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MULTIOBJECTIVE HYPERVOLUME BASED ISOOMOO1

ALGORITHMS CONVERGE WITH AT LEAST SUBLINEAR SPEED TO2

THE ENTIRE PARETO FRONT3

EUGÉNIE MARESCAUX AND ANNE AUGER4

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the5
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,6
respectively. In this context, we introduce a new algorithm framework, Incremental SingleObjective Op-7
timization for MultiObjective Optimization (ISOOMOO) for approximating the Pareto front with an8
increasing number of points. We focus on HV-ISOOMOO, its instanciation with the hypervolume in-9
dicator, a set-quality indicator which is widely used for algorithms design and performance assessment.10
HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing the hypervolume. We11
study the convergence to the entire Pareto front of HV-ISOOMOO coupled with perfect singleobjec-12
tive optimization. The convergence is defined as the convergence of the hypervolume of the sets of all13
meta-iterations incumbents towards the hypervolume of the Pareto front. We prove tight lower bounds14
on the speed of convergence for convex and bilipschitz Pareto fronts in O(1/nc) with c = 1 and c ≤ 1,15
respectively. The index n denotes the number of meta-iterations of HV-ISOOMOO. For convex Pareto16
fronts, the convergence is in Θ(1/n), namely the fastest convergence achievable by a biobjective opti-17
mization algorithm. These are the first results on the speed of convergence of multiobjective optimization18
algorithms towards the entire Pareto front. We also analyze theoretically the asymptotic convergence19
behavior.20

Key words. multiobjective optimization, convergence, hypervolume, Pareto front21

AMS subject classifications. 90C29, 90C3022

1. Introduction. Real-world problems often involve the optimization of several con-23

flicting objectives. The solution of such problems is the set of non-dominated decision24

vectors (vectors of the search space), the Pareto set. It is defined as the set of solutions25

that cannot be improved along one objective without degrading along another one. Its26

image in the objective space is the Pareto front. A decision maker is then often involved to27

choose, based on its preferences, a single best compromise. The shape of the Pareto front28

informs on the trade-off between objectives. Many algorithms such as evolutionary algo-29

rithms approximate the Pareto front with a number of points fixed in the beginning. But30

some algorithms, in particular stemming from direct search methods [1, 7, 10, 11] aim at31

approximating the Pareto set or Pareto front with as many well-distributed points as pos-32

sible. Ideally, the quality of the Pareto front approximation increases with time without33

stagnating and such algorithms are referred to in the sequel as anytime algorithms.34

The speed of convergence towards a critical decision vector or a vector of the Pareto35

front have been examined for many algorithms such as (1+1) evolutionary multiobjective36

algorithms [5] or Newton’s method [14]. Convergence speeds are typically similar to the37

ones obtained for singleobjective optimization. They both apply to a convergence to-38

wards a single point. Their analysis is sometimes reduced to the study of the convergence39

of a singleobjective optimization algorithm. The convergence of anytime algorithms to-40

wards the whole Pareto set or front is of a different kind because these are sets and not41

points. It has already been theoretically investigated for some algorithms [10] and more42

abstract frameworks [19], but analysis of the speed of convergence are missing. Addition-43

ally, empirical studies typically focus on determining which algorithm is faster and do not44

provide precise information on the speed of convergence such as order of convergence or45
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complexity. Yet, while largely overlooked, investigating the speed of convergence either46

theoretically or empirically is important. In this context, it has been proven that con-47

vergence of biobjective optimization algorithms towards the whole Pareto front is always48

sublinear in the number of function evaluations, at least when measuring convergence49

with the hypervolume indicator [16] or the multiplicative ε-indicator [8], and thus much50

ssmaller than typical speeds of convergence to a single point. The hypervolume and the51

multiplicative ε-indicator are set-quality indicators widely used in multiobjective opti-52

mization, both to guide algorithms and for performance assessment. The hypervolume is53

at the core of all known stricly Pareto-compliant indicators [20].54

In this paper, we introduce a new anytime algorithm framework, Incremental Sin-55

gleObjective Optimization for MultiObjective Optimization (ISOOMOO). We focus on its56

instanciation with the hypervolume indicator, namely HV-ISOOMOO algorithms. These57

algorithms try to greedily maximize the hypervolume by adding points with the largest58

hypervolume contribution. These points are obtained by running a singleobjective opti-59

mizer. A greedy idea has already been used in the selection part of some multiobjective60

optimization evolutionary algorithms such as SMS-EMOA to find a set of p points with a61

large hypervolume [6]. The hypervolume of such discrete greedy approximation is proven62

to be at least (e−1)/e times the one of the p-optimal distribution [17]. To the best of our63

knowledge, we provide the first continuous equivalent of this result. We investigate the64

speed of convergence of HV-ISOOMOO towards the whole Pareto front in the ideal case65

of perfect singleobjective optimization, measuring the convergence with the hypervolume.66

For convex and bilipschitz Pareto fronts, we prove that the convergence is in O(1/nc) with67

c = 1 and c ≤ 1, respectively, with n being the number of singleobjective optimization68

runs performed. For convex Pareto fronts, the convergence is exactly in Θ(1/n) as no69

biobjective algorithm can converge faster to the Pareto front [16]. Additionally, we prove70

that for simultaneously bilipschitz and smooth enough Pareto fronts doubling the number71

of points in the approximation divides the optimality gap by a factor which converges72

asymptotically to two. In the proof process, we obtain interesting intermediary results73

such as bounds on the normalized maximum hypervolume and a geometric interpretation74

of optimality conditions.75

The paper is organized as follows. In Section 2, we lay the foundations of the prob-76

lem. In Section 3, we prove preliminary results later used to investigate convergence. In77

Section 4, we derive lower bounds on the speed of convergence of HV-ISOOMOO coupled78

with perfect singleobjective optimization and an insight on its asymptotic convergence79

behavior.80

Notations and conventions. For a, b ∈ N, we note Ja; bK the set {a, a+ 1, . . . , b− 1, b}.81

For a vector u ∈ R2, we note u1 and u2 respectively its first and its second coordinate. If82

the vector notation already contains an index, we separate the two indices with a comma.83

For simplicity sake, we often replace the set {u} by u in the notations. We say that a84

function f : R → R is decreasing (resp. strictly decreasing) when for all x < y, we have85

f(x) ≥ f(y) (resp. f(x) > f(y)). We only consider two-dimensional objective spaces and86

refer to the Lebesgue measure of a set as its area.87

2. Background, algorithm framework and assumptions. We lay in this sec-88

tion the foundations of the problem we analyze. First, we recall some classic concepts89

of multiobjective optimization. Then, we introduce the ISOOMOO class of algorithms90

and its hypervolume based instanciation HV-ISOOMOO. We also formalize a mathemat-91

ical abstraction of HV-ISOOMOO coupled with perfect singleobjective optimization, the92
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greedy set sequences. Finally, we examine our assumptions on the biobjective optimiza-93

tion problem.94

2.1. Biobjective optimization problems, the Pareto front and the hyper-95

volume indicator. We consider a biobjective minimization problem:96

min
x∈Ω⊂Rd

F (x)(2.1)97
98

with F : Ω ⊂ Rd → R2 : x 7→ (F1(x), F2(x)). We define two dominance relations for99

vectors in the objective space. We say that u weakly dominates v denoted by u � v if100

u1 ≤ v1 and u2 ≤ v2 and that u dominates v denoted by u ≺ v if u � v and u 6= v. A101

vector of the objective space R2 is said feasible when it belongs to F (Ω). Solving the102

optimization problem consists in finding a good approximation of the Pareto front, the103

set of non-dominated feasible vectors, {F (X) : X ∈ Ω, ∀Y ∈ Ω, F (Y ) 6� F (X)}. We104

restrict ourselves to Pareto fronts with an explicit representation:105

PFf = {(x, f(x)) : x ∈ [xmin, xmax]}(2.2)106107

with f : R 7→ R decreasing. We denote by umin := (xmin, f(xmin)) and umax :=108

(xmax, f(xmax)) the extreme vectors of the Pareto front. Likewise, we denote by ũmin,r :=109

(x̃min,r, f(x̃min,r)) and ũmax,r := (x̃max,r, f(x̃max,r)) the extremes vectors of the part of110

the Pareto front dominating a reference point r, with x̃min,r := max(xmin, f
−1(r2)) and111

x̃max,r := min(xmax, r1). The vector (xmax, f(xmin)) is called the nadir point. All these112

notations are illustrated in Figure 1.
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Fig. 1: Illustration of notations. The extreme vectors umin and umax and the nadir point
(leftmost) ; the extreme vectors relative to the reference point r ũmin,r and ũmax,r (left) ;
three vectors u1, u2 and u3 and the regions weakly dominated by them and dominating
r, Dru1

( ) , Dru2
( ) and Dru3

( ) (right) ; the greedy set S3 = {v1, v2, v3}, its four gap
regions ( ) and the associated reference points (rightmost).

