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BIOBJECTIVE HYPERVOLUME BASED HV-ISOOMOO ALGORITHMS
CONVERGE WITH AT LEAST SUBLINEAR SPEED TO THE ENTIRE
PARETO FRONT

EUGENIE MARESCAUX AND ANNE AUGER

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,
respectively. In this context, we introduce a new algorithm framework based on the hypervolume and
called HyperVolume based Incremental Single-Objective Optimization for MultiObjective Optimization
(HV-ISOOMOO) for approximating the Pareto front with an increasing number of points. The hypervol-
ume indicator is a set-quality indicator widely used for algorithms design and performance assessment.
The class of HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing this in-
dicator. At each meta-iteration of HV-ISOOMOO algorithms, a single-objective subproblem is solved.
We study the convergence to the entire Pareto front of HV-ISOOMOO under the assumption that these
subproblems are solved perfectly. The convergence is defined as the convergence of the hypervolume
of the sets of all meta-iterations incumbents towards the hypervolume of the Pareto front. We prove
tight lower bounds on the speed of convergence for convex and bilipschitz Pareto fronts in O(1/n¢) with
¢ =1 and ¢ < 1, respectively. The index n denotes the number of meta-iterations of HV-ISOOMOO.
For convex Pareto fronts, the convergence speed is in ©(1/n), namely the fastest convergence achievable
by a biobjective optimization algorithm. These are the first results on the speed of convergence of mul-
tiobjective optimization algorithms towards the entire Pareto front. We also analyze theoretically the
asymptotic convergence behavior.

Key words. multiobjective optimization, convergence, hypervolume, Pareto front

AMS subject classifications. 90C29, 90C30

1. Introduction. Real-world problems often involve the simultaneous optimization
of several conflicting objectives. The solution of such problems is the set of non-dominated
decision vectors (vectors of the search space), the Pareto set. It is defined as the set of
solutions that cannot be improved along one objective without degrading along another
one. Its image in the objective space is the Pareto front. A decision maker is then often
involved to choose, based on its preferences, a single best compromise. The shape of the
Pareto front informs him on the trade-off between objectives. Many algorithms such as
evolutionary algorithms approximate the Pareto front with a number of points fixed in
the beginning. But some algorithms, in particular stemming from direct search methods
[1, 7, 10, 11] approximate the Pareto set or the Pareto front with more and more points
during the run. Ideally, the quality of the Pareto front approximation (e.g. measured with
its size) increases gradually with time.

The speed of convergence towards a critical decision vector or a vector of the Pareto
front has been examined for many algorithms such as (1 + 1) evolutionary multiobjective
algorithms [5] or Newton’s method [18]. Convergence speeds are typically similar to
the ones obtained for single-objective optimization. Both aforementioned publications
describe convergence towards a single point and the first analysis is even reduced to the
study of the convergence of a single-objective optimization algorithm [5]. The convergence
of algorithms towards the whole Pareto set or front is of a different kind because iterates
are sets and not points. Such convergence has already been theoretically investigated
for some algorithms [10] and more abstract frameworks [26], but analysis of the speed
of convergence are generally missing. Empirical studies typically focus on determining
which algorithm is faster but more rarely provide information on the speed of convergence
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such as order of convergence or complexity. Yet, while often overlooked, the study of the
speed of convergence, both theoretically and empirically, is important. In this context,
it has been proven that convergence of biobjective optimization algorithms towards the
whole Pareto front is always sublinear in the number of function evaluations, at least
when measuring convergence with the hypervolume indicator [22] or the multiplicative
e-indicator [8], and thus much lower than typical speeds of convergence to a single point.
The hypervolume and the multiplicative e-indicator are set-quality indicators widely used
in multiobjective optimization, both to guide algorithms and for performance assessment.
The hypervolume is at the core of all known stricly Pareto-compliant indicators [28].

In this paper, we introduce a new algorithm framework: HyperVolume based Incre-
mental Single-Objective Optimization for MultiObjective Optimization (HV-ISOOMOO).
Algorithms following this framework try to greedily maximize the hypervolume by adding
points approximating the largest hypervolume contribution achievable by a feasible vector.
Such points are obtained by running a single-objective solver. Relying on single-objective
optimization is a traditional approach in multiobjective optimization, the most significant
example being scalarization [16]. A greedy approach to finding a set of n points with a
large hypervolume is already used in the selection part of some multiobjective optimiza-
tion evolutionary algorithms such as SMS-EMOA [6]. The hypervolume of such discrete
greedy approximation is proven to be at least (e — 1)/e times the one of a n-optimal
distribution [23]. To the best of our knowledge, we provide the first continuous equivalent
of this result.

The HV-ISOOMOO framework shares some similarities with a recent hyperboxing
algorithm [13]. At each meta-iteration, this hyperboxing algorithm finds a new point by
solving the Pascoletti-Serafini scalarization problem defined by the upper corner and the
diagonal of a box. The choice of the box relates to minimizing the e-additive indicator.
In contrast, HV-ISOOMOO algorithms are built to minimize the hypervolume.

We analyze an ideal version of HV-ISOOMOO algorithms where the single-objective
solver returns a global optimum of the single-objective subproblems. This analysis is rel-
evant for practical HV-ISOOMOO algorithms (whose construction is left for future publi-
cations) when the single-objective solver returns good approximations' of global optima.
We investigate the speed of convergence of the ideal version of HV-ISOOMOO towards
the whole Pareto front when measuring the convergence with the hypervolume. For con-
vex and bilipschitz Pareto fronts, we prove that the convergence speed is in O(1/n¢) with
¢ =1 and ¢ < 1, respectively, with n being the number of single-objective optimization
runs performed. For convex Pareto fronts, the convergence is exactly in ©(1/n) as no
biobjective algorithm can converge faster to the Pareto front [22]. Additionally, we prove
that for simultaneously bilipschitz and smooth enough Pareto fronts doubling the number
of points in the approximation divides the optimality gap by a factor which converges
asymptotically to two. In the proof process, we obtain interesting intermediary results
such as bounds on the normalized maximum hypervolume and a geometric interpretation
of optimality conditions.

The paper is organized as follows. In Section 2, we recall some classic concepts and
define our assumptions. In Section 3, we introduce the HV-ISOOMOO framework to-
gether with connected mathematical abstractions and present numerical results on its

1Good approximations are typically unavailable when the single-objective solver does not converge
to a solution, stops too early or converges to a local optimum.
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convergence rate. In Section 4, we prove lower bounds on the so-called normalized mazx-
imum hypervolume, later used to investigate convergence. In Section 5, we derive lower
bounds on the speed of convergence of HV-ISOOMOO algorithms under the assumption
that every single-objective subproblem is solved perfectly and a theoretical result giving
an insight on its asymptotic convergence behavior. For readability of the proof of this
insight, we put some intermediary results and their proofs in the Appendices A and B.

Notations and conventions. For a,b € N with a < b, we note [a;b] the set {a,a +
1,...,b—1,b}. For a vector u € R?, we note u; and uy respectively its first and its second
coordinate. If the vector notation already contains an index, we separate the two indices
with a comma. For simplicity sake, we often replace the set {u} by u in the notations. We
say that a function f : R — R is decreasing (resp. strictly decreasing) when for all z < y,
we have f(x) > f(y) (resp. f(x) > f(y)). We only consider two-dimensional objective
spaces and refer to the Lebesgue measure of a set as its area.

2. Background and assumptions. In this section, we recall some classic concepts
of multiobjective optimization and define the assumptions used in the paper.

2.1. Biobjective optimization problems, the Pareto front and the hyper-
volume indicator. We consider a biobjective minimization problem:

2.1 in F(X
(2.1) x &8 FX)

with F: Q C R* - R?: X s (Fy(X), F»(X)). We define two dominance relations for
vectors in the objective space. We say that u weakly dominates v denoted by u < v if
11 < w1 and us < vy and that u dominates v denoted by v < v if u < v and u # v. A
vector of the objective space R? is said feasible when it belongs to F(£2). Solving the
optimization problem consists in finding a good approximation of the Pareto front, the
set of non-dominated feasible vectors, {F(X) : X € Q, VY € Q,F(Y) £ F(X)}. We
restrict ourselves to Pareto fronts with an explicit representation:

(2.2) PF; ={(z, f(z)) : © € [Tmin, Tmax]) }

with f : R — R decreasing. When both objective functions have and reach finite global
minimum values in the search space, that we denote respectively v; and vy, we have
Tmin := V1 aNd Tmax 1= MiNx 0., (X)=v, F1(X).

We denote by umin = (Zmin, f(Tmin)) and Umax ‘= (Tmax, f(Tmax)) the extreme
vectors of the Pareto front. Likewise, we denote by Uminr = (Zmin,rs f(Zmin,r)) and
Umax,r ‘= (Zmax,r> [ (Zmax,r)) the extremes vectors of the part of the Pareto front domi-
nating a reference point r, with Zmin,» 1= max(Tmin, f 1 (r2)) and Fmax,» := Min(Tmax, r1)-
The vector (Tmax, f(Tmin)) is called the nadir point. All these notations are illustrated in
Figure 1.

The hypervolume with respect to a reference point r of a set S of objective vectors
is the Lebesgue measure of the region of the objective space dominated by S and strictly
dominating the reference point 7. We denote it HV,.(S). When no vector of the Pareto
front dominates the reference point r, HV,.(S) = 0 for any set S of feasible points of the
objective space. Since this particular case is not interesting, we only consider reference
points dominated by at least one vector of the Pareto front from now on. We refer to such
reference points as valid. When there are more than two points in the Pareto front, any
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(F1(X3), F5(X1)) with X € argminyeq F1 and Xo € argminxeq Fb is a valid reference
point.

The region of the objective space weakly dominated by S and dominating r (see the
righthand plot of Figure 1) is denoted by D% and formally defined as:

(2.3) Di={weR?*:FuecS:uzw=<r}.

The hypervolume of a set S relative to the reference point r equals A(D%) with A(.) being
the Lebesgue measure. The set Dg is the union of the D;, for v € S, D;, being the
rectangle [u1,71] X [ug, 2] when u dominates r and () otherwise, see the righthand plot of
Figure 1. Note that the D], are not disjoints.

We use the hypervolume to characterize the convergence of a set .S of objective vectors
to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge
to the Pareto front when the hypervolume difference HV,(PF;) — HV,.(S) converges
to 0. We define the optimality gap of S with respect to a valid reference point r as
HV.(PFy) — HV,(S). Another quantity of interest is how much adding a vector to a set
affects its hypervolume. The hypervolume improvement with respect to r of the vector u
to the set S is HVI,.(u,S) = HV,.(SU{u}) —HV,(S). We also use the term hypervolume
improvement to refer to the hypervolume increase of an increasing? sequence of sets
(Sn)nen+ at iteration n, HV,.(S,+1) — HV,.(Sy).

