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BIOBJECTIVE HYPERVOLUME BASED HV-ISOOMOO ALGORITHMS1

CONVERGE WITH AT LEAST SUBLINEAR SPEED TO THE ENTIRE2

PARETO FRONT3

EUGÉNIE MARESCAUX AND ANNE AUGER4

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the5
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,6
respectively. In this context, we introduce a new algorithm framework based on the hypervolume and7
called HyperVolume based Incremental Single-Objective Optimization for MultiObjective Optimization8
(HV-ISOOMOO) for approximating the Pareto front with an increasing number of points. The hypervol-9
ume indicator is a set-quality indicator widely used for algorithms design and performance assessment.10
The class of HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing this in-11
dicator. At each meta-iteration of HV-ISOOMOO algorithms, a single-objective subproblem is solved.12
We study the convergence to the entire Pareto front of HV-ISOOMOO under the assumption that these13
subproblems are solved perfectly. The convergence is defined as the convergence of the hypervolume14
of the sets of all meta-iterations incumbents towards the hypervolume of the Pareto front. We prove15
tight lower bounds on the speed of convergence for convex and bilipschitz Pareto fronts in O(1/nc) with16
c = 1 and c ≤ 1, respectively. The index n denotes the number of meta-iterations of HV-ISOOMOO.17
For convex Pareto fronts, the convergence speed is in Θ(1/n), namely the fastest convergence achievable18
by a biobjective optimization algorithm. These are the first results on the speed of convergence of mul-19
tiobjective optimization algorithms towards the entire Pareto front. We also analyze theoretically the20
asymptotic convergence behavior.21

Key words. multiobjective optimization, convergence, hypervolume, Pareto front22

AMS subject classifications. 90C29, 90C3023

1. Introduction. Real-world problems often involve the simultaneous optimization24

of several conflicting objectives. The solution of such problems is the set of non-dominated25

decision vectors (vectors of the search space), the Pareto set. It is defined as the set of26

solutions that cannot be improved along one objective without degrading along another27

one. Its image in the objective space is the Pareto front. A decision maker is then often28

involved to choose, based on its preferences, a single best compromise. The shape of the29

Pareto front informs him on the trade-off between objectives. Many algorithms such as30

evolutionary algorithms approximate the Pareto front with a number of points fixed in31

the beginning. But some algorithms, in particular stemming from direct search methods32

[1, 7, 10, 11] approximate the Pareto set or the Pareto front with more and more points33

during the run. Ideally, the quality of the Pareto front approximation (e.g. measured with34

its size) increases gradually with time.35

The speed of convergence towards a critical decision vector or a vector of the Pareto36

front has been examined for many algorithms such as (1 + 1) evolutionary multiobjective37

algorithms [5] or Newton’s method [18]. Convergence speeds are typically similar to38

the ones obtained for single-objective optimization. Both aforementioned publications39

describe convergence towards a single point and the first analysis is even reduced to the40

study of the convergence of a single-objective optimization algorithm [5]. The convergence41

of algorithms towards the whole Pareto set or front is of a different kind because iterates42

are sets and not points. Such convergence has already been theoretically investigated43

for some algorithms [10] and more abstract frameworks [26], but analysis of the speed44

of convergence are generally missing. Empirical studies typically focus on determining45

which algorithm is faster but more rarely provide information on the speed of convergence46
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such as order of convergence or complexity. Yet, while often overlooked, the study of the47

speed of convergence, both theoretically and empirically, is important. In this context,48

it has been proven that convergence of biobjective optimization algorithms towards the49

whole Pareto front is always sublinear in the number of function evaluations, at least50

when measuring convergence with the hypervolume indicator [22] or the multiplicative51

ε-indicator [8], and thus much lower than typical speeds of convergence to a single point.52

The hypervolume and the multiplicative ε-indicator are set-quality indicators widely used53

in multiobjective optimization, both to guide algorithms and for performance assessment.54

The hypervolume is at the core of all known stricly Pareto-compliant indicators [28].55

In this paper, we introduce a new algorithm framework: HyperVolume based Incre-56

mental Single-Objective Optimization for MultiObjective Optimization (HV-ISOOMOO).57

Algorithms following this framework try to greedily maximize the hypervolume by adding58

points approximating the largest hypervolume contribution achievable by a feasible vector.59

Such points are obtained by running a single-objective solver. Relying on single-objective60

optimization is a traditional approach in multiobjective optimization, the most significant61

example being scalarization [16]. A greedy approach to finding a set of n points with a62

large hypervolume is already used in the selection part of some multiobjective optimiza-63

tion evolutionary algorithms such as SMS-EMOA [6]. The hypervolume of such discrete64

greedy approximation is proven to be at least (e − 1)/e times the one of a n-optimal65

distribution [23]. To the best of our knowledge, we provide the first continuous equivalent66

of this result.67

The HV-ISOOMOO framework shares some similarities with a recent hyperboxing68

algorithm [13]. At each meta-iteration, this hyperboxing algorithm finds a new point by69

solving the Pascoletti-Serafini scalarization problem defined by the upper corner and the70

diagonal of a box. The choice of the box relates to minimizing the ε-additive indicator.71

In contrast, HV-ISOOMOO algorithms are built to minimize the hypervolume.72

We analyze an ideal version of HV-ISOOMOO algorithms where the single-objective73

solver returns a global optimum of the single-objective subproblems. This analysis is rel-74

evant for practical HV-ISOOMOO algorithms (whose construction is left for future publi-75

cations) when the single-objective solver returns good approximations1 of global optima.76

We investigate the speed of convergence of the ideal version of HV-ISOOMOO towards77

the whole Pareto front when measuring the convergence with the hypervolume. For con-78

vex and bilipschitz Pareto fronts, we prove that the convergence speed is in O(1/nc) with79

c = 1 and c ≤ 1, respectively, with n being the number of single-objective optimization80

runs performed. For convex Pareto fronts, the convergence is exactly in Θ(1/n) as no81

biobjective algorithm can converge faster to the Pareto front [22]. Additionally, we prove82

that for simultaneously bilipschitz and smooth enough Pareto fronts doubling the number83

of points in the approximation divides the optimality gap by a factor which converges84

asymptotically to two. In the proof process, we obtain interesting intermediary results85

such as bounds on the normalized maximum hypervolume and a geometric interpretation86

of optimality conditions.87

The paper is organized as follows. In Section 2, we recall some classic concepts and88

define our assumptions. In Section 3, we introduce the HV-ISOOMOO framework to-89

gether with connected mathematical abstractions and present numerical results on its90

1Good approximations are typically unavailable when the single-objective solver does not converge
to a solution, stops too early or converges to a local optimum.
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convergence rate. In Section 4, we prove lower bounds on the so-called normalized max-91

imum hypervolume, later used to investigate convergence. In Section 5, we derive lower92

bounds on the speed of convergence of HV-ISOOMOO algorithms under the assumption93

that every single-objective subproblem is solved perfectly and a theoretical result giving94

an insight on its asymptotic convergence behavior. For readability of the proof of this95

insight, we put some intermediary results and their proofs in the Appendices A and B.96

Notations and conventions. For a, b ∈ N with a < b, we note Ja; bK the set {a, a +97

1, . . . , b−1, b}. For a vector u ∈ R2, we note u1 and u2 respectively its first and its second98

coordinate. If the vector notation already contains an index, we separate the two indices99

with a comma. For simplicity sake, we often replace the set {u} by u in the notations. We100

say that a function f : R→ R is decreasing (resp. strictly decreasing) when for all x < y,101

we have f(x) ≥ f(y) (resp. f(x) > f(y)). We only consider two-dimensional objective102

spaces and refer to the Lebesgue measure of a set as its area.103

2. Background and assumptions. In this section, we recall some classic concepts104

of multiobjective optimization and define the assumptions used in the paper.105

2.1. Biobjective optimization problems, the Pareto front and the hyper-106

volume indicator. We consider a biobjective minimization problem:107

min
X∈Ω⊂Rd

F (X)(2.1)108
109

with F : Ω ⊂ Rd → R2 : X 7→ (F1(X), F2(X)). We define two dominance relations for110

vectors in the objective space. We say that u weakly dominates v denoted by u � v if111

u1 ≤ v1 and u2 ≤ v2 and that u dominates v denoted by u ≺ v if u � v and u 6= v. A112

vector of the objective space R2 is said feasible when it belongs to F (Ω). Solving the113

optimization problem consists in finding a good approximation of the Pareto front, the114

set of non-dominated feasible vectors, {F (X) : X ∈ Ω, ∀Y ∈ Ω, F (Y ) 6� F (X)}. We115

restrict ourselves to Pareto fronts with an explicit representation:116

PFf = {(x, f(x)) : x ∈ [xmin, xmax]}(2.2)117118

with f : R 7→ R decreasing. When both objective functions have and reach finite global119

minimum values in the search space, that we denote respectively v1 and v2, we have120

xmin := v1 and xmax := minX∈Ω:F2(X)=v2 F1(X).121

We denote by umin := (xmin, f(xmin)) and umax := (xmax, f(xmax)) the extreme122

vectors of the Pareto front. Likewise, we denote by ũmin,r := (x̃min,r, f(x̃min,r)) and123

ũmax,r := (x̃max,r, f(x̃max,r)) the extremes vectors of the part of the Pareto front domi-124

nating a reference point r, with x̃min,r := max(xmin, f
−1(r2)) and x̃max,r := min(xmax, r1).125

The vector (xmax, f(xmin)) is called the nadir point. All these notations are illustrated in126

Figure 1.127

The hypervolume with respect to a reference point r of a set S of objective vectors128

is the Lebesgue measure of the region of the objective space dominated by S and strictly129

dominating the reference point r. We denote it HVr(S). When no vector of the Pareto130

front dominates the reference point r, HVr(S) = 0 for any set S of feasible points of the131

objective space. Since this particular case is not interesting, we only consider reference132

points dominated by at least one vector of the Pareto front from now on. We refer to such133

reference points as valid. When there are more than two points in the Pareto front, any134
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(F1(X2), F2(X1)) with X1 ∈ arg minX∈Ω F1 and X2 ∈ arg minX∈Ω F2 is a valid reference135

point.136

The region of the objective space weakly dominated by S and dominating r (see the137

righthand plot of Figure 1) is denoted by DrS and formally defined as:138

DrS = {w ∈ R2 : ∃u ∈ S : u � w ≺ r} .(2.3)139140

The hypervolume of a set S relative to the reference point r equals λ(DrS) with λ(.) being141

the Lebesgue measure. The set DrS is the union of the Dru for u ∈ S, Dru being the142

rectangle [u1, r1]× [u2, r2] when u dominates r and ∅ otherwise, see the righthand plot of143

Figure 1. Note that the Dru are not disjoints.144

We use the hypervolume to characterize the convergence of a set S of objective vectors145

to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge146

to the Pareto front when the hypervolume difference HVr(PFf ) − HVr(S) converges147

to 0. We define the optimality gap of S with respect to a valid reference point r as148

HVr(PFf )−HVr(S). Another quantity of interest is how much adding a vector to a set149

affects its hypervolume. The hypervolume improvement with respect to r of the vector u150

to the set S is HVIr(u, S) = HVr(S ∪{u})−HVr(S). We also use the term hypervolume151

improvement to refer to the hypervolume increase of an increasing2 sequence of sets152

(Sn)n∈N∗ at iteration n, HVr(Sn+1)−HVr(Sn).153

2.2. Decomposition of the optimality gap using gap regions. The optimality154

gap is the Lebesgue measure of the total gap region introduced below.155

Definition 2.1. The total gap region of S with respect to a fixed valid reference156

point r, GrS, is defined as the region of the objective space which dominates r and is157

weakly dominated by PFf but not by S, namely DrPFf
\ DrS.158

We introduced DrS in (2.3). Its Lebesgue measure is HVr(S).159

The concept of total gap region is strongly connected to the concept of search region160

