the same encoding (either cardinal 

or ordinal) and shared a certain degree of surface similarity as well (two problems involving objects being 

weighed, for example, will both use words such as “weight”, “scale” or “weighs”, increasing the number of 

identical surface features). Yet, the two higher clusters displaying a significant AU p-value respectively regrouped 

all the ordinal problems and all the cardinal problems, regardless of their more specific surface features. This 

result supports the hypothesis that the cardinal versus ordinal distinction guided participants’ sorting patterns. 

Thus, as hypothesized, some aspects of the problem statements that pertain neither to the most specific surface 

features nor to the deep structure of the problems influenced the classification. The Bootstrap probability (BP) 

values, although presumably more biased (Suzuki & Shimodaira, 2006), confirmed this pattern in the data. 

Discussion 

This experiment sought to establish that participants’ categories were guided by the semantic distinction we 

introduced between cardinal and ordinal quantities. As predicted, the results showed that participants’ categories 

were not just based on the most superficial similarities between problems. Had it been the case, duration problems 

would not have been considered as closer from number of floors problems than from collection problems, for 

instance. Thus, even if participants did pick up on certain literal features of the problems, the cardinal/ordinal 

distinction remained significant even when other classification patterns (e.g. pairing problems based on their 

specific quantities, and nothing else) could have overshadowed them. Instead, participants perceived the similarity 

between problems fostering a similar encoding: problems evoking sets of unordered elements were grouped 

together, and so were problems with elements that could be ordered along an oriented axis. Of note, none of the 

participants proposed less than 2 categories, although this may be due to participants’ expectations regarding the 

minimum number of categories that could be made, rather than to them failing to notice that all problems shared 

the same mathematical deep structure (what Bassok, 2001, calls the objective mathematical structure). Overall, 

the results supported our hypothesis that weight, price, and collection problems are encoded differently than 

height, duration, and floor problems, thus substantiating our selection of those two sets of quantities. Here, the 

cardinal versus ordinal distinction significantly guided the sorting task, thus corroborating the fundamental role 

of this distinction.  

Experiment 2 

To evaluate how cardinality and ordinality interact with one another when different situations are being compared, 



WHAT WE COUNT DICTATES HOW WE COUNT 

20 
 

and to gather converging evidence regarding the influence that this distinction holds on adults’ apprehension of 

numerical situations, our second experiment focused on participants’ interpretation of different problems as 

analogous. Participants were presented with an unsolved word problem and asked to determine whether a series 

of target word problems could be solved analogously. We tested the hypothesis that participants can more easily 

perceive an analogy between two isomorphic problems if they feature quantities evoking a similar encoding (two 

problems emphasizing the cardinal nature of numbers, or two problems emphasizing the ordinal nature of 

numbers) than if they do not. 

Methods 

Participants. Participants were recruited as part of an undergraduate class at the University of Paris VIII. A 

total of 191 students (116 women and 75 men, M = 27.3 years, SD = 11.9) agreed to take part in the experiment 

on a voluntary basis. All participants spoke French fluently. None had previously participated in any similar 

experiment.  

Materials and procedure. In this experiment, we used the same problems as those created for Experiment 

1, with the addition of one cardinal problem and one ordinal problem (see complete materials online). Each 

participant was given a 4-page booklet. On the first page, the instructions read:  

Below is an arithmetic word problem. Please read it and then study carefully the problems presented on the 

next page. Note, for each of them, if they can be solved using the same solving principle as the problem 

presented below. This is not a speed test: take your time to read and understand each of these problems. 

Translated from French. 

On the same page, a problem statement was printed (“problem A”). This problem was either a cardinal problem 

(a collection problem) or an ordinal one (a duration problem). On the following page, 6 target problems were 

presented: 3 ordinal problems (duration, height, floors), and 3 cardinal problems (collection, price, weight). Next 

to each problem, the participants had to circle their answer “yes” or “no” to the question “can this problem be 

solved similarly to problem A?”. The next two pages had the same setup with different problem statements, where 

“problem A” was replaced by “problem B”, that was either a collection problem (if “problem A” had been a 

duration problem) or a duration problem (if “problem A” had been a collection problem), and six new target 

problems.  

Like in Experiment 1, we based our instructions on Chi et al.’s (1981) study and asked participants to compare 

problems based on their solving principle, while not giving them any other incentive to solve the problems. 

Additionally, participants were not given additional paper to write on, to discourage them from engaging in the 
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resolution of every problem before making their choice. The order of problems A and B was randomized between 

booklets, as was the order in which the target problems were presented. Participants all completed the task in less 

than an hour. 

We predicted that the participants’ answers would depend on the similarity between the type of 

representations fostered by the source and target problems. Namely, participants should perceive the analogy 

between two cardinal problems or between two ordinal problems more easily than between a cardinal and an 

ordinal problem. This should translate into an interaction between the cardinal versus ordinal nature of the source 

problem and that of the target problems.  

Results 

We computed the rate of detection of similarity between the source and the target problems, depending on the 

nature of the quantities involved (see Fig. 5). A two-way repeated measures ANOVA was conducted on the rate 

of perceived similarity with nature of the quantity in the source problem (ordinal or cardinal) and nature of the 

quantity in the target problem (ordinal or cardinal) as within factors. As expected, there was no main effect of the 

cardinal or ordinal semantics attached to the source problem (F(1,190) = 1.07, p = .30, ηp
2 = .01) nor of the 

semantics attached to the target problem (F(1,190) = 0.10, p = .08, ηp
2 < .01). There was, however, a significant 

interaction effect between the two factors, indicating that cardinal target problems were more likely to be selected 

by the participants when a cardinal source problem was presented, and that ordinal target problems were more 

likely to be chosen when the source problem was ordinal as well (F(1, 190) = 72.20, p < .001, ηp
2 = .28). In 

addition to the interaction, we performed 2-by-2 comparisons of the rate of perceived similarity between cardinal 

and ordinal target problems, depending on the semantics imbued in the source problem. Results showed that 

cardinal target problems were judged analogous to cardinal source problems significantly more often than ordinal 

target problems (82.4% for cardinal-to-cardinal analogy; 60.9% for cardinal-to-ordinal analogy; t(190) = 6.50, p 

< .001, ηp
2 = .18, paired t-test). Similarly, ordinal target problems were judged analogous to ordinal source 

problems significantly more often than cardinal target problems (84.8% for ordinal-to-ordinal analogy; 62.1% for 

ordinal-to-cardinal analogy; t(190) = 7.25, p < .001, ηp
2 = .22, paired t-test). In other words, participants identified 

collection source problems as analogous to other cardinal problems more frequently than they did to ordinal target 

problems. Reciprocally, the duration source problems were more frequently perceived as analogous to other 

ordinal problems than to cardinal problems. 
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Fig. 5:Rate of perception of the analogy between the source and target problems, depending on the nature of 

their quantities. Vertical bars denote .95 confidence intervals. *** p < .001, paired t-test. 