2.2. Decomposition of the optimality gap using gap regions. The optimality
gap is the Lebesgue measure of the total gap region introduced below.

DEFINITION 2.1. The total gap region of S with respect to a fized valid reference
point r, Gg, is defined as the region of the objective space which dominates r and is
weakly dominated by PFy but not by S, namely Dpp, \ Dg.

We introduced DY in (2.3). Its Lebesgue measure is HV,.(S).

The concept of total gap region is strongly connected to the concept of search region
[20]. They can both be seen as the part of the objective space which may contain feasible
nondominated points, but only the total gap region relies on the knowledge of the Pareto
front. The total gap region is composed of the vectors of the search region which are
weakly dominated by the Pareto front, a condition satisfied by all feasible objective-
vectors.

When S is a subset of the Pareto front dominating the reference point r, the total
gap region Gg has a particular shape which can be visualized in the rightmost plot of
Figure 1. It can be decomposed into the disjoint union of |S| + 1 sets of the form DI,
that are formally defined below.

DEFINITION 2.2 (Gap regions and local nadir points). Let S = {v1,...,v,} be a set
of n distinct vectors of the Pareto front dominating a valid reference point r. Let o be the
permutation ordering the v; by increasing F1-values: vy(1y,1 < Vg2),1 < -+ < Vg(n),1-

S
e For alli € [[1,n+ 1], the i-th gap region of the set S, Gg, 1s the set D;}Ff with
the associated local nadir point 75 being r{ = (Vo(1),1,72), ’I“S+1 = (11, Vo(n),2)
and ,,,7.;5' = (va(i),lvva(i—l)Q) fO’I’ alli € [[2,71]]
o We refer to QQJ and gg,nﬂ as the left and the right extreme gap region of S,
respectively.

2 A sequence of set {A,,n > 0} is increasing if the following inclusions A9 C A1,... C Ay, C ... hold.
4
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Fig. 1: Tllustration of notations. The extreme vectors 4y, and umax and the nadir point
(leftmost) ; the extreme vectors relative to the reference point 7 tmin,» and Umax,» (left) ;
three vectors uj, us and uz and the regions weakly dominated by them and dominating
r, Dy, (3) , D, (3) and Dy, (=3) (right) ; the set S = {v1, v, v3}, its four gap regions
(=) and the associated local nadir points (rightmost).

Local nadir points are also called local upper bounds [24, 20]. Gap regions are to search
zones what total gap regions are to search regions. A gap region is composed of the
vectors of a search zone which are weakly dominated by the Pareto front.

The left (resp. right) extreme gap region is empty when the left (resp. right) extreme
vector of the Pareto front belongs to S. Non-extreme gap regions are never empty.

The total gap region of such a set S is the disjoint union of its gap regions: Gg =
ULE'T 1gg7i. This decomposition of the total gap region, and thus of the optimality gap,
is the cornerstone of our convergence analysis. Since the area of a gap region Gg, is
HV,s(PFy), we can write the optimality gap of a set S as the sum of |.S|+1 hypervolumes
of the Pareto front with respect to the local nadir points.

LEMMA 2.3. Let S be a set of n distinct vectors of the Pareto front dominating a
valid reference point r. The optimality gap of S with respect to a valid reference point r
can be decomposed as

n+1
(2.4) HV,(PFy) — HV,(S) = > _ HV,s(PFy) .
i=1
Proof. The optimality gap of S is the Lebesgue measure of the total gap region Gg,
S
which is the disjoint union of the gap regions Gg , = ’D;"Ff. Therefore, the optimality gap
S
equals Y2 A(DRy ) = Y HV, s (PF). 0
Additionally, we can express the hypervolume improvement of any vector to S as an

hypervolume. It is a trivial assertion for vectors which do not dominate S. For other
vectors, the reference point depends on the gap region to which the vector belongs.

LEMMA 2.4. Let S be a set of n distinct vectors of the Pareto front dominating a
valid reference point r.  For any u belonging to the i-th gap region of S, G5 ,;, we have

(2.5) HVI(u,S) = HV,s(u) .

Proof. The hypervolume improvement of any u € Gg ; is the Lebesgue-measure of the
S

intersection between Gg ,; and Dy,. Therefore, it is equal to ADy' ), that is HV,s(u). O
5
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2.3. Assumptions on the Pareto front and the objective functions. We
present and discuss here the assumptions on the function f describing the Pareto front
under which we derive convergence results. We typically assume that the function f is
bilipschitz, convex or simultaneously bilipschitz and with a Holder continuous derivative.
Under any of these three assumptions, f is continuous. For the sake of conciseness, we
transfer the properties of f to the Pareto front. For example, we call convex Pareto
front a Pareto front described by a convex function. The ZDT test suite [27] contains
two biobjective optimization problems with a convex Pareto front: ZDT1 (see Figure 2)
and ZDT4. We recall that a function f is Holder continuous with exponent «, namely
CH*, when there exists H > 0 such that |f(z) — f(y)| < H x |z — y|® for all z,y [17].

We note [f], the minimum Hoélder coefficient with respect to the exponent o of a C1:®
|f (=)= f (W)l

if there exists Ly, and Lyax with L‘maj:'z Lpin > 0 such that for all 2,y € [Zmin, Tmax)s
we have Lpyin X |2 —y| < |f(z) — f(¥)] < Lmax X |z —y| . When needed, we detail
the bilipschitz constants and refer to f as (Lmin,Lmax)-bilipschitz. For example, the
problem of minimizing F}(X) = X2 and Fy(X) = (X — 1)2 for X € [0.1,0.9] has a
bilipschitz Pareto front. Its representation is the function f : x — 1 — \/z for z €
[F1(0.1), F1(0.9)] = [0.01,0.81], which iS (Lmin,Lmax )-bilipschitz with L, := |f/(0.81)| =
0.555... and Lyax = |f'(0.01)] = 5. We also talk of affine Pareto fronts when f(x) =
ax+bwith a < 0 and b € R. As they form a line in the biobjective case, they are usually
referred to as linear Pareto fronts. They help to understand the results we prove on the
asymptotic convergence behavior. The biobjective optimization problem DTLZ1 of the
DTLZ test suite [15] has an affine Pareto front. Affine Pareto fronts are a special case of
(Lmin,Lmax )-bilipschitz Pareto fronts where Luyin = Lmax-

We remind below sufficient conditions on the search space and on the objective func-
tions which guarantee that f is convex and bilipschitz.

function f, that is [f] = SUP, £, . We recall that a function f is bilipschitz

PROPOSITION 2.5. Given a biobjective minimization problem as in (2.1) whose Pareto
front is described by a function f. If Fy and Fy are respectively (Liin,1 ; Lmax,1)-bilipschitz
and (Lwin,2, Lmax,2)-bilipschitz, then f is (% , i:i:‘:f)-bilipschitz. If the search space
Q and the objective functions Fy and Fy are convex, then f is conver.

The proofs of this proposition can be found for instance in [22]. The conditions on Fy,
F; and 2 are sufficient but non-necessary conditions. Indeed, adding small discontinuity in
the objective functions far from the Pareto set makes them non-convex and non-bilipschitz
without modifying the Pareto front.

Representing Fy values on the absciss and F, values on the ordinate instead of the
converse is an arbitrary choice. When f is a bijection, if we chose to represent the Fj
values on the z-axis instead of on the y-axis, we would have another representation of
the Pareto front : {(y, f~1(y)) : ¥ € [f(@max); f(Zmin)]}. If so, the inverse function f~!
would play the role of f. It is interesting to notice that the choice of the objective function
represented on the horizontal axis does not impact whether the function characterizing
the Pareto front is bilipschitz or convex. Indeed, f being bilipschitz is equivalent to both
f and f~! being lipschitz. Additionally, given that the function f is decreasing, f being
convex is equivalent to its inverse f~! being convex.

3. The HV-ISOOMOO framework. We introduce the HV-ISOOMOO frame-
work. We formalize its mathematical abstraction under the assumption that every single-

6
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objective subproblem is solved perfectly, the greedy set sequences. Finally, we present
numerical results on the rate of convergence of these greedy set sequences towards the
Pareto front.

3.1. Presentation of the framework. The HV-ISOOMOO framework builds in-
crementally an increasing sequence (Z,,)nen+ of sets of vectors of the objective space. The
pseudocode of HV-ISOOMOO is given in Algorithm 3.1, where the current value of Z,
is denoted by Z. At each so-called meta-iteration, a single-objective maximization solver
SOOPTIMIZER (line 2 in Algorithm 3.1) is run on the criterion X € Q C RY +— J(Z, X)
and the resulting solution is added to Z (line 3 in Algorithm 3.1). We use the term meta-
iteration to separate between the (meta-)iterations of HV-ISOOMOO and the iterations
of SOOPTIMIZER. Since the set Z is composed of the final objective incumbents of previ-
ous runs of SOOPTIMIZER and (ideally) provides an approximation of the Pareto front,
we call it final incumbents Pareto front approrimation.

The single-objective optimization procedure may vary between meta-iterations. More
precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in
D (line 4 in Algorithm 3.1). This allows to alternate between various single-objective
optimization solvers with different features, but also to adapt their initialization. This
could be done by storing in D an iteration index and the final search space incumbents
of SOOPTIMIZER runs.

Algorithm 3.1 HV-ISOOMOO Framework

1: while not stopping criterion do

2 Y,d <+ SOOPTIMIZER(X r J(Z,X), D)

3: I+ TZU{F(Y)} # update of the approximation of the Pareto front
4: D <+ DU{d} # update of the data collected

5: end while

The criterion J is chosen such that its maximization is compliant with the maxi-
mization of the hypervolume improvement with respect to a reference point r as defined
below.

Assumption 3.1. (Compliance to HVI, maximization) The maximization of a crite-
rion J as in HV-ISOOMOO is compliant with the maximization of HVI, if for any set 7
of objective vectors, we have

(3.1) argmax y cga J(Z, X) = argmax y cga HVIL.(F(X),T) .

In other words, at each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible
vector maximizing the hypervolume improvement to the final incumbents Pareto front
approximation Z,,. Ideally, when n goes to infinity, the non-dominated subset of (Z,,),en+
converges to the (entire) Pareto front, a set which maximizes the hypervolume. In a
nutshell, HV-ISOOMOO algorithms try to approximate the Pareto front with a greedy
approach.

DEFINITION 3.2. We define the convergence of an HV-ISOOMOO algorithm as the
convergence of HV,.(I,) towards HV,(PFy).