113

The hypervolume with respect to a reference point r of a set S of objective vectors114

is the Lebesgue measure of the region of the objective space dominated by S and strictly115

dominating the reference point r. We denote it HVr(S). When no vector of the Pareto116

front dominates the reference point r, HVr(S) = 0 for any set S of feasible points of the117

objective space. Since this particular case is not interesting, we only consider reference118

points dominated by at least one vector of the Pareto front from now on. We refer to119

such reference points as valid.120
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The region of the objective space dominated by S and dominating r (see the righthand121

plot of Figure 1) is denoted by DrS and formally defined as:122

DrS = {w ∈ R2 : ∃u ∈ S : u � w ≺ r} .(2.3)123124

The hypervolume of a set S relative to the reference point r equals λ(DrS) with λ(.) being125

the Lebesgue measure. The set DrS is the union of the Dru for u ∈ S, Dru being the126

rectangle [u1, r1]× [u2, r2] when u dominates r and ∅ otherwise, see the righthand plot of127

Figure 1. Note that the Dru are not disjoints.128

We use the hypervolume to characterize the convergence of a set S of objective vectors129

to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge130

to the Pareto front when the hypervolume difference HVr(PFf ) − HVr(S) converges131

to 0. We define the optimality gap of S with respect to a valid reference point r as132

HVr(PFf )−HVr(S). Another quantity of interest is how much adding a vector to a set133

affects its hypervolume. The hypervolume improvement with respect to r of the vector u134

to the set S is HVIr(u, S) = HVr(S ∪{u})−HVr(S). We also use the term hypervolume135

improvement to refer to the hypervolume increase of an increasing1 sequence of sets. More136

precisely, the hypervolume improvement at iteration n of an increasing sequence (Sn)n∈N∗137

is HVr(Sn+1)−HVr(Sn).138

2.2. The ISOOMOO framework, its HV-ISOOMOO instanciation and the139

associated greedy set sequences. The Incremental SingleObjective Optimization for140

MultiObjective Optimization (ISOOMOO) framework builds incrementally an increasing141

sequence (In)n∈N∗ of sets of vectors of the objective space. The pseudocode of ISOOMOO142

is given in Algorithm 2.1, where the current value of In is denoted by I. At each so-143

called meta-iteration, a singleobjective maximization algorithm SOOPTIMIZER (line 2 in144

Algorithm 2.1) is run on the criterion X ∈ Ω ⊂ Rd 7→ J(I, X) and the resulting solution is145

added to I (line 3 in Algorithm 2.1). We use the term meta-iteration to separate between146

the (meta-)iterations of ISOOMOO and the iterations of SOOPTIMIZER. Since the set147

I is composed of the final objective incumbents of previous runs of SOOPTIMIZER and148

(ideally) provides an approximation of the Pareto front, we call it final incumbents Pareto149

front approximation.150

The singleobjective optimization procedure may vary between meta-iterations. More151

precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in152

D (line 4 in Algorithm 2.1). This allows to alternate between various singleobjective153

optimization algorithms with different features, but also to adapt their initialization. This154

could be done by storing in D an iteration index and the final search space incumbents155

of SOOPTIMIZER runs.156

Algorithm 2.1 ISOOMOO Framework

1: while not stopping criterion do
2: Y, d← SOOPTIMIZER(X 7→ J(I, X), D)
3: I ← I ∪ {F (Y )} # update of the approximation of the Pareto front
4: D ← D ∪ {d} # update of the data collected
5: end while

1A sequence of set {An, n ≥ 0} is increasing if the following inclusions A0 ⊂ A1, . . . ⊂ An ⊂ . . . hold.
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In this paper, we study HV-ISOOMOO, an instanciation of ISOOMOO for which the157

criterion J(I, .) relates to the hypervolume improvement to I. Formally, HV-ISOOMOO158

is a class of algorithms derived from ISOOMOO for which the maximization of the cri-159

terion J is compliant with the maximization of the hypervolume improvement as defined160

below.161

Assumption 2.1. (Compliance to HVIr maximization) The maximization of a crite-162

rion J as in ISOOMOO is compliant with the maximization of HVIr if for any set I of163

objective vectors, we have164

(2.4) argmaxX∈Rd J(I, X) = argmaxX∈Rd HVIr(F (X), I) .165

We define an HV-ISOOMOO algorithm relative to the reference point r as an ISOOMOO166

algorithm as described in Algorithm 2.1 where the criterion J satisfies Assumption 2.1. At167

each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible vector maximizing168

the hypervolume improvement to the final incumbents Pareto front approximation In.169

Ideally, when n goes to infinity, the non-dominated subset of (In)n∈N∗ converges to the170

(entire) Pareto front which maximizes the hypervolume. In other words, HV-ISOOMOO171

algorithms try to approximate the Pareto front with a greedy approach.172

Definition 2.2. We define the convergence of an HV-ISOOMOO algorithm as the173

convergence of HVr(In) towards HVr(PFf ).174

The performance of a specific HV-ISOOMOO algorithm depends crucially on the175

choice of the criterion J . In this respect, HVIr(I, F (.)) itself is not a good candidate for176

J(I, .). Indeed, it is constant equal to zero in the region dominated by I, which makes it177

difficult to optimize. A criterion whose maximization is compliant with the maximization178

of the hypervolume improvement and designed to be easier to optimize has already been179

introduced in [18] under the name uncrowded hypervolume improvement (UHVI). For180

F (X) not dominated by I, UHVIr and HVIr are equal. Otherwise, in the region where181

the hypervolume improvement is null, UHVIr is negative and equals minus the distance182

to the empirical non-dominated front of the set I relative to r. It is easy to see that183

UHVIr satisfies (2.4).184

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-185

ISOOMOO algorithm. In this paper, we analyze the HV-ISOOMOO framework under186

the assumption of perfect singleobjective optimization formalized below.187

Assumption 2.3 (Perfect singleobjective optimization). At every meta-iteration n,188

for any final incumbents Pareto front approximation In, the run of SOOPTIMIZER (line 2189

in Algorithm 2.1) returns Y ∈ argmaxX∈Ω J(In, F (X)).190

The assumption of perfect singleobjective optimization is reminiscent to the assump-191

tion of perfect line search which is common in the analysis of gradient based methods [12].192

Under this assumption, all choices of criterions verifying Assumption 2.1 are equivalent.193

The convergence of HV-ISOOMOO coupled with perfect singleobjective optimization is a194

necessary condition for the soundness of the approach. Furthermore, lower bounds on the195

speed of convergence of a real instantiation of HV-ISOOMOO could be obtained by com-196

bining lower bounds on the speed of convergence of HV-ISOOMOO under Assumption 2.3197

of perfect singleobjective optimization with the ones of singleobjective optimization algo-198

rithms.199
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We introduce below mathematical abstractions of the HV-ISOOMOO framework un-200

der Assumption 2.3 of perfect singleobjective optimization, greedy sequences and greedy201

set sequences.202

Definition 2.4 (Greedy sequence and greedy set sequence). Given a valid reference203

point r, we define as greedy sequence relative to r, a sequence (vn)n∈N∗ satisfying204

v1 ∈ arg max
v∈F (Ω)

HVr(v) and(2.5)205

vn+1 ∈ arg max
v∈F (Ω)

HVr({v1, · · · , vn, v}) for all n ≥ 1 .(2.6)206
207

The greedy set sequence (Sn)n∈N∗ associated to the greedy sequence (vn)n∈N∗ is composed208

of the greedy sets Sn := {vk, k ≤ n}.209

There is a bijection between greedy sequences and greedy set sequences. The n-th element210

of the greedy sequence (vn)n∈N∗ associated to a greedy set sequence (Sn)n∈N∗ is simply211

the unique element of Sn \ Sn−1 if n > 1 and of S1 if n = 1.212

The recurrence relation of the greedy sequence (2.6) is equivalent to vn+1 belonging213

to arg maxv∈F (Ω) HVIr(v,Sn) for all n ≥ 1. It is immediate to see that under Assump-214

tion 2.3, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence215

while the final incumbents Pareto front approximations form the associated greedy set216

sequence (In)n∈N∗ . The indices n of both sequences correspond to HV-ISOOMOO meta-217

iterations. In this paper, we derive convergence results for greedy set sequences, which218

transfer to HV-ISOOMOO under Assumption 2.3.219

As we will see in Subsection 3.1, the problem of maximizing the hypervolume improve-220

ment to a fixed set can be rewritten as the maximum of a finite number of hypervolume221

maximization problems. Therefore, we can infer from [4, Theorem 1] that as soon as the222

Pareto front is lower semi-continuous, there exists a greedy sequence, and thus a greedy223

set sequence.224

Proposition 2.5. If the Pareto front is described by a lower semi-continuous func-225

tion f , then there exists a greedy sequence (vn)n∈N∗ relative to any valid reference point.226

Proof. If f is lower semi-continuous, then for any valid reference point r, the maxi-227

mum of HVr(.) exists, see [4, Theorem 1]. Therefore, there exists a vector verifying (2.5)228

and the problem of maximizing the maximum of a finite number of hypervolume functions229

defined in (3.3) admits a solution. Since (2.6) and (3.3) are equivalent by Lemma 3.5, we230

can build a sequence (vn)n∈N∗ verifying (2.5) and (2.6), namely a greedy sequence.231

Additionally, since the hypervolume indicator associated to a valid reference point is232

strictly Pareto-compliant (see [15]), this sequence is composed of vectors of the Pareto233

front.234

Proposition 2.6. If the Pareto front is described by a lower semi-continuous func-235

tion f , then any vector of a greedy sequence relative to a valid reference point r belongs to236

the Pareto front. Consequently, for such Pareto front and reference point and under As-237

sumption 2.3, all final incumbents Pareto front approximations In of an HV-ISOOMOO238

algorithm relative to r are subsets of the Pareto front.239

Proof. Since for any valid reference point r, HVr(.) is strictly Pareto-compliant [15],240

its maximum is non-dominated and belongs to the Pareto front. Thus, in particular, a241

vector v1 verifying (2.5) belongs to the Pareto front. Additionally, by Lemma 3.5, every242

6
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solution of (2.6) verifies (3.3) and is solution of at least one hypervolume maximization243

problem, and thus also belong to the Pareto front.244

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.245

For example, there are infinitely many greedy sequences associated to any affine Pareto246

front with a reference point dominating the nadir point. This statement relies on the fact247

that the unique maximizer of the hypervolume relative to a reference point r dominating248

the nadir point is the middle of the section of the Pareto front dominating r, see [3,249

Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r250

is the only candidate for v1 but v2 can be either at 1/4 or at 3/4 of this section. Similarly,251

v3 has to be in the position where v2 is not but v4 can be at 1/8, 3/8, 5/8 or 7/8 of the252

section of the Pareto front dominating r. For any n, we can find an iteration m such253

that vm can be placed at 2n different points, whatever the m−1 first terms of the greedy254

sequence are.255

2.3. Assumptions on the Pareto front and the objective functions. We256

present and discuss here the assumptions on the function f describing the Pareto front257

under which we derive convergence results. We typically assume that the function f is258

bilipschitz, convex or simultaneously bilipschitz and with a Hölder continuous derivative.259

Under any of these three assumptions, f is continuous. For the sake of conciseness, we260

transfer the properties of f to the Pareto front. For example, we call convex Pareto261

front a Pareto front described by a convex function. We recall that a function f is262

Hölder continuous with exponent α, namely C1,α, when there exists H ≥ 0 such that263

|f(x)−f(y)| ≤ H×|x−y|α for all x, y [13]. We note [f ]α the minimum Hölder coefficient264

with respect to the exponent α of a C1,α function f , that is [f ]α := supx 6=y
|f(x)−f(y)|
|x−y|α .265

When needed, we detail the bilipschitz constants and say that a bilipschitz function f is266

(Lmin,Lmax)-bilipschitz if for all x, y ∈ [xmin, xmax], we have Lmin×|x−y| ≤ |f(x)−f(y)| ≤267

Lmax × |x − y| where Lmax ≥ Lmin > 0. We also talk of affine Pareto fronts when268

f(x) = ax+ b with a < 0 and b ∈ R. As they form a line in the biobjective case, they are269

usually referred to as linear Pareto fronts. They provide good examples to illustrate a270

point and help to understand the results we prove on the asymptotic convergence behavior.271

We remind below sufficient conditions on the search space and on the objective func-272

tions which guarantee that f is convex and bilipschitz.273

Proposition 2.7. Given a biobjective minimization problem as in (2.1) whose Pareto274

front is described by a function f . If F1 and F2 are respectively (Lmin,1, Lmax,1)-bilipschitz275

and (Lmin,2, Lmax,2)-bilipschitz, then f is (
Lmin,2

Lmax,1
,
Lmax,2

Lmin,1
)-bilipschitz. If the search space276

Ω and the objective functions F1 and F2 are convex, then f is convex.277

The proofs of this proposition can be found for instance in [16]. The conditions on F1,278

F2 and Ω are sufficient but non-necessary conditions. Indeed, adding small discontinuity in279

the objective functions far from the Pareto set makes them non-convex and non-bilipschitz280

without modifying the Pareto front.281

Representing F1 values on the absciss and F2 values on the ordinate instead of the282

converse is an arbitrary choice. When f is a bijection, if we chose to represent the F2283

values on the x-axis instead of on the y-axis, we would have another representation of284

the Pareto front : {(y, f−1(y)) : y ∈ [f(xmax); f(xmin)]}. If so, the inverse function f−1285

would play the role of f . It is interesting to notice that the choice of the objective function286

represented on the horizontal axis does not impact whether the function characterizing287

7
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the Pareto front is bilipschitz or convex. Indeed, f being bilipschitz is equivalent to both288

f and f−1 being lipschitz. Additionally, we can prove that given that the function f is289

decreasing, f being convex is equivalent to its inverse f−1 being convex. The proof of290

this property is straightforward. If f is convex, then for all x, y ∈ R, f
(
f−1(x)+f−1(y)

2

)
is291

smaller than f(f−1(x))+f(f−1(y))
2 , that is x+y

2 . Since f and therefore f−1 are decreasing,292

by composing by f−1 each side of the inequality, we obtain a characterization of the293

convexity of f−1: for all x, y ∈ R, f−1(x)+f−1(y)
2 is larger than f−1(x+y

2 ).294

3. Preliminary results. In this section, we present preliminary results which are295

crucial for the analysis of the convergence of HV-ISOOMOO. While we expose them as296

tools for convergence analysis, they are also interesting for their own sake.297

3.1. Decomposition of the optimality gap using gap regions. The optimality298

gap is the Lebesgue measure of the total gap region introduced below.299

Definition 3.1. The total gap region of S with respect to a fixed valid reference300

point r, GrS, is defined as the region of the objective space which dominates r and is301

weakly dominated by PFf but not by S, namely DrPFf
\ DrS.302

We introduced DrS in (2.3). Its Lebesgue measure is HVr(S).303

When S is a subset of the Pareto front dominating the reference point r, the total304

gap region GrS has a particular shape which can be visualized in the rightmost plot of305

Figure 1. It can be decomposed into the disjoint union of |S| + 1 sets of the form Dr′S′306

that are formally defined below.307

Definition 3.2 (Gap regions, gaps and associated reference points). Let S =308

{v1, ..., vn} be a set of n distinct vectors of the Pareto front dominating a valid refer-309

ence point r. Let σ be the permutation ordering the vi by increasing F1 values: vσ(1),1 <310

vσ(2),1 < . . . < vσ(n),1.311

• For all i ∈ J1, n+ 1K, the i-th gap region of the set S, GrS,i, is the set DriPFf
with312

the associated reference points ri being r1 = (vσ(1),1, r2), rn+1 = (r1, vσ(n),2) and313

ri = (vσ(i),1, vσ(i−1),2) for all i ∈ J2, nK.314

• We refer to GrS,1 and GrS,n+1 as the left and the right extreme gap region of S,315

respectively.316

The left (resp. right) extreme gap region is empty when the left (resp. right) extreme317

vector of the Pareto front belongs to S. Non-extreme gap regions are never empty.318

The total gap region is the disjoint union of the gap regions: GrSn = ∪̇n+1
i=1 GrSn,i. This319

decomposition of the total gap region, and thus of the optimality gap, is the cornerstone320

of the convergence analysis. Since the area of a gap region GrSn,i is HVrni
(PFf ), we can321

write the optimality gap as the sum of n+1 hypervolumes of the Pareto front with respect322

to different reference points.323

Lemma 3.3. At any iteration n, the optimality gap of a greedy set sequence with324

respect to a valid reference point can be decomposed as325

HVr(PFf )−HVr(Sn) =

n+1∑
i=1

HVrni
(PFf ) .(3.1)326

327
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Proof. The optimality gap at iteration n is the Lebesgue measure of the total gap328

region GrSn , which is the disjoint union of the gap regions GrSn,i = Dr
n
i

PFf
. Therefore, the329

optimality gap equals
∑n+1
i=1 λ(Dr

n
i

PFf
) =

∑n+1
i=1 HVrni

(PFf ).330

Additionally, we can express the hypervolume improvement of any vector to Sn as an331

hypervolume. It is a trivial assertion for vectors which do not dominate Sn. For other332

vectors, the reference point depends on the gap region to which the vector belongs.333

Lemma 3.4. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point334

r. At any iteration n, for any u belonging to the i-th gap region of Sn, GrSn,i, we have335

HVIr(u,Sn) = HVrni
(u) .(3.2)336337

Proof. The hypervolume improvement of any u ∈ GrSn,i is the Lebesgue-measure of338

the intersection between GrSn,i and Dru. Therefore, it is equal to λ(Dr
n
i
u ), that is HVrni

(u).339

We can now reformulate the recurrence relation defining a greedy sequence at iteration340

n + 1. Indeed, picking a vector maximizing the hypervolume improvement to Sn is341

equivalent to pick a vector where the largest value of the maximum of the hypervolumes342

with respect to the rni is reached.343

Lemma 3.5. At any iteration n, the recurrence relation satisfied by vn+1, i.e. (2.6),344

can be reformulated as345

vn+1 ∈ arg max
u∈PFf

max
i∈J1,n+1K

HVrni
(u) .(3.3)346

347

Proof. The hypervolume improvement of any vector u to Sn is maxi∈J1,n+1K HVrni
(u).348

It is a consequence of Lemma 3.4 and of the fact that the hypervolume with respect to rni349

is null outside the i-th gap region of Sn. Additionally, vn+1 belongs to the Pareto front350

by Proposition 2.6. Thus, (2.6) is equivalent to (3.3).351

Similarly, we can express the decrease of the optimality gap at iteration n + 1,352

HVr(Sn+1)−HVr(Sn), as the maximum of n+ 1 hypervolume maximization problems.353

Lemma 3.6. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point354

r. The hypervolume improvement at iteration n+ 1 equals355

HVr(Sn+1)−HVr(Sn) = max
u∈PFf

max
i∈J1,n+1K

HVrni
(u) .(3.4)356

357

Proof. The hypervolume improvement HVr(Sn+1) − HVr(Sn) is the hypervolume358

improvement of vn+1 to Sn. With the same arguments as in the proof of Lemma 3.5, we359

can prove that it equals maxu∈PFf maxi∈J1,n+1K HVrni
(u).360

3.2. Lower bound of the normalized maximum hypervolume for convex361

Pareto fronts. In this section and the next one, we provide bounds on the maximum362

hypervolume achievable by a single feasible vector normalized by the maximum hypervol-363

ume of a feasible set:
maxu∈PFf

HVr(u)

HVr(PFf ) . We refer to this ratio as the normalized maximum364

hypervolume with respect to r. Bounds on the normalized maximum hypervolume are ex-365

ploited in Section 4 to provide bounds on the speed of convergence of greedy set sequences366

towards the Pareto front.367
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The hypervolume relative to a reference point r of a vector u = (x, f(x)) of the Pareto368

front is HVr(u) = (r1− x)× (r2− f(x)). From this simple formula, we derive in the next369

proposition necessary conditions for a vector of the Pareto front to be an hypervolume370

maximizer when f has at least left and right derivatives in x∗.371

Proposition 3.7. Let x∗ ∈]xmin, xmax[ such that u∗ := (x∗, f(x∗)) maximizes the372

hypervolume with respect to a valid reference point r. If the function f describing the373

Pareto front admits left and right derivatives in x∗, respectively f ′−(x∗) and f ′+(x∗), then374

−f ′+(x∗) ≤ r2 − f(x∗)

r1 − x∗
≤ −f ′−(x∗) .(3.5)375

376

Proof. We define the function HVx,r(.) as x 7→ HVr((x, f(x))). If x∗ maximizes377

HVx,r(.), then the left and the right derivatives of HVx,r(.) are positive and negative,378

respectively. By replacing the left and right derivatives of HVx,r(.) by their explicit379

formulas and reorganizing the terms we obtain (3.5).380

Equation (3.5) states that the slope of the diagonal of the rectangle Dru∗ is between the381

absolute values of the slopes of the right and the left derivatives of f at x∗ (see the middle382

plot of Figure 2). To the best of our knowledge, this geometric interpretation is new. It383

becomes simpler when f is differentiable. Then, the absolute value of the slope of the384

tangent of the front at a non-extreme vector u∗ is equal to the slope of the diagonal of385

the rectangle Dru∗ (see the lefthand plot of Figure 2).386

u∗

Dru∗

F1

F2 r

u∗

Dru∗

L1

L2l1

l2

F1

F2 r

ε

ε

u∗ε

F1

F2 r

0 1

1

Fig. 2: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers u∗, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PFg and the diagonal of Dru∗ , are equal. Right: The Pareto
front PFε and the hypervolume maximizer u∗ε for ε = 1/3 and r = (1, 1).