Overall, the analogy rate was higher when the source and target problems both evoked a similar encoding (either 

two cardinal encodings or two ordinal encodings) than when they evoked dissimilar encodings (a cardinal 

encoding and an ordinal encoding). Our hypothesis regarding the influence of the encoding on the detection of 

similarity of solving pattern was thus supported: participants’ decisions were significantly influenced by the 

semantics attached to the quantities used in the problems.  

Discussion 

With this experiment, we showed that the encoding difference between cardinal and ordinal problems influences 

the perception of analogies between isomorphic problems. Participants had significantly more difficulties 

identifying that two problems shared the same solving principle when these problems featured elements evoking 

different aspects of their knowledge about the world. This corroborates our claim that general abstract semantic 

properties, such as cardinality or ordinality, play a crucial role in the encoding of mathematical word problems. 

Depending on the semantics evoked by the problems, participants encode different representations. The 

representations in turn limit or foster participants’ identification of the analogous relations between the problems. 

Our results support the idea that participants encode a representation whose nature depends on the world 

knowledge evoked by the problem statement.  

While the interaction between the cardinal versus ordinal nature of the target and source problems 

indicates that participants’ encoding of the problems was significantly influenced by the quantities they featured, 

it might be that participants could have overcome this inability to perceive the similarity between cardinal and 

ordinal problems if they had tried to directly map the structures of the problems to one another. In other words, 
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suppose participants were encouraged to compare one specific target problem with the source problem instead of 

simply being asked to select the analogous problems among a series of potential candidates. Would they go beyond 

their initial encoding of the situation and identify the isomorphism between the problems? We designed a third 

experiment to answer this question.  

Experiment 3 

Experiment 3 aimed at replicating Experiment 2’s findings and assessing their robustness by directly presenting 

pairs of problems to the participants, instead of asking them to identify among a list of target problems the ones 

that shared a solution principle with the source problem. We hypothesized that the effect observed in Experiment 

2 could be replicated in a one-to-one comparison setting, in which participants are encouraged to directly contrast 

two problem statements. We assumed that when the source and the target problems featured the same type of 

quantity – cardinal or ordinal – participants would acknowledge the solution equivalence more often than when 

problems featured different types of quantity. 

Methods 

Participants. This experiment was conducted online, on the survey platform Qualtrics. Survey link was sent 

through social networks and by email. We decided to keep the survey open for one week. After one week, a total 

of 147 adults participated in the experiment (60 women and 87 men, M = 30.0 years, SD = 11.5). We estimated 

that the sample collected was close enough to our target sample size. All participants spoke French fluently. None 

had previously participated in any similar experiment. The results of five participants were removed since they 

failed to provide an answer to one or more questions in the experiment. The analyses bear on the 142 remaining 

participants (59 women and 83 men, M = 29.1 years, SD = 10.2 years).  

Materials and procedure. This experiment was conducted on the Qualtrics platform for online experiments. 

The source and target problems were the same as those used in Experiment 2. On the first page, the instructions 

read: 

Below is an arithmetic word problem. Please read it carefully. On the next pages, you will be presented with 

a series of arithmetic problems. Indicate, for each new problem, whether it can be solved with the same 

solving principle as the problem presented below. This is not a speed test: take your time to read and 

understand each of these problems. Translated from French. 

A source problem was then presented, evoking either a cardinal or an ordinal encoding. The following 6 pages 

repeated the source problem, and then presented a new problem below. Each time, the following question was 
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displayed: “Can these two problems be solved using a similar solution principle?”. After 6 target problems had 

been introduced, a new source problem was presented (a cardinal problem if the first target problem was ordinal, 

an ordinal problem if the first target problem was cardinal), with the same instructions as before, successively 

followed by 6 new target problems, one at a time. The source and target problems were the same as those used in 

Experiment 2. Like in Experiment 2, there was no explicit incentive to actually solve the problems, since they had 

been told beforehand to refrain from using outside materials (pocket calculator, pen and paper) while participating 

in the online experiment. Participants all completed the task in less than an hour. 

Results 

For each type of source problem, we analyzed the percentage of participants answering that the source and target 

problems might be solved following a similar solution principle (see Fig. 6). A two-way repeated measures 

ANOVA was conducted on participants’ rate of identified similarity, with nature of the quantity in the source 

problem (cardinal or ordinal) and nature of the quantity in the target problem (cardinal or ordinal) as within factors. 

As in Experiment 2, there was no main effect of the cardinal or ordinal semantics attached to the source problem 

(F(1,140) = 2.14, p = .15, ηp
2 = .02) nor of the semantics attached to the target problem (F(1,140) = 0.41, p = .53, 

ηp
2 < .01). However, we replicated the interaction observed in Experiment 2 between the semantic nature of the 

source problems and that of the target problems (F(1, 140) = 73.39, p < .001, ηp
2 = .34).  

 

Fig. 6: Rate of perception of the analogy between the source and target problems, depending on the nature of 

their quantities. Vertical bars denote .95 confidence intervals. *** p < .001, paired t-test. 

