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MULTIOBJECTIVE HYPERVOLUME BASED ISOOMOO
ALGORITHMS CONVERGE WITH AT LEAST SUBLINEAR SPEED TO
THE ENTIRE PARETO FRONT

EUGENIE MARESCAUX AND ANNE AUGER

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,
respectively. In this context, we introduce a new algorithm framework, Incremental SingleObjective Op-
timization for MultiObjective Optimization (ISOOMOO) for approximating the Pareto front with an
increasing number of points. We focus on HV-ISOOMOQO, its instanciation with the hypervolume in-
dicator, a set-quality indicator which is widely used for algorithms design and performance assessment.
HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing the hypervolume. We
study the convergence to the entire Pareto front of HV-ISOOMOO coupled with perfect singleobjec-
tive optimization. The convergence is defined as the convergence of the hypervolume of the sets of all
meta-iterations incumbents towards the hypervolume of the Pareto front. We prove tight lower bounds
on the speed of convergence for convex and bilipschitz Pareto fronts in O(1/n¢) with ¢ =1 and ¢ < 1,
respectively. The index n denotes the number of meta-iterations of HV-ISOOMOO. For convex Pareto
fronts, the convergence is in ©(1/n), namely the fastest convergence achievable by a biobjective opti-
mization algorithm. These are the first results on the speed of convergence of multiobjective optimization
algorithms towards the entire Pareto front. We also analyze theoretically the asymptotic convergence
behavior.

Key words. multiobjective optimization, convergence, hypervolume, Pareto front

AMS subject classifications. 90C29, 90C30

1. Introduction. Real-world problems often involve the optimization of several con-
flicting objectives. The solution of such problems is the set of non-dominated decision
vectors (vectors of the search space), the Pareto set. It is defined as the set of solutions
that cannot be improved along one objective without degrading along another one. Its
image in the objective space is the Pareto front. A decision maker is then often involved to
choose, based on its preferences, a single best compromise. The shape of the Pareto front
informs on the trade-off between objectives. Many algorithms such as evolutionary algo-
rithms approximate the Pareto front with a number of points fixed in the beginning. But
some algorithms, in particular stemming from direct search methods [1, 7, 10, 11] aim at
approximating the Pareto set or Pareto front with as many well-distributed points as pos-
sible. Ideally, the quality of the Pareto front approximation increases with time without
stagnating and such algorithms are referred to in the sequel as anytime algorithms.

The speed of convergence towards a critical decision vector or a vector of the Pareto
front have been examined for many algorithms such as (14 1) evolutionary multiobjective
algorithms [5] or Newton’s method [14]. Convergence speeds are typically similar to the
ones obtained for singleobjective optimization. They both apply to a convergence to-
wards a single point. Their analysis is sometimes reduced to the study of the convergence
of a singleobjective optimization algorithm. The convergence of anytime algorithms to-
wards the whole Pareto set or front is of a different kind because these are sets and not
points. It has already been theoretically investigated for some algorithms [10] and more
abstract frameworks [19], but analysis of the speed of convergence are missing. Addition-
ally, empirical studies typically focus on determining which algorithm is faster and do not
provide precise information on the speed of convergence such as order of convergence or
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complexity. Yet, while largely overlooked, investigating the speed of convergence either
theoretically or empirically is important. In this context, it has been proven that con-
vergence of biobjective optimization algorithms towards the whole Pareto front is always
sublinear in the number of function evaluations, at least when measuring convergence
with the hypervolume indicator [16] or the multiplicative e-indicator [8], and thus much
ssmaller than typical speeds of convergence to a single point. The hypervolume and the
multiplicative e-indicator are set-quality indicators widely used in multiobjective opti-
mization, both to guide algorithms and for performance assessment. The hypervolume is
at the core of all known stricly Pareto-compliant indicators [20].