The performance of a specific HV-ISOOMOO algorithm depends crucially on the
choice of the criterion J. In this respect, HVI,.(Z, F(.)) itself is not a good candidate for

7
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J(Z,.). Indeed, it is constant equal to zero in the region dominated by Z, which makes it
difficult to optimize. A criterion whose maximization is compliant with the maximization
of the hypervolume improvement and designed to be easier to optimize has already been
introduced in [25] under the name uncrowded hypervolume improvement (UHVI). For
F(X) not dominated by Z, UHVI, and HVI, are equal. Otherwise, in the region where
the hypervolume improvement is null, UHVL, is negative and equals minus the distance
to the empirical non-dominated front of the set Z relative to r. It is easy to see that
UHVI, satisfies (3.1).

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-
ISOOMOO algorithm. In this paper, we analyze the HV-ISOOMOO framework under
the assumption of perfect single-objective optimization formalized below.

Assumption 3.3 (Perfect single-objective optimization). At every meta-iteration n,
for any final incumbents Pareto front approximation Z,,, the run of SOOPTIMIZER (line 2
in Algorithm 3.1) returns Y € argmax ycq J(Zn, F(X)).

The assumption of perfect single-objective optimization is reminiscent of the assump-
tion of perfect line search which is common in the analysis of gradient based methods [14].
Under this assumption, all choices of criterions verifying Assumption 3.1 are equivalent.

Convergence results under perfect conditions are useful to investigate the convergence
(speed) we can expect with a given framework and in turn guide the construction of
practical algorithms. A good theoretical convergence speed suggests that an approach is
worth exploring while an unexplained gap between practical and ideal convergence speeds
suggests that there is room for improvement. In our case, convergence rates under perfect
conditions also give us an idea of what the convergence rates with respect to meta-
iterations of practical HV-ISOOMOO algorithms will look like when SOOPTIMIZER
returns good approximations of global optima.

3.2. Greedy sets and greedy set sequences. We introduce below mathematical
abstractions of the HV-ISOOMOO framework under Assumption 3.3 of perfect single-
objective optimization, greedy sequences and greedy set sequences.

DEFINITION 3.4 (Greedy sequence and greedy set sequence). Given a valid reference
point r, we define as greedy sequence relative to r, a sequence (vn)nen- Satisfying

3.2 HV, d

(3.2) vy € argvg}?a(é) (v) an

(3.3) Upt1 € arg max HV,.({vi, - ,v,,0}) foralln>1 .
veEF(Q)

The greedy set sequence (Sp)nen+ associated to the greedy sequence (vp)nen+ 18 composed
of the greedy sets Sy, := {vg, k < n}.

When considering a greedy set S,,, we denote the i-th gap region and the associated local
nadir point defined in Definition 2.2 by G* and ', respectively.

There is a bijection between greedy sequences and greedy set sequences. The n-th
element of the greedy sequence (v, )nen+ associated to a greedy set sequence (Sy)nen- is
simply the unique element of S, \ S,—1 if n > 1 and of Sy if n = 1.

The recurrence relation of the greedy sequence (3.3) is equivalent to v,+1 belonging
to arg max,cp(o) HVI,(v,S,) for all n > 1. It is immediate to see that under Assump-
tion 3.3, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence
while the final incumbents Pareto front approximations form the associated greedy set

8
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sequence (Z,)nen+. The indices n of both sequences correspond to HV-ISOOMOO meta-
iterations. In this paper, we derive convergence results for greedy set sequences, which
transfer to HV-ISOOMOO under Assumption 3.3.

Since the hypervolume indicator associated to a valid reference point is strictly Pareto-
compliant (see [21]), this sequence is composed of vectors of the Pareto front.

PRrOPOSITION 3.5. If the Pareto front is described by a lower semi-continuous func-
tion f, then any vector of a greedy sequence relative to a valid reference point r belongs to
the Pareto front. Consequently, for such Pareto front and reference point and under As-
sumption 3.3, all final incumbents Pareto front approximations I, of an HV-ISOOMOO
algorithm relative to v are subsets of the Pareto front.

Proof. Since for any valid reference point r, HV,.(.) is strictly Pareto-compliant [21],
its maximum and the maximum of every function of the form v — HV,.(S U {v}) are
non-dominated and belong to the Pareto front. Thus, in particular, a vector v verifying
either (3.2) or (3.3) belongs to the Pareto front. |

We can express the hypervolume improvement of a greedy set sequence at iteration
n+ 1, HV,(S,+1) — HV,(S,), as the maximum of n + 1 hypervolume maximization
problems.

LEMMA 3.6. Let (Sp)nen be a greedy set sequence relative to a valid reference point
r. The hypervolume improvement of (S, )nen+ at iteration n + 1 equals

(3.4) HV,.(Spv1) — HV,.(S,) = ieﬁl,i)il]] urél%%cf HVn(u) .

Proof. The hypervolume improvement HV,.(S,+1) — HV,.(S,) is the hypervolume
improvement of v,11 to S,, namely the highest hypervolume improvement of a vector
v € PFy to S, by (3.3) and Proposition 3.5. We can reformulate the hypervolume
improvement of any vector u to S, as max;ci 1) HVyr (u) by Lemma 2.4 since gap
regions are disjoints and HV,»(.) is null outside the i-th gap region of S,,. |

Similarly, the problem of maximizing the hypervolume improvement to a greedy set
S, can be rewritten as the maximum of a finite number of hypervolume maximization
problems.

LEMMA 3.7. At any iteration n, the recurrence relation satisfied by vp41, i.e. (3.3),
can be reformulated as

> e € g e g, BV ()

Proof. 1t is a direct consequence of the fact that the hypervolume improvement of
any vector u to S, is max;eq1,n41) HVyr (u), as stated in the proof of Lemma 3.6, and
that v,41 € PFy by Proposition 3.5. 0

As a consequence, we can infer from [4, Theorem 1] that as soon as the Pareto front
is lower semi-continuous, there exists a greedy sequence, and thus a greedy set sequence.

PROPOSITION 3.8. If the Pareto front is described by a lower semi-continuous func-
tion f, then there exists a greedy sequence (v, )nen+ relative to any valid reference point.

Proof. If f is lower semi-continuous, then for any valid reference point r, the maxi-
mum of HV,.(.) exists, see [4, Theorem 1]. Therefore, there exists a vector verifying (3.2)

9
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and the problem of maximizing the maximum of a finite number of hypervolume functions
defined in (3.5) admits a solution. Since (3.3) and (3.5) are equivalent by Lemma 3.7, we
can build a sequence (v, )nen+ verifying (3.2) and (3.3), namely a greedy sequence. d

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.
For example, there are infinitely many greedy sequences associated to any affine Pareto
front with a reference point dominating the nadir point. This statement relies on the fact
that the unique maximizer of the hypervolume relative to a reference point » dominating
the nadir point is the middle of the section of the Pareto front dominating r, see [3,
Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r
is the only candidate for v; but ve can be either at 1/4 or at 3/4 of this section. Similarly,
v3 has to be in the position where vy is not but v4 can be at 1/8, 3/8, 5/8 or 7/8 of the
section of the Pareto front dominating r. For any m, we can find an iteration m such
that v, can be placed at 2" different points, whatever the m — 1 first terms of the greedy
sequence are.

3.3. Numerical results. In this section, we investigate empirically the convergence
rate of HV-ISOOMOO algorithms with respect to meta-iterations on seven benchmark
Pareto fronts (see Figure 2). We try to be as close as possible to the Assumption 3.3 of
perfect single-objective optimization. We iteratively find a vector of the Pareto front that
we estimate close to a global optimum of the single-objective optimization subproblem of
maximizing the hypervolume improvement to the vectors found so far. More precisely,
we estimate that this vector differs from a global optimum by less than 10712 (measured
in terms of objective function values). We assimilate these vectors to greedy vectors in
the following.

We consider the six concrete Pareto fronts with an explicit representation: {(x, f(z)) :
x € ]0,1]} considered in [22], plus an affine Pareto front (see Figure 2). The Pareto fronts
zdt1l, zdt2 and dtlz2 belong to the ZDT and DTLZ test suites [27, 15]. Four of the
Pareto fronts examined are convex (affine, convex-bil, doublesphere and zdt1), while
three are bilipschitz (affine, convex-bil and concave-bil). Two are neither convex
nor bilipschitz (dtlz2 and zdt2), and thus do not belong to the class of Pareto fronts
investigated theoretically in this paper. We take the nadir point (1,1) as reference point.

F2I+r F2I+T F2£+r F2JT+T F2Jt+r F2I: +T F2I: +T
F1 Fl F1 Fl F1 Fl Fl
(a) (b) (c) (d) (e) (f) (2)

Fig. 2: The benchmark Pareto fronts and their representations (a): affine with f :
r +— 1—x, (b): convex-bil with f : 2z = % xe™ +1— %5, (c): doublesphere
with f : 2 = 14+ 2 —2 x /z, (d): zdtl with f : z — 1 — /z, (e): concave-bil
with f : 2 = 1 — 0.5z — 0.522, (f): dtlz2 with f : 2 — V1 — 22 and (g): zdt2 with
f:ax—1—22for z €[0,1]. The reference point is 7 = (1, 1).

Greedy vectors are defined as the true solutions of single-objective problems involving
10
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the objective functions F} and Fj in the search-space Q C RZ. In order to compute an
approximation of the greedy vectors, we exploit the explicit representation f of the Pareto
front. Any greedy vector v,, belongs to the Pareto front (see Proposition 3.5), and thus is
of the form (vy,1, f(vn,1)). We compute (an approximation of) vy, 1 by solving numerically
the one-dimensional optimization problems defined in (3.7) and (3.8).

For all n, let note o, the permutation of [1,n] which orders the vectors of S,, by
increasing Fi-values and the so-called ordered greedy set Fi-values:

n o .__ - n —— n - 5
(3.6) w;' = Vg, iy for i € [1,n], wg . = Fmin,r and wy g, = Tmaxr -

The following single-objective optimization problems

(3.7 v11 € arg max HV,.((z, f(z)))
z€[0,1]
(3.8) Up41,1 € arg  max max HVyr, pr, ((z, f(x)))

i€l n+1] z€fw? ., wiy, ]

are solved using the SLSQP version implemented in the python module scipy.optimize
with the stopping criterions being set to ftol:1e-13 and maxiter:1000. For each
problem, we run the solver SLSQP three times starting it uniformly at random in the
search interval. We ensured that the objective functions optimized did not differ by
more than 10712 between the runs. The source code is available at https://github.com/
eugeniemarescaux/hypervolume-greedy-sequences.

1071 == 1.2
10715 .