In addition to the interaction, 2-by-2 analyses revealed that cardinal target problems were judged analogous to 

cardinal source problems significantly more often than ordinal target problems (80.9% for cardinal-to-cardinal 

analogy; 62.6% for cardinal-to-ordinal analogy; t(140) = 5.51, p < .001, ηp
2 = .18, paired t-test). Similarly, ordinal 
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target problems were judged analogous to ordinal source problems significantly more often than cardinal target 

problems (87.7% for ordinal-to-ordinal analogy; 65.7% for ordinal-to-cardinal analogy; t(140) = 6.91, p < .001, 

ηp
2 = .25, paired t-test). In other words, despite participants being encouraged to directly compare one source 

problem with one target problem, the problems remained classified as analogous based on the semantics they 

carried. 

Discussion 

In this experiment, it was showed that the effect of the distinction between cardinal and ordinal quantities on the 

encoding of the situations described in the problems was not altered by the direct presentation of two problems 

side by side. As predicted, participants had significantly more difficulties identifying that ordinal-cardinal pairs 

of problems could be solved in the same way, even though the simultaneous presentation of both problems should 

have facilitated their mapping. Interestingly, the results of Experiment 2 were replicated in this new experimental 

setting. Our hypothesis regarding the influence of the cardinal versus ordinal distinction on the detection of 

similarity of solving pattern was thus supported by both experiments. One question that follows from these two 

experiments regards the role of these robust encoding mechanisms in the choice of a solving strategy. To what 

extent do the constructed representations dictate participants’ solving strategies? By using problems designed to 

evoke cardinal, ordinal, or hybrid encodings, the next experiment was designed to evaluate how these encoding 

differences may influence participants’ choice of a solving strategy in a more traditional solving task.   

Experiment 4 

The goal of this fourth experiment was twofold. First, we intended to demonstrate that participants’ ability to use 

a specific solving strategy directly depended on the nature of their semantic encoding of the problem. Second, we 

aimed at showing that by changing the semantics imbued in a problem statement, we could significantly alter its 

encoding on the cardinal versus ordinal dimension. To this end, we introduced a new type of problems, in addition 

to the cardinal and ordinal problems used in the previous experiments. We called those new problems “hybrid”, 

as they were meant to elicit an ordinal encoding of cardinal quantities by adding an ordinal dimension to the 

situation; a change occurring over time. Indeed, those hybrid problems involved the same cardinal quantities as 

the cardinal problems (prices, weights, collections) but their problem statements featured a scenario fostering an 

ordinal encoding by describing how the cardinal quantities changed over time. For instance, hybrid weight 

problems were created by describing the weight of a baby growing over time in order to favor an ordinal 

representation of the weight. We predicted that introducing those characteristics without changing the quantities 
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themselves nor the problems’ structure would influence the encoding of the problems and the strategies 

subsequently implemented.  

Since we instructed participants to solve the problems using as few operations as possible, our main 

hypothesis regarded the rate of use of the 1-step strategy. We predicted that problems involving ordinal quantities 

would lead to a greater use of the 1-step strategy than problems involving cardinal quantities, due to the ordinal 

encoding making it easier to perceive the validity of this solution. Second, we hypothesized that hybrid problems 

would lead to a significantly higher rate of 1-step strategy than cardinal problems, due to the ordinal semantics 

attached to the problem statements. Additionally, we aimed at assessing whether hybrid problems would be solved 

by the 1-step strategy as often as ordinal problems, or not.  

Method 

Participants. Participants were recruited on a voluntary basis among the undergraduate population of three 

universities. A total of 181 students participated in this experiment after giving informed consent (123 women 

and 58 men, M = 23.35 years, SD = 7.82). All participants spoke French fluently. None had previously participated 

in any similar experiment. 

Materials and procedure. A pool of 18 word problems was used for this experiment: the same 12 problems 

(6 cardinal and 6 ordinal) as in the first three experiments, and 6 new hybrid problems (see Table 4 for a selection 

of hybrid problems). Each participant saw 9 problems in total: 3 of each category. 

Table 4: Example of hybrid problems. The numerical values respected the following rule: z < 4 < x < y < 15. 

Quantity used Hybrid problem statement 

Weight 

"During his first year, David gained x kilograms. 

At birth, he already weighed a certain weight. 

After a year, David weighs y kilograms. 

At birth, David and Lara had the same weight. 

During her first year, Lara gained z kilograms less than David did. 

How much does Lara weigh after one year?" 

Price 

"For Christmas, Felix got x euros. 

He already had some money. 

Now Felix has y euros in total. 

Before Christmas, Zoe had as much money as Felix. 

For Christmas, Zoe got z euros less than Felix did. 

How much money does Zoe have now?" 

Collection 

"During the afternoon, Patricia catches x fish. 

She puts those fish in her basket, with the other fish she caught during the morning. 

By the end of the day, Patricia has y fish in her basket. 

During the morning, Arthur caught as many fish as Patricia did. 

During the afternoon, Arthur catches z fish less than Patricia does. 

In total, how many fish did Arthur catch today?" 
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The participants all received 10-page booklets with instructions printed on the first page. The instructions read: 

You will find an arithmetic problem on each page of this booklet. Your task is to solve the problems 

using as few operations as possible. You can use the ‘draft’ area, but please copy in the ‘response’ area 

all the operations that you used to come up with the solution. This is not a speed test: take your time to 

read and understand each of these problems. Remember that the goal is to solve the problems using as 

few operations as possible. For every problem, we ask you to write down every operation(s) that you 

used to come up with the solution, even the simplest one that you can calculate mentally. For instance, 

the computation “15 – 6 – 2 = 7”, should not be written as a unique operation, but broken down as “15 − 

6 = 9” and “9 − 2 = 7”, which then counts for two operations. Translated from French. 

Problem order was randomized across booklets. Each page in the booklet was divided in three parts: the problem 

statement, the “draft” area and the “response” area. Participants all completed the task in less than an hour.  

Scoring. A problem was considered as correctly solved when the obtained result came with the appropriate 

calculations. The strategies leading to success were categorized either as correct 1-step strategy or as correct 3-

step strategy. When the written operations were correct and the written solution was within +/− 1 of the correct 

result, this was deemed a calculation error and problems were still considered as correctly solved. Other answers 

were considered as false.  