Corollary 3.8. Let x∗ ∈]xmin, xmax[ be such that u∗ := (x∗, f(x∗)) maximizes the387

hypervolume with respect to a valid reference point r. If the Pareto front is described by388

a differentiable function f in x∗, then f ′(x∗) satisfies389

−f ′(x∗) =
r2 − f(x∗)

r1 − x∗
.(3.6)390

391

Proof. It is a direct consequence of Proposition 3.7392

A convex function may not be differentiable, but it always has left and right de-393

rivatives. It is also above its left and right tangent lines respectively on the left and394
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on the right of x∗. Therefore, Proposition 3.7 implies that the affine function g : x 7→395

f(x∗) − r2−f(x∗)
r1−x∗ × (x − x∗) is a minorant of f . It is the key idea of the proof of the396

following lower bound on the normalized maximum hypervolume.397

Proposition 3.9. If the Pareto front is described by a convex function f , then the398

following lower bound on the normalized maximum hypervolume with respect to any valid399

reference point r holds:400

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
(3.7)401

402

where the inequality is an equality if and only if the Pareto front is affine and r dominates403

the nadir point.404

Proof. As explained in the above paragraph, the convexity of f implies that the405

affine function g : x 7→ f(x∗) − r2−f(x∗)
r1−x∗ × (x − x∗) is a minorant of f . Therefore,406

PFg := {g(x) : x ∈ [xmin, xmax]} dominates PFf , and thus has a higher hypervolume.407

We denote L1 := r1 − x̃min,r and L2 := r2 − f(x̃max,r) the lengths of the rectangle408

R := [x̃min,r, r1]× [f(x̃max,r), r2]. We denote l1 := r1−x∗ and l2 := r2−f(x∗) the lengths409

of the rectangle Dru∗ . The region of R which dominates PFg is a right-angled triangle.410

Additionally, by definition, the slope of its hypotenuse is l2/l1, and thus the lengths of411

the other sides are L1 − l1 + (L2 − l2) × l1
l2

and L2 − l2 + (L1 − l1) × l2
l1

(see the middle412

plot of Figure 2). Therefore, we have413

HVr(PFg) = λ(R)− λ({u ∈ R2 : u ∈ R, u � PFg})414

= L1L2 −
1

2
× (L1 − l1 + (L2 − l2)× l1

l2
)× (L2 − l2 + (L1 − l1)× l2

l1
)415

= l1l2 ×
[
− 2 + 2× L2

l2
− 1

2
×
(L2

l2

)2

+ 2× L1

l1
− 1

2
×
(L1

l1

)2]
.416

417

For all x, we have (x− 2)2 ≥ 0 and thus 2x− 1
2x

2 ≤ 2. Therefore, we can conclude that418

HVr(PFg), and thus HVr(PFf ) is smaller than 2 × l1l2, that is 2 × HVr(u
∗). If either419

L1/l1 6= 2 or L2/l2 6= 2, the inequality is strict. Thus, when the inequality is an equality,420

the center of R belongs to the Pareto front. Since f is convex, it happens only when f is421

affine and the reference point r dominates the nadir point. Conversely, if both conditions422

are met, we know that the optimum is in the middle of the Pareto front and that we have423

the equality (see [3, Theorem 5]).424

We just proved that one half is a tight lower bound on the normalized maximum425

hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,426

there is no upper bound valid for every convex Pareto front, even when r dominates the427

nadir point. Here is a simple example which illustrates this. Let consider the convex428

Pareto front PFε := {max(1 − x
ε , ε − ε × x) : x ∈ [0, 1]} represented in the righthand429

plot of Figure 2 and the reference point r = (1, 1). When ε ≤ 1, PFε is convex and430

(3.6) implies that u∗ε = (ε × (1 − ε), ε × (1 − ε)) is the unique hypervolume minimizer.431

Thus, the normalized maximum hypervolume of PFε for this reference point is equal to432
(1−ε+ε2)2

1−ε×(1−ε)2+(ε−ε2)2 and converges to 1 when ε goes to 0.433

3.3. Lower and upper bounds of the normalized maximum hypervolume434

for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on435

the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.436
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We consider two affine fronts with the same left extreme vector as PFf and slopes437

−Lmin and −Lmax, see the lefthand plot of Figure 3. We call them PFmin and PFmax,438

respectively. Formally:439

PFmax := {(x, fmax(x)) : x ∈ [xmin, xmax]} and(3.8)440

PFmin := {(x, fmin(x) : x ∈ [xmin, xmax]}(3.9)441442

with fmin(x) = f(xmin) − (x − xmin) × Lmin and fmax(x) = f(xmin) − (x − xmin) ×443

Lmax. For a (Lmin,Lmax)-bilipschitz function f , fmin(x) ≤ f(x) ≤ fmax(x) for all x ∈444

[xmin, xmax], and thus the Pareto front is dominated by PFmax and dominates PFmin.445

These two affine fronts provide bounds on both the hypervolume of the Pareto front

Lmax ×∆1

Lmin ×∆1

∆1

∆2

∆′1

F1

F2 r

F1

F2 r

1

1

Fig. 3: Left : The Pareto front PFf surrounded by PFmax (below) and PFmin (above).
Right : An illustration that HVr(umin)−HVr(PFf ) ( ) becomes negligible compared to
HVr(umin) ( ) for r1 = 1 and r2 →∞.

446

and the largest hypervolume of a vector on the Pareto front. They are key to prove447

the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-448

bilipschitz Pareto front.449

Proposition 3.10. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-450

tion f , then for any valid reference point r, we have451

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
× Lmin

Lmax
.(3.10)452

453

Proof. The fronts PFmax and PFmin are defined respectively in (3.8) and (3.9). We454

note ∆1 := x̃max,r − x̃min,r, ∆′1 := r1 − x̃max,r, ∆2 := r2 − f(x̃min,r) and V := ∆2 × (r1 −455

x̃min,r), see the lefthand plot of Figure 3. Since the front PFmax dominates the Pareto456

front, the hypervolume of PFf is smaller than the hypervolume of PFmax, V + Lmax ×457

∆1 ×∆′1 + 1
2 × Lmax ×∆2

1. Additionally, since each vector of PFmin is dominated by a458

vector of PFf , the maximum hypervolume of a vector of PFf is larger than the maximum459

hypervolume of a vector of PFmin. The front PFmin being an affine and therefore convex460

front, we know by Proposition 3.9 that the maximum hypervolume of a vector of PFmin is461

larger than half of HVr(PFmin), which is equal to 1
2×(V +Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1) .462

To summarize, the maximum hypervolume of a vector of PFf is larger than 1
2×(V +Lmin×463

∆1×∆′1+ 1
2×Lmin×∆2

1). Combining the upper bound on the hypervolume of PFf and the464

lower bound on the maximum hypervolume of a vector of PFf , the normalized maximum465
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hypervolume is larger than
1
2×(V+Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1)

V+Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. This quantity is itself larger466

than 1
2 ×

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. As V ≥ 0 and 0 <

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
< 1, we467

conclude that the normalized maximum hypervolume is larger than 1
2 ×

Lmin

Lmax
.468

We cannot guarantee any upper bound strictly inferior to 1 on the normalized maximum469

hypervolume without adding an assumption on the reference point. Indeed, for a given470

bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes471

to 1 for r1 = xmax and r2 → ∞ (see the righthand plot of Figure 3). However, if f is472

(Lmin,Lmax)-bilipschitz and r dominates the nadir point, we can prove that the normalized473

maximum hypervolume is larger than 1
2 ×

Lmax

Lmin
. The proof relies on the fact that if the474

reference point r dominates the nadir point, the vector of an affine front with the largest475

hypervolume relative to r is its middle (see [3, Theorem 5]), whose hypervolume is half476

of the hypervolume of the entire Pareto front.477

Proposition 3.11. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-478

tion f and the reference point r is valid and dominates the nadir point, the following479

upper-bound on the normalized maximum hypervolume with respect to r holds480

maxu∈PFf HVr(u)

HVr(PFf )
≤ 1

2
× Lmax

Lmin
.(3.11)481

482

Proof. We use the same notations as in the proof of Proposition 3.10. Since r domi-483

nates the nadir point, both ∆′1, ∆2 and V equal 0, and thus the hypervolumes of PFmax484

and PFmin equal 1
2 × Lmax × ∆2

1 and 1
2 × Lmin × ∆2

1, respectively. The domination of485

PFmin by PFf implies that the hypervolume of the Pareto front is below 1
2 ×Lmin ×∆2