10-2 1072

1073

10° 10! 10° 10% 10° 10! 10? 10° 10° 10! 10? 103
meta-iteration n meta-iteration n meta-iteration n

(a) The optimality gap of S, (b) The optimality gap of S, (c¢) The optimality gap of S,

and 1/2n (the dashed line) for — and of a n-optimal distri- normalized by the optimality
n up to 1000. bution for n up to 1000 for gap of a n-optimal distribution
the affine Pareto front. for n up to 1000.

Fig. 3: Numerical speed of convergence of the greedy set sequence (S, )nen+ towards the
Pareto front and comparison with the one of a m-optimal distribution, for r = (1,1).
In (a) and (b), all benchmark Pareto fronts are examined: affine —, convex-bil —,
doublesphere —, zdtl —, concave-bil —, zdt2 — and dtlz2 —.

In Figure 3a, we display the optimality gap of S,, with respect to the meta-iteration
n for all benchmark Pareto fronts. We rely on the analytical expression of the Pareto
front PF¢ to compute its hypervolume and the optimality gap. We observe very similar
convergence rates for all benchmark Pareto fronts. They are all close to the (1/(2n))nen
line in the log-log scale. It is compliant with theory for the affine Pareto front. Indeed,
let define the sequence of indices (ny)ren such that ng = 1 and ngy1 = 2ny + 1. For

11
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an affine Pareto front and the nadir chosen as reference point, there is a unique greedy
set Sy, which consists of objective-vectors regularly distributed on the Pareto front and
is equal to the ng-th optimal distribution. A direct consequence is that for any such
nk, the optimality gaps of S, and of the ng-th optimal distribution are equal. For the
affine Pareto front and r = (1, 1), the optimality gap of the n-th optimal distribution is
1/(2n + 2) [3, Theorem 5].

Our underlying assumption of perfect single-objective optimization is theoretical and
cannot be verified by a real solver. For HV-ISOOMOO algorithms coupled with a real
single-objective optimization solver SOOPTIMIZER, we can still display convergence
graphs with respect to meta-iterations as in Figure 3a. We can also display convergence
graphs with respect to cumulated SOOPTIMIZER iterations.

In Figures 3b and 3c, we compare the optimality gap of S,, with the smallest opti-
mality gaps achievable by a set of n points. These are the optimality gaps of n-optimal
distributions [3], the sets of n objective vectors with the highest hypervolume achievable
by a set of this cardinal. We reuse the optimality gaps of n-optimal distributions which
were computed for [22], for n = 1, 2, 3, 5, 6, 7, 10, 12, 15, 19, 25, 31, 39, 50, 63, 79,
100, 125, 158, 199, 251, 316, 398, 501, 630, 794 and 1000. The details of the computation
method can be found in [22, Section 5.2].

In Figure 3b, we display the optimality gap of S,, with respect to the meta-iteration n
for the affine Pareto front only, along with the optimality gap of n-optimal distributions.
The curve of the optimality gap of the greedy set sequence (S,,)nen+ follows the one of
the n-optimal distribution, moving away and getting closer periodically. This is what we
would expect theoretically, as detailed above.

In Figure 3c, we display the relation between the optimality gap of S, and of n-
optimal distributions for all benchmark Pareto fronts. We see similar fluctuations as
for the affine Pareto front, with the same periodicity. At the bottom of the curve, the
optimality gap of S,, is only a few percent larger than the one of a n-optimal distribution.
In the worst case, that is for doublesphere Pareto front and for n = 2, the optimality
gap of S, is only 23% larger than the one of a n-optimal distribution. For n > 10, what
is lost in proportion by taking S,, instead of a m-optimal distribution is always smaller
than for the affine Pareto front for the displayed value of n. We conjecture that it is true
for all 10 < n < 1000. The affine curve stops reaching regularly the value 1, in contrast
to what is known theoretically. It is explained by the discretization in n.

4. Lower bounds on the normalized maximum hypervolume. In this section,

we provide bounds on the maximum hypervolume achievable by a single feasible vector

u HV..
normalized by the maximum hypervolume of a feasible set: %{)Fﬂ(u). We refer

to this ratio as the normalized mazrimum hypervolume with respect to r. Bounds on the
normalized maximum hypervolume are exploited in Section 5 to provide bounds on the
speed of convergence of greedy set sequences towards the Pareto front.

4.1. Lower bound on the normalized maximum hypervolume for convex
Pareto fronts. The hypervolume relative to a reference point r of a vector u = (z, f(z))
of the Pareto front is HV,(u) = (r; — x) X (r2 — f(z)). From this simple formula, we
derive in the next proposition necessary conditions for a vector of the Pareto front to be
an hypervolume maximizer when f has at least left and right derivatives in x*.

PROPOSITION 4.1. Let 2* €]Xmin, Tmax| such that u* = (z*, f(z*)) mazimizes the
12
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hypervolume with respect to a valid reference point r. If the function f describing the
Pareto front admits left and right derivatives in x*, respectively f' (x*) and f! (x*), then

(4.1 ey < 28 ey
T —X
Proof. We define the function HV, ,.(.) as  — HV,((z, f())). If z* maximizes
HV, ,(.), then the left and the right derivatives of HV, ,.(.) are positive and negative,
respectively. By replacing the left and right derivatives of HV, ,(.) by their explicit
formulas and reorganizing the terms we obtain (4.1). d

Equation (4.1) states that the slope of the diagonal of the rectangle D;. is between the
absolute values of the slopes of the right and the left derivatives of f at z* (see the middle
plot of Figure 4). To the best of our knowledge, this geometric interpretation is new. It
becomes simpler when f is differentiable. Then, the absolute value of the slope of the
tangent of the front at a non-extreme vector u* is equal to the slope of the diagonal of
the rectangle D. (see the lefthand plot of Figure 4).

Fig. 4: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers v*, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PF, and the diagonal of D;,., are equal. Right: The Pareto
front PF. and the hypervolume maximizer u} for e = 1/3 and r = (1,1).

COROLLARY 4.2. Let £* €]Tmin, Tmax| be such that u* = (z*, f(z*)) mazimizes the
hypervolume with respect to a valid reference point r. If the Pareto front is described by
a differentiable function f in x*, then f'(z*) satisfies

r2 — f(z”)
4.2 —f(z*) = —2 .
(4.2) fi(@”) -
Proof. 1t is a direct consequence of Proposition 4.1 ]

A convex function may not be differentiable, but it always has left and right de-
rivatives. It is also above its left and right tangent lines respectively on the left and
on the right of z*. Therefore, Proposition 4.1 implies that the affine function g : = —
flz*) — % X (z — x*) is a minorant of f. This is the key idea of the proof of the
following lower bound on the normalized maximum hypervolume.

PRrROPOSITION 4.3. If the Pareto front is described by a convex function f, then the
following lower bound on the normalized mazimum hypervolume with respect to any valid

13
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reference point r holds:

maxyepr, HV,(u)
HV,.(PFy)

(4.3) >

1
2
where the inequality is an equality if and only if the Pareto front is affine and r dominates
the nadir point.

Proof. As explained in the above paragraph, the convexity of f implies that the
affine function g : « — f(a*) — %(;*) x (z — x*) is a minorant of f. Therefore,
PF, := {g(z) : © € [Tmin, Tmax|} dominates PF,, and thus has a higher hypervolume.
We denote Ly := 7 — Zmin,r and Lo := 79 — f(Zmax,r) the lengths of the rectangle
R = [Zmin,r, 71] X [[(Zmax,r), T2]. We denote Iy :=r1 —z* and Iy := ro — f(z*) the lengths
of the rectangle Dj... The region of R which dominates PF, is a right-angled triangle.
Additionally, by definition, the slope of its hypotenuse is l5/l;, and thus the lengths of
the other sides are Ly — Iy + (Lo — I2) X % and Ly — Iy + (L1 — 1) x % (see the middle
plot of Figure 4). Therefore, we have

HV,.(PF,) = A(R) = AM{u € R* : v € R,u < PF,})

1 l l
:L1L2—§X(Ll—l1+(L2—lg)Xi)X(LQ—ZQ-l-(Ll—ll)Xf)
. L2 1 L2 2 L1 1 Ll 2
—l1l2x|:_2+2><g_§x(g> +2XK—§X(H)]

For all z, we have (x — 2)2 > 0 and thus 2x — %xQ < 2. Therefore, we can conclude that
HV.(PF,), and thus HV,(PF;) is smaller than 2 x l1ly, that is 2 x HV,(u*). If either
L1/l # 2 or Ly/ly # 2, the inequality is strict. Thus, when the inequality is an equality,
the center of R belongs to the Pareto front. Since f is convex, it happens only when f is
affine and the reference point r dominates the nadir point. Conversely, if both conditions
are met, we know that the optimum is in the middle of the Pareto front and that we have
the equality (see [3, Theorem 5]). O

We just proved that one half is a tight lower bound on the normalized maximum
hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,
there is no upper bound valid for every convex Pareto front, even when r dominates the
nadir point. Let consider the Pareto fronts PF, := {ma)lc(l —Ze—exm):xecl01]}

(represented in the righthand plot of Figure 4 for € = 3). The normalized maximum

hypervolume of PF, for the reference point r = (1,1) converges to 1 when € goes to 0.?

4.2. Lower and upper bounds on the normalized maximum hypervolume
for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on
the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.

We consider two affine fronts with the same left extreme vector as PF; and slopes
—Lpin and — Lpay, see the lefthand plot of Figure 5. We call them PF;, and PF .y,
respectively. Formally:

(4.4) PFimax = {(2, fmax (%)) : € [Tmin, Tmax)} and
(4.5) PFumin = {(2, fuin(%) : T € [Tmin, Tmax] +
(176+62>2

3The normalized hypervolume equals 7y2 which converges to 0 when € goes to 0.

1—ex(1—e)2+(e—e
14
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with fmin(x) = f(xmin) - (I - xmin) X Lpin and fmax(z) = f(xmin) - (I - xmin) X
Lyax. For a (Lpin,Lmax)-bilipschitz function f, fmax(z) < f(z) < fuin(z) for all z €
[©mins Tmax], and thus the Pareto front is dominated by PF,.x and dominates PFyiy.
These two affine fronts provide bounds on both the hypervolume of the Pareto front

), Fy,

.
Ay} i

1:!—»

1 Fy

Fig. 5: Left : The Pareto front PF; surrounded by PFyax (below) and PF.,;, (above).
Right : An illustration that HV, (tumin) — HV,(PF;) (=m) becomes negligible compared to
HV, (tumin) (&) for 1 =1 and 19 — oo.

and the largest hypervolume of a vector of the Pareto front. They are key to prove
the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-
bilipschitz Pareto front.