Results 

The percentage of correct solving using both strategies was calculated. Fig. 6 details the rate of use of the 1-step 

strategy for each problem category. A one-way repeated measures ANOVA was conducted on the rate of use of 

the 1-step strategy between cardinal, hybrid and ordinal problems. Results indicated that there was a main effect 

of problem category (cardinal/hybrid/ordinal) (F(2,360) = 52.13, p < .001, ηp
2 = .22). Three paired sample t-tests 

were used to compare the different conditions, with Bonferroni adjustment for multiple comparisons. As 

predicted, cardinal problems led to a significantly lower rate of 1-step strategy (M = 0.28, SD = 0.39) than ordinal 

problems (M = 0.47, SD = 0.39); (t(180) = 9.34, p < .001, d = 0.48), which supported the hypothesis that the use 

of cardinal versus ordinal quantities significantly influenced the encoding of the problem statements, and 

subsequently shaped the solving strategies used by the participants. Moreover, as hypothesized, the 1-step strategy 

was more frequently used on hybrid problems (M = 0.38 SD = 0.40) than on cardinal problems; t(180) = 5.91, p 

< .001, d = 0.24. This result showed that, by giving specific semantic properties to a problem statement, it was 

possible to influence the encoding and manipulate which solving strategy participants would use. A semantically 

cardinal quantity presented in an ordinal context could thus lead more often to the encoding of an ordinal 
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representation than a cardinal quantity presented in a context that does not present ordinal features.  

 

Fig. 6: Rate of use of the 1-step strategy and 3-step strategy, depending on the semantics attached to the 

problems. Vertical bars denote .95 confidence intervals. *** p < .001 (paired t-test). 

Interestingly, the comparison between hybrid problems and problems with ordinal quantities revealed that the rate 

of use of the 1-step strategy was still higher on ordinal problems (M = 0.47, SD = 0.39); t(180) = 4.93, p < .001, 

d = 0.23. This seems to indicate that, while the manipulation that was performed to “ordinalize” cardinal quantities 

had a significant impact when compared to standard cardinal problems, an “ordinalized” quantity remained less 

ordinal than a typical ordinal one.  

 Regarding the rate of use of the 3-step strategy, we performed a one-way repeated measures ANOVA to 

evaluate if it differed between cardinal, hybrid and ordinal problems. Results indicated the presence of a main 

effect of problem category (cardinal/hybrid/ordinal) on the use of this strategy as well (F(2,360) = 27.80, p < .001, 

ηp
2 = .13). We used paired sample t-tests to perform pairwise comparisons between the three conditions, with 

Bonferroni adjustment for multiple comparisons. Results showed that participants resorted to the 3-step strategy 

more often on cardinal problems (M = 0.60 SD = 0.39) than on ordinal problems (M = 0.44 SD = 0.38); t(180) = 

6.79, p < .001. Interestingly, they also used the 3-step strategy more often on cardinal than on hybrid problems 

(M = 0.47 SD = 0.38); t(180) = 5.80, p < .001. This is in line with the idea that introducing cardinal quantities in 

an ordinal context could help “ordinalize” participants’ representation. There was, however, no significant 

difference between the rate of use of the 3-step strategy on hybrid and on ordinal problems; t(180) = 1.38, p = .17. 

Discussion 

In this experiment, the analysis of the solving strategies provided cues on how the encoding of the problems 

influences participants’ solving strategies. Participants’ use of the shortest strategy was dependent on the type of 

quantities involved in the problem statement. Despite participants being explicitly instructed to use as few 

operations as possible to solve the problems, they mostly used the 3-step strategy to solve the cardinal problems. 
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This experiment further supported the claim that the ordinal versus cardinal dimension was the main factor 

constraining strategy choice. Indeed, a change in strategy choice followed the “ordinalization” of cardinal 

quantities, thus showing that the ability to use the 1-step strategy was directly dependent on how much the problem 

statement emphasized the ordinal nature of its numerical values.  

So far, we have studied how arithmetic word problems are initially encoded and how the interpreted 

representations in turn influence the solving strategies used. However, as mentioned in the introduction, the initial 

encoding of a problem does not always provide a solution to the solver. We then investigated whether participants 

can overcome their initial representation of the problems when the one they first encoded does not lead to a 

solution. That is, we created the conditions to explore the difference between situations in which one has to 

construct a new representation of the situation presented, and those in which there is no need for a new 

representation to be constructed. Such a recoding process would imply to disregard the cardinal semantics evoked 

by specific quantities, and to construct a new encoding of the situation regardless of their influence. 

Experiment 5 

In this fifth experiment, we designed situations meant to have participants construct a representation leading to a 

dead end. In other words, we created problems for which the initial encoding would not provide a successful 

solving strategy, thus hindering the solving process. The problems could nonetheless be solved if participants 

constructed a different encoding of the situation. We tested the participants’ proficiency to use the 1-step solving 

strategy on problems that would spontaneously elicit the 3-step strategy. For that purpose, cardinal problems that 

only featured two numerical values were introduced, making the 3-step solving strategy impossible to use. By 

contrast, the 1-step strategy was still efficient for reaching the solution with the two remaining numerical values. 

A solvability judgment task requested participants to tell whether problems were solvable and to write 

down the solution of the solvable problems. Our aim was to show that semantic constraints associated with 

cardinal situations would lead adult participants to evoke an encoding incompatible with the 1-step strategy, 

leading them to fail to find the solution to the problems. We expected them to incorrectly dismiss a perfectly valid 

solving strategy, erroneously labeling a 1-step subtraction problem as unsolvable. We also expected that 

succeeding in solving cardinal problems would require an extra representational step, since the initial 

representation favors the use of the 3-step strategy. We assumed that the construction of a new representation 

would be costly and time consuming. Therefore, our predictions were twofold: first, we hypothesized that 

participants would find the solution to ordinal solvable problems more often than to cardinal solvable problems 



WHAT WE COUNT DICTATES HOW WE COUNT 

30 
 

because of the conflict between a cardinal representation and the 1-step strategy. Second, when correctly solved, 

cardinal problems would require a significantly longer response time than correctly solved ordinal problems, 

because of the extra step needed to build a new representation compatible with the 1-step strategy. 