[20]. They can both be seen as the part of the objective space which may contain feasible161

nondominated points, but only the total gap region relies on the knowledge of the Pareto162

front. The total gap region is composed of the vectors of the search region which are163

weakly dominated by the Pareto front, a condition satisfied by all feasible objective-164

vectors.165

When S is a subset of the Pareto front dominating the reference point r, the total166

gap region GrS has a particular shape which can be visualized in the rightmost plot of167

Figure 1. It can be decomposed into the disjoint union of |S| + 1 sets of the form Dr′S′168

that are formally defined below.169

Definition 2.2 (Gap regions and local nadir points). Let S = {v1, ..., vn} be a set170

of n distinct vectors of the Pareto front dominating a valid reference point r. Let σ be the171

permutation ordering the vi by increasing F1-values: vσ(1),1 < vσ(2),1 < . . . < vσ(n),1.172

• For all i ∈ J1, n+ 1K, the i-th gap region of the set S, GrS,i, is the set Dr
S
i

PFf
with173

the associated local nadir point rSi being rS1 = (vσ(1),1, r2), rSn+1 = (r1, vσ(n),2)174

and rSi = (vσ(i),1, vσ(i−1),2) for all i ∈ J2, nK.175

• We refer to GrS,1 and GrS,n+1 as the left and the right extreme gap region of S,176

respectively.177

2A sequence of set {An, n ≥ 0} is increasing if the following inclusions A0 ⊂ A1, . . . ⊂ An ⊂ . . . hold.
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Fig. 1: Illustration of notations. The extreme vectors umin and umax and the nadir point
(leftmost) ; the extreme vectors relative to the reference point r ũmin,r and ũmax,r (left) ;
three vectors u1, u2 and u3 and the regions weakly dominated by them and dominating
r, Dru1

( ) , Dru2
( ) and Dru3

( ) (right) ; the set S = {v1, v2, v3}, its four gap regions
( ) and the associated local nadir points (rightmost).

Local nadir points are also called local upper bounds [24, 20]. Gap regions are to search178

zones what total gap regions are to search regions. A gap region is composed of the179

vectors of a search zone which are weakly dominated by the Pareto front.180

The left (resp. right) extreme gap region is empty when the left (resp. right) extreme181

vector of the Pareto front belongs to S. Non-extreme gap regions are never empty.182

The total gap region of such a set S is the disjoint union of its gap regions: GrS =183

∪̇|S|+1
i=1 GrS,i. This decomposition of the total gap region, and thus of the optimality gap,184

is the cornerstone of our convergence analysis. Since the area of a gap region GrS,i is185

HVrSi
(PFf ), we can write the optimality gap of a set S as the sum of |S|+1 hypervolumes186

of the Pareto front with respect to the local nadir points.187

Lemma 2.3. Let S be a set of n distinct vectors of the Pareto front dominating a188

valid reference point r. The optimality gap of S with respect to a valid reference point r189

can be decomposed as190

HVr(PFf )−HVr(S) =

n+1∑
i=1

HVrSi
(PFf ) .(2.4)191

192

Proof. The optimality gap of S is the Lebesgue measure of the total gap region GrS ,193

which is the disjoint union of the gap regions GrS,i = Dr
S
i

PFf
. Therefore, the optimality gap194

equals
∑n+1
i=1 λ(Dr

S
i

PFf
) =

∑n+1
i=1 HVrSi

(PFf ).195

Additionally, we can express the hypervolume improvement of any vector to S as an196

hypervolume. It is a trivial assertion for vectors which do not dominate S. For other197

vectors, the reference point depends on the gap region to which the vector belongs.198

Lemma 2.4. Let S be a set of n distinct vectors of the Pareto front dominating a199

valid reference point r. For any u belonging to the i-th gap region of S, GrS,i, we have200

HVIr(u, S) = HVrSi
(u) .(2.5)201

202

Proof. The hypervolume improvement of any u ∈ GrS,i is the Lebesgue-measure of the203

intersection between GrS,i and Dru. Therefore, it is equal to λ(Dr
S
i
u ), that is HVrSi

(u).204

5
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2.3. Assumptions on the Pareto front and the objective functions. We205

present and discuss here the assumptions on the function f describing the Pareto front206

under which we derive convergence results. We typically assume that the function f is207

bilipschitz, convex or simultaneously bilipschitz and with a Hölder continuous derivative.208

Under any of these three assumptions, f is continuous. For the sake of conciseness, we209

transfer the properties of f to the Pareto front. For example, we call convex Pareto210

front a Pareto front described by a convex function. The ZDT test suite [27] contains211

two biobjective optimization problems with a convex Pareto front: ZDT1 (see Figure 2)212

and ZDT4. We recall that a function f is Hölder continuous with exponent α, namely213

C1,α, when there exists H ≥ 0 such that |f(x) − f(y)| ≤ H × |x − y|α for all x, y [17].214

We note [f ]α the minimum Hölder coefficient with respect to the exponent α of a C1,α215

function f , that is [f ]α := supx 6=y
|f(x)−f(y)|
|x−y|α . We recall that a function f is bilipschitz216

if there exists Lmin and Lmax with Lmax ≥ Lmin > 0 such that for all x, y ∈ [xmin, xmax],217

we have Lmin × |x − y| ≤ |f(x) − f(y)| ≤ Lmax × |x − y| . When needed, we detail218

the bilipschitz constants and refer to f as (Lmin,Lmax)-bilipschitz. For example, the219

problem of minimizing F1(X) = X2 and F2(X) = (X − 1)2 for X ∈ [0.1, 0.9] has a220

bilipschitz Pareto front. Its representation is the function f : x 7→ 1 − √x for x ∈221

[F1(0.1), F1(0.9)] = [0.01, 0.81], which is (Lmin,Lmax)-bilipschitz with Lmin := |f ′(0.81)| =222

0.555 . . . and Lmax := |f ′(0.01)| = 5. We also talk of affine Pareto fronts when f(x) =223

ax+ b with a < 0 and b ∈ R. As they form a line in the biobjective case, they are usually224

referred to as linear Pareto fronts. They help to understand the results we prove on the225

asymptotic convergence behavior. The biobjective optimization problem DTLZ1 of the226

DTLZ test suite [15] has an affine Pareto front. Affine Pareto fronts are a special case of227

(Lmin,Lmax)-bilipschitz Pareto fronts where Lmin = Lmax.228

We remind below sufficient conditions on the search space and on the objective func-229

tions which guarantee that f is convex and bilipschitz.230

Proposition 2.5. Given a biobjective minimization problem as in (2.1) whose Pareto231

front is described by a function f . If F1 and F2 are respectively (Lmin,1 , Lmax,1)-bilipschitz232

and (Lmin,2 , Lmax,2)-bilipschitz, then f is
Ä
Lmin,2

Lmax,1
,
Lmax,2

Lmin,1

ä
-bilipschitz. If the search space233

Ω and the objective functions F1 and F2 are convex, then f is convex.234

The proofs of this proposition can be found for instance in [22]. The conditions on F1,235

F2 and Ω are sufficient but non-necessary conditions. Indeed, adding small discontinuity in236

the objective functions far from the Pareto set makes them non-convex and non-bilipschitz237

without modifying the Pareto front.238

Representing F1 values on the absciss and F2 values on the ordinate instead of the239

converse is an arbitrary choice. When f is a bijection, if we chose to represent the F2240

values on the x-axis instead of on the y-axis, we would have another representation of241

the Pareto front : {(y, f−1(y)) : y ∈ [f(xmax); f(xmin)]}. If so, the inverse function f−1242

would play the role of f . It is interesting to notice that the choice of the objective function243

represented on the horizontal axis does not impact whether the function characterizing244

the Pareto front is bilipschitz or convex. Indeed, f being bilipschitz is equivalent to both245

f and f−1 being lipschitz. Additionally, given that the function f is decreasing, f being246

convex is equivalent to its inverse f−1 being convex.247

3. The HV-ISOOMOO framework. We introduce the HV-ISOOMOO frame-248

work. We formalize its mathematical abstraction under the assumption that every single-249
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objective subproblem is solved perfectly, the greedy set sequences. Finally, we present250

numerical results on the rate of convergence of these greedy set sequences towards the251

Pareto front.252

3.1. Presentation of the framework. The HV-ISOOMOO framework builds in-253

crementally an increasing sequence (In)n∈N∗ of sets of vectors of the objective space. The254

pseudocode of HV-ISOOMOO is given in Algorithm 3.1, where the current value of In255

is denoted by I. At each so-called meta-iteration, a single-objective maximization solver256

SOOPTIMIZER (line 2 in Algorithm 3.1) is run on the criterion X ∈ Ω ⊂ Rd 7→ J(I, X)257

and the resulting solution is added to I (line 3 in Algorithm 3.1). We use the term meta-258

iteration to separate between the (meta-)iterations of HV-ISOOMOO and the iterations259

of SOOPTIMIZER. Since the set I is composed of the final objective incumbents of previ-260

ous runs of SOOPTIMIZER and (ideally) provides an approximation of the Pareto front,261

we call it final incumbents Pareto front approximation.262

The single-objective optimization procedure may vary between meta-iterations. More263

precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in264

D (line 4 in Algorithm 3.1). This allows to alternate between various single-objective265

optimization solvers with different features, but also to adapt their initialization. This266

could be done by storing in D an iteration index and the final search space incumbents267

of SOOPTIMIZER runs.268

Algorithm 3.1 HV-ISOOMOO Framework

1: while not stopping criterion do
2: Y, d← SOOPTIMIZER(X 7→ J(I, X), D)
3: I ← I ∪ {F (Y )} # update of the approximation of the Pareto front
4: D ← D ∪ {d} # update of the data collected
5: end while

The criterion J is chosen such that its maximization is compliant with the maxi-269

mization of the hypervolume improvement with respect to a reference point r as defined270

below.271

Assumption 3.1. (Compliance to HVIr maximization) The maximization of a crite-272

rion J as in HV-ISOOMOO is compliant with the maximization of HVIr if for any set I273

of objective vectors, we have274

(3.1) argmaxX∈Rd J(I, X) = argmaxX∈Rd HVIr(F (X), I) .275

In other words, at each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible276

vector maximizing the hypervolume improvement to the final incumbents Pareto front277

approximation In. Ideally, when n goes to infinity, the non-dominated subset of (In)n∈N∗278

converges to the (entire) Pareto front, a set which maximizes the hypervolume. In a279

nutshell, HV-ISOOMOO algorithms try to approximate the Pareto front with a greedy280

approach.281

Definition 3.2. We define the convergence of an HV-ISOOMOO algorithm as the282

convergence of HVr(In) towards HVr(PFf ).283

The performance of a specific HV-ISOOMOO algorithm depends crucially on the284

choice of the criterion J . In this respect, HVIr(I, F (.)) itself is not a good candidate for285

7
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J(I, .). Indeed, it is constant equal to zero in the region dominated by I, which makes it286

difficult to optimize. A criterion whose maximization is compliant with the maximization287

of the hypervolume improvement and designed to be easier to optimize has already been288

introduced in [25] under the name uncrowded hypervolume improvement (UHVI). For289

F (X) not dominated by I, UHVIr and HVIr are equal. Otherwise, in the region where290

the hypervolume improvement is null, UHVIr is negative and equals minus the distance291

to the empirical non-dominated front of the set I relative to r. It is easy to see that292

UHVIr satisfies (3.1).293

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-294

ISOOMOO algorithm. In this paper, we analyze the HV-ISOOMOO framework under295

the assumption of perfect single-objective optimization formalized below.296

Assumption 3.3 (Perfect single-objective optimization). At every meta-iteration n,297

for any final incumbents Pareto front approximation In, the run of SOOPTIMIZER (line 2298

in Algorithm 3.1) returns Y ∈ argmaxX∈Ω J(In, F (X)).299

The assumption of perfect single-objective optimization is reminiscent of the assump-300

tion of perfect line search which is common in the analysis of gradient based methods [14].301