In this paper, we introduce a new anytime algorithm framework, Incremental Sin-
gleObjective Optimization for MultiObjective Optimization (ISOOMOOQ). We focus on its
instanciation with the hypervolume indicator, namely HV-ISOOMOO algorithms. These
algorithms try to greedily maximize the hypervolume by adding points with the largest
hypervolume contribution. These points are obtained by running a singleobjective opti-
mizer. A greedy idea has already been used in the selection part of some multiobjective
optimization evolutionary algorithms such as SMS-EMOA to find a set of p points with a
large hypervolume [6]. The hypervolume of such discrete greedy approximation is proven
to be at least (e —1)/e times the one of the p-optimal distribution [17]. To the best of our
knowledge, we provide the first continuous equivalent of this result. We investigate the
speed of convergence of HV-ISOOMOO towards the whole Pareto front in the ideal case
of perfect singleobjective optimization, measuring the convergence with the hypervolume.
For convex and bilipschitz Pareto fronts, we prove that the convergence is in O(1/n°) with
¢ =1 and ¢ < 1, respectively, with n being the number of singleobjective optimization
runs performed. For convex Pareto fronts, the convergence is exactly in ©(1/n) as no
biobjective algorithm can converge faster to the Pareto front [16]. Additionally, we prove
that for simultaneously bilipschitz and smooth enough Pareto fronts doubling the number
of points in the approximation divides the optimality gap by a factor which converges
asymptotically to two. In the proof process, we obtain interesting intermediary results
such as bounds on the normalized maximum hypervolume and a geometric interpretation
of optimality conditions.

The paper is organized as follows. In Section 2, we lay the foundations of the prob-
lem. In Section 3, we prove preliminary results later used to investigate convergence. In
Section 4, we derive lower bounds on the speed of convergence of HV-ISOOMOO coupled
with perfect singleobjective optimization and an insight on its asymptotic convergence
behavior.

Notations and conventions. For a,b € N, we note [a;b] the set {a,a+1,...,b—1,b}.
For a vector u € R2, we note u; and us respectively its first and its second coordinate. If
the vector notation already contains an index, we separate the two indices with a comma.
For simplicity sake, we often replace the set {u} by w in the notations. We say that a
function f : R — R is decreasing (resp. strictly decreasing) when for all < y, we have
f(x) > f(y) (vesp. f(z) > f(y)). We only consider two-dimensional objective spaces and
refer to the Lebesgue measure of a set as its area.

2. Background, algorithm framework and assumptions. We lay in this sec-
tion the foundations of the problem we analyze. First, we recall some classic concepts
of multiobjective optimization. Then, we introduce the ISOOMOO class of algorithms
and its hypervolume based instanciation HV-ISOOMOOQO. We also formalize a mathemat-
ical abstraction of HV-ISOOMOO coupled with perfect singleobjective optimization, the
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greedy set sequences. Finally, we examine our assumptions on the biobjective optimiza-
tion problem.

2.1. Biobjective optimization problems, the Pareto front and the hyper-
volume indicator. We consider a biobjective minimization problem:

2.1 in F
21) caal, F)

with F: @ € R — R? : 2 +— (Fy(x), Fa(x)). We define two dominance relations for
vectors in the objective space. We say that u weakly dominates v denoted by u < v if
u; < vy and ug < vy and that w dominates v denoted by v < v if u < v and u # v. A
vector of the objective space R? is said feasible when it belongs to F(£2). Solving the
optimization problem consists in finding a good approximation of the Pareto front, the
set of non-dominated feasible vectors, {F(X) : X € Q, VY € Q,F(Y) £ F(X)}. We
restrict ourselves to Pareto fronts with an explicit representation:

(2.2) PF; ={(z, f(z)) : © € [Tmin, Tmax] }

with f : R — R decreasing. We denote by tumin = (Zmin, [(Tmin)) and tmax =
(Tmax, f(ZTmax)) the extreme vectors of the Pareto front. Likewise, we denote by @imin » :=
(Zmin,rs [ (Zmin,r)) a0d Gmaxr = (Zmax,rs f (Zmax,r)) the extremes vectors of the part of
the Pareto front dominating a reference point 7, with Zmin ,» := max(Tmin, f~*(r2)) and
Tmax,r ‘= MIN(Tmax,71). The vector (Tmax, f(Tmin)) is called the nadir point. All these
notations are illustrated in Figure 1.