PROPOSITION 4.4. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-
tion f, then for any valid reference point r, we have

maxyepr; HV;(u)
HV,(PFy)

Y

(4.6)

Proof. The fronts PF,,x and PF,;, are defined respectively in (4.4) and (4.5). We
note A1 = Zmax.r — Zmin,r, A} =71 — Zmax,r, Do =72 — f(Zmin,r) and V 1= Ag x (r; —
Zmin,r), see the lefthand plot of Figure 5. Since the front PF,,,x dominates the Pareto
front, the hypervolume of PF¢ is smaller than the hypervolume of PFax, V' + Liax X
A x Al + % X Limax X A2. Additionally, since each vector of PF,,;, is dominated by a
vector of PF ¢, the maximum hypervolume of a vector of PFy is larger than the maximum
hypervolume of a vector of PF ;. The front PF i, being an affine and therefore convex
front, we know by Proposition 4.3 that the maximum hypervolume of a vector of PF, is
larger than half of HV, (PFynin ), which is equal to 3 X (V+ Lupnin X Ap X Al +2 X Ly x A2)
To summarize, the maximum hypervolume of a vector of PF; is larger than % X (V4 Lyin X
Ay x A —|—% X Lipin x A?). Combining the upper bound on the hypervolume of PF; and the

lower bound on the maximum hypervolume of a vector of PF ¢, the normalized maximum

. I (VA4 Limin X A1 XA 41 X Liin x A%)
2 min 1 2 min 1
hypervolume is larger than Vi Lo X s XA+ T Lo X2

. This quantity is itself larger

1 o LminXA1 XA+ X Linin XA} > Limin XA1 XAl +3 X Linin XA}
than 5 x Linax X A1 XA+ 3 X Linax X AZ AsV 20and 0 < Linax X A1 X AL+ X Linax X AZ <1, we
conclude that the normalized maximum hypervolume is larger than % X % ]

We cannot guarantee any upper bound strictly smaller than 1 on the normalized maximum
hypervolume without adding an assumption on the reference point. Indeed, for a given

15

This manuscript is for review purposes only.



581

583
584
585
586
587
588

589

590
591

592

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

608
609
610
611

bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes
to 1 for 7 = Zpax and ro — oo (see the righthand plot of Figure 5). However, if f is
(Lmin,Lmax )-bilipschitz and r dominates the nadir point, we can prove that the normalized
maximum hypervolume is larger than % X % The proof relies on the fact that if the
reference point r dominates the nadir point, the vector of an affine front with the largest
hypervolume relative to r is its middle (see [3, Theorem 5]), whose hypervolume is half

of the hypervolume of the entire Pareto front.

PROPOSITION 4.5. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-
tion [ and the reference point r is valid and dominates the nadir point, the following
upper-bound on the normalized mazximum hypervolume with respect to r holds

maXy,e PFy HVr (u)

X Lmax
HV,(PFy) '

1
2 Lmin

<

(4.7)

Proof. We use the same notations as in the proof of Proposition 4.4. Since r dominates
the nadir point, both A}, Ay and V equal 0, and thus the hypervolumes of PFax
and PF, equal % X Liax X A% and % X Lpin X A2, respectively. The domination of
PFunin by PF; implies that the hypervolume of the Pareto front is below % X Lmin X
A%, Since PF . is an affine front whose extremes dominate r, its middle is the unique
hypervolume maximizer (see [2, Theorem 5]) with an hypervolume equal to i X Lipax X
A;.The domination of PF; by PFy.x implies that the maximum hypervolume of a vector
of PFy is larger than i X Lmax X A2. Gathering the lower bound on HV,.(PFy) and the

upper bound on the maximum hypervolume of a vector of PF, we retrieve (4.7). 0

This upper bound is only relevant for Lyax/Lmin < 2 and is the tightest for Lyax = Lmin,
where it achieves the value 1/2. In this paper, we use this upper bound for Lyax/Lmin
close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.

5. Convergence of HV-ISOOMOO coupled with perfect single-objective
optimization. We prove in this section various convergence results for HV-ISOOMOO
algorithms coupled with perfect single-objective optimization. We first prove that when
the Pareto front is either convex or bilipschitz, these algorithms converge to the entire
Pareto front. We transform the bounds on the normalized maximum hypervolume proven
in Section 4 into lower bounds on the speed of convergence. Then, we analyze the asymp-
totic convergence behavior when the Pareto front is bilipschitz with a Holder continuous
derivative.

To analyze the decrease of the optimality gap with n, we track in which gap regions
the vectors of the greedy sequence are inserted over multiple iterations. Naturally, a gap
region of §,, persists in being a gap region as long as no greedy vector is added in this
specific gap region. The greedy vector v,,41 is said to fill the gap region of S,, to which it
belongs. At iteration n + 1, this gap region disappears, replaced by two gap regions that
we call its children. More generally, we say that a gap region is a descendant of another
gap region when it is a proper subset of this gap region.

5.1. Convergence of HV-ISOOMOO with guaranteed speed of conver-
gence. We prove some upper bounds on the relation between the optimality gap at
iteration 2n 4+ 1 and at iteration m. These bounds translate into lower bounds on the
speed of convergence of HV-ISOOMOO under Assumption 3.3 of perfect single-objective
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optimization. The proof relies on inequalities of the form

(5.1) max HV, (u) > C x HV,/(PFy)

u€PF

stated in Propositions 4.3 and 4.4 and equations regarding optimality gaps, areas of gap
regions and hypervolume improvement presented in Subsection 2.2. A consequence of
(5.1) being true for any reference point 7’ is that the optimality gap at iteration 2n + 1
is at most (1 — C) times the optimality gap at iteration n.

We sketch the proof idea in the simple case where each of the vy, (k € [n+1,2n+1])
is inserted in a distinct gap region of S,,, see the lefthand plot of Figure 6. Inserting vy in
a gap region leads to an hypervolume improvement larger than C' times the area of this
gap region by (5.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is
larger than C times the area of the union of all gap regions of S,,, namely the optimality
gap at iteration n. A detailed proof is presented after the theorem statement.

F2 F2

v7

Fig. 6: Left: A Pareto front where each of the gap regions of S3 is filled by one of
the greedy vectors vy for k € [4,7]. The front is described by f(z) = 1 — \/z for
z € [0,1]. We represent the region Dy, (=3) , the gap regions of S3 (=9) and the regions
corresponding to HVI, (vg,Sk—1) for k € [4,7] (=2). Right: The ordered greedy set
Fi-values wy', corresponding to the greedy set S3. The Pareto front is described by

fla) =25 xe @ +1— % forx€[0,1].

PrOPOSITION 5.1. Consider a biobjective optimization problem with a Pareto front
described by a function f. Any greedy set sequence (Sp)nen+ relative to a valid reference
point T satisfies for all n

H VT(PFf) - HVT(SZnJrl) 1 Lmin . . . .
' <l-g min,&max/~
(5.2) HV.(PF;) — HV,(Sy) = 1 5 X I if £ 18 (Limin,Lmax )-bilipschitz and
HV,(PFy) — HVi(Song1) _ 1
. <= :
(5.3) HV, (PF;) — AV,(S,) = 2 if f is convex

Proof. Fix n > 1. We note o a permutation of [1,n 4 1] such that n + (i) is the
index of the first greedy vector vy, inserted in Gg ,; when possible. With this choice of o,
the i-th gap region of S, is a gap region of S, ,(;)—1. As a consequence, the hypervolume
improvement to S, (;)—1 of any vector u belonging to the i-th gap region of Sy, Gg ;.
is equal to HV;n (u) by Lemma 2.4. The hypervolume improvement of the greedy vector
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Unto(i) 10 Spyo(iy—1 being maximal, it is in particular larger than the one of any vector

of G5 ,; and thus than % X fm—" x HV,n(PFy) by Proposition 4.4. In other words, the

hypervolume improvement at any iteration n+ (i) is larger than % X ﬁ x HV,n(PFy).
By adding these inequations for all ¢ € [1,n + 1], we deduce that the hypervolume
improvement from iteration n to 2n + 1 is larger than 1 x ﬁ X E?jll HV,n (PFy).
Since the sum of the HV,» (PFy) is the optimality gap at iteration n, we have (5.2). If
f is convex instead of bilipschitz, we use Proposition 4.3 instead of Proposition 4.4 and

obtain (5.3). |

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation
between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimal-
ity gap associated to a greedy set sequence converges asymptotically to 0. Equivalently,
sets constructed by HV-ISOOMOO algorithms coupled with perfect single-objective op-
timization converge to the entire Pareto front as stated formally below.

THEOREM 5.2. Consider a biobjective optimization problem with a Pareto front de-
scribed by a bilipschitz or convex function f.

The hypervolume of a greedy set sequence relative to a valid reference point r converges
to the hypervolume of the entire Pareto front, i.e. HV,.(S,) — HV,(PFy).

Equivalently, for such Pareto fronts and under Assumption 3.3 of perfect single-
objective optimization, HV-ISOOMOO algorithms relative to a valid reference point r
converge in the sense of Definition 3.2.

From the lower bounds on the relation between the optimality gaps at iteration 2n + 1
and at iteration n, we deduce the following upper bounds on the normalized optimality
gap at any iteration.

COROLLARY 5.3. Consider a biobjective optimization problem with a Pareto front
described by a (Lmin,Lmax )-bilipschitz function. A greedy set sequence (Sp)nen+ relative
to a valid reference point r satisfies for all n

Lmin

< (2n + 2Bl X T

_ . [log,(n+1)]
HVT'(PFf) HVT(S’YL) < (1*1X me) &

4
(54) HV,(PFy) 2 Lmax

If the function f is convex, then any greedy set sequence relative to a valid reference point
r satisfies for all n

_ lo n+1
HVT(PFf) HVT(SH) < (1)[ 82 ( )] < 1

5.5 :
(5:5) HV,(PFy) 2 = 2n+2

Hence, for such reference points and under Assumption 3.3 of perfect single-objective
optimization, HV-ISOOMOO algorithms relative to r satisfy (5.4) if f i (Lmin,Lmax)-
bilipschitz and (5.5) if f is convex where S,, is replaced by T, the final incumbents Pareto
front approximation at iteration n.

Proof. The k-th term of the sequence defined by ug = 1 and 4,41 = 2 X u,, + 1 for
all n > 11s 2¥ — 1. Thus, (5.2) and (5.3) imply that when f is (Luyin,Lmax)-bilipschitz or
convex, the normalized optimality gap at iteration 2¥ — 1 is smaller than (1 — C)* with C
equal to % X %ﬁ:“ and %, respectively. Since the hypervolume of the greedy set increases
with n, and thus the optimality gap decreases with n, we deduce the first inequalities in

(5.4) and (5.5) via the change of variable k = |log,(n + 1)].
18

This manuscript is for review purposes only.