Under this assumption, all choices of criterions verifying Assumption 3.1 are equivalent.302

Convergence results under perfect conditions are useful to investigate the convergence303

(speed) we can expect with a given framework and in turn guide the construction of304

practical algorithms. A good theoretical convergence speed suggests that an approach is305

worth exploring while an unexplained gap between practical and ideal convergence speeds306

suggests that there is room for improvement. In our case, convergence rates under perfect307

conditions also give us an idea of what the convergence rates with respect to meta-308

iterations of practical HV-ISOOMOO algorithms will look like when SOOPTIMIZER309

returns good approximations of global optima.310

3.2. Greedy sets and greedy set sequences. We introduce below mathematical311

abstractions of the HV-ISOOMOO framework under Assumption 3.3 of perfect single-312

objective optimization, greedy sequences and greedy set sequences.313

Definition 3.4 (Greedy sequence and greedy set sequence). Given a valid reference314

point r, we define as greedy sequence relative to r, a sequence (vn)n∈N∗ satisfying315

v1 ∈ arg max
v∈F (Ω)

HVr(v) and(3.2)316

vn+1 ∈ arg max
v∈F (Ω)

HVr({v1, · · · , vn, v}) for all n ≥ 1 .(3.3)317
318

The greedy set sequence (Sn)n∈N∗ associated to the greedy sequence (vn)n∈N∗ is composed319

of the greedy sets Sn := {vk, k ≤ n}.320

When considering a greedy set Sn, we denote the i-th gap region and the associated local321

nadir point defined in Definition 2.2 by Gni and rni , respectively.322

There is a bijection between greedy sequences and greedy set sequences. The n-th323

element of the greedy sequence (vn)n∈N∗ associated to a greedy set sequence (Sn)n∈N∗ is324

simply the unique element of Sn \ Sn−1 if n > 1 and of S1 if n = 1.325

The recurrence relation of the greedy sequence (3.3) is equivalent to vn+1 belonging326

to arg maxv∈F (Ω) HVIr(v,Sn) for all n ≥ 1. It is immediate to see that under Assump-327

tion 3.3, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence328

while the final incumbents Pareto front approximations form the associated greedy set329
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sequence (In)n∈N∗ . The indices n of both sequences correspond to HV-ISOOMOO meta-330

iterations. In this paper, we derive convergence results for greedy set sequences, which331

transfer to HV-ISOOMOO under Assumption 3.3.332

Since the hypervolume indicator associated to a valid reference point is strictly Pareto-333

compliant (see [21]), this sequence is composed of vectors of the Pareto front.334

Proposition 3.5. If the Pareto front is described by a lower semi-continuous func-335

tion f , then any vector of a greedy sequence relative to a valid reference point r belongs to336

the Pareto front. Consequently, for such Pareto front and reference point and under As-337

sumption 3.3, all final incumbents Pareto front approximations In of an HV-ISOOMOO338

algorithm relative to r are subsets of the Pareto front.339

Proof. Since for any valid reference point r, HVr(.) is strictly Pareto-compliant [21],340

its maximum and the maximum of every function of the form v 7→ HVr(S ∪ {v}) are341

non-dominated and belong to the Pareto front. Thus, in particular, a vector v verifying342

either (3.2) or (3.3) belongs to the Pareto front.343

We can express the hypervolume improvement of a greedy set sequence at iteration344

n + 1, HVr(Sn+1) − HVr(Sn), as the maximum of n + 1 hypervolume maximization345

problems.346

Lemma 3.6. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point347

r. The hypervolume improvement of (Sn)n∈N∗ at iteration n+ 1 equals348

HVr(Sn+1)−HVr(Sn) = max
i∈J1,n+1K

max
u∈PFf

HVrni
(u) .(3.4)349

350

Proof. The hypervolume improvement HVr(Sn+1) − HVr(Sn) is the hypervolume351

improvement of vn+1 to Sn, namely the highest hypervolume improvement of a vector352

u ∈ PFf to Sn by (3.3) and Proposition 3.5. We can reformulate the hypervolume353

improvement of any vector u to Sn as maxi∈J1,n+1K HVrni
(u) by Lemma 2.4 since gap354

regions are disjoints and HVrni
(.) is null outside the i-th gap region of Sn.355

Similarly, the problem of maximizing the hypervolume improvement to a greedy set356

Sn can be rewritten as the maximum of a finite number of hypervolume maximization357

problems.358

Lemma 3.7. At any iteration n, the recurrence relation satisfied by vn+1, i.e. (3.3),359

can be reformulated as360

vn+1 ∈ arg max
i∈J1,n+1K

max
u∈PFf

HVrni
(u) .(3.5)361

362

Proof. It is a direct consequence of the fact that the hypervolume improvement of363

any vector u to Sn is maxi∈J1,n+1K HVrni
(u), as stated in the proof of Lemma 3.6, and364

that vn+1 ∈ PFf by Proposition 3.5.365

As a consequence, we can infer from [4, Theorem 1] that as soon as the Pareto front366

is lower semi-continuous, there exists a greedy sequence, and thus a greedy set sequence.367

Proposition 3.8. If the Pareto front is described by a lower semi-continuous func-368

tion f , then there exists a greedy sequence (vn)n∈N∗ relative to any valid reference point.369

Proof. If f is lower semi-continuous, then for any valid reference point r, the maxi-370

mum of HVr(.) exists, see [4, Theorem 1]. Therefore, there exists a vector verifying (3.2)371
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and the problem of maximizing the maximum of a finite number of hypervolume functions372

defined in (3.5) admits a solution. Since (3.3) and (3.5) are equivalent by Lemma 3.7, we373

can build a sequence (vn)n∈N∗ verifying (3.2) and (3.3), namely a greedy sequence.374

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.375

For example, there are infinitely many greedy sequences associated to any affine Pareto376

front with a reference point dominating the nadir point. This statement relies on the fact377

that the unique maximizer of the hypervolume relative to a reference point r dominating378

the nadir point is the middle of the section of the Pareto front dominating r, see [3,379

Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r380

is the only candidate for v1 but v2 can be either at 1/4 or at 3/4 of this section. Similarly,381

v3 has to be in the position where v2 is not but v4 can be at 1/8, 3/8, 5/8 or 7/8 of the382

section of the Pareto front dominating r. For any n, we can find an iteration m such383

that vm can be placed at 2n different points, whatever the m−1 first terms of the greedy384

sequence are.385

3.3. Numerical results. In this section, we investigate empirically the convergence386

rate of HV-ISOOMOO algorithms with respect to meta-iterations on seven benchmark387

Pareto fronts (see Figure 2). We try to be as close as possible to the Assumption 3.3 of388

perfect single-objective optimization. We iteratively find a vector of the Pareto front that389

we estimate close to a global optimum of the single-objective optimization subproblem of390

maximizing the hypervolume improvement to the vectors found so far. More precisely,391

we estimate that this vector differs from a global optimum by less than 10−12 (measured392

in terms of objective function values). We assimilate these vectors to greedy vectors in393

the following.394

We consider the six concrete Pareto fronts with an explicit representation: {(x, f(x)) :395

x ∈ [0, 1]} considered in [22], plus an affine Pareto front (see Figure 2). The Pareto fronts396

zdt1, zdt2 and dtlz2 belong to the ZDT and DTLZ test suites [27, 15]. Four of the397

Pareto fronts examined are convex (affine, convex-bil, doublesphere and zdt1), while398

three are bilipschitz (affine, convex-bil and concave-bil). Two are neither convex399

nor bilipschitz (dtlz2 and zdt2), and thus do not belong to the class of Pareto fronts400

investigated theoretically in this paper. We take the nadir point (1, 1) as reference point.401

F1

F2
r

(a)

F1

F2
r

(b)

F1

F2
r

(c)

F1

F2
r

(d)

F1

F2
r

(e)

F1

F2
r

(f)

F1

F2
r

(g)

Fig. 2: The benchmark Pareto fronts and their representations (a): affine with f :
x 7→ 1 − x, (b): convex-bil with f : x 7→ e

e−1 × e−x + 1 − e
e−1 , (c): doublesphere

with f : x 7→ 1 + x − 2 × √x, (d): zdt1 with f : x 7→ 1 − √x, (e): concave-bil
with f : x 7→ 1 − 0.5x − 0.5x2, (f): dtlz2 with f : x 7→

√
1− x2 and (g): zdt2 with

f : x 7→ 1− x2 for x ∈ [0, 1]. The reference point is r = (1, 1).

402

Greedy vectors are defined as the true solutions of single-objective problems involving403
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the objective functions F1 and F2 in the search-space Ω ⊂ Rd. In order to compute an404

approximation of the greedy vectors, we exploit the explicit representation f of the Pareto405

front. Any greedy vector vn belongs to the Pareto front (see Proposition 3.5), and thus is406

of the form (vn,1, f(vn,1)). We compute (an approximation of) vn,1 by solving numerically407

the one-dimensional optimization problems defined in (3.7) and (3.8).408

For all n, let note σn the permutation of J1, nK which orders the vectors of Sn by409

increasing F1-values and the so-called ordered greedy set F1-values:410

wni,r := vσn(i),1 for i ∈ J1, nK, wn0,r := x̃min,r and wnn+1,r := x̃max,r .(3.6)411412

The following single-objective optimization problems413

v1,1 ∈ arg max
x∈[0,1]

HVr((x, f(x)))(3.7)414

vn+1,1 ∈ arg max
i∈J1,n+1K

max
x∈[wn1,r,w

n
n+1,r]

HVwnn+1,r,f(wn1,r)((x, f(x)))(3.8)415

416

are solved using the SLSQP version implemented in the python module scipy.optimize417

with the stopping criterions being set to ftol:1e-13 and maxiter:1000. For each418

problem, we run the solver SLSQP three times starting it uniformly at random in the419

search interval. We ensured that the objective functions optimized did not differ by420

more than 10−12 between the runs. The source code is available at https://github.com/421

eugeniemarescaux/hypervolume-greedy-sequences.422

100 101 102 103

meta-iteration n

10−3

10−2

10−1

(a) The optimality gap of Sn
and 1/2n (the dashed line) for
n up to 1000.

100 101 102 103

meta-iteration n

10−3

10−2

10−1

(b) The optimality gap of Sn
and of a n-optimal distri-

bution for n up to 1000 for
the affine Pareto front.

100 101 102 103

meta-iteration n

1.0

1.1

1.2

(c) The optimality gap of Sn
normalized by the optimality
gap of a n-optimal distribution
for n up to 1000.

Fig. 3: Numerical speed of convergence of the greedy set sequence (Sn)n∈N∗ towards the
Pareto front and comparison with the one of a n-optimal distribution, for r = (1, 1).
In (a) and (b), all benchmark Pareto fronts are examined: affine , convex-bil ,
doublesphere , zdt1 , concave-bil , zdt2 and dtlz2 .