FQK T

usg

Ui

Fig. 1: Tllustration of notations. The extreme vectors umi, and umax and the nadir point
(leftmost) ; the extreme vectors relative to the reference point 7 tmin,» and Umax,» (left) ;
three vectors uy, us and uz and the regions weakly dominated by them and dominating
r, Dy, (8), Dy, (8) and Dy, (=) (right) ; the greedy set S3 = {v1,v2,v3}, its four gap
regions (=3) and the associated reference points (rightmost).

The hypervolume with respect to a reference point r of a set S of objective vectors
is the Lebesgue measure of the region of the objective space dominated by S and strictly
dominating the reference point 7. We denote it HV,.(S). When no vector of the Pareto
front dominates the reference point r, HV,.(S) = 0 for any set S of feasible points of the
objective space. Since this particular case is not interesting, we only consider reference
points dominated by at least one vector of the Pareto front from now on. We refer to
such reference points as valid.
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The region of the objective space dominated by S and dominating r (see the righthand
plot of Figure 1) is denoted by D% and formally defined as:

(2.3) t={weR*:JueS:u=<w=<r}.

The hypervolume of a set S relative to the reference point  equals A(D%) with A(.) being
the Lebesgue measure. The set Dg is the union of the D;, for v € §, D;, being the
rectangle [u1,71] X [ug, 72] when u dominates 7 and ) otherwise, see the righthand plot of
Figure 1. Note that the D], are not disjoints.

We use the hypervolume to characterize the convergence of a set .S of objective vectors
to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge
to the Pareto front when the hypervolume difference HV,(PF;) — HV,.(S) converges
to 0. We define the optimality gap of S with respect to a valid reference point r as
HV.,(PFy) — HV,(S). Another quantity of interest is how much adding a vector to a set
affects its hypervolume. The hypervolume improvement with respect to r of the vector u
to the set S is HVI,.(u,S) = HV,.(SU{u}) — HV,(S). We also use the term hypervolume
improvement to refer to the hypervolume increase of an increasing1 sequence of sets. More
precisely, the hypervolume improvement at iteration n of an increasing sequence (Sy,)nen
is HV,.(Sp+1) — HV,.(Sp).

2.2. The ISOOMOQO framework, its HV-ISOOMOO instanciation and the
associated greedy set sequences. The Incremental SingleObjective Optimization for
MultiObjective Optimization (ISOOMOO) framework builds incrementally an increasing
sequence (T, )nen+ of sets of vectors of the objective space. The pseudocode of ISOOMOO
is given in Algorithm 2.1, where the current value of Z,, is denoted by Z. At each so-
called meta-iteration, a singleobjective maximization algorithm SOOPTIMIZER (line 2 in
Algorithm 2.1) is run on the criterion X € Q C R? + J(Z, X) and the resulting solution is
added to Z (line 3 in Algorithm 2.1). We use the term meta-iteration to separate between
the (meta-)iterations of ISOOMOO and the iterations of SOOPTIMIZER. Since the set
7 is composed of the final objective incumbents of previous runs of SOOPTIMIZER, and
(ideally) provides an approximation of the Pareto front, we call it final incumbents Pareto
front approzimation.

The singleobjective optimization procedure may vary between meta-iterations. More
precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in
D (line 4 in Algorithm 2.1). This allows to alternate between various singleobjective
optimization algorithms with different features, but also to adapt their initialization. This

could be done by storing in D an iteration index and the final search space incumbents
of SOOPTIMIZER runs.

Algorithm 2.1 ISOOMOO Framework

1: while not stopping criterion do

2. Y,d <+ SOOPTIMIZER(X ~ J(Z,X), D)

3: I+ ITU{F(Y)} 4 update of the approximation of the Pareto front
4: D <+ DuU{d} # update of the data collected

5: end while

LA sequence of set {Ay,n > 0} is increasing if the following inclusions Ag C Ay,... C A, C ... hold.
4
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In this paper, we study HV-ISOOMOO, an instanciation of ISOOMOO for which the
criterion J(Z,.) relates to the hypervolume improvement to Z. Formally, HV-ISOOMOO
is a class of algorithms derived from ISOOMOO for which the maximization of the cri-
terion J is compliant with the maximization of the hypervolume improvement as defined
below.

Assumption 2.1. (Compliance to HVI, maximization) The maximization of a crite-
rion J as in ISOOMOO is compliant with the maximization of HVI,. if for any set Z of
objective vectors, we have

(2.4) argmax ycpa J(Z, X) = argmax y cga HVL.(F(X),Z) .