1.486

Since PFmax is an affine front whose extremes dominate r, its middle is the unique hyper-487

volume maximizer (see [2, Theorem 5]) with an hypervolume equal to 1
4 ×Lmax×∆1.The488

domination of PFf by PFmax implies that the maximum hypervolume of a vector of PFf489

is larger than 1
4 × Lmax ×∆2

1. Gathering the lower bound on HVr(PFf ) and the upper490

bound on the maximum hypervolume of a vector of PFf , we retrieve (3.11).491

This upper bound is only relevant for Lmax/Lmin < 2 and is the tightest for Lmax = Lmin,492

where it achieves the value 1/2. In this paper, we use this upper bound for Lmax/Lmin493

close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.494

4. Convergence of HV-ISOOMOO coupled with perfect singleobjective495

optimization. We prove in this section various convergence results for HV-ISOOMOO496

algorithms coupled with perfect singleobjective optimization. We first prove that when497

the Pareto front is either convex or bilipschitz, these algorithms converge to the entire498

Pareto front. We transform the bounds on the normalized maximum hypervolume proven499

in Section 3 into lower bounds on the speed of convergence. Then, we analyze the asymp-500

totic convergence behavior when the Pareto front is bilipschitz with a Hölder continuous501

derivative.502

To analyze the decrease of the optimality gap with n, we track in which gap regions503

the vectors of the greedy sequence are inserted over multiple iterations. Naturally, a gap504

region of Sn persists in being a gap region as long as no greedy vector is added in this505

specific gap region. The greedy vector vn+1 is said to fill the gap region of Sn to which it506

belongs. At iteration n+ 1, this gap region disappears, replaced by two gap regions that507

we call its children. More generally, we say that a gap region is a descendant of another508

gap region when it is a proper subset of this gap region.509
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4.1. Convergence of HV-ISOOMOO with guaranteed speed of conver-510

gence. We prove some upper bounds on the relation between the optimality gap at511

iteration 2n + 1 and at iteration n. These bounds translate into lower bounds on the512

speed of convergence of HV-ISOOMOO under Assumption 2.3 of perfect singleobjective513

optimization. The proof relies on inequalities of the form514

max
u∈PFf

HVr′(u) ≥ C ×HVr′(PFf )(4.1)515
516

stated in Propositions 3.9 and 3.10 and equations regarding optimality gaps, areas of gap517

regions and hypervolume improvement presented in Subsection 3.1. A consequence of518

(4.1) being true for any reference point r′ is that the optimality gap at iteration 2n + 1519

is at most (1− C) times the optimality gap at iteration n.520

We sketch the proof idea in the simple case where each of the vk (k ∈ Jn+ 1, 2n+ 1K)521

is inserted in a distinct gap region of Sn, see the lefthand plot of Figure 4. Inserting vk in522

a gap region leads to an hypervolume improvement larger than C times the area of this523

gap region by (4.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is524

larger than C times the area of the union of all gap regions of Sn, namely the optimality525

gap at iteration n. A detailed proof is presented after the theorem statement.

v4

v5

v6

v7

v1

v2

v3

r3
1

r3
2

r3
3

r3
4

F1

F2 r

F1

F2 r

v1

v2

v3

w3
1,rw3

2,r w3
3,rw

3
4,r

w3
0,r

x̃min,r

x̃max,r

Fig. 4: Left: A Pareto front where each of the gap regions of S3 is filled by one of the
greedy vectors vk for k ∈ J4, 7K. It is described by f(x) = 1 −

√
x for x ∈ [0, 1]. We

represent the region DrS3 ( ) , the gap regions of S3 ( ) and the regions corresponding
to HVIr(vk,Sk−1) for k ∈ J4, 7K ( ). Right: The ordered greedy set F1-values wni,r
corresponding to the greedy set S3. The Pareto front is described by f(x) = e

e−1 × e
−x +

1− e
e−1 for x ∈ [0, 1].

526

Proposition 4.1. Consider a biobjective optimization problem with a Pareto front527

described by a function f . Any greedy set sequence (Sn)n∈N∗ relative to a valid reference528

point r satisfies for all n529

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1− 1

2
× Lmin

Lmax
if f is (Lmin,Lmax)-bilipschitz and(4.2)530

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1

2
if f is convex.(4.3)531

532

Proof. Fix n ≥ 1. We note σ a permutation of J1, n + 1K such that n + σ(i) is the533

index of the first greedy vector vk inserted in GrSn,i when possible. With this choice of σ,534
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the i-th gap region of Sn is a gap region of Sn+σ(i)−1. As a consequence, the hypervolume535

improvement to Sn+σ(i)−1 of any vector u belonging to the i-th gap region of Sn, GrSn,i,536

is equal to HVrni
(u) by Lemma 3.5. The hypervolume improvement of the greedy vector537

vn+σ(i) to Sn+σ(i)−1 being maximal, it is in particular larger than the one of any vector538

of GrSn,i and thus than 1
2 ×

Lmin

Lmax
× HVrni

(PFf ) by Proposition 3.10. In other words, the539

hypervolume improvement at any iteration n+σ(i) is larger than 1
2 ×

Lmin

Lmax
×HVrni

(PFf ).540

By adding these inequations for all i ∈ J1, n + 1K, we deduce that the hypervolume541

improvement from iteration n to 2n + 1 is larger than 1
2 ×

Lmin

Lmax
×
∑n+1
i=1 HVrni

(PFf ).542

Since the sum of the HVrni
(PFf ) is the optimality gap at iteration n, we have (4.2). If543

f is convex instead of bilipschitz, we use Proposition 3.9 instead of Proposition 3.10 and544

obtain (4.3).545

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation546

between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimality547

gap associated to a greedy set sequence converges asymptotically to 0. Equivalently, HV-548

ISOOMOO algorithms coupled with perfect singleobjective optimization converge to the549

entire Pareto front as stated formally below.550

Theorem 4.2. Consider a biobjective optimization problem with a Pareto front de-551

scribed by a bilipschitz or convex function f .552

The hypervolume of a greedy set sequence relative to a valid reference point r converges553

to the hypervolume of the entire Pareto front, i.e. HVr(Sn) −−−−→
n→∞

HVr(PFf ).554

Equivalently, for such Pareto fronts and under Assumption 2.3 of perfect singleobjec-555

tive optimization, HV-ISOOMOO algorithms relative to a valid reference point r converge556

to the Pareto front in the sense of Definition 2.2.557

From the lower bounds on the relation between the optimality gaps at iteration 2n + 1558

and at iteration n, we deduce the following upper bounds on the normalized optimality559

gap at any iteration.560

Corollary 4.3. Consider a biobjective optimization problem with a Pareto front561

described by a (Lmin,Lmax)-bilipschitz function. A greedy set sequence (Sn)n∈N∗ relative562

to a valid reference point r satisfies for all n563

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(

1− 1

2
× Lmin

Lmax

)blog2(n+1)c
≤ (2n+ 2)log2(1− 1

2×
Lmin
Lmax

) .(4.4)564
565

If the function f is convex, then any greedy set sequence relative to a valid reference point566

r satisfies for all n567

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(1

2

)blog2(n+1)c
≤ 1

2n+ 2
.(4.5)568

569

Hence, for such reference points and under Assumption 2.3 of perfect singleobjective op-570

timization, HV-ISOOMOO algorithms relative to r satisfy (4.4) if f is (Lmin,Lmax)-571

bilipschitz and (4.5) if f is convex where Sn is replaced by In, the final incumbents Pareto572

front approximation at iteration n.573

Proof. The k-th term of the sequence defined by u0 = 1 and un+1 = 2 × un + 1 for574

all n ≥ 1 is 2k − 1. Thus, (4.2) and (4.3) imply that when f is (Lmin,Lmax)-bilipschitz or575

convex, the normalized optimality gap at iteration 2k − 1 is inferior to (1 − C)k with C576

15

This manuscript is for review purposes only.



equal to 1
2 ×

Lmin

Lmax
and 1

2 , respectively. Since the hypervolume of the greedy set increases577

with n, and thus the optimality gap decreases with n, we deduce the first inequalities in578

(4.4) and (4.5) via the change of variable k = blog2(n+ 1)c.579

Additionally, for every n, blog2(n+1)c is smaller than log2(n+1)+1, that is log2(2n+580

2). For every C, log2(2n+ 2) equals logC(2n+ 2)× log2(C), and thus C log2(2n+2) equals581

(2n + 2)log2(C). Therefore, we can infer that (2n + 2)log2(C) is an upper bound of the582

normalized optimality gap with C = 1 − 1
2 ×

Lmin

Lmax
and C = 1

2 when f is (Lmin,Lmax)-583

bilipschitz and convex, respectively.584

We focus here on the relation between the optimality gap at iteration n and at585

iteration 2n+ 1. We could similarly examine the relation between the optimality gap at586

iteration n and at any later iteration. For example, we could prove that if f is (Lmin,Lmax)-587

bilipschitz, then for all n, for all k ≤ n + 1,
HVr(PFf )−HVr(Sn+k)
HVr(PFf )−HVr(Sn) is smaller than 1 − 1

2 ×588

Lmin

Lmax
× k

n+1 .589

Consider the k gap regions of Sn with the largest areas. The hypervolume improve-590

ment from iteration n to n + k is at least 1
2 ×

Lmin

Lmax
times the area of the union of these591

gap regions, which is at least k
n+1 times the optimality gap at iteration n.592

4.2. Asymptotical behavior of the convergence of HVr(Sn) to HVr(PFf ).593

In this section, we analyze the asymptotic convergence behavior for a Pareto front de-594

scribed by a bilipschitz function with a Hölder continuous derivative. We prove that, in595

this case, doubling the number of vectors in the greedy set divides the optimality gap by a596

factor which converges asymptotically to two as stated in Theorem 4.10. This asymptotic597

limit corresponds to the case of affine Pareto fronts with a reference point dominating598

the nadir point. For such Pareto fronts and reference points, the optimality gap is always599

halved when the number of vectors in the greedy set goes from n to 2n+ 1, see Figure 5.600