In Figure 3a, we display the optimality gap of Sn with respect to the meta-iteration423

n for all benchmark Pareto fronts. We rely on the analytical expression of the Pareto424

front PFf to compute its hypervolume and the optimality gap. We observe very similar425

convergence rates for all benchmark Pareto fronts. They are all close to the (1/(2n))n∈N426

line in the log-log scale. It is compliant with theory for the affine Pareto front. Indeed,427

let define the sequence of indices (nk)k∈N such that n0 = 1 and nk+1 = 2nk + 1. For428
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an affine Pareto front and the nadir chosen as reference point, there is a unique greedy429

set Snk , which consists of objective-vectors regularly distributed on the Pareto front and430

is equal to the nk-th optimal distribution. A direct consequence is that for any such431

nk, the optimality gaps of Snk and of the nk-th optimal distribution are equal. For the432

affine Pareto front and r = (1, 1), the optimality gap of the n-th optimal distribution is433

1/(2n+ 2) [3, Theorem 5].434

Our underlying assumption of perfect single-objective optimization is theoretical and435

cannot be verified by a real solver. For HV-ISOOMOO algorithms coupled with a real436

single-objective optimization solver SOOPTIMIZER, we can still display convergence437

graphs with respect to meta-iterations as in Figure 3a. We can also display convergence438

graphs with respect to cumulated SOOPTIMIZER iterations.439

In Figures 3b and 3c, we compare the optimality gap of Sn with the smallest opti-440

mality gaps achievable by a set of n points. These are the optimality gaps of n-optimal441

distributions [3], the sets of n objective vectors with the highest hypervolume achievable442

by a set of this cardinal. We reuse the optimality gaps of n-optimal distributions which443

were computed for [22], for n = 1, 2, 3, 5, 6, 7, 10, 12, 15, 19, 25, 31, 39, 50, 63, 79,444

100, 125, 158, 199, 251, 316, 398, 501, 630, 794 and 1000. The details of the computation445

method can be found in [22, Section 5.2].446

In Figure 3b, we display the optimality gap of Sn with respect to the meta-iteration n447

for the affine Pareto front only, along with the optimality gap of n-optimal distributions.448

The curve of the optimality gap of the greedy set sequence (Sn)n∈N∗ follows the one of449

the n-optimal distribution, moving away and getting closer periodically. This is what we450

would expect theoretically, as detailed above.451

In Figure 3c, we display the relation between the optimality gap of Sn and of n-452

optimal distributions for all benchmark Pareto fronts. We see similar fluctuations as453

for the affine Pareto front, with the same periodicity. At the bottom of the curve, the454

optimality gap of Sn is only a few percent larger than the one of a n-optimal distribution.455

In the worst case, that is for doublesphere Pareto front and for n = 2, the optimality456

gap of Sn is only 23% larger than the one of a n-optimal distribution. For n ≥ 10, what457

is lost in proportion by taking Sn instead of a n-optimal distribution is always smaller458

than for the affine Pareto front for the displayed value of n. We conjecture that it is true459

for all 10 ≤ n ≤ 1000. The affine curve stops reaching regularly the value 1, in contrast460

to what is known theoretically. It is explained by the discretization in n.461

4. Lower bounds on the normalized maximum hypervolume. In this section,462

we provide bounds on the maximum hypervolume achievable by a single feasible vector463

normalized by the maximum hypervolume of a feasible set:
maxu∈PFf

HVr(u)

HVr(PFf ) . We refer464

to this ratio as the normalized maximum hypervolume with respect to r. Bounds on the465

normalized maximum hypervolume are exploited in Section 5 to provide bounds on the466

speed of convergence of greedy set sequences towards the Pareto front.467

4.1. Lower bound on the normalized maximum hypervolume for convex468

Pareto fronts. The hypervolume relative to a reference point r of a vector u = (x, f(x))469

of the Pareto front is HVr(u) = (r1 − x) × (r2 − f(x)). From this simple formula, we470

derive in the next proposition necessary conditions for a vector of the Pareto front to be471

an hypervolume maximizer when f has at least left and right derivatives in x∗.472

Proposition 4.1. Let x∗ ∈]xmin, xmax[ such that u∗ := (x∗, f(x∗)) maximizes the473
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hypervolume with respect to a valid reference point r. If the function f describing the474

Pareto front admits left and right derivatives in x∗, respectively f ′−(x∗) and f ′+(x∗), then475

−f ′+(x∗) ≤ r2 − f(x∗)

r1 − x∗
≤ −f ′−(x∗) .(4.1)476

477

Proof. We define the function HVx,r(.) as x 7→ HVr((x, f(x))). If x∗ maximizes478

HVx,r(.), then the left and the right derivatives of HVx,r(.) are positive and negative,479

respectively. By replacing the left and right derivatives of HVx,r(.) by their explicit480

formulas and reorganizing the terms we obtain (4.1).481

Equation (4.1) states that the slope of the diagonal of the rectangle Dru∗ is between the482

absolute values of the slopes of the right and the left derivatives of f at x∗ (see the middle483

plot of Figure 4). To the best of our knowledge, this geometric interpretation is new. It484

becomes simpler when f is differentiable. Then, the absolute value of the slope of the485

tangent of the front at a non-extreme vector u∗ is equal to the slope of the diagonal of486

the rectangle Dru∗ (see the lefthand plot of Figure 4).487

u∗

Dru∗

F1

F2 r

u∗

Dru∗

L1

L2l1

l2

F1

F2 r

ε

ε

u∗ε

F1

F2 r

0 1

1

Fig. 4: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers u∗, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PFg and the diagonal of Dru∗ , are equal. Right: The Pareto
front PFε and the hypervolume maximizer u∗ε for ε = 1/3 and r = (1, 1).

Corollary 4.2. Let x∗ ∈]xmin, xmax[ be such that u∗ := (x∗, f(x∗)) maximizes the488

hypervolume with respect to a valid reference point r. If the Pareto front is described by489

a differentiable function f in x∗, then f ′(x∗) satisfies490

−f ′(x∗) =
r2 − f(x∗)

r1 − x∗
.(4.2)491

492

Proof. It is a direct consequence of Proposition 4.1493

A convex function may not be differentiable, but it always has left and right de-494

rivatives. It is also above its left and right tangent lines respectively on the left and495

on the right of x∗. Therefore, Proposition 4.1 implies that the affine function g : x 7→496

f(x∗) − r2−f(x∗)
r1−x∗ × (x − x∗) is a minorant of f . This is the key idea of the proof of the497

following lower bound on the normalized maximum hypervolume.498

Proposition 4.3. If the Pareto front is described by a convex function f , then the499

following lower bound on the normalized maximum hypervolume with respect to any valid500
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reference point r holds:501

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
(4.3)502

503

where the inequality is an equality if and only if the Pareto front is affine and r dominates504

the nadir point.505

Proof. As explained in the above paragraph, the convexity of f implies that the506

affine function g : x 7→ f(x∗) − r2−f(x∗)
r1−x∗ × (x − x∗) is a minorant of f . Therefore,507

PFg := {g(x) : x ∈ [xmin, xmax]} dominates PFf , and thus has a higher hypervolume.508

We denote L1 := r1 − x̃min,r and L2 := r2 − f(x̃max,r) the lengths of the rectangle509

R := [x̃min,r, r1]× [f(x̃max,r), r2]. We denote l1 := r1−x∗ and l2 := r2−f(x∗) the lengths510

of the rectangle Dru∗ . The region of R which dominates PFg is a right-angled triangle.511

Additionally, by definition, the slope of its hypotenuse is l2/l1, and thus the lengths of512

the other sides are L1 − l1 + (L2 − l2) × l1
l2

and L2 − l2 + (L1 − l1) × l2
l1

(see the middle513

plot of Figure 4). Therefore, we have514

HVr(PFg) = λ(R)− λ({u ∈ R2 : u ∈ R, u � PFg})515

= L1L2 −
1

2
× (L1 − l1 + (L2 − l2)× l1

l2
)× (L2 − l2 + (L1 − l1)× l2

l1
)516

= l1l2 ×
[
− 2 + 2× L2

l2
− 1

2
×
(L2

l2

)2

+ 2× L1

l1
− 1

2
×
(L1

l1

)2]
.517

518

For all x, we have (x− 2)2 ≥ 0 and thus 2x− 1
2x

2 ≤ 2. Therefore, we can conclude that519

HVr(PFg), and thus HVr(PFf ) is smaller than 2 × l1l2, that is 2 × HVr(u
∗). If either520

L1/l1 6= 2 or L2/l2 6= 2, the inequality is strict. Thus, when the inequality is an equality,521

the center of R belongs to the Pareto front. Since f is convex, it happens only when f is522

affine and the reference point r dominates the nadir point. Conversely, if both conditions523

are met, we know that the optimum is in the middle of the Pareto front and that we have524

the equality (see [3, Theorem 5]).525

We just proved that one half is a tight lower bound on the normalized maximum526

hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,527

there is no upper bound valid for every convex Pareto front, even when r dominates the528

nadir point. Let consider the Pareto fronts PFε := {max(1 − x
ε , ε − ε × x) : x ∈ [0, 1]}529

(represented in the righthand plot of Figure 4 for ε = 1
3 ). The normalized maximum530

hypervolume of PFε for the reference point r = (1, 1) converges to 1 when ε goes to 0.3531

4.2. Lower and upper bounds on the normalized maximum hypervolume532

for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on533

the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.534

We consider two affine fronts with the same left extreme vector as PFf and slopes535

−Lmin and −Lmax, see the lefthand plot of Figure 5. We call them PFmin and PFmax,536

respectively. Formally:537

PFmax := {(x, fmax(x)) : x ∈ [xmin, xmax]} and(4.4)538

PFmin := {(x, fmin(x) : x ∈ [xmin, xmax]}(4.5)539540

3The normalized hypervolume equals
(1−ε+ε2)2

1−ε×(1−ε)2+(ε−ε2)2 which converges to 0 when ε goes to 0.
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with fmin(x) = f(xmin) − (x − xmin) × Lmin and fmax(x) = f(xmin) − (x − xmin) ×541

Lmax. For a (Lmin,Lmax)-bilipschitz function f , fmax(x) ≤ f(x) ≤ fmin(x) for all x ∈542

[xmin, xmax], and thus the Pareto front is dominated by PFmax and dominates PFmin.543

These two affine fronts provide bounds on both the hypervolume of the Pareto front

Lmax ×∆1

Lmin ×∆1

∆1

∆2

∆′1

F1

F2 r

F1

F2 r

1

1

Fig. 5: Left : The Pareto front PFf surrounded by PFmax (below) and PFmin (above).
Right : An illustration that HVr(umin)−HVr(PFf ) ( ) becomes negligible compared to
HVr(umin) ( ) for r1 = 1 and r2 →∞.

544

and the largest hypervolume of a vector of the Pareto front. They are key to prove545

the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-546

bilipschitz Pareto front.547

Proposition 4.4. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-548

tion f , then for any valid reference point r, we have549

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
× Lmin

Lmax
.(4.6)550

551

Proof. The fronts PFmax and PFmin are defined respectively in (4.4) and (4.5). We552

note ∆1 := x̃max,r − x̃min,r, ∆′1 := r1 − x̃max,r, ∆2 := r2 − f(x̃min,r) and V := ∆2 × (r1 −553

x̃min,r), see the lefthand plot of Figure 5. Since the front PFmax dominates the Pareto554

front, the hypervolume of PFf is smaller than the hypervolume of PFmax, V + Lmax ×555

∆1 ×∆′1 + 1
2 × Lmax ×∆2

1. Additionally, since each vector of PFmin is dominated by a556

vector of PFf , the maximum hypervolume of a vector of PFf is larger than the maximum557

hypervolume of a vector of PFmin. The front PFmin being an affine and therefore convex558

front, we know by Proposition 4.3 that the maximum hypervolume of a vector of PFmin is559

larger than half of HVr(PFmin), which is equal to 1
2×(V +Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1) .560

To summarize, the maximum hypervolume of a vector of PFf is larger than 1
2×(V +Lmin×561

∆1×∆′1+ 1
2×Lmin×∆2

1). Combining the upper bound on the hypervolume of PFf and the562

lower bound on the maximum hypervolume of a vector of PFf , the normalized maximum563

hypervolume is larger than
1
2×(V+Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1)

V+Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. This quantity is itself larger564

than 1
2 ×

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. As V ≥ 0 and 0 <

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
< 1, we565

conclude that the normalized maximum hypervolume is larger than 1
2 × Lmin

Lmax
.566

We cannot guarantee any upper bound strictly smaller than 1 on the normalized maximum567

hypervolume without adding an assumption on the reference point. Indeed, for a given568
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bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes569

to 1 for r1 = xmax and r2 → ∞ (see the righthand plot of Figure 5). However, if f is570