Additionally, for every n, |logy(n+1)] is smaller than log,(n+1)+1, that is log,(2n+
2). For every C, logy(2n + 2) equals log(2n + 2) x logy(C), and thus C'°82(27+2) equals
(2n + 2)'°82(C) | Therefore, we can infer that (2n + 2)'°82(®) is an upper bound of the
normalized optimality gap with C = 1 — % X % and C = % when f 1S (Lmin,Lmax)-
bilipschitz and convex, respectively. 0
We focused on the relation between the optimality gap at iteration n and at iteration
2n + 1. We can similarly examine the relation between the optimality gap at iteration n
and at any later iteration.

LEMMA 5.4. If f is (Lmin,Lmax)-bilipschitz (resp. convex), then for all n, for all
E<n+1, H;@fgg;ﬁ;{}j‘ng) is smaller than 1 — 1/2 X Lin/Lmax X k/(n+ 1) (resp.
1-1/2xk/(n+1)).

Proof. Consider the k gap regions of S,, with the largest areas. If f is (Lmin,Lmax)-
bilipschitz (resp. convex), the hypervolume improvement from iteration n to n + k is at
least 1/2 X Lyin/Lmax (resp. 1/2) times the area of the union of these gap regions, which

is at least HLH times the optimality gap at iteration n. 0

Yet, the previous lemma leads to looser lower bounds on the convergence rate. To illus-
trate this, we detail the case k =1 in the following lemma.

LEMMA 5.5. From the relation between optimality gaps at one iteration and the next
one gwen in Lemma 5.4, we deduce lower bounds on the relation between the optimality
gaps at iteration n and at iteration 2n+1 of 1/+/e = 0.61 and e~ 1/2%Lmin/Lmax for convex
and (Lin,Lmax )-bilipschitz Pareto fronts, respectively.

Proof. By Lemma 5.4, the relation between the optimality gap at iteration n and
at iteration n + 1 is smaller than 1 — C'/(n + 1) for convex and (Lmin,Lmax)-bilipschitz
Pareto fronts with C = 1/2 and C' = 1/2 X Lypin/Lmax , respectively. By recurrence, this
implies that the relation between the optimality gap at iteration n and at iteration 2n+1
is smaller than (1 —C x 45)"". The sequence of lower bounds ((1 —C x —=7)"*")

n+1 n+1
is increasing and converges towards e~¢. This is a direct consequence of classic results
on the sequence ((1 —1/n)")nen. |

These lower bounds are smaller than the lower bounds of Proposition 5.1: 1//e > 0.5
while e~ 1/2XLmin/Lmax > 1 —1/2 X Lypin/Limax-

5.2. Asymptotical behavior of the convergence of HV,(S,) to HV,(PFy).
In this section, we analyze the asymptotic convergence behavior for a Pareto front de-
scribed by a bilipschitz function with a Holder continuous derivative. We prove that, in
this case, doubling the number of vectors in the greedy set divides the optimality gap by a
factor which converges asymptotically to two as stated in Theorem 5.12. This asymptotic
limit corresponds to the case of affine Pareto fronts with a reference point dominating
the nadir point. For such Pareto fronts and reference points, the optimality gap is always
halved when the number of vectors in the greedy set goes from n to 2n + 1, see Figure 7.

First, we study the properties of the part of the Pareto front corresponding to a
specific gap region of §,,.  We introduced the ordered greedy set Fi-values in (3.6).
Naturally, we have wg, < wi, < ... < w4, and the intervals [w} ; ., w].[ for i €
[1,n + 1] form a partition of [Zmin,r,Zmax,r[, see the righthand plot of Figure 6. The
interval [w?_l,r, wﬁr] corresponds to the part of the Pareto front belonging to the i-th gap
region of S,,. When the Pareto front is bilipschitz, the lengths of these intervals converge
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asymptotically to 0 as stated in the next lemma. This result is a direct consequence of
the convergence of HV,(S,) to HV, (PF) stated in Theorem 5.2.

LEMMA 5.6. If the Pareto front is described by a bilipschitz function f and the greedy
set sequence is associated to a valid reference point r, then the ordered greedy set Fy-values
satisfy max;eqi pi1] Wi, — Wiy, —— 0 with the w}, defined in (3.6).

’ 7 n—oo ’

Proof. Let Luyin and Ly,ax be constants such that f is (Lmin,Lmax)-bilipschitz. The
area of the i-th gap region of S, is ff,fﬁ (f(x) = f(wl,))dx. This is larger than
i—1,r ’

w! .
fw;,rl Linin X (w}, — z)dx, which equals 1 X Liin X (wy',
.

—w}' )% Since the area

of any gap region of S,, is smaller than the optimality gap at iteration n, this implies that
the difference w!, —w!" ; , is smaller than /2 x (HV,(PF;) — HV,(S,)) for all n, for all

1—1,r

i€ l,n+1]. Therefore the convergence of HV.,.(S,,) to HV,.(PF ) stated in Theorem 5.2
implies that the maximum over i of wy, —wj’; , converges to 0. 0

We prove in the next lemma that if the Pareto front is described by a bilipschitz
function f with a Holder continuous derivative, then the the part of the Pareto front
belonging to a specific gap region of §,, is bilipschitz for some constants whose ratio con-
verges asymptotically to 1. Affine functions being the only functions to be (Lmin,Lmax)-
bilipschitz with Lin/Lmax = 1, it supports the interpretation that the convergence of
a greedy set sequence for such Pareto fronts and for affine Pareto fronts share some
asymptotic similarities.

When f is bilipschitz, its restriction to the part of the Pareto front dominating 7},
that is [w}" ., w},], is s (L%m Ltn )-bilipschitz with

i—1,r min’*~“max

L'Ln '—inf{ f(x)_j;(y)

min "7
T —

Lbn = sup {‘7f(2 : ?j;(y)

max

LT,y € [wi 1, Wiy ]x;«éy} and

(5.6)
$y6[ w;— 17‘7 l]x#y}

At iteration n, the ratio between L:". and L™ the bilipschitz constants on the i-th gap

max min’

region of §,,, is by definition smaller than

Li,n
61 o= {2 e 1m0 0}

min

The proof of the convergence of ¢, to 1 relies on the fact that a differentiable function
can be approximated locally by an affine function. The quality of this approximation is
guaranteed by the Holder continuity of the derivative.

LEMMA 5.7. We consider a greedy set sequence (Sp)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Hélder continuous
derivative, then g, defined in (5.7) converges asymptotically to 1.

Proof. We take o such that f’ is Holder continuous with exponent «, i.e f is 1,
and Lmin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-
bilipschitz. We recall that f is decreasing, and thus for all < y, we have f(z)— f(y) > 0.
Since f is C1'® and therefore C!, the Taylor formula with Lagrange remainder states that
for all z < y, there exists £ € [z,y] such that f(y) = f(z)+ (y—x) x f/(£). Since f is C1,
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this implies that for all z < y, | f(y) — f(z) — (y —2) x f'(z)| < (y — )T x [f']ca. Thus,
fW)—f(=)

x
y belonging to the non-empty interval [w

is smaller than —f'(x) + [f']ce X (y — 2)®. We now restrict ourselves to x and

n

P 1 wi]. Our goal is to find an upper bound

depending on i but not on either = or y. Since f is C®, the difference between —f/ (x)

and —f'(wj; ,.) is smaller than [f']ca X (z —wj"; ; )%, and thus [f']ce X (W], —w]*; )
. Additionally, the difference between x and y is smaller than w(, —w}* ; ,.. We conclude
that for z,y € [w ., w}',], %‘im is smaller than —f"(w}" ; ; ,.) + 2[f']ca x (W}, —
w} )%, and thus so is Ly, defined in (5.6).

Following the same approach, we can also infer that L:"  defined in (5.6) is greater
than the symmetric quantity —f'(wy_ ;) — 2[f'lca x (w}, —w} )% The quantity

1(0) 1 : . n o __,,n a . no_
—f'(wf_y ;) is greater than Ly, and (w7, —w; ,.)* is smaller than max;eqy 17 (wy,

. Lmin+2[f']ca Xmax;e[1 (wl, —wl ;)

n o i ,n+1] i,r i—1,r
wi_l,r) . As a consequence, ¢, is smaller than T =2 oo Xmaxic (1 msa) (0T w0, )7 By
Lemma 5.6, max;e[1,ny1] Wi, — Wiy, converges to 0 and thus, this upper bound on ¢,
converges to 1. Since g, is always larger than 1, it converges to 1. O

A consequence of the previous lemma is that the bounds on the hypervolume improvement
of v, 41 to S, normalized by the area of the gap region filled by v,,41 that we can infer from
Propositions 4.4 and 4.5 converge asymptotically to 1/2, see (5.8). Similarly, the bounds
on the normalized area of the child of a gap region that we can infer from Lemma A.2
converge to 1/4, see (5.9). These asymptotic values correspond to the case of an affine
Pareto front with a reference point dominating the nadir point, see Figure 7.

FQA T

U1

Fy

Fig. 7: The three greedy sets Sy (left), So (middle) and Ss (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point. The area
of any of the gap regions of S; are half of HV, (PFy) (left). The area of any of the new
gap regions of Sy is a quarter of the area of their parents (middle). The optimality gap
of 83 (right) is half of the optimality gap of Sj.

LEMMA 5.8. We consider a greedy set sequence (Sp)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Hélder continuous
derivative, then for all € > 0, for n large enough, for every non-empty gap region G
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and every child Gg ; of Gg ;. we have

1 maxuegy | HVI-(u,S,) 1
5.8 - x(l—-¢< o < =x(1+¢€) and
(58) % (10 S e TS < g X (14
1 A5, 1
(5.9) < Ms,5)
(19 = AG,,) ~ix(1-9
Proof. The interval [w]' ; .,w}.] is the set of the first coordinates of the vectors of

the Pareto front which dominate r* . The restriction to [w;‘_ljr, w?r] of £ 18 (Lmin,Lmax)-
bilipschitz for some Ly, and Lyax such that % = ¢, with ¢, defined in (5.7). Ad-

ditionally, as stated in Proposition B.2, for n lafég enough, all the r}' corresponding to
non-empty gap regions dominate the nadir point. As a consequence, the conditions to
apply Lemma A.2 and Proposition 4.5 are met by non-extremes gap regions.