We define an HV-ISOOMOO algorithm relative to the reference point r as an ISOOMOO
algorithm as described in Algorithm 2.1 where the criterion J satisfies Assumption 2.1. At
each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible vector maximizing
the hypervolume improvement to the final incumbents Pareto front approximation Z,.
Ideally, when n goes to infinity, the non-dominated subset of (Z,)nen+ converges to the
(entire) Pareto front which maximizes the hypervolume. In other words, HV-ISOOMOO
algorithms try to approximate the Pareto front with a greedy approach.

DEFINITION 2.2. We define the convergence of an HV-ISOOMOO algorithm as the
convergence of HV,(1,) towards HV,.(PFy).

The performance of a specific HV-ISOOMOO algorithm depends crucially on the
choice of the criterion J. In this respect, HVI,.(Z, F'(.)) itself is not a good candidate for
J(Z,.). Indeed, it is constant equal to zero in the region dominated by Z, which makes it
difficult to optimize. A criterion whose maximization is compliant with the maximization
of the hypervolume improvement and designed to be easier to optimize has already been
introduced in [18] under the name uncrowded hypervolume improvement (UHVI). For
F(X) not dominated by Z, UHVI,. and HVI, are equal. Otherwise, in the region where
the hypervolume improvement is null, UHVIL, is negative and equals minus the distance
to the empirical non-dominated front of the set Z relative to r. It is easy to see that
UHVI, satisfies (2.4).

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-
ISOOMOO algorithm. In this paper, we analyze the HV-ISOOMOO framework under
the assumption of perfect singleobjective optimization formalized below.

Assumption 2.3 (Perfect singleobjective optimization). At every meta-iteration n,
for any final incumbents Pareto front approximation Z,,, the run of SOOPTIMIZER (line 2
in Algorithm 2.1) returns Y € argmax ycq J(Zn, F(X)).

The assumption of perfect singleobjective optimization is reminiscent to the assump-
tion of perfect line search which is common in the analysis of gradient based methods [12].
Under this assumption, all choices of criterions verifying Assumption 2.1 are equivalent.
The convergence of HV-ISOOMOO coupled with perfect singleobjective optimization is a
necessary condition for the soundness of the approach. Furthermore, lower bounds on the
speed of convergence of a real instantiation of HV-ISOOMOO could be obtained by com-
bining lower bounds on the speed of convergence of HV-ISOOMOO under Assumption 2.3
of perfect singleobjective optimization with the ones of singleobjective optimization algo-
rithms.
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We introduce below mathematical abstractions of the HV-ISOOMOO framework un-
der Assumption 2.3 of perfect singleobjective optimization, greedy sequences and greedy
set sequences.

DEFINITION 2.4 (Greedy sequence and greedy set sequence). Given a valid reference
point v, we define as greedy sequence relative to r, a sequence (v, )nen+ satisfying

(2.5) v € argvrenFa(%) HV,(v) and
(2.6) Upt1 € arg max HV,.({vi, - ,vn,v}) foralln>1 .
veF(Q)

The greedy set sequence (Sp)nen+ associated to the greedy sequence (vp)nen+ 18 composed
of the greedy sets Sy := {vg, k < n}.

There is a bijection between greedy sequences and greedy set sequences. The n-th element
of the greedy sequence (v,)nen+ associated to a greedy set sequence (Sy)nen+ is simply
the unique element of S,, \ S,,—1 if n > 1 and of Sy if n = 1.

The recurrence relation of the greedy sequence (2.6) is equivalent to v, belonging
to arg max,e (o) HVI, (v, S,) for all n > 1. It is immediate to see that under Assump-
tion 2.3, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence
while the final incumbents Pareto front approximations form the associated greedy set
sequence (Z,)nen+. The indices n of both sequences correspond to HV-ISOOMOO meta-
iterations. In this paper, we derive convergence results for greedy set sequences, which
transfer to HV-ISOOMOO under Assumption 2.3.

As we will see in Subsection 3.1, the problem of maximizing the hypervolume improve-
ment to a fixed set can be rewritten as the maximum of a finite number of hypervolume