(Lmin,Lmax)-bilipschitz and r dominates the nadir point, we can prove that the normalized571

maximum hypervolume is larger than 1
2 × Lmax

Lmin
. The proof relies on the fact that if the572

reference point r dominates the nadir point, the vector of an affine front with the largest573

hypervolume relative to r is its middle (see [3, Theorem 5]), whose hypervolume is half574

of the hypervolume of the entire Pareto front.575

Proposition 4.5. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-576

tion f and the reference point r is valid and dominates the nadir point, the following577

upper-bound on the normalized maximum hypervolume with respect to r holds578

maxu∈PFf HVr(u)

HVr(PFf )
≤ 1

2
× Lmax

Lmin
.(4.7)579

580

Proof. We use the same notations as in the proof of Proposition 4.4. Since r dominates581

the nadir point, both ∆′1, ∆2 and V equal 0, and thus the hypervolumes of PFmax582

and PFmin equal 1
2 × Lmax × ∆2

1 and 1
2 × Lmin × ∆2

1, respectively. The domination of583

PFmin by PFf implies that the hypervolume of the Pareto front is below 1
2 × Lmin ×584

∆2
1. Since PFmax is an affine front whose extremes dominate r, its middle is the unique585

hypervolume maximizer (see [2, Theorem 5]) with an hypervolume equal to 1
4 × Lmax ×586

∆1.The domination of PFf by PFmax implies that the maximum hypervolume of a vector587

of PFf is larger than 1
4 × Lmax ×∆2

1. Gathering the lower bound on HVr(PFf ) and the588

upper bound on the maximum hypervolume of a vector of PFf , we retrieve (4.7).589

This upper bound is only relevant for Lmax/Lmin < 2 and is the tightest for Lmax = Lmin,590

where it achieves the value 1/2. In this paper, we use this upper bound for Lmax/Lmin591

close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.592

5. Convergence of HV-ISOOMOO coupled with perfect single-objective593

optimization. We prove in this section various convergence results for HV-ISOOMOO594

algorithms coupled with perfect single-objective optimization. We first prove that when595

the Pareto front is either convex or bilipschitz, these algorithms converge to the entire596

Pareto front. We transform the bounds on the normalized maximum hypervolume proven597

in Section 4 into lower bounds on the speed of convergence. Then, we analyze the asymp-598

totic convergence behavior when the Pareto front is bilipschitz with a Hölder continuous599

derivative.600

To analyze the decrease of the optimality gap with n, we track in which gap regions601

the vectors of the greedy sequence are inserted over multiple iterations. Naturally, a gap602

region of Sn persists in being a gap region as long as no greedy vector is added in this603

specific gap region. The greedy vector vn+1 is said to fill the gap region of Sn to which it604

belongs. At iteration n+ 1, this gap region disappears, replaced by two gap regions that605

we call its children. More generally, we say that a gap region is a descendant of another606

gap region when it is a proper subset of this gap region.607

5.1. Convergence of HV-ISOOMOO with guaranteed speed of conver-608

gence. We prove some upper bounds on the relation between the optimality gap at609

iteration 2n + 1 and at iteration n. These bounds translate into lower bounds on the610

speed of convergence of HV-ISOOMOO under Assumption 3.3 of perfect single-objective611
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optimization. The proof relies on inequalities of the form612

max
u∈PFf

HVr′(u) ≥ C ×HVr′(PFf )(5.1)613
614

stated in Propositions 4.3 and 4.4 and equations regarding optimality gaps, areas of gap615

regions and hypervolume improvement presented in Subsection 2.2. A consequence of616

(5.1) being true for any reference point r′ is that the optimality gap at iteration 2n + 1617

is at most (1− C) times the optimality gap at iteration n.618

We sketch the proof idea in the simple case where each of the vk (k ∈ Jn+ 1, 2n+ 1K)619

is inserted in a distinct gap region of Sn, see the lefthand plot of Figure 6. Inserting vk in620

a gap region leads to an hypervolume improvement larger than C times the area of this621

gap region by (5.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is622

larger than C times the area of the union of all gap regions of Sn, namely the optimality623

gap at iteration n. A detailed proof is presented after the theorem statement.

v4

v5

v6

v7

v1

v2

v3

r3
1

r3
2

r3
3

r3
4

F1

F2 r

F1

F2 r

v1

v2

v3

w3
1,rw3

2,r w3
3,rw

3
4,r

w3
0,r

x̃min,r

x̃max,r

Fig. 6: Left: A Pareto front where each of the gap regions of S3 is filled by one of
the greedy vectors vk for k ∈ J4, 7K. The front is described by f(x) = 1 − √x for
x ∈ [0, 1]. We represent the region DrS3 ( ) , the gap regions of S3 ( ) and the regions
corresponding to HVIr(vk,Sk−1) for k ∈ J4, 7K ( ). Right: The ordered greedy set
F1-values wni,r corresponding to the greedy set S3. The Pareto front is described by
f(x) = e

e−1 × e−x + 1− e
e−1 for x ∈ [0, 1].

624

Proposition 5.1. Consider a biobjective optimization problem with a Pareto front625

described by a function f . Any greedy set sequence (Sn)n∈N∗ relative to a valid reference626

point r satisfies for all n627

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1− 1

2
× Lmin

Lmax
if f is (Lmin,Lmax)-bilipschitz and(5.2)628

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1

2
if f is convex.(5.3)629

630

Proof. Fix n ≥ 1. We note σ a permutation of J1, n + 1K such that n + σ(i) is the631

index of the first greedy vector vk inserted in GrSn,i when possible. With this choice of σ,632

the i-th gap region of Sn is a gap region of Sn+σ(i)−1. As a consequence, the hypervolume633

improvement to Sn+σ(i)−1 of any vector u belonging to the i-th gap region of Sn, GrSn,i,634

is equal to HVrni
(u) by Lemma 2.4. The hypervolume improvement of the greedy vector635
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vn+σ(i) to Sn+σ(i)−1 being maximal, it is in particular larger than the one of any vector636

of GrSn,i and thus than 1
2 × Lmin

Lmax
× HVrni

(PFf ) by Proposition 4.4. In other words, the637

hypervolume improvement at any iteration n+σ(i) is larger than 1
2 × Lmin

Lmax
×HVrni

(PFf ).638

By adding these inequations for all i ∈ J1, n + 1K, we deduce that the hypervolume639

improvement from iteration n to 2n + 1 is larger than 1
2 × Lmin

Lmax
×∑n+1

i=1 HVrni
(PFf ).640

Since the sum of the HVrni
(PFf ) is the optimality gap at iteration n, we have (5.2). If641

f is convex instead of bilipschitz, we use Proposition 4.3 instead of Proposition 4.4 and642

obtain (5.3).643

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation644

between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimal-645

ity gap associated to a greedy set sequence converges asymptotically to 0. Equivalently,646

sets constructed by HV-ISOOMOO algorithms coupled with perfect single-objective op-647

timization converge to the entire Pareto front as stated formally below.648

Theorem 5.2. Consider a biobjective optimization problem with a Pareto front de-649

scribed by a bilipschitz or convex function f .650

The hypervolume of a greedy set sequence relative to a valid reference point r converges651

to the hypervolume of the entire Pareto front, i.e. HVr(Sn) −−−−→
n→∞

HVr(PFf ).652

Equivalently, for such Pareto fronts and under Assumption 3.3 of perfect single-653

objective optimization, HV-ISOOMOO algorithms relative to a valid reference point r654

converge in the sense of Definition 3.2.655

From the lower bounds on the relation between the optimality gaps at iteration 2n + 1656

and at iteration n, we deduce the following upper bounds on the normalized optimality657

gap at any iteration.658

Corollary 5.3. Consider a biobjective optimization problem with a Pareto front659

described by a (Lmin,Lmax)-bilipschitz function. A greedy set sequence (Sn)n∈N∗ relative660

to a valid reference point r satisfies for all n661

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(

1− 1

2
× Lmin

Lmax

)blog2(n+1)c
≤ (2n+ 2)log2(1− 1

2×
Lmin
Lmax

) .(5.4)662
663

If the function f is convex, then any greedy set sequence relative to a valid reference point664

r satisfies for all n665

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(1

2

)blog2(n+1)c
≤ 1

2n+ 2
.(5.5)666

667

Hence, for such reference points and under Assumption 3.3 of perfect single-objective668

optimization, HV-ISOOMOO algorithms relative to r satisfy (5.4) if f is (Lmin,Lmax)-669

bilipschitz and (5.5) if f is convex where Sn is replaced by In, the final incumbents Pareto670

front approximation at iteration n.671

Proof. The k-th term of the sequence defined by u0 = 1 and un+1 = 2 × un + 1 for672

all n ≥ 1 is 2k − 1. Thus, (5.2) and (5.3) imply that when f is (Lmin,Lmax)-bilipschitz or673

convex, the normalized optimality gap at iteration 2k− 1 is smaller than (1−C)k with C674

equal to 1
2 × Lmin

Lmax
and 1

2 , respectively. Since the hypervolume of the greedy set increases675

with n, and thus the optimality gap decreases with n, we deduce the first inequalities in676

(5.4) and (5.5) via the change of variable k = blog2(n+ 1)c.677
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Additionally, for every n, blog2(n+1)c is smaller than log2(n+1)+1, that is log2(2n+678

2). For every C, log2(2n+ 2) equals logC(2n+ 2)× log2(C), and thus C log2(2n+2) equals679

(2n + 2)log2(C). Therefore, we can infer that (2n + 2)log2(C) is an upper bound of the680

normalized optimality gap with C = 1 − 1
2 × Lmin

Lmax
and C = 1

2 when f is (Lmin,Lmax)-681

bilipschitz and convex, respectively.682

We focused on the relation between the optimality gap at iteration n and at iteration683

2n+ 1. We can similarly examine the relation between the optimality gap at iteration n684

and at any later iteration.685

Lemma 5.4. If f is (Lmin,Lmax)-bilipschitz (resp. convex), then for all n, for all686

k ≤ n + 1,
HVr(PFf )−HVr(Sn+k)
HVr(PFf )−HVr(Sn) is smaller than 1 − 1/2 × Lmin/Lmax × k/(n + 1) (resp.687

1− 1/2× k/(n+ 1)).688

Proof. Consider the k gap regions of Sn with the largest areas. If f is (Lmin,Lmax)-689

bilipschitz (resp. convex), the hypervolume improvement from iteration n to n + k is at690

least 1/2×Lmin/Lmax (resp. 1/2) times the area of the union of these gap regions, which691

is at least k
n+1 times the optimality gap at iteration n.692

Yet, the previous lemma leads to looser lower bounds on the convergence rate. To illus-693

trate this, we detail the case k = 1 in the following lemma.694

Lemma 5.5. From the relation between optimality gaps at one iteration and the next695

one given in Lemma 5.4, we deduce lower bounds on the relation between the optimality696

gaps at iteration n and at iteration 2n+1 of 1/
√
e ≈ 0.61 and e−1/2×Lmin/Lmax for convex697

and (Lmin,Lmax)-bilipschitz Pareto fronts, respectively.698

Proof. By Lemma 5.4, the relation between the optimality gap at iteration n and699

at iteration n + 1 is smaller than 1 − C/(n + 1) for convex and (Lmin,Lmax)-bilipschitz700