First, we study the properties of the part of the Pareto front corresponding to a601

specific gap region of Sn. For all n, let note σn the permutation of J1, nK which orders602

the vectors of Sn by increasing F1-values and the so-called ordered greedy set F1-values:603

wni,r := vσn(i),1 for i ∈ J1, nK, wn0,r := x̃min,r and wnn+1,r := x̃max,r .(4.6)604605

Naturally, we have wn0,r ≤ wn1,r ≤ . . . ≤ wnn+1,r, and the intervals [wni−1,r, w
n
i,r[ for i ∈606

J1, n + 1K form a partition of [x̃min,r, x̃max,r[, see the righthand plot of Figure 4. The607

interval [wni−1,r, w
n
i,r] corresponds to the part of the Pareto front belonging to the i-th608

gap region of Sn. When the Pareto front is bilipschitz, the lengths of these intervals609

converge asymptotically to 0 as stated in the next lemma. It is a direct consequence of610

the convergence of HVr(Sn) to HVr(PFf ) stated in Theorem 4.2.611

Lemma 4.4. If the Pareto front is described by a bilipschitz function f and the greedy612

set sequence is associated to a valid reference point r, then the ordered greedy set F1-values613

satisfy maxi∈J1,n+1K w
n
i,r − wni−1,r −−−−→n→∞

0 with the wni,r defined in (4.6).614

Proof. Let Lmin and Lmax be constants such that f is (Lmin,Lmax)-bilipschitz. The615

area of the i-th gap region of Sn is
∫ wni,r
wni−1,r

(f(x) − f(wni,r))dx. This is larger than616 ∫ wni,r
wni−1,r

Lmin × (wni,r − x)dx, which equals 1
2 × Lmin × (wni,r − wni−1,r)

2. Since the area617

of any gap region of Sn is inferior to the optimality gap at iteration n, this implies that618

the difference wni,r − wni−1,r is inferior to
√

2× (HVr(PFf )−HVr(Sn)) for all n, for all619
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i ∈ J1, n+1K. Therefore, the convergence of HVr(Sn) to HVr(PFf ) stated in Theorem 4.2620

implies that the maximum over i of wni,r − wni−1,r converges to 0.621

We prove in the next lemma that if the Pareto front is described by a bilipschitz622

function f with a Hölder continuous derivative, then the the part of the Pareto front623

belonging to a specific gap region of Sn is bilipschitz for some constants whose ratio con-624

verges asymptotically to 1. Affine functions being the only functions to be (Lmin,Lmax)-625

bilipschitz with Lmin/Lmax = 1, it supports the interpretation that the convergence of626

a greedy set sequence for such Pareto fronts and for affine Pareto fronts share some627

asymptotic similarities.628

When f is bilipschitz, its restriction to the part of the Pareto front dominating rni ,629

that is [wni−1,r, w
n
i,r], is (Li,nmin,Li,nmax)-bilipschitz with630

(4.7)

Li,nmin := inf

ß∣∣∣f(x)− f(y)

x− y

∣∣∣, x, y ∈ [wni−1,r, w
n
i,r], x 6= y

™
and

Li,nmax := sup

ß∣∣∣f(x)− f(y)

x− y

∣∣∣, x, y ∈ [wni−1,r, w
n
i,r], x 6= y

™
.

631

At iteration n, the ratio between Li,nmax and Li,nmin, the bilipschitz constants on the i-th gap632

region of Sn, is by definition smaller than633

qn := max

®
Li,nmax

Li,nmin

, i ∈ J1, n+ 1K : [wni−1,r, w
n
i,r] 6= ∅

´
.(4.8)634

635

The proof of the convergence of qn to 1 relies on the fact that a derivable function can636

be approximated locally by an affine function. The quality of this approximation is637

guaranteed by the Hölder continuity of the derivative.638

Lemma 4.5. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference639

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous640

derivative, then qn defined in (4.8) converges asymptotically to 1.641

Proof. We take α such that f ′ is Hölder continuous with exponent α, i.e f is C1,α,642

and Lmin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-643

bilipschitz. We recall that f is decreasing, and thus for all x < y, we have f(x)−f(y) ≥ 0.644

Since f is C1,α and therefore C1, the Taylor formula with Lagrange remainder states that645

for all x < y, there exists ξ ∈ [x, y] such that f(y) = f(x)+(y−x)×f ′(ξ). Since f is C1,α,646

this implies that for all x < y, |f(y)− f(x)− (y−x)× f ′(x)| ≤ (y−x)1+α× [f ′]Cα . Thus,647
f(y)−f(x)

x−y is smaller than −f ′(x) + [f ′]Cα × (y − x)α. We now restrict ourselves to x and648

y belonging to the non-empty interval [wni−1,r, w
n
i,r]. Our goal is to find an upper bound649

depending on i but not on either x or y. Since f is C1,α, the difference between −f ′(x)650

and −f ′(wni−1,r) is smaller than [f ′]Cα× (x−wni−1,1,r)
α, and thus [f ′]Cα× (wni,r−wni−1,r)

α651

. Additionally, the difference between x and y is smaller than wni,r −wni−1,r. We conclude652

that for x, y ∈ [wni−1,r, w
n
i,r],

f(y)−f(x)
x−y is smaller than −f ′(wni−1,1,r) + 2[f ′]Cα × (wni,r −653

wni−1,r)
α, and thus so is Li,nmax defined in (4.7).654

Following the same approach, we can also infer that Li,nmax defined in (4.7) is greater655

than the symmetric quantity −f ′(wni−1,1,r) − 2[f ′]Cα × (wni,r − wni−1,r)
α. The quantity656

−f ′(wni−1,1,r) is greater than Lmin and (wni,r−wni−1,r)
α is smaller than maxi∈J1,n+1K(w

n
i,r−657
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wni−1,r)
α. As a consequence, qn is smaller than

Lmin+2[f ′]Cα×maxi∈J1,n+1K(wni,r−w
n
i−1,r)α

Lmin−2[f ′]Cα×maxi∈J1,n+1K(wni,r−wni−1,r)α . By658

Lemma 4.4, maxi∈J1,n+1K w
n
i,r − wni−1,r converges to 0 and thus, this upper bound on qn659

converges to 1. Since qn is always larger than 1, it converges to 1.660

A consequence of the previous lemma is that the bounds on the hypervolume improvement661

of vn+1 to Sn normalized by the area of the gap region filled by vn+1 that we can infer662

from Propositions 3.10 and 3.11 converge asymptotically to 1/2, see (4.9). Similarly,663

the bounds on the normalized area of the child of a gap region that we can infer from664

Lemma A.2 converge to 1/4, see (4.10). These asymptotic values correspond to the case665

of an affine Pareto front with a reference point dominating the nadir point, see Figure 5.666

v1

F1

F2 r

v2

v1

F1

F2 r

v1

v2

v3

F1

F2 r

Fig. 5: The three greedy sets S1 (left), S2 (middle) and S3 (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point. The area
of any of the gap regions of S1 are half of HVr(PFf ) (left). The area of any of the new
gap regions of S2 is a quarter of the area of their parents (middle). The optimality gap
of S3 (right) is half of the optimality gap of S1.

667

Lemma 4.6. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference668

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous669

derivative, then for all ε > 0, for n large enough, for every non-empty gap region GrSn,i670

and every child GrSm,j of GrSn,i, we have671

1

2
× (1− ε) ≤

maxu∈GrSn,i HVIr(u,Sn)

λ(GrSn,i)
≤ 1

2
× (1 + ε) and(4.9)672

1

4× (1 + ε)
≤
λ(GrSm,j)
λ(GrSn,i)

≤ 1

4× (1− ε)
.(4.10)673

674

Proof. The interval [wni−1,r, w
n
i,r] is the set of the first coordinates of the vectors of675

the Pareto front which dominate rni . The restriction to [wni−1,r, w
n
i,r] of f is (Lmin,Lmax)-676

bilipschitz for some Lmin and Lmax such that Lmax

Lmin
= qn with qn defined in (4.8). Ad-677

ditionally, as stated in Proposition B.2, for n large enough, all the rni corresponding to678

non-empty gap regions dominate the nadir point. As a consequence, the conditions to679

apply Lemma A.2 and Proposition 3.11 are met by non-extremes gap regions.680

By Propositions 3.10 and 3.11,
maxu∈PFf

HVrn
i

(u)

HVrn
i

(PFf ) is between 1
2 ×

1
qn

and 1
2 × qn. Ad-681

ditionally, by Lemma A.2,
λ(GrSm,j)

HVrn
i

(PFf ) is between
1− 1

2×qn
1+q2n

and
1− 1

2×
1
qn

1+ 1
q2n

. The maximum682
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over the vectors u belonging to the Pareto front of HVrni
(u) is equal to the maximum683

over u belonging to the i-th gap region of Sn of HVIr(u,Sn). Indeed, HVrni
(.) is null for684

vectors outside the i-th gap region of Sn while it is nonnegative, equal to HVIr(.,Sn),685

otherwise. Additionally, HVrni
(PFf ) equals λ(GrSn,i). The convergence of qn to 1 stated686

in Lemma 4.5 imply that the bounds proven so far converge to a half and a quarter,687

respectively. Thus, we have (4.9) and (4.10) for n large enough.688

The following lemma states that for n large enough, the area of two non-empty gap regions689

relative to the same greedy set cannot be too different. More precisely, the area of any690

gap region of Sn cannot be more than 4×(1+o(ε)) times greater than the area of another691

gap region of Sn. The proof relies on considering the parents of the gap regions.692

Lemma 4.7. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference693

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous694

derivative, then for all ε > 0, for n large enough and for any non-empty gap regions of695