Method 

Participants. This experiment was conducted online, on the survey platform Qualtrics. Survey link was sent 

through social networks only. The survey was kept open for one week, after which a total of 89 adults had 

participated on a voluntary basis (50 women and 39 men, M = 32.1 years, SD = 13.4 years). All participants spoke 

French fluently and none had previously participated in any similar experiment. Because part of the analyses were 

performed on response times, we removed 15 participants who either mentioned taking a break during the test or 

who answered at least one of the questions in less than 5 seconds (which meant they either mis-clicked or did not 

take the time to read the problem). The analyses bear on the 74 remaining participants (44 women and 30 men, M 

= 33.8 years, SD = 13.4 years). 

Materials and procedure. The problems used in this experiment were similar to the ones in previous 

experiments, except for the value of Part 1 (see Fig. 1) that was removed from the statements so that the 3-step 

strategy could not be used anymore. Consequently, the only way to solve the problems was to resort to the 1-step 

strategy, which required using the remaining values of Whole 1 and of the Difference (see Fig. 1). Table 5 presents 

6 examples of such problems (3 cardinal and 3 ordinal problem statements) created from the ones used in the 

previous experiments by removing the x value corresponding to Part 1. Ordinal problems were 333.5 characters 

long on average (SD = 38.37) and cardinal problems were 304 characters long on average (SD = 44.94). This 

length difference was not statistically significant (t(10) = 1.18, p = .26, paired t-test). 

Table 5: Example of target problems used in the study. Changes introduced from the problems in experiments 1 

to 3 are italicized in the table for the sake of clarity, but they were not made apparent in the experiment. 

Translated from French. 

Cardinal target problems Ordinal target problems 

Paul has a certain amount of red marbles. 

He also has blue marbles. 

In total, Paul has 14 marbles. 

Jolene has as many blue marbles as Paul, and some green 

marbles. 

She has 2 green marbles less than Paul has red marbles. 

How many marbles does Jolene have? 

Sofia travelled for a certain time. 

Her trip started during the day. 

Sofia arrived at 14 h. 

Fred left at the same time as Sofia. 

Fred's trip lasted 2 hours less than Sofia's. 

What time was it when Fred arrived? 
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In the store, Antoine wants to buy a ruler costing a 

certain price. 

He also wants a notebook. 

In total, that will cost him 14 dollars. 

Julie wants to buy the same notebook as Antoine, and an 

eraser. 

The eraser costs 2 dollars less than the ruler. 

How much will Julie have to pay? 

Slouchy Smurf is a certain height. 

He climbs on a table. 

He now attains the height of 14 centimeters. 

Grouchy Smurf climbs on the same table as Slouchy Smurf. 

Grouchy Smurf is 2 centimeters shorter than Slouchy Smurf. 

What height does Grouchy Smurf attain when he climbs on the 

table? 

Tom takes a Russian dictionary weighing a certain 

weight. 

He also takes a Spanish dictionary. 

In total, he is carrying 14 kilograms of books. 

Lola takes Tom’s Spanish dictionary and a German 

dictionary. 

The German dictionary weighs 2 kilograms less than the 

Russian dictionary. 

In total, how many kilograms is Lola carrying? 

Katherine took the elevator and went up a certain number of 

floors. 

She left from the floor where the gym is. 

She arrived to the 14th floor. 

Yohan also took the elevator from the floor where the gym is. 

He went up 2 floors less than Katherine. 

What floor did Yohan arrive to? 

Although our predictions only regarded solvable problems, we also included unsolvable fillers in the materials, 

so that not every problem had a solution. Among those fillers the value of Part 1 was preserved, and the value of 

Whole 1 was removed, which made the problems unsolvable with either solving strategy. Thus, an equal number 

of fillers was introduced to achieve a uniform distribution of solvable/unsolvable answers. Problem order and 

numerical values were randomized between participants. On the first page of the online experiment, the following 

instructions were written:  

You will find an arithmetic problem on each page of this survey. Your task is to identify which problems can 

be solved and to indicate for each of them the operation you used to solve it, as well as the solution you found. 

Be careful: some of the problems cannot be solved with the available information, thus your answer in such 

cases should be ‘it is not possible to find the solution’. This is not a speed test: take your time to read and 

understand each of these problems. Translated from French.  

On each page of the survey, a problem was displayed with the following question below it “Given the data 

provided, is it possible to find the solution?” and two buttons “Yes” and “No”. When the participants pressed 

“Yes”, two new questions appeared, asking them to indicate respectively the operation needed to solve the 

problem and the result of the operation. Participants used the keyboard to write down their answers. After 

participants answered all 12 problems, a new page was displayed asking them for their gender, date of birth, and 

whether they made any breaks during the completion of the experiment. Participants all completed the task in less 

than an hour. 

As previously stated, our first prediction was that participants would perform better on solvable problems 

with ordinal quantities compared to solvable problems with cardinal quantities. Indeed, we believed that problems 

whose spontaneous representation was associated with a 3-step strategy would often lead participants to ignore 
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the 1-step strategy, due to cardinal representations being incompatible with the shortest strategy. Our second 

prediction regarded the cardinal problems that were correctly solved by the participants despite the conflict 

between a cardinal encoding and the 1-step strategy. We hypothesized that higher response times would be 

recorded on successfully solved cardinal problems compared to successfully solved ordinal problems, due to 

participants needing additional time to overcome their initial encoding of the situations and build a new 

representation, compatible with the 1-step strategy. 

Results 

The dependent variable was the percentage of correct answers on solvable problems. Ordinal solvable problems 

were successfully solved in 91.9% of the trials, and cardinal solvable problems in 68.5% of the trials (see left 

graph of Fig. 7). A paired t-test was performed on participants’ mean rate of success for cardinal and ordinal 

problems and showed that the difference was statistically significant (t(73) = 6.38, p < .001, d = 0.97), therefore 

supporting our first hypothesis. 