By Propositions 4.4 and 4.5, max HV,»(u)/HV,»(PF[) is between 1/2 x 1/g,, and
weri, : :

1/2xgy. Additionally, by Lemma A.2, \(Gg,  ;)/HV,»(PFy) is between (1-1/2xgy)/(1+
¢2) and (1 —1/2x 1/q,)/(1+1/¢?). The maximum over the vectors u belonging to the
Pareto front of HV . (u) is equal to the maximum over u belonging to the i-th gap region
of S, of HVI,.(u, S,,). Indeed, HV,» (.) is null for vectors outside the i-th gap region of S,,
while it is nonnegative, equal to HVI.(.,S,), otherwise. Additionally, HV,» (PF) equals
A(Gs, ;). The convergence of g, to 1 stated in Lemma 5.7 imply that the bounds proven
so far converge to a half and a quarter, respectively. Thus, we have (5.8) and (5.9) for n
large enough. ]

The following lemma states that for n large enough, the area of two non-empty gap regions
relative to the same greedy set cannot be too different. More precisely, the area of any
gap region of §,, cannot be more than 4 x (14 o0(¢€)) times greater than the area of another
gap region of S,,. The proof relies on considering the parents of the gap regions.

LEMMA 5.9. We consider a greedy set sequence (S, )nen= relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Hélder continuous
derivative, then for all € > 0, for n large enough and for any non-empty gap regions of
Sn, G5, ; and G 5 with i,j € [1,n + 1], we have

T 2
(5.10) % <ax UFT
(gsn,j) I—e

Proof. Fix € > 0. By Lemma 5.8, there exists N; € N* such that for all n greater
than Ny, (5.8) and (5.9) are verified for any non-empty gap region of S,, and its children.
Since maX;e[1,ny1] Wi, — W1, converges to 0 by Lemma 5.6, every non-empty gap region
is filled at some point. Take Ny such that all the non-empty gap regions of Sy, are filled
at iteration Ny. For all n greater than N, (5.8) and (5.9) are true for any non-empty
gap region of S, and its children, but also for its parents.

Take n > Na. Wenote G, := G5, and Gy :=Gg ; two distinct non-empty gap regions
of §,,, and P; and P, their respective parents. When two sets correspond to gap regions
relative to the same greedy set S,,, we say that they cohabit at iteration m. Since only
one vector is added to S,, at a time, the cohabitation of G; and G, implies that either G;
and P, or G, and P; cohabit at some earlier iteration. In the first case, there necessarily
exists m > Ny such that P, and G, are gap regions relative to S,, and v,4+1 belongs
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to Py, otherwise, G; and G, would not cohabit. By (5.8), the maximum hypervolume
improvement to S,,, of a vector of G, and of a vector of P, are at least 3 x (1 —€) x A(G,)
and at most 3 X (14 €) x A(P,), respectively. Since a vector of P,, vy, 41, maximizes the
hypervolume improvement to S,,, we have A\(G;) x 3 x (1 —€) < A(P,) x 2 x (1+¢). Since
A(P,) is smaller than 4 x (1 + ¢€) times the area of its child A(G,) by (5.9), this inequality
implies (5.10). In the second case, P, is filled before P;. Thus, there exists m > Ny such
that P; and P, cohabit at iteration m and v,,4+1 belongs to P,. Since the area of P; is
larger than the one of its child G, the hypervolume improvement of vy, 41 to Sy, is still
larger than 4 x (1 —€) X A(G;). The rest of the argumentation remains valid. 0

We now have all the results needed to analyze the asymptotic impact of doubling the
number of points in the greedy set. To prove the following asymptotic upper bound,
we rely on similar arguments as for its nonasymptotic counterpart, Proposition 5.1. The
previous lemma guarantees that the impact of doubling the number of points in the greedy
set is asymptotically similar to the impact of passing from n points to 2n + 1.

PROPOSITION 5.10. Let (Sp)nen+ be a greedy set sequence relative to valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Hélder continuous
derivative, then for all € > 0, we have for n large enough
HV,(PF¢) — HV(S2,) 1

< = +o(e) .

(5.11) HV,(PFy) — HV,(S,) ~ 2

Proof. Fix € > 0. Fix n large enough to verify (5.8) and (5.10) for this particular e.

Let o be a permutation of [1,n + 1] such that the i-th gap region of S, is filled by
Unto(i) When it is filled before iteration 2n + 1. With this choice of permutation, Gg ,
is always a gap region of S, q(;)—1. Thus, HVL.(vp40(i), Snte(i)—1) is superior to the
maximum hypervolume improvement of a vector of Gg ; t0 S,45(;)—1, which is superior
to 3 x(1—€)x A(Gs, ;) by (5.8). It is equivalent to say that the hypervolume improvement
at iteration n+ o (i) is larger than § x (1 —¢) x A(G5 ;). Summing over i € [1,n+1], we
obtain that the hypervolume improvement between iteration n and 2n + 1 is larger than
the sum over i of  x (1 —¢€) x A(Gs, ), that is 3 % (1 — €) times the optimality gap at
iteration n.

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is
HVIL, (v2n41,S2,). It is smaller than § x (1 + €) X maX;c[1,2041] A(Gs,, ;) by (3.5) and
(5.8). Since the area of a gap region is smaller than the one of its parent, the maximum
area of a gap region is lower at iteration 2n than at iteration n. The maximum area of
one of the more than n — 1 gap regions of S, is itself smaller than ﬁ X w
the optimality gap at iteration n by (5.10).

We conclude that the relation between the optimality gap at iteration 2n and at

iteration n is smaller than 1 — 3 x (1 —¢) + ﬁ d

times

We roughly follow the same approach to obtain the following asymptotic lower bound on
the impact of doubling the number of points in the greedy set. Lemmas 5.8 and 5.9 are
key to prove an upper bound on the hypervolume improvement at iteration k. They allow
to prove that filling a gap region of S,, more than once gives, up to a factor 1+ o(e), a
lower hypervolume improvement than filling a gap region which was not filled. Indeed,
the area of a descendant of a gap region of S, is at most % + o(e) times the area of its
parent by Lemma 5.8, which is itself at most 4 4+ o(e) times the area of any other gap
region of S, by Lemma 5.9.
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PROPOSITION 5.11. Let (Sp)nen+ be a greedy set sequence relative to a valid reference
point r. If the Pareto front is desribed by a bilipschitz function f with a Hélder continuous
derivative, then for all € > 0, we have for n large enough
HV,(PFy) — HV,,(Sgn) 1

> —+o(e) .

(5.12) HV,(PFy) — HV,(S,) ~ 2

Proof. Fix e > 0. Fix n large enough to verify (5.8), (5.9) and (5.10) for this particular
e. Let 6 € {—1,0,1} be such that S,, has n + ¢ non-empty gap regions. Let ig := 1 when
the left extreme gap region is empty and iy := 0 otherwise.

Let o be a permutation of [1,n + 0] such that the i-th non-empty gap region of
Sny U8, iy+i0 18 filled by the vector v, ,(;) when it is filled before iteration 2n + 0. We
distinguish two cases. In the first case, v, 4,(;) is the child of the i-th non-empty gap
region of S, and consequently its hypervolume improvement to S, ,(;)—1 is at most
3 X (L4 €) x NG5, ;,44) by (5.8). In the second case, v, 1,(;) belongs to G5, io+j the
j-th non-empty gap region of S,,, with j # ¢ and, by definition of o, fills a descendant of
this gap region not Gg ;- 4 itself. By (5.8), the hypervolume improvement of vy, ;) to
Spto(iy—1 is still at most § x (1 + €) times the area of the gap region it fills. By (5.9),

the area of a descendant of ggmio 4 is smaller than times the area of its ancestor.

1
4x(1—¢)
By (5. 10) we also know that the area of the i-th non-empty gap region of S, is at most
4 x M times the area of any other gap region of S, in particular its i-th non-empty
gap reglon We conclude that the hypervolume improvement of vy, ,(;) to Sn+a(1) 1 is

smaller than 1 x 8+32 X A(G5, ig+i)- To summarize, since 1+ ¢ is smaller than E +e 32, the

hypervolume improvement at any iteration n+ o(4) is smaller than 5 X 8"‘32 x NG5, 4)-

Summing over ¢ € [1,n + ¢], the hypervolume improvement from 1terat10n n to 2n —|— 0

3
is smaller than % x 8132 times the sum over ¢ of )\(ngi), that is the optimality gap at

iteration n. ’

Now, it is left to prove an upper bound on HV,(Ss,) — HV,(Sap4s). This quantity
is maximal for § = —1, where it is simply the hypervolume improvement at iteration 2n.
As in the previous proof, it is smaller than QXI(Z;) times the optimality gap at iteration
n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n

is larger than 1 — 5 x 8+32 - % a

We combine the 1ower and upper asymptotic bounds to obtain the following theorem.

THEOREM 5.12. Consider a biobjective optimization problem and a greedy set se-
quence (Sp)nen+ relative to a valid reference point r. If the Pareto front is described by a
bilipschitz function f with a Holder continuous derivative, we have

HV,.(PFy) — HV,(S2y) 1

(5.13) HV,(PFy) — HV,(S,) n—oo 2 °

Consequently, for such Pareto front and reference point and under Assumption 3.3 of
perfect single-objective optimization, HV-ISOOMOO algorithms relative to r satisfy (5.13)
where Sy, is replaced by I,,, the final incumbents Pareto front approximation at iteration
n.

6. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a perfect
single-objective solver have a O(1/n) convergence rate on convex Pareto fronts and a
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O(1/n°) convergence rate on bilipschitz Pareto fronts with ¢ < 1 depending on the bilips-
chitz constants where n is the number of meta-iterations. Each meta-iteration corresponds
to a single-objective optimization run. Both bounds are tight over the class of Pareto
fronts and reference points considered. They are reached for affine Pareto fronts and
reference points dominating the nadir point. On convex Pareto fronts, the convergence
rate is exactly ©(1/n), the fastest convergence rate achievable by biobjective optimization
algorithms [22].

We also investigate numerically the non-asymptotic speed of convergence of HV-
ISOOMOO algorithms coupled with a perfect single-objective solver on some simple con-
vex and concave Pareto fronts. The optimality gap of the final incumbents Pareto front
approximation at meta-iteration n is close to the optimality gap of n-optimal distributions,
that is the lowest optimality gap achievable by a Pareto front representation of cardinal
n. The ratio between these two optimality gaps fluctuates periodically with respect to
n. At the lowest, the optimality gap of the final incumbents Pareto front approximation
is only a few percent larger than the optimality gap of n-optimal distributions, while at
the largest, it is 23% larger in the worst case. Both of these numerical and theoretical
results show that greedily adding points maximizing the hypervolume contribution as in
HV-ISOOMOO algorithms is an effective way to quickly increase the hypervolume.

Finally, we prove that for bilipschitz Pareto fronts with a Hélder continuous deriva-
tive, doubling the number of meta-iterations divides the optimality gap by a factor which
converges asymptotically to two. This asymptotic behavior resembles what we would ob-
serve with an affine Pareto front and a reference point dominating the nadir point. Yet, it

does not guarantee a ©(1/n) convergence rate. Both (@)%N* and (ﬁg(”))new are

examples of sequences verifying this property which do not have a ©(1/n) convergence
rate. The convergence rate on nonconvex Pareto fronts could theoretically be worse than
©(1/n), but not better [22].