Sn, GrSn,i and GrSn,j with i, j ∈ J1, n+ 1K, we have696

λ(GrSn,i)
λ(GrSn,j)

≤ 4× (1 + ε)2

1− ε
.(4.11)697

698

Proof. Fix ε > 0. By Lemma 4.6, there exists N1 ∈ N∗ such that for all n greater699

than N1, (4.9) and (4.10) are verified for any non-empty gap region of Sn and its children.700

Since maxi∈J1,n+1K w
n
i,r−wni−1,r converges to 0 by Lemma 4.4, every non-empty gap region701

is filled at some point. Take N2 such that all the non-empty gap regions of SN1
are filled702

at iteration N2. For all n greater than N2, (4.9) and (4.10) are true for any non-empty703

gap region of Sn and its children, but also for its parents.704

Take n ≥ N2. We note G1 := GrSn,i and G2 := GrSn,j two distinct non-empty gap regions705

of Sn, and P1 and P2 their respective parents. When two sets correspond to gap regions706

relative to the same greedy set Sm, we say that they cohabit at iteration m. Since only707

one vector is added to Sn at a time, the cohabitation of G1 and G2 implies that either G1708

and P2 or G2 and P1 cohabit at some earlier iteration. In the first case, there necessarily709

exists m ≥ N2 such that P2 and G1 are gap regions relative to Sm and vm+1 belongs710

to P2, otherwise, G1 and G2 would not cohabit. By (4.9), the maximum hypervolume711

improvement to Sm of a vector of G1 and of a vector of P2 are at least 1
2 × (1− ε)×λ(G1)712

and at most 1
2 × (1 + ε)× λ(P2), respectively. Since a vector of P2, vm+1, maximizes the713

hypervolume improvement to Sm, we have λ(G1)× 1
2 × (1− ε) ≤ λ(P2)× 1

2 × (1+ ε). Since714

λ(P2) is smaller than 4× (1+ ε) times the area of its child λ(G2) by (4.10), this inequality715

implies (4.11). In the second case, P2 is filled before P1. Thus, there exists m ≥ N2 such716

that P1 and P2 cohabit at iteration m and vm+1 belongs to P2. Since the area of P1 is717

larger than the one of its child G1, the hypervolume improvement of vm+1 to Sm is still718

larger than 1
2 × (1− ε)× λ(G1). The rest of the argumentation remains valid.719

We now have all the results needed to analyze the asymptotic impact of doubling the720

number of points in the greedy set. To prove the following asymptotic upper bound,721

we rely on similar arguments as for its nonasymptotic counterpart, Proposition 4.1. The722

previous lemma guarantees that the impact of doubling the number of points in the greedy723

set is asymptotically similar to the impact of passing from n points to 2n+ 1.724

Proposition 4.8. Let (Sn)n∈N∗ be a greedy set sequence relative to valid reference725

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous726
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derivative, then for all ε > 0, we have for n large enough727

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≤ 1

2
+ o(ε) .(4.12)728

729

Proof. Fix ε > 0. Fix n large enough to verify (4.9) and (4.11) for this particular ε.730

Let σ be a permutation of J1, n + 1K such that the i-th gap region of Sn is filled by731

vn+σ(i) when it is filled before iteration 2n + 1. With this choice of permutation, GrSn,i732

is always a gap region of Sn+σ(i)−1. Thus, HVIr(vn+σ(i),Sn+σ(i)−1) is superior to the733

maximum hypervolume improvement of a vector of GrSn,i to Sn+σ(i)−1, which is superior734

to 1
2×(1−ε)×λ(GrSn,i) by (4.9). It is equivalent to say that the hypervolume improvement735

at iteration n+σ(i) is larger than 1
2 × (1− ε)×λ(GrSn,i). Summing over i ∈ J1, n+ 1K, we736

obtain that the hypervolume improvement between iteration n and 2n+ 1 is larger than737

the sum over i of 1
2 × (1 − ε) × λ(GrSn,i), that is 1

2 × (1 − ε) times the optimality gap at738

iteration n.739

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is740

HVIr(v2n+1,S2n). It is smaller than 1
2 × (1 + ε) × maxi∈J1,2n+1K λ(GrS2n,i) by (3.3) and741

(4.9). Since the area of a gap region is smaller than the one of its parent, the maximum742

area of a gap region is lower at iteration 2n than at iteration n. The maximum area of743

one of the more than n− 1 gap regions of Sn is itself smaller than 1
n−1 ×

4×(1+ε)2

1−ε times744

the optimality gap at iteration n by (4.11).745

We conclude that the relation between the optimality gap at iteration 2n and at746

iteration n is smaller than 1− 1
2 × (1− ε) + 1−ε

2×(n−1) .747

We roughly follow the same approach to obtain the following asymptotic lower bound on748

the impact of doubling the number of points in the greedy set. Lemmas 4.6 and 4.7 are749

key to prove an upper bound on the hypervolume improvement at iteration k. They allow750

to prove that filling a gap region of Sn more than once gives, up to a factor 1 + o(ε), a751

lower hypervolume improvement than filling a gap region which was not filled. Indeed,752

the area of a descendant of a gap region of Sn is at most 1
4 + o(ε) times the area of its753

parent by Lemma 4.6, which is itself at most 4 + o(ε) times the area of any other gap754

region of Sn by Lemma 4.7.755

Proposition 4.9. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference756

point r. If the Pareto front is desribed by a bilipschitz function f with a Hölder continuous757

derivative, then for all ε > 0, we have for n large enough758

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≥ 1

2
+ o(ε) .(4.13)759

760

Proof. Fix ε > 0. Fix n large enough to verify (4.9), (4.10) and (4.11) for this761

particular ε. Let δ ∈ {−1, 0, 1} be such that Sn has n + δ non-empty gap regions. Let762

i0 := 1 when the left extreme gap region is empty and i0 := 0 otherwise.763

Let σ be a permutation of J1, n + δK such that the i-th non-empty gap region of764

Sn, GrSn,i0+i, is filled by the vector vn+σ(i) when it is filled before iteration 2n + δ. We765

distinguish two cases. In the first case, vn+σ(i) is the child of the i-th non-empty gap766

region of Sn, and consequently its hypervolume improvement to Sn+σ(i)−1 is at most767
1
2 × (1 + ε) × λ(GrSn,i0+i) by (4.9). In the second case, vn+σ(i) belongs to GrSn,i0+j , the768

j-th non-empty gap region of Sn, with j 6= i and, by definition of σ, fills a descendant of769
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this gap region not GrSn,i0+j itself. By (4.9), the hypervolume improvement of vn+σ(i) to770

Sn+σ(i)−1 is still at most 1
2 × (1 + ε) times the area of the gap region it fills. By (4.10),771

the area of a descendant of GrSn,i0+j is smaller than 1
4×(1−ε) times the area of its ancestor.772

By (4.11), we also know that the area of the i-th non-empty gap region of Sn is at most773

4× (1+ε)2

1−ε times the area of any other gap region of Sn, in particular its i-th non-empty774

gap region. We conclude that the hypervolume improvement of vn+σ(i) to Sn+σ(i)−1 is775

smaller than 1
2×

(1+ε)3

(1−ε)2 ×λ(GrSn,i0+i). To summarize, since 1+ε is smaller than (1+ε)3

(1−ε)2 , the776

hypervolume improvement at any iteration n+σ(i) is smaller than 1
2 ×

(1+ε)3

(1−ε)2 ×λ(GrSn,i).777

Summing over i ∈ J1, n + δK, the hypervolume improvement from iteration n to 2n + δ778

is smaller than 1
2 ×

(1+ε)3

(1−ε)2 times the sum over i of λ(GrSn,i), that is the optimality gap at779

iteration n.780

Now, it is left to prove an upper bound on HVr(S2n) − HVr(S2n+δ). This quantity781

is maximal for δ = −1, where it is simply the hypervolume improvement at iteration 2n.782

As in the previous proof, it is smaller than 1+ε
2×(n−1) times the optimality gap at iteration783

n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n784

is larger than 1− 1
2 ×

(1+ε)3

(1−ε)2 −
1+ε

2×(n−1) .785

We combine the lower and upper asymptotic bounds to obtain the following theorem.786

Theorem 4.10. Consider a biobjective optimization problem and a greedy set se-787

quence (Sn)n∈N∗ relative to a valid reference point r. If the Pareto front is described by a788

bilipschitz function f with a Hölder continuous derivative, we have789

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
−−−−→
n→∞

1

2
.(4.14)790

791

Consequently, for such Pareto front and reference point and under Assumption 2.3 of792

perfect singleobjective optimization, HV-ISOOMOO algorithms relative to r satisfy (4.14)793

where Sn is replaced by In, the final incumbents Pareto front approximation at iteration794

n.795

5. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a singleob-796

jective optimizer converge in O(1/n) on convex Pareto fronts and in O(1/nc) on bilipschitz797

Pareto fronts with c ≤ 1 depending on the bilipschitz constants where n is the number798

of meta-iterations. Each meta-iteration corresponds to a singleobjective optimization799

run. Both bounds are tight over the class of Pareto fronts and reference points consid-800

ered. They are reached for affine Pareto fronts and reference points dominating the nadir801

point. On convex Pareto fronts, the convergence is exactly in Θ(1/p), the fastest con-802

vergence achievable by biobjective optimization algorithms [16]. It shows that greedily803

adding points maximizing the hypervolume contribution as in HV-ISOOMOO algorithms804

is an effective way to quickly increase the hypervolume. Additionally, we prove that for805

bilipschitz Pareto fronts with a Hölder continuous derivative, doubling the number of806

meta-iterations divides the optimality gap by a factor which converges asymptotically to807

two. This asymptotic behavior resembles what we would observe with an affine Pareto808

front and a reference point dominating the nadir point. Yet, it does not guarantee con-809

vergence in Θ(1/n). Both
Ä

log(n)
n

ä
n∈N∗

and
Ä

1
n×log(n)

ä
n∈N∗

are examples of sequences810

verifying this property without converging in Θ(1/n). The convergence on nonconvex811
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Pareto fronts could theoretically be slower than in Θ(1/n), but not faster [16].812

Appendix A. Normalized areas of the gap regions relative to an hyper-813

volume maximizer. The goal of this section is to prove bounds on the normalized814

areas of the gap regions Gu∗left and Gu∗right relative to an hypervolume maximizer u∗ (see the815

lefthand plot of Figure 6) in the case of a bilipschitz Pareto front and of a reference point816

r dominating the nadir point. These bounds are stated in Lemma A.2. The proof relies817

on the bounds on the normalized maximum hypervolume proven in Subsection 3.3 and818

the following lower and upper bounds on the relation between λ(Gu∗left) and λ(Gu∗right).