 

Fig. 7: Mean rate of correct resolution (left) and mean response time on correctly solved problems (right) 

depending on the semantic nature of the quantities used in the problems. Vertical bars denote .95 confidence 

intervals. *** p < .001 (paired t-test). 

Response times on correctly solved cardinal and ordinal problems were then compared in order to test our 

prediction that accessing the correct 1-step strategy on problems inducing a cardinal encoding incompatible with 

this strategy would require higher response times than it would on problems evoking an ordinal representation. 

On average, participants took 68.7 seconds to successfully solve cardinal problems, and 49.8 seconds for ordinal 

problems (see right graph of Fig. 7). Because we only considered the response times for correctly solved problems, 

the number of measures per participant could vary from 0 to 6, so we resorted to a mixed model analysis instead 

of a repeated measures ANOVA. We removed 4 participants who did not manage to correctly solve at least one 
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cardinal and one ordinal problems, since no comparison could be made between their response times in both 

conditions. A linear mixed model with participants as a random factor and problem type (cardinal versus ordinal) 

as a fixed effect showed that the difference between cardinal and ordinal problems had a significant effect on 

response times of successfully solved problems (F(1,69) = 20.38, p < .001), thus supporting our second hypothesis. 

Discussion 

As predicted, it was more difficult for participants to use the 1-step strategy for cardinal than for ordinal problems, 

despite the 1-step strategy being the only remaining possibility to find the solution. Besides, as hypothesized, 

when participants overcame the difficulty and found the solution to a cardinal problem, it required extra processing 

time, presumably attributable to the construction of a new representation of the situation.  

While the fourth experiment showed that the 1-step strategy is more frequently used on ordinal than on 

cardinal problems, this fifth experiment showed that this effect is not the result of a mere preference but, instead, 

seems to be the consequence of strong limitations imposed by the type of quantity used. In fact, this effect was so 

pervasive that in many cases adult participants failed to see that these one-step subtraction problems could be 

solved at all. Yet, not all the participants failed, and some of them even managed to use the 1-step strategy in 

certain cases. However, in order to overcome the constraints imposed by their world knowledge about the 

problem’s quantities and use a conflicting solving strategy, the participants had to discard their initial 

representation and construct a new encoding closer to the problem’s mathematical structure. The existence of such 

a recoding step, akin to a re-representation process (Vicente, Orrantia, & Verschaffel, 2007), was supported by 

the longer response times required on correctly solved cardinal problems. 

Once participants realize that the 3-step strategy cannot be used given the available information, they might 

be tempted to discard these problems as unsolvable and move on. In the 6th experiment, we went a step further 

and provided participants with a potential solution to the problems, one that they would not usually consider. By 

giving them such a clue, we were able to assess their difficulty to construct an alternate encoding of the situation 

even when directly incited to do so. 

Experiment 6 

In this experiment, we provided participants with the 1-step solving strategy of each problem and asked them to 

directly evaluate its validity. Because of the high failure rates on cardinal problems in Experiment 5, we tested 

the stronger hypothesis that providing the solving strategy would not be enough to systematically foster an 

appropriate encoding of the situation by the participants. We hypothesized that even when explicitly presented 
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with the solution, participants would reject it more often in the cardinal condition than in the ordinal one since 

their encoding of cardinal problems would conflict with their solution (i.e. promoting an unusable 3-step strategy 

instead of the 1-step strategy). Because of the need to overcome the initial representation, we hypothesized that 

the correct identification of the solution would require more time for cardinal than for ordinal problems. This 

experimental paradigm resembled the one used in a recent study we conducted among expert mathematicians 

(Gros, Sander, & Thibaut, 2019). However, in the present experiment, participants could take as long as they 

wished to complete the task, whereas in Gros et al. (2019), participants were explicitly told to solve the problems 

as fast as possible, with the intended purpose of increasing their error rates. The absence of time constraint was 

meant to give participants the opportunity to read the problems until they were certain of their decision and to 

engage in a recoding of their initial representation if need be. 

Method 

Participants. This experiment was conducted online, on the survey platform Qualtrics. Survey link was sent 

through a Parisian mailing list for cognitive science experiments. We kept the survey open for one week, after 

which a total of 223 adults had participated on a voluntary basis. The increase in sample size is attributed to a 

response rate above our expectations on the mailing list for voluntary participants. All spoke French fluently and 

none had previously participated in any similar experiment. Among them, 27 were removed from the analysis 

because they either took a break during the test or answered at least one of the questions in less than 5 seconds 

(which suggested they did not take the time to read the problem). The analyses were performed on the remaining 

196 participants (135 women and 88 men, M = 34.5 years, SD = 14.8 years).  

Materials and procedure. The only difference between the present experiment and the previous one was the 

fact that a solution was proposed. Instead of having the participants solve the problems themselves, a solution was 

proposed for each problem, and they were asked to judge whether the provided solution was valid or whether the 

problem was unsolvable. For every problem, the question “Given the data provided, is it possible to find the 

solution?” was displayed. Two choices appeared below: (a) “No, we do not have enough information to solve this 

problem.” and (b) “Yes: numerical value 1 – numerical value 2 = result. Sentence presenting the result”. For 

instance, on one of the elevator problems, the option (b) was: “Yes: 11 − 2 = 9. Karin arrives at the 9
th

 floor.” 

Participants all completed the task in less than an hour. 

Results 

As in Experiment 5, we first analyzed the ratio of correct answers on solvable problems depending on the type of 
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quantities used. The left graph of Fig. 8 shows that, among the target problems, the cardinal ones had a lower 

success rate (63.6%) than the ordinal ones (88.4%). A paired t-test performed on the participants’ mean rate of 

success confirmed that this difference was significant (t(195) = 9.25, p < .001, d = 0.87). 

Fig. 8: Mean rate of correct resolution (left) and mean response time on correctly solved problems (right) 

depending on the semantic nature of the quantities used in the problems. Vertical bars denote .95 confidence 

intervals. *** p < .001. 