Pareto fronts with C = 1/2 and C = 1/2×Lmin/Lmax , respectively. By recurrence, this701

implies that the relation between the optimality gap at iteration n and at iteration 2n+1702

is smaller than (1−C × 1
n+1 )n+1. The sequence of lower bounds

(
(1−C × 1

n+1 )n+1
)
n∈N703

is increasing and converges towards e−C . This is a direct consequence of classic results704

on the sequence ((1− 1/n)n)n∈N.705

These lower bounds are smaller than the lower bounds of Proposition 5.1: 1/
√
e ≥ 0.5706

while e−1/2×Lmin/Lmax ≥ 1− 1/2× Lmin/Lmax.707

5.2. Asymptotical behavior of the convergence of HVr(Sn) to HVr(PFf ).708

In this section, we analyze the asymptotic convergence behavior for a Pareto front de-709

scribed by a bilipschitz function with a Hölder continuous derivative. We prove that, in710

this case, doubling the number of vectors in the greedy set divides the optimality gap by a711

factor which converges asymptotically to two as stated in Theorem 5.12. This asymptotic712

limit corresponds to the case of affine Pareto fronts with a reference point dominating713

the nadir point. For such Pareto fronts and reference points, the optimality gap is always714

halved when the number of vectors in the greedy set goes from n to 2n+ 1, see Figure 7.715

First, we study the properties of the part of the Pareto front corresponding to a716

specific gap region of Sn. We introduced the ordered greedy set F1-values in (3.6).717

Naturally, we have wn0,r ≤ wn1,r ≤ . . . ≤ wnn+1,r, and the intervals [wni−1,r, w
n
i,r[ for i ∈718

J1, n + 1K form a partition of [x̃min,r, x̃max,r[, see the righthand plot of Figure 6. The719

interval [wni−1,r, w
n
i,r] corresponds to the part of the Pareto front belonging to the i-th gap720

region of Sn. When the Pareto front is bilipschitz, the lengths of these intervals converge721
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asymptotically to 0 as stated in the next lemma. This result is a direct consequence of722

the convergence of HVr(Sn) to HVr(PFf ) stated in Theorem 5.2.723

Lemma 5.6. If the Pareto front is described by a bilipschitz function f and the greedy724

set sequence is associated to a valid reference point r, then the ordered greedy set F1-values725

satisfy maxi∈J1,n+1K w
n
i,r − wni−1,r −−−−→n→∞

0 with the wni,r defined in (3.6).726

Proof. Let Lmin and Lmax be constants such that f is (Lmin,Lmax)-bilipschitz. The727

area of the i-th gap region of Sn is
∫ wni,r
wni−1,r

(f(x) − f(wni,r))dx. This is larger than728 ∫ wni,r
wni−1,r

Lmin × (wni,r − x)dx, which equals 1
2 × Lmin × (wni,r − wni−1,r)

2. Since the area729

of any gap region of Sn is smaller than the optimality gap at iteration n, this implies that730

the difference wni,r−wni−1,r is smaller than
√

2× (HVr(PFf )−HVr(Sn)) for all n, for all731

i ∈ J1, n+1K. Therefore, the convergence of HVr(Sn) to HVr(PFf ) stated in Theorem 5.2732

implies that the maximum over i of wni,r − wni−1,r converges to 0.733

We prove in the next lemma that if the Pareto front is described by a bilipschitz734

function f with a Hölder continuous derivative, then the the part of the Pareto front735

belonging to a specific gap region of Sn is bilipschitz for some constants whose ratio con-736

verges asymptotically to 1. Affine functions being the only functions to be (Lmin,Lmax)-737

bilipschitz with Lmin/Lmax = 1, it supports the interpretation that the convergence of738

a greedy set sequence for such Pareto fronts and for affine Pareto fronts share some739

asymptotic similarities.740

When f is bilipschitz, its restriction to the part of the Pareto front dominating rni ,741

that is [wni−1,r, w
n
i,r], is (Li,nmin,Li,nmax)-bilipschitz with742

(5.6)

Li,nmin := inf

ß∣∣∣f(x)− f(y)

x− y
∣∣∣, x, y ∈ [wni−1,r, w

n
i,r], x 6= y

™
and

Li,nmax := sup

ß∣∣∣f(x)− f(y)

x− y
∣∣∣, x, y ∈ [wni−1,r, w

n
i,r], x 6= y

™
.

743

At iteration n, the ratio between Li,nmax and Li,nmin, the bilipschitz constants on the i-th gap744

region of Sn, is by definition smaller than745

qn := max

®
Li,nmax

Li,nmin

, i ∈ J1, n+ 1K : [wni−1,r, w
n
i,r] 6= ∅

´
.(5.7)746

747

The proof of the convergence of qn to 1 relies on the fact that a differentiable function748

can be approximated locally by an affine function. The quality of this approximation is749

guaranteed by the Hölder continuity of the derivative.750

Lemma 5.7. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference751

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous752

derivative, then qn defined in (5.7) converges asymptotically to 1.753

Proof. We take α such that f ′ is Hölder continuous with exponent α, i.e f is C1,α,754

and Lmin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-755

bilipschitz. We recall that f is decreasing, and thus for all x < y, we have f(x)−f(y) ≥ 0.756

Since f is C1,α and therefore C1, the Taylor formula with Lagrange remainder states that757

for all x < y, there exists ξ ∈ [x, y] such that f(y) = f(x)+(y−x)×f ′(ξ). Since f is C1,α,758
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this implies that for all x < y, |f(y)− f(x)− (y−x)× f ′(x)| ≤ (y−x)1+α× [f ′]Cα . Thus,759
f(y)−f(x)

x−y is smaller than −f ′(x) + [f ′]Cα × (y − x)α. We now restrict ourselves to x and760

y belonging to the non-empty interval [wni−1,r, w
n
i,r]. Our goal is to find an upper bound761

depending on i but not on either x or y. Since f is C1,α, the difference between −f ′(x)762

and −f ′(wni−1,r) is smaller than [f ′]Cα× (x−wni−1,1,r)
α, and thus [f ′]Cα× (wni,r−wni−1,r)

α763

. Additionally, the difference between x and y is smaller than wni,r −wni−1,r. We conclude764

that for x, y ∈ [wni−1,r, w
n
i,r],

f(y)−f(x)
x−y is smaller than −f ′(wni−1,1,r) + 2[f ′]Cα × (wni,r −765

wni−1,r)
α, and thus so is Li,nmax defined in (5.6).766

Following the same approach, we can also infer that Li,nmax defined in (5.6) is greater767

than the symmetric quantity −f ′(wni−1,1,r) − 2[f ′]Cα × (wni,r − wni−1,r)
α. The quantity768

−f ′(wni−1,1,r) is greater than Lmin and (wni,r−wni−1,r)
α is smaller than maxi∈J1,n+1K(w

n
i,r−769

wni−1,r)
α. As a consequence, qn is smaller than

Lmin+2[f ′]Cα×maxi∈J1,n+1K(wni,r−w
n
i−1,r)α

Lmin−2[f ′]Cα×maxi∈J1,n+1K(wni,r−wni−1,r)α . By770

Lemma 5.6, maxi∈J1,n+1K w
n
i,r − wni−1,r converges to 0 and thus, this upper bound on qn771

converges to 1. Since qn is always larger than 1, it converges to 1.772

A consequence of the previous lemma is that the bounds on the hypervolume improvement773

of vn+1 to Sn normalized by the area of the gap region filled by vn+1 that we can infer from774

Propositions 4.4 and 4.5 converge asymptotically to 1/2, see (5.8). Similarly, the bounds775

on the normalized area of the child of a gap region that we can infer from Lemma A.2776

converge to 1/4, see (5.9). These asymptotic values correspond to the case of an affine777

Pareto front with a reference point dominating the nadir point, see Figure 7.

v1

F1

F2 r

v2

v1

F1

F2 r

v1

v2

v3

F1

F2 r

Fig. 7: The three greedy sets S1 (left), S2 (middle) and S3 (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point. The area
of any of the gap regions of S1 are half of HVr(PFf ) (left). The area of any of the new
gap regions of S2 is a quarter of the area of their parents (middle). The optimality gap
of S3 (right) is half of the optimality gap of S1.

778

Lemma 5.8. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference779

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous780

derivative, then for all ε > 0, for n large enough, for every non-empty gap region GrSn,i781
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and every child GrSm,j of GrSn,i, we have782

1

2
× (1− ε) ≤

maxu∈GrSn,i HVIr(u,Sn)

λ(GrSn,i)
≤ 1

2
× (1 + ε) and(5.8)783

1

4× (1 + ε)
≤
λ(GrSm,j)
λ(GrSn,i)

≤ 1

4× (1− ε) .(5.9)784

785

Proof. The interval [wni−1,r, w
n
i,r] is the set of the first coordinates of the vectors of786

the Pareto front which dominate rni . The restriction to [wni−1,r, w
n
i,r] of f is (Lmin,Lmax)-787

bilipschitz for some Lmin and Lmax such that Lmax

Lmin
= qn with qn defined in (5.7). Ad-788

ditionally, as stated in Proposition B.2, for n large enough, all the rni corresponding to789

non-empty gap regions dominate the nadir point. As a consequence, the conditions to790

apply Lemma A.2 and Proposition 4.5 are met by non-extremes gap regions.791

By Propositions 4.4 and 4.5, max
u∈PFf

HVrni
(u)/HVrni

(PFf ) is between 1/2 × 1/qn and792

1/2×qn. Additionally, by Lemma A.2, λ(GrSm,j)/HVrni
(PFf ) is between (1−1/2×qn)/(1+793

q2
n) and (1− 1/2× 1/qn)/(1 + 1/q2

n). The maximum over the vectors u belonging to the794

Pareto front of HVrni
(u) is equal to the maximum over u belonging to the i-th gap region795

of Sn of HVIr(u,Sn). Indeed, HVrni
(.) is null for vectors outside the i-th gap region of Sn796

while it is nonnegative, equal to HVIr(.,Sn), otherwise. Additionally, HVrni
(PFf ) equals797

λ(GrSn,i). The convergence of qn to 1 stated in Lemma 5.7 imply that the bounds proven798

so far converge to a half and a quarter, respectively. Thus, we have (5.8) and (5.9) for n799

large enough.800

The following lemma states that for n large enough, the area of two non-empty gap regions801

relative to the same greedy set cannot be too different. More precisely, the area of any802

gap region of Sn cannot be more than 4×(1+o(ε)) times greater than the area of another803

gap region of Sn. The proof relies on considering the parents of the gap regions.804

Lemma 5.9. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference805

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous806

derivative, then for all ε > 0, for n large enough and for any non-empty gap regions of807

Sn, GrSn,i and GrSn,j with i, j ∈ J1, n+ 1K, we have808

λ(GrSn,i)
λ(GrSn,j)

≤ 4× (1 + ε)2

1− ε .(5.10)809

810

Proof. Fix ε > 0. By Lemma 5.8, there exists N1 ∈ N∗ such that for all n greater811

than N1, (5.8) and (5.9) are verified for any non-empty gap region of Sn and its children.812

Since maxi∈J1,n+1K w
n
i,r−wni−1,r converges to 0 by Lemma 5.6, every non-empty gap region813

is filled at some point. Take N2 such that all the non-empty gap regions of SN1
are filled814

at iteration N2. For all n greater than N2, (5.8) and (5.9) are true for any non-empty815

gap region of Sn and its children, but also for its parents.816

Take n ≥ N2. We note G1 := GrSn,i and G2 := GrSn,j two distinct non-empty gap regions817

of Sn, and P1 and P2 their respective parents. When two sets correspond to gap regions818

relative to the same greedy set Sm, we say that they cohabit at iteration m. Since only819

one vector is added to Sn at a time, the cohabitation of G1 and G2 implies that either G1820

and P2 or G2 and P1 cohabit at some earlier iteration. In the first case, there necessarily821

exists m ≥ N2 such that P2 and G1 are gap regions relative to Sm and vm+1 belongs822
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to P2, otherwise, G1 and G2 would not cohabit. By (5.8), the maximum hypervolume823

improvement to Sm of a vector of G1 and of a vector of P2 are at least 1
2 × (1− ε)×λ(G1)824

and at most 1
2 × (1 + ε)× λ(P2), respectively. Since a vector of P2, vm+1, maximizes the825

hypervolume improvement to Sm, we have λ(G1)× 1
2 × (1− ε) ≤ λ(P2)× 1

2 × (1+ ε). Since826

λ(P2) is smaller than 4× (1 + ε) times the area of its child λ(G2) by (5.9), this inequality827

implies (5.10). In the second case, P2 is filled before P1. Thus, there exists m ≥ N2 such828

that P1 and P2 cohabit at iteration m and vm+1 belongs to P2. Since the area of P1 is829

larger than the one of its child G1, the hypervolume improvement of vm+1 to Sm is still830

larger than 1
2 × (1− ε)× λ(G1). The rest of the argumentation remains valid.831

We now have all the results needed to analyze the asymptotic impact of doubling the832

number of points in the greedy set. To prove the following asymptotic upper bound,833

we rely on similar arguments as for its nonasymptotic counterpart, Proposition 5.1. The834

previous lemma guarantees that the impact of doubling the number of points in the greedy835

set is asymptotically similar to the impact of passing from n points to 2n+ 1.836