Gu∗right

Gu∗left

F1

F2

0 1

1

u∗
L1

L2

r

u∗
uε

L1

L2

ε

L
m

a
x
×
ε

F1

F2 r

0 1

1

umin

u

r

F1

F2

0.5

1.5

0 0.4

Fig. 6: Illustration of elements of the proofs of Proposition A.1 in the case r1 ≤ xmax

(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
e
e−1 × e

−x + 1− e
e−1 for x ∈ [0, 1]. Left: the gap regions Gu∗left and Gu∗right with a segment of

slope −Lmin passing through u∗. Middle: the hypervolume improvements HVIr(u
∗, uε)

( ) and HVIr(uε, u
∗) ( ) . Right: the hypervolume improvement HVIr(umin, u) ( ) and

its counterpart HVIr(u, umin) ( ) where u is a vector of the Pareto front which dominates
r.

819

Proposition A.1. We assume that the Pareto front is described by a (Lmin,Lmax)-820

bilipschitz function f . Let u∗ be a non-extreme vector of the Pareto front which maximizes821

the hypervolume with respect to a valid reference point r. If r1 ≤ xmax, we have λ(Gu∗right) ≥822

L2
min

L2
max
× λ(Gu∗left). If r2 ≤ f(xmin), we have λ(Gu∗left) ≥

L2
min

L2
max
× λ(Gu∗right).823

Proof. We consider the case where r1 ≤ xmax. Let x∗ be the first coordinate of u∗.824

We denote L1 := r1 − x∗ and L2 := r2 − f(x∗) the lengths of the sides of the rectangle825

Dru∗ . For all x, y ∈ [xmin, xmax], we have |f(x) − f(y)| ≥ Lmin × |x − y|. Additionally,826

since r1 ≤ xmax, the segment [x∗, x∗ + L1] is included in [xmin, xmax]. As a consequence,827

the section of the Pareto front on the right of u∗ dominates the segment between u∗ and828

u∗+L1× (1,−Lmin), see the lefthand plot of Figure 6. Therefore, λ(Gu∗right) is larger than829

the area of the region of the objective space dominated by this segment, not dominated830

by u∗ and dominating r, that is 1
2 × Lmin × L2

1. For all x, y ∈ [xmin, xmax], we also have831

|f(x)− f(y)| ≤ Lmax× |x− y|. Therefore, the part of the Pareto front on the left of u∗ is832

dominated by the segment between u∗ and u∗ + L2 × (− 1
Lmin

, 1), and λ(Gu∗left) is smaller833

than 1
2 ×

1
Lmin

× L2
2. We have yet to prove a lower bound on L1

L2
. The vector u∗ being834

different from umin, for ε > 0 small enough, the vector uε := (x∗ − ε, f(x∗ − ε)) belongs835

to the Pareto front. As we can see in the middle plot of Figure 6, HVIr(u
∗, uε) is smaller836
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than L1 × Lmax × ε and HVIr(uε, u
∗) is larger than ε × (L2 − ε × Lmax). Additionally,837

u∗ being an hypervolume maximizer, HVIr(u
∗, uε) is larger than HVIr(uε, u

∗), and thus838

L1 × Lmax ≥ L2 − ε× Lmax for all ε > 0. Taking the limit of this inequality when ε→ 0,839

we obtain that L1×Lmax ≥ L2. Combining the bounds on λ(Gu∗left) and λ(Gu∗right) with the840

lower-bound on L1

L2
, we obtain the desired lower bound on λ(Gu∗right). We can obtain the841

symmetric inequality when r2 ≥ f(xmin) by following the same approach.842

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.843

We now prove the desired bounds on the normalized area of the gap regions Gu∗left and844

Gu∗right.845

Lemma A.2. Let u∗ be a vector which maximizes the hypervolume with respect to846

a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz847

function f and the reference point r dominates the nadir point, both λ(Gu∗left) and λ(Gu∗right)848

are between (1− 1
2 ×

Lmax

Lmin
)/(1 +

L2
max

L2
min

) and (1− 1
2 ×

Lmin

Lmax
)/(1 +

L2
min

L2
max

).849

Proof. Let note arbitrarily G1 and G2 the two gap regions of the set S = {u∗}.850

By Proposition A.1, λ(G2) is between
L2

min

L2
max
× λ(G1) and

L2
max

L2
min
× λ(G1). Additionally,851

by Propositions 3.10 and 3.11, the normalized maximum hypervolume maxu∈PFf HVr(u)852

over HVr(PFf ) is between 1
2×

Lmin

Lmax
and 1

2×
Lmax

Lmin
. These bounds can be transformed into853

bounds on HVr(PFf )−maxu∈PFf HVr(u), that is λ(G1)+λ(G2). As a consequence, λ(G1)854

is between (1− 1
2 ×

Lmax

Lmin
)×HVr(PFf )− L2

max

L2
min
× λ(G1) and (1− 1

2 ×
Lmin

Lmax
)×HVr(PFf )−855

L2
min

L2
max

λ(G1). Moving all the λ(G1) terms on the same side and re-normalizing this side, we856

obtain the desired bounds for G1, which can be chosen to be either Gu∗left or Gu∗right.857

Appendix B. The nadir point is dominated by all the rni corresponding to858

non-empty gap regions for n large. We show in this section that for bilipschitz859

Pareto fronts, the nadir point is dominated by all the rni corresponding to non-empty860

gap regions, for n large enough. This result is stated in Proposition B.2 and used in861

Subsection 4.2. It is equivalent to prove that the extreme vectors which dominate the862

reference point belong to the greedy set for n large enough.863

First, we prove in the next proposition that if r1 > xmax (resp. r2 > f(xmin)), then864

for r2 (resp. r1) close enough to f(xmax) (resp. xmin) the extreme vector umax (resp.865

umin) is the only hypervolume maximizer, see the righthand plot of Figure 6. There are866

similar statements in [9] for the set of µ points maximizing the hypervolume, but they867

only apply to µ ≥ 2.868

Lemma B.1. We assume that the Pareto front is described by a function f which is869

(Lmin,Lmax)-bilipschitz and that the reference point r is valid. If r1 > xmax and f(xmax) <870

r2 < f(xmax) +Lmin× (r1− xmax), the right extreme of the Pareto front umax is the only871

maximizer of HVr(.). Additionally, if r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

,872

the vector umin = (xmin, f(xmin)) is the only maximizer of HVr(.).873

Proof. This proof is illustrated in the righthand plot of Figure 6. Let r be a reference874

point such that r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

. Let u = (x, f(x)) 6= umin875

be a vector of the Pareto front which dominates r. The hypervolume improvement of umin876

to {u} is (r2 − f(xmin)) × (x − xmin). The hypervolume improvement of u to {umin} is877

(f(xmin)− f(x))× (r1−x), which is smaller than Lmax× (x−xmin)× (r1−xmin) since u878
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dominates r and f is (Lmin,Lmax)-bilipschitz. Since we assume that Lmax× (r1−xmin) <879

r2 − f(xmin), the upper bound on HVIr(u, umin) is strictly smaller than HVIr(umin, u).880

Therefore, the hypervolume of umin is strictly larger than the one of u. We conclude that881

umin is the unique hypervolume maximizer. The symmetric result can be obtained with882

the same approach.883

It is left to prove that when r1 > xmax (resp. r2 > f(xmin)), the second coordinate of884

rnn+1 (resp. the first coordinate of rn0 ) indeed converge to f(xmax) (resp. xmin). It is a885

straightforward consequence of Lemma 4.4. Therefore, we are able to conclude.886

Proposition B.2. We assume that the Pareto front is described by a bilipschitz func-887

tion f . Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point r. For888

n large enough, every reference point rni corresponding to a non-empty gap region GrSn,i889

dominates the nadir point.890

Proof. By Lemma 4.4, wnn,r converges to xmax, and thus the right extreme reference891

point rnn+1 := (r1, f(wnn,r)) converges to (r1, f(xmax)) by continuity of f . Therefore, if r1892

is strictly larger than xmax, then there exists N such that for all n ≥ N , rnn+1 verifies893

the assumptions on the reference point of Lemma B.1 which guarantee that umax is the894

unique maximizer of HVr(.) over the right extreme gap region GrSn,n+1. Let assume that895

umax does not belong to Sn. Then, wNN,r 6= xmax, and since wnn,r converges to xmax, the896

left extreme gap region GrSn,i is necessarily filled at some later iteration. When the right897

extreme gap region is filled, umax, the unique minimizer of HVr(.) over this gap region,898

is added to the greedy set. To summarize, if r1 > xmax, then for n large enough Sn899

contains umax, and thus the right extreme gap region is empty. We can prove with the900

same approach that for r2 > f(xmin), Sn contains umin for n large enough.901

At any iteration, the non-extreme reference points dominate the nadir point. Addi-902

tionally, we proved that either r1 < xmax (resp. r2 < f(xmin)), and thus the left (resp.903

right) extreme reference point dominates the nadir point or for n large enough, the left904

(resp. right) extreme gap region is empty.905
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