Convergence rates with respect to meta-iterations similar to those achieved under
the assumption of perfect single-objective optimization may be observed in practice. We
expect it to be the case for efficient implementations of HV-ISOOMOO and easy multi-
objective problems, where the single-objective solver should return good approximations
of global optima. Additionally, lower bounds on the speed of convergence may be directly
derived for practical HV-ISOOMOO algorithms if a non-asymptotic lower bound on the
speed of convergence towards a global optimum is known for the single-objective solver
SOOPTIMIZER and if SOOPTIMIZER stops late enough. To do this, one could rely on
the approach described in Lemma 5.4 with k¥ = 1 and consider the vectors v towards
which the single-objective solver converges instead of the greedy vectors v,. The v} are
global optima of the true subproblems solved during meta-iterations.

We expect that the approach we use to prove a lower bound on the speed of conver-
gence of HV-ISOOMOO coupled with a perfect single-objective solver generalizes to any
number of objectives. Indeed, the gap regions can still be defined using local nadir points
for any number of objectives m > 3 but they are no longer disjoints. This implies that
we need to consider the hypervolume improvement from iteration n to n 4+ 1 instead of
2n 4+ 1. Lemma 5.4 details how to do so. On top of that, the proof of Proposition 5.1
only requires an upper bound on the number of gap regions and a lower bound on the
normalized maximum hypervolume for some categories of Pareto fronts. It is known that
for m = 3 and m > 3, there are respectively less than 2n+41 [12] and O(nl% 1) [19] gap re-
gions associated to a set of n points. We conjecture that lower bounds on the normalized
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maximum hypervolume can be proven for m > 3 for convex Pareto fronts and for Pareto
fronts with an explicit representation which is (Lmin,Lmax)-bilipschitz w.r.t. all variables.
A possible generalization of Theorem 5.12 asymptotic insight is more open.
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Appendix A. Normalized areas of the gap regions relative to an hyper-
volume maximizer. The goal of this section is to prove bounds on the normalized
areas of the gap regions G\, and g;g;ht relative to an hypervolume maximizer u* (see the
lefthand plot of Figure 8) in the case of a bilipschitz Pareto front and of a reference point
r dominating the nadir point. These bounds are stated in Lemma A.2. The proof relies
on the bounds on the normalized maximum hypervolume proven in Subsection 4.2 and
the following lower and upper bounds on the relation between A(Gf;,) and )\(g;ﬁ;ht).

PROPOSITION A.1. We assume that the Pareto front is described by a (Lmin,Lmax)-
bilipschitz function f. Let u* be a non-extreme vector of the Pareto front which mazximizes

*

the hypervolume with respect to a valid reference point r. If r1 < Tmax, we have )\(Q;ﬁ-ght) >
2

2 * * i )
féﬂin X MGiep)- If 2 < f(@min), we have A(Gjep) > LLgr:ax X NG ight)-

nax
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Fig. 8: Tllustration of elements of the proofs of Proposition A.1 in the case r1 < Tpax
(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
B e ] [0,1]. Left: the gap regions Gi; and Q;‘i;ht with a segment of
slope —Lin passing through u*. Middle: the hypervolume improvements HVL, (u*, u,)
(mm) and HVI, (u,, v*) (mm) . Right: the hypervolume improvement HVI, (tyin, u) (=) and
its counterpart HVI, (u, umin) (2m) where u is a vector of the Pareto front which dominates
T

Proof. We consider the case where r; < xpmax. Let z* be the first coordinate of u*.
We denote Ly :=r; — 2™ and Lo := ro — f(z*) the lengths of the sides of the rectangle
Dr.. For all 2,y € [Tmin, Tmax), We have |f(z) — f(y)| > Lmin X |z — y|. Additionally,
since 71 < Zmax, the segment [x*, x* + L] is included in [Zmin, Tmax]- AS a consequence,
the section of the Pareto front on the right of u* dominates the segment between u* and
u* + Ly X (1, —Lyin), see the lefthand plot of Figure 8. Therefore, A(gg;ht) is larger than
the area of the region of the objective space dominated by this segment, not dominated
by u* and dominating r, that is 5 X Lmin X L2. For all 2,y € [Tmin, Tmax], We also have
|f(x) = f(y)] < Lmax X |z —y|. Therefore, the part of the Pareto front on the left of u* is
dominated by the segment between u* and u* + Lo X (fﬁ, 1), and \(G},) is smaller

than l X % x L3. We have yet to prove a lower bound on % The vector u* being
dlfferent from tmin, for € > 0 small enough, the vector u. := (z* — ¢, f(z* — €)) belongs

to the Pareto front. As we can see in the middle plot of Figure 8, HVI,.(u* ,ue) is smaller
than L1 X Lyax X € and HVI,.(ue, u*) is larger than € x (Le — € X Lyax). Additionally,
u* being an hypervolume maximizer, HVL,.(u*, u.) is larger than HVIL, (u.,u*), and thus
L1 X Lyax > Lo — € X Liax for all € > 0. Taking the limit of this inequality when € — 0,
we obtain that Ly X Lyayx > Lo. Combining the bounds on /\(glcft) and A( rlght) with the

lower-bound on %, we obtain the desired lower bound on A(G,,). We can obtain the
symmetric inequality when ro > f(2min) by following the same approach. d

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.
We now prove the desired bounds on the normalized area of the gap regions gf;}t and
ggight'

LEMMA A.2. Let u* be a vector which mazimizes the hypervolume with respect to
a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)- bilipschitz
function f and the reference point v dominates the nadir point, both )\(gleﬂ) and ,\(gmght)

are between (1= x fws) /(14 £ and (1 § x fon) /(1 + ).

max
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Proof. Let note arbitrarily G, and G, the two gap regions of the set S = {u*}. By
2 2
Proposition A.1, A(G,) is between féﬂ x A(G;) and % x A(G;). Additionally, by

Propositions 4.4 and 4.5, the normalized maximum hypervolume max,ecpr, HV;(u) over
1 Lmin

HV, (PFy) is between 5 x 7= and % X % . These bounds can be transformed into

bounds on HV,.(PFy) —maxu[ggpf HV, (), that is A(G,)+A(G,). As a consequence, A(G,)

is between (1— § x mex) x HV, (PF;) — Zpax x A(G,) and (1 — § x £min) x HV, (PFy) -

1in

2
f;"i“ (G1). Moving all the A(G;) terms on the same side and re-normalizing this side, we

obtain the desired bounds for G;, which can be chosen to be either gfg;t or ggght. 0

Appendix B. The nadir point is dominated by all the r} corresponding to
non-empty gap regions for n large. We show in this section that for bilipschitz
Pareto fronts, the nadir point is dominated by all the local nadir points r}* corresponding
to non-empty gap regions, for n large enough. This result is stated in Proposition B.2 and
used in Subsection 5.2. It is equivalent to prove that the extreme vectors which dominate
the reference point belong to the greedy set for n large enough.

First, we prove in the next proposition that if 71 > Zpax (resp. ro > f(Zmin)), then
for o (resp. r1) close enough to f(Zmax) (resp. Tmin) the extreme vector tmax (resp. tmin)
is the only hypervolume maximizer, see the righthand plot of Figure 8. There are similar
statements in [9] for the set of  points maximizing the hypervolume, but they only apply
to u > 2.

LEMMA B.1. We assume that the Pareto front is described by a function f which is
(Lmin, Limax )-bilipschitz and that the reference point r is valid. Ifr1 > Tmax and f(Tmax) <
r9 < f(max) + Lmin X ("1 — Tmax), the right extreme of the Pareto front umay is the only
mazximizer of HV,.(.). Additionally, if ra > f(Zmin) ond Tmin < 71 < Tmin + %::‘“)
the vector umin = (Tmin, f(Tmin)) @ the only maximizer of HV,.(.).

J

Proof. This proof is illustrated in the righthand plot of Figure 8. Let r be a reference
point such that ro > f(Zmin) and zyin < 71 < xmin—i—w. Let u = (z, f(2)) # Umin
be a vector of the Pareto front which dominates . The hypervolume improvement of s
to {u} is (r2 — f(@min)) X (£ — Tmin). The hypervolume improvement of u to {umin} is
(f(Xmin) — f(x)) X (r1 — x), which is smaller than Lyax X (£ — Zmin) X (11 — Tmin) since u
dominates r and f i8S (Lmin,Lmax)-bilipschitz. Since we assume that Lyax X (11 — Zmin) <
79 — f(Zmin), the upper bound on HVI,.(u, tmiy) is strictly smaller than HVI, (umin, u).
Therefore, the hypervolume of wy;, is strictly larger than the one of u. We conclude that
Umin 18 the unique hypervolume maximizer. The symmetric result can be obtained with
the same approach. O

It is left to prove that when 71 > Zpax (vesp. ro > f(Zmin)), the second coordinate of
Ty (resp. the first coordinate of 7{) indeed converge to f(Zmax) (resp. Tmin). It is a
straightforward consequence of Lemma 5.6. Therefore, we are able to conclude.

ProprosiTION B.2. We assume that the Pareto front is described by a bilipschitz func-
tion f. Let (Sn)nen+ be a greedy set sequence relative to a valid reference point r. For
n large enough, every local nadir point r' corresponding to a non-empty gap region Gg
dominates the nadir point.

Proof. By Lemma 5.6, wy; . converges to Zmax, and thus the right extreme local nadir

n

point ryy = (r1, f(wy, ) converges to (71, f(Zmax)) by continuity of f. Therefore, if
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is strictly larger than zmax, then there exists N such that for all n > N, rj,; verifies
the assumptions on the reference point of Lemma B.1 which guarantee that uyay is the
unique maximizer of HV,.(.) over the right extreme gap region G5, nt1- Let assume that
Umax does not belong to S,,. Then, w%vr # Tmax, and since wﬁm converges t0 Tyax, the
left extreme gap region ngi is necessarily filled at some later iteration. When the right
extreme gap region is filled, umax, the unique minimizer of HV,.(.) over this gap region,
is added to the greedy set. To summarize, if 1 > Tyax, then for n large enough S,
contains umay, and thus the right extreme gap region is empty. We can prove with the
same approach that for ro > f(Zmin), S, contains umi, for n large enough.

At any iteration, the non-extreme local nadir points dominate the nadir point. Ad-
ditionally, we proved that either r1 < Zmax (resp. 79 < f(Zmin)), and thus the left (resp.
right) extreme local nadir point dominates the nadir point or for n large enough, the left
(resp. right) extreme gap region is empty. a
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