Proposition 5.10. Let (Sn)n∈N∗ be a greedy set sequence relative to valid reference837

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous838

derivative, then for all ε > 0, we have for n large enough839

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≤ 1

2
+ o(ε) .(5.11)840

841

Proof. Fix ε > 0. Fix n large enough to verify (5.8) and (5.10) for this particular ε.842

Let σ be a permutation of J1, n + 1K such that the i-th gap region of Sn is filled by843

vn+σ(i) when it is filled before iteration 2n + 1. With this choice of permutation, GrSn,i844

is always a gap region of Sn+σ(i)−1. Thus, HVIr(vn+σ(i),Sn+σ(i)−1) is superior to the845

maximum hypervolume improvement of a vector of GrSn,i to Sn+σ(i)−1, which is superior846

to 1
2×(1−ε)×λ(GrSn,i) by (5.8). It is equivalent to say that the hypervolume improvement847

at iteration n+σ(i) is larger than 1
2 × (1− ε)×λ(GrSn,i). Summing over i ∈ J1, n+ 1K, we848

obtain that the hypervolume improvement between iteration n and 2n+ 1 is larger than849

the sum over i of 1
2 × (1 − ε) × λ(GrSn,i), that is 1

2 × (1 − ε) times the optimality gap at850

iteration n.851

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is852

HVIr(v2n+1,S2n). It is smaller than 1
2 × (1 + ε) × maxi∈J1,2n+1K λ(GrS2n,i) by (3.5) and853

(5.8). Since the area of a gap region is smaller than the one of its parent, the maximum854

area of a gap region is lower at iteration 2n than at iteration n. The maximum area of855

one of the more than n− 1 gap regions of Sn is itself smaller than 1
n−1 ×

4×(1+ε)2

1−ε times856

the optimality gap at iteration n by (5.10).857

We conclude that the relation between the optimality gap at iteration 2n and at858

iteration n is smaller than 1− 1
2 × (1− ε) + 1−ε

2×(n−1) .859

We roughly follow the same approach to obtain the following asymptotic lower bound on860

the impact of doubling the number of points in the greedy set. Lemmas 5.8 and 5.9 are861

key to prove an upper bound on the hypervolume improvement at iteration k. They allow862

to prove that filling a gap region of Sn more than once gives, up to a factor 1 + o(ε), a863

lower hypervolume improvement than filling a gap region which was not filled. Indeed,864

the area of a descendant of a gap region of Sn is at most 1
4 + o(ε) times the area of its865

parent by Lemma 5.8, which is itself at most 4 + o(ε) times the area of any other gap866

region of Sn by Lemma 5.9.867
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Proposition 5.11. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference868

point r. If the Pareto front is desribed by a bilipschitz function f with a Hölder continuous869

derivative, then for all ε > 0, we have for n large enough870

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≥ 1

2
+ o(ε) .(5.12)871

872

Proof. Fix ε > 0. Fix n large enough to verify (5.8), (5.9) and (5.10) for this particular873

ε. Let δ ∈ {−1, 0, 1} be such that Sn has n+ δ non-empty gap regions. Let i0 := 1 when874

the left extreme gap region is empty and i0 := 0 otherwise.875

Let σ be a permutation of J1, n + δK such that the i-th non-empty gap region of876

Sn, GrSn,i0+i, is filled by the vector vn+σ(i) when it is filled before iteration 2n + δ. We877

distinguish two cases. In the first case, vn+σ(i) is the child of the i-th non-empty gap878

region of Sn, and consequently its hypervolume improvement to Sn+σ(i)−1 is at most879
1
2 × (1 + ε) × λ(GrSn,i0+i) by (5.8). In the second case, vn+σ(i) belongs to GrSn,i0+j , the880

j-th non-empty gap region of Sn, with j 6= i and, by definition of σ, fills a descendant of881

this gap region not GrSn,i0+j itself. By (5.8), the hypervolume improvement of vn+σ(i) to882

Sn+σ(i)−1 is still at most 1
2 × (1 + ε) times the area of the gap region it fills. By (5.9),883

the area of a descendant of GrSn,i0+j is smaller than 1
4×(1−ε) times the area of its ancestor.884

By (5.10), we also know that the area of the i-th non-empty gap region of Sn is at most885

4× (1+ε)2

1−ε times the area of any other gap region of Sn, in particular its i-th non-empty886

gap region. We conclude that the hypervolume improvement of vn+σ(i) to Sn+σ(i)−1 is887

smaller than 1
2×

(1+ε)3

(1−ε)2 ×λ(GrSn,i0+i). To summarize, since 1+ε is smaller than (1+ε)3

(1−ε)2 , the888

hypervolume improvement at any iteration n+σ(i) is smaller than 1
2 ×

(1+ε)3

(1−ε)2 ×λ(GrSn,i).889

Summing over i ∈ J1, n + δK, the hypervolume improvement from iteration n to 2n + δ890

is smaller than 1
2 ×

(1+ε)3

(1−ε)2 times the sum over i of λ(GrSn,i), that is the optimality gap at891

iteration n.892

Now, it is left to prove an upper bound on HVr(S2n) − HVr(S2n+δ). This quantity893

is maximal for δ = −1, where it is simply the hypervolume improvement at iteration 2n.894

As in the previous proof, it is smaller than 1+ε
2×(n−1) times the optimality gap at iteration895

n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n896

is larger than 1− 1
2 ×

(1+ε)3

(1−ε)2 − 1+ε
2×(n−1) .897

We combine the lower and upper asymptotic bounds to obtain the following theorem.898

Theorem 5.12. Consider a biobjective optimization problem and a greedy set se-899

quence (Sn)n∈N∗ relative to a valid reference point r. If the Pareto front is described by a900

bilipschitz function f with a Hölder continuous derivative, we have901

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
−−−−→
n→∞

1

2
.(5.13)902

903

Consequently, for such Pareto front and reference point and under Assumption 3.3 of904

perfect single-objective optimization, HV-ISOOMOO algorithms relative to r satisfy (5.13)905

where Sn is replaced by In, the final incumbents Pareto front approximation at iteration906

n.907

6. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a perfect908

single-objective solver have a O(1/n) convergence rate on convex Pareto fronts and a909
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O(1/nc) convergence rate on bilipschitz Pareto fronts with c ≤ 1 depending on the bilips-910

chitz constants where n is the number of meta-iterations. Each meta-iteration corresponds911

to a single-objective optimization run. Both bounds are tight over the class of Pareto912

fronts and reference points considered. They are reached for affine Pareto fronts and913

reference points dominating the nadir point. On convex Pareto fronts, the convergence914

rate is exactly Θ(1/n), the fastest convergence rate achievable by biobjective optimization915

algorithms [22].916

We also investigate numerically the non-asymptotic speed of convergence of HV-917

ISOOMOO algorithms coupled with a perfect single-objective solver on some simple con-918

vex and concave Pareto fronts. The optimality gap of the final incumbents Pareto front919

approximation at meta-iteration n is close to the optimality gap of n-optimal distributions,920

that is the lowest optimality gap achievable by a Pareto front representation of cardinal921

n. The ratio between these two optimality gaps fluctuates periodically with respect to922

n. At the lowest, the optimality gap of the final incumbents Pareto front approximation923

is only a few percent larger than the optimality gap of n-optimal distributions, while at924

the largest, it is 23% larger in the worst case. Both of these numerical and theoretical925

results show that greedily adding points maximizing the hypervolume contribution as in926

HV-ISOOMOO algorithms is an effective way to quickly increase the hypervolume.927

Finally, we prove that for bilipschitz Pareto fronts with a Hölder continuous deriva-928

tive, doubling the number of meta-iterations divides the optimality gap by a factor which929

converges asymptotically to two. This asymptotic behavior resembles what we would ob-930

serve with an affine Pareto front and a reference point dominating the nadir point. Yet, it931

does not guarantee a Θ(1/n) convergence rate. Both
Ä

log(n)
n

ä
n∈N∗

and
Ä

1
n×log(n)

ä
n∈N∗

are932

examples of sequences verifying this property which do not have a Θ(1/n) convergence933

rate. The convergence rate on nonconvex Pareto fronts could theoretically be worse than934

Θ(1/n), but not better [22].935

Convergence rates with respect to meta-iterations similar to those achieved under936

the assumption of perfect single-objective optimization may be observed in practice. We937

expect it to be the case for efficient implementations of HV-ISOOMOO and easy multi-938

objective problems, where the single-objective solver should return good approximations939

of global optima. Additionally, lower bounds on the speed of convergence may be directly940

derived for practical HV-ISOOMOO algorithms if a non-asymptotic lower bound on the941

speed of convergence towards a global optimum is known for the single-objective solver942

SOOPTIMIZER and if SOOPTIMIZER stops late enough. To do this, one could rely on943

the approach described in Lemma 5.4 with k = 1 and consider the vectors v∗n towards944

which the single-objective solver converges instead of the greedy vectors vn. The v∗n are945

global optima of the true subproblems solved during meta-iterations.946

We expect that the approach we use to prove a lower bound on the speed of conver-947

gence of HV-ISOOMOO coupled with a perfect single-objective solver generalizes to any948

number of objectives. Indeed, the gap regions can still be defined using local nadir points949

for any number of objectives m ≥ 3 but they are no longer disjoints. This implies that950

we need to consider the hypervolume improvement from iteration n to n + 1 instead of951

2n + 1. Lemma 5.4 details how to do so. On top of that, the proof of Proposition 5.1952

only requires an upper bound on the number of gap regions and a lower bound on the953

normalized maximum hypervolume for some categories of Pareto fronts. It is known that954

for m = 3 and m > 3, there are respectively less than 2n+1 [12] and O(nb
m
2 c) [19] gap re-955

gions associated to a set of n points. We conjecture that lower bounds on the normalized956
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maximum hypervolume can be proven for m ≥ 3 for convex Pareto fronts and for Pareto957

fronts with an explicit representation which is (Lmin,Lmax)-bilipschitz w.r.t. all variables.958

A possible generalization of Theorem 5.12 asymptotic insight is more open.959

Acknowledgments. We would like to thank Dimo Brockhoff and Nikolaus Hansen960

for several helpful discussions, notably about the importance of decomposing the opti-961

mality gap and for the conjecture of (5.13).962

REFERENCES963

[1] C. Audet, G. Savard, and W. Zghal, Multiobjective Optimization Through a Series of Single-964
Objective Formulations, SIAM Journal on Optimization, 19 (2008), pp. 188–210, https://doi.965
org/10.1137/060677513.966

[2] A. Auger, J. Bader, and D. Brockhoff, Theoretically investigating optimal µ-distributions for967
the hypervolume indicator: first results for three objectives, in Proceedings of the 11th interna-968
tional conference on Parallel problem solving from nature: Part I, PPSN’10, Berlin, Heidelberg,969
Sept. 2010, Springer-Verlag, pp. 586–596.970