In order to assess the validity of our second hypothesis, we analyzed the response times of correct answers on the 

target solvable problems. The 26 participants who did not manage to correctly respond to at least one cardinal and 

one ordinal problems were removed from this analysis, since no comparison could be made between their response 

times in both conditions. The right graph of Fig. 8 shows that providing a correct answer required a shorter 

response time for ordinal (38.6 seconds) than for cardinal problems (51.4 seconds). A linear mixed-model with 

participants as a random effect and the cardinal versus ordinal distinction as a fixed factor confirmed that the 

effect was statistically significant (F(1,169) = 30.28, p < .001), supporting the second hypothesis. 

Discussion 

This experiment, involving a solution validity assessment task, supported the effects observed in the previous one, 

involving a solution discovery task. The analyses indicated that even when the correct solution was provided, it 

was more difficult for them to accept it when it was not compatible with the initial encoding of the problem. 

Despite the problems being solvable with a mere subtraction, participants went so far as to reject the correct 

solution and dismiss the problems as “unsolvable”. Furthermore, overcoming this difficulty required more time, 

thus supporting our prediction of the need for an extra processing step when faced with an inapt representation. 

These results suggest that the encoding effects identified in the 5th experiment are not restricted to the elaboration 

of a solving strategy, but also to the evaluation of its validity. This experiment provides additional evidence that 
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the cardinal versus ordinal distinction constrains the encoding of problems, since even when no solving strategy 

had to be produced by the participants, their interpretation precluded them from considering the given solution – 

albeit a single subtraction – as an acceptable one. 

General discussion 

The pervasive influence of the cardinal-ordinal distinction 

Taken together, the present six experiments shed light upon the foundational part played by the cardinal versus 

ordinal distinction in adults’ reasoning about numerical situations. The first experiment confirmed the relevance 

of the selected quantities, as the distinction between cardinal and ordinal quantities drove adults’ sorting patterns. 

Experiments 2 and 3 demonstrated that the encoding difference between cardinal and ordinal problems impacts 

participants’ success in perceiving problems as analogous, even when explicitly instructed to directly compare 

two problems. The fourth experiment’s findings were twofold. First, it showed that the distinction between 

cardinal and ordinal problems influences adults’ choice of a solving strategy. Second, it demonstrated that it is 

possible to manipulate a problem’s semantics by presenting cardinal quantities in a context emphasizing the 

ordinality of the problem’s values. The changes that were introduced to make the cardinal problems more ordinal 

had a significant effect on participants’ strategy choice, thus bolstering the importance of the cardinal versus 

ordinal distinction and strengthening the view that the encoding difference observed depended on the semantic 

dimensions that were manipulated in the problems. The fifth experiment showed that even when only one solution 

was available, adult participants have difficulties to find it when it is not compatible with what is assumed to be 

their spontaneous encoding of the problems. They were more likely to erroneously judge that cardinal problems 

cannot be solved and, when they did find the solution to a cardinal problem, it nonetheless required a longer 

reasoning time. Finally, the sixth experiment demonstrated that presenting the participants with a potential 

solution does not suppress the effects observed in Experiment 5, as participants continued to struggle to identify 

the solution of cardinal problems. 

The fact that the distinction between cardinal and ordinal quantifications could exert a pervasive effect on 

adults’ grasp of numerical situations illustrates the foundational nature of this distinction for the human mind. 

Despite a growing body of research on the comparative development of cardinality and ordinality, little is known 

regarding adults’ ability to alternatively perceive the cardinality or the ordinality of the numerical situations they 

encounter, depending on the daily-life knowledge imbued in these situations. Our understanding of mathematics 

is deeply rooted into our understanding of the world (Fischbein, 1987; Hofstadter & Sander, 2013; Lakoff & 
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Núñez, 2000) and, as a result, we tend to apply real-life constraints to abstract mathematical concepts. Here, we 

showed that our perception of ordinality and cardinality in scenes of our daily lives has a profound effect on our 

ability to engage in mathematical reasoning in these situations. 

Implications for mathematical word problem solving 

 Although converging works have shown that slight modifications in the wording of otherwise structurally 

identical mathematical word problems could result in significant performance disparities (Carpenter & Moser, 

1982; Cummins, Kintsch, Reusser, & Weimer, 1988; De Corte, Verschaffel, & De Win, 1985; Hudson, 1983; 

Nesher, Greeno, & Riley, 1982; Scheibling-Sève & Sander 2020; Squire & Bryant, 2002; Thevenot & Oakhill, 

2005), the identification of the underlying reasoning processes accounting for such variations has remained a 

debated issue to this day. One possible explanation can be found in the schema theory (Kintsch, 1988; Kintsch & 

Greeno, 1985; Rumelhart, 1980; Schank, 1975; Schank & Abelson, 1977). However, a number of shortcomings 

have been shown to hinder the schema theory’s explanatory power of the interpretative effects that seem to be 

central in mathematical word problem solving (Devidal, Fayol, & Barrouillet, 1997; Fayol, Abdi, & Gombert, 

1987; Thevenot, 2010, 2017; Thevenot, Devidal, Barrouillet, & Fayol, 2007). In our case, Experiment 4’s results 

showed that participants use different solving strategies to solve isomorphic problems, depending on the type of 

quantities these problems mention. In the seminal description of the schema theory, Kintsch and Greeno (1985) 

indicate that the activation of a schema to solve a problem is done based on the propositional structure of the 

problem statement. In other words, the relevant entities are the numerical values and the relations explicitly 

described in the problems. The model proposed by Kintsch and Greeno does not explicitly raise the possibility 

that the world knowledge evoked by the elements mentioned in a problem may influence solvers’ representation 

of the problems, nor their choice of a solving strategy. Thus, those results could not have been predicted by the 

schema theory. 

Since 1990, an alternative approach has emerged from Reusser’s critical observations on the schema theory: 

the Situation-Problem-Solver, a model introducing the idea that the text of the problem statement is first translated 

into a situation model of the situation, before being “mathematized” into a problem model and finally translated 

into a solving algorithm (Reusser, 1990; Staub & Reusser, 1995). Yet, it has been argued that by relying on the 

notion of situation model, the Situation-Problem-Solver approach neglects some interpretative effects at play in 

mathematical word problem solving. Indeed, this model does not directly include the idea that different models 

of a given problem statement can be built, depending on the solver’s viewpoint (Gros, Thibaut, & Sander, 2020). 