[3] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the Hypervolume Indicator:971
Optimal µ-Distributions and the Choice of the Reference Point, in Proceedings of the Tenth972
ACM SIGEVO Workshop on Foundations of Genetic Algorithms, FOGA ’09, New York, NY,973
USA, Jan. 2009, Association for Computing Machinery, pp. 87–102, https://doi.org/10.1145/974
1527125.1527138.975

[4] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Hypervolume-based multiobjective opti-976
mization: Theoretical foundations and practical implications, Theoretical Computer Science,977
425 (2012), pp. 75–103, https://doi.org/10.1016/j.tcs.2011.03.012.978

[5] N. Beume, M. Laumanns, and G. Rudolph, Convergence Rates of (1+1) Evolutionary Multiobjec-979
tive Optimization Algorithms, in Parallel Problem Solving from Nature, PPSN XI, R. Schaefer,980
C. Cotta, J. Ko lodziej, and G. Rudolph, eds., Lecture Notes in Computer Science, Berlin,981
Heidelberg, 2010, Springer, pp. 597–606, https://doi.org/10.1007/978-3-642-15844-5 60.982

[6] N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dom-983
inated hypervolume, European Journal of Operational Research, 181 (2007), pp. 1653–1669,984
https://doi.org/10.1016/j.ejor.2006.08.008.985

[7] J. Bigeon, S. Le Digabel, and L. Salomon, DMulti-MADS: Mesh adaptive direct multisearch986
for bound-constrained blackbox multiobjective optimization, Computational Optimization and987
Applications, 79 (2021), pp. 301–338, https://doi.org/10.1007/s10589-021-00272-9.988

[8] K. Bringmann and T. Friedrich, The maximum hypervolume set yields near-optimal approxima-989
tion, in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation990
- GECCO ’10, Portland, Oregon, USA, 2010, ACM Press, p. 511, https://doi.org/10.1145/991
1830483.1830576.992

[9] D. Brockhoff, Optimal µ-distributions for the hypervolume indicator for problems with linear bi-993
objective fronts: exact and exhaustive results, in Proceedings of the 8th international conference994
on Simulated evolution and learning, SEAL’10, Berlin, Heidelberg, Dec. 2010, Springer-Verlag,995
pp. 24–34.996
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Appendix A. Normalized areas of the gap regions relative to an hyper-1054

volume maximizer. The goal of this section is to prove bounds on the normalized1055

areas of the gap regions Gu∗left and Gu∗right relative to an hypervolume maximizer u∗ (see the1056

lefthand plot of Figure 8) in the case of a bilipschitz Pareto front and of a reference point1057

r dominating the nadir point. These bounds are stated in Lemma A.2. The proof relies1058

on the bounds on the normalized maximum hypervolume proven in Subsection 4.2 and1059

the following lower and upper bounds on the relation between λ(Gu∗left) and λ(Gu∗right).1060

Proposition A.1. We assume that the Pareto front is described by a (Lmin,Lmax)-1061

bilipschitz function f . Let u∗ be a non-extreme vector of the Pareto front which maximizes1062

the hypervolume with respect to a valid reference point r. If r1 ≤ xmax, we have λ(Gu∗right) ≥1063

L2
min

L2
max
× λ(Gu∗left). If r2 ≤ f(xmin), we have λ(Gu∗left) ≥

L2
min

L2
max
× λ(Gu∗right).1064
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Fig. 8: Illustration of elements of the proofs of Proposition A.1 in the case r1 ≤ xmax

(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
e
e−1 × e−x + 1− e

e−1 for x ∈ [0, 1]. Left: the gap regions Gu∗left and Gu∗right with a segment of
slope −Lmin passing through u∗. Middle: the hypervolume improvements HVIr(u

∗, uε)
( ) and HVIr(uε, u

∗) ( ) . Right: the hypervolume improvement HVIr(umin, u) ( ) and
its counterpart HVIr(u, umin) ( ) where u is a vector of the Pareto front which dominates
r.

Proof. We consider the case where r1 ≤ xmax. Let x∗ be the first coordinate of u∗.1065

We denote L1 := r1 − x∗ and L2 := r2 − f(x∗) the lengths of the sides of the rectangle1066

Dru∗ . For all x, y ∈ [xmin, xmax], we have |f(x) − f(y)| ≥ Lmin × |x − y|. Additionally,1067

since r1 ≤ xmax, the segment [x∗, x∗ + L1] is included in [xmin, xmax]. As a consequence,1068

the section of the Pareto front on the right of u∗ dominates the segment between u∗ and1069

u∗+L1× (1,−Lmin), see the lefthand plot of Figure 8. Therefore, λ(Gu∗right) is larger than1070

the area of the region of the objective space dominated by this segment, not dominated1071

by u∗ and dominating r, that is 1
2 × Lmin × L2

1. For all x, y ∈ [xmin, xmax], we also have1072

|f(x)− f(y)| ≤ Lmax× |x− y|. Therefore, the part of the Pareto front on the left of u∗ is1073

dominated by the segment between u∗ and u∗ + L2 × (− 1
Lmin

, 1), and λ(Gu∗left) is smaller1074

than 1
2 × 1

Lmin
× L2

2. We have yet to prove a lower bound on L1

L2
. The vector u∗ being1075

different from umin, for ε > 0 small enough, the vector uε := (x∗ − ε, f(x∗ − ε)) belongs1076

to the Pareto front. As we can see in the middle plot of Figure 8, HVIr(u
∗, uε) is smaller1077

than L1 × Lmax × ε and HVIr(uε, u
∗) is larger than ε × (L2 − ε × Lmax). Additionally,1078

u∗ being an hypervolume maximizer, HVIr(u
∗, uε) is larger than HVIr(uε, u

∗), and thus1079

L1 × Lmax ≥ L2 − ε× Lmax for all ε > 0. Taking the limit of this inequality when ε→ 0,1080

we obtain that L1×Lmax ≥ L2. Combining the bounds on λ(Gu∗left) and λ(Gu∗right) with the1081

lower-bound on L1

L2
, we obtain the desired lower bound on λ(Gu∗right). We can obtain the1082

symmetric inequality when r2 ≥ f(xmin) by following the same approach.1083

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.1084

We now prove the desired bounds on the normalized area of the gap regions Gu∗left and1085

Gu∗right.1086

Lemma A.2. Let u∗ be a vector which maximizes the hypervolume with respect to1087

a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz1088

function f and the reference point r dominates the nadir point, both λ(Gu∗left) and λ(Gu∗right)1089

are between (1− 1
2 × Lmax

Lmin
)/(1 +

L2
max

L2
min

) and (1− 1
2 × Lmin

Lmax
)/(1 +

L2
min

L2
max

).1090
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Proof. Let note arbitrarily G1 and G2 the two gap regions of the set S = {u∗}. By1091

Proposition A.1, λ(G2) is between
L2

min

L2
max
× λ(G1) and

L2
max

L2
min
× λ(G1). Additionally, by1092

Propositions 4.4 and 4.5, the normalized maximum hypervolume maxu∈PFf HVr(u) over1093

HVr(PFf ) is between 1
2 × Lmin

Lmax
and 1

2 × Lmax

Lmin
. These bounds can be transformed into1094

bounds on HVr(PFf )−maxu∈PFf HVr(u), that is λ(G1)+λ(G2). As a consequence, λ(G1)1095

is between (1− 1
2 × Lmax

Lmin
)×HVr(PFf )− L2

max

L2
min
× λ(G1) and (1− 1

2 × Lmin

Lmax
)×HVr(PFf )−1096

L2
min

L2
max

λ(G1). Moving all the λ(G1) terms on the same side and re-normalizing this side, we1097

obtain the desired bounds for G1, which can be chosen to be either Gu∗left or Gu∗right.1098

Appendix B. The nadir point is dominated by all the rni corresponding to1099

non-empty gap regions for n large. We show in this section that for bilipschitz1100

Pareto fronts, the nadir point is dominated by all the local nadir points rni corresponding1101

to non-empty gap regions, for n large enough. This result is stated in Proposition B.2 and1102

used in Subsection 5.2. It is equivalent to prove that the extreme vectors which dominate1103

the reference point belong to the greedy set for n large enough.1104

First, we prove in the next proposition that if r1 > xmax (resp. r2 > f(xmin)), then1105

for r2 (resp. r1) close enough to f(xmax) (resp. xmin) the extreme vector umax (resp. umin)1106

is the only hypervolume maximizer, see the righthand plot of Figure 8. There are similar1107

statements in [9] for the set of µ points maximizing the hypervolume, but they only apply1108

to µ ≥ 2.1109

Lemma B.1. We assume that the Pareto front is described by a function f which is1110

(Lmin,Lmax)-bilipschitz and that the reference point r is valid. If r1 > xmax and f(xmax) <1111

r2 < f(xmax) +Lmin× (r1− xmax), the right extreme of the Pareto front umax is the only1112

maximizer of HVr(.). Additionally, if r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

,1113

the vector umin = (xmin, f(xmin)) is the only maximizer of HVr(.).1114

Proof. This proof is illustrated in the righthand plot of Figure 8. Let r be a reference1115

point such that r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

. Let u = (x, f(x)) 6= umin1116

be a vector of the Pareto front which dominates r. The hypervolume improvement of umin1117

to {u} is (r2 − f(xmin)) × (x − xmin). The hypervolume improvement of u to {umin} is1118

(f(xmin)− f(x))× (r1−x), which is smaller than Lmax× (x−xmin)× (r1−xmin) since u1119

dominates r and f is (Lmin,Lmax)-bilipschitz. Since we assume that Lmax× (r1−xmin) <1120

r2 − f(xmin), the upper bound on HVIr(u, umin) is strictly smaller than HVIr(umin, u).1121

Therefore, the hypervolume of umin is strictly larger than the one of u. We conclude that1122

umin is the unique hypervolume maximizer. The symmetric result can be obtained with1123

the same approach.1124

It is left to prove that when r1 > xmax (resp. r2 > f(xmin)), the second coordinate of1125

rnn+1 (resp. the first coordinate of rn0 ) indeed converge to f(xmax) (resp. xmin). It is a1126

straightforward consequence of Lemma 5.6. Therefore, we are able to conclude.1127

Proposition B.2. We assume that the Pareto front is described by a bilipschitz func-1128

tion f . Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point r. For1129

n large enough, every local nadir point rni corresponding to a non-empty gap region GrSn,i1130

dominates the nadir point.1131

Proof. By Lemma 5.6, wnn,r converges to xmax, and thus the right extreme local nadir1132

point rnn+1 := (r1, f(wnn,r)) converges to (r1, f(xmax)) by continuity of f . Therefore, if r11133
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is strictly larger than xmax, then there exists N such that for all n ≥ N , rnn+1 verifies1134

the assumptions on the reference point of Lemma B.1 which guarantee that umax is the1135

unique maximizer of HVr(.) over the right extreme gap region GrSn,n+1. Let assume that1136

umax does not belong to Sn. Then, wNN,r 6= xmax, and since wnn,r converges to xmax, the1137

left extreme gap region GrSn,i is necessarily filled at some later iteration. When the right1138

extreme gap region is filled, umax, the unique minimizer of HVr(.) over this gap region,1139

is added to the greedy set. To summarize, if r1 > xmax, then for n large enough Sn1140

contains umax, and thus the right extreme gap region is empty. We can prove with the1141

same approach that for r2 > f(xmin), Sn contains umin for n large enough.1142

At any iteration, the non-extreme local nadir points dominate the nadir point. Ad-1143

ditionally, we proved that either r1 < xmax (resp. r2 < f(xmin)), and thus the left (resp.1144

right) extreme local nadir point dominates the nadir point or for n large enough, the left1145

(resp. right) extreme gap region is empty.1146
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