More specifically, this approach struggles to account for the idea that the initial problem representation 
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constructed by the solvers may vary depending on the state of their general, non-mathematical knowledge about 

the elements present in the problems. Moreover, the notion that participants may overcome their initial encoding 

of a problem and construct a new representation also falls outside of the Situation-Problem-Solver’s scope. 

However, in Experiments 5 and 6, participants were shown to engage in a semantic recoding process, akin to re-

representation (Vicente et al., 2007), when their initial representation of the problem led to a dead end. 

Thus, the schema theory and the Situation-Problem-Solver model both struggle to account for the results of 

our six experiments. On the other hand, those results are well within the scope of the new Semantic Congruence 

(SECO) model, which provides a conceptual framework for arithmetic word problem solving (Gros et al., 2020). 

The SECO model is meant to account for the influence of world semantics (the non-mathematical world 

knowledge one has about the entities described in a problem statement) on the initial encoding of a word problem 

into a specific interpreted structure (see Fig. 9). It proposes that when reading a problem statement, most solvers 

resort to their world semantics as well as to their mathematical semantics (the solver’s mathematical knowledge 

applicable to the problem statement) to construct a representation of the described situation (an interpreted 

structure), which can then be translated into specific solving strategies. When no relevant solving strategy can be 

specified from the interpreted structure, then solvers may attempt to engage in semantic recoding by using 

mathematical knowledge to construct a new representation of the problem at hand. When performed successfully, 

this semantic recoding makes it possible to use different solving strategies compatible with the new constructed 

representation (Gros et al., 2020).  

 

Fig. 9: Structure of the SECO model. Reprinted from “Semantic congruence in arithmetic: A new model for 

word problem solving,” by H. Gros, J.-P. Thibaut, & E. Sander, 2020, Educational Psychologist, 55, pp. 69-87. 

For instance, in the case of the problems used in this study, SECO would predict that a cardinal problem 

featuring marbles will activate the solver’s world knowledge about marbles (e.g. the fact that marbles are 
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unordered entities that are usually grouped in no specific order) which will lead to the encoding of a cardinal 

interpreted structure, which then leads to the use of a 3-step strategy (see Experiment 4). However, when a 

numerical value is removed from the problem and the 3-step strategy cannot be used (see Experiments 5 and 6), 

participants need to discard the irrelevant surface features of the problem and engage in a semantic recoding 

process focused on the problem’s mathematical properties (the notion that the difference between two sets sharing 

a common part is equal to the difference between their disjoint parts). If performed successfully, this recoding 

makes it possible for the participants to understand the relevance of the 1-step strategy to solve cardinal problems. 

SECO suggests that engaging in such a recoding is cognitively costly, which explains the increased errors and 

reaction times on cardinal problems in these experiments. The results reported in this study thus support the 

relevance of the SECO model to account for arithmetic word problem solving, compared to previous approaches 

in the field.  

Educational perspectives 

The range of content effects we have put forward in this paper showcase the fact that even for problems involving 

only elementary arithmetic operations, supposedly acquired in primary school, humans hardly manage to 

completely disregard context, and their performances in problem solving suffer from this shortcoming. However, 

the influence of world knowledge on mathematical word problem solving is not surprising considering that, as 

suggested by the kind world hypothesis, it leads to the making of inferences which are correct most of the time, 

since the surface features of situations are highly correlated with deeper principles (Bassok et al., 2008; Blessing 

& Ross, 1996; Gentner & Medina, 1998; Goldstone, 1994; Trench & Minervino, 2015). Consequently, people 

tend to rely on those superficial cues which help them find the solution. This is especially true for novices, who 

predominantly use surface features to recall previous experiences, while experts may be more apt to perceive the 

structure of the situations they encounter (Raynal, Clément, & Sander, 2020). Difficulties arise when the world 

knowledge evoked by a problem and its deep structure are semantically incongruent. Unexperienced learners are 

then bound to struggle, and sometimes even fail. This is especially problematic since mathematics education does 

not usually control for content effects (Bassok et al., 1998; Gvozdic & Sander, 2018; Lee, DeWolf, Bassok, & 

Holyoak, 2016), which is partly due to mathematics being primarily considered the realm of abstraction (Davis, 

Hersh, & Marchisotto, 2011; Russell, 1903).  

Although arithmetic word problems are a central part of mathematics education and teachers are usually 

encouraged to provide real-world examples to illustrate the concepts being taught (e.g. Richland, Stigler, & 

Holyoak, 2012; Rivet & Krajcik, 2008), the use of concrete examples to teach new concepts has also been shown 
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to have a detrimental effect on transfer (Day, Motz, & Goldstone, 2015; Goldstone & Sakamoto, 2003; Son & 

Goldstone, 2009). In line with current efforts to develop new teaching methods aimed at overcoming the 

deleterious influence of content effects (e.g. Gvozdic & Sander, 2019), our findings on the perception of 

cardinality and ordinality in concrete situations may hold value to design new teaching sequences. Just as 

concreteness fading is proposed as a tool to improve transfer by resorting to increasingly abstract examples (Fyfe, 

McNeil, Son, & Goldstone, 2014; Fyfe & Nathan, 2019), it may be a promising route to develop a semantic 

congruence fading process using increasingly incongruent examples (Gros et al., 2020). In the case of the 

problems used in the current study, starting with teaching the 1-step strategy on ordinal problems, then moving to 

hybrid problems and finally to cardinal problems may help learners acquire a better understanding of this strategy, 

and they may consequently learn to use it in any situation, regardless of the semantics conveyed by the problem 

statement. We believe that building on the semantic congruence framework to develop such training programs 

may help learners develop a richer understanding of cardinality and ordinality as well as a more flexible approach 

to the encoding of numerical situations in general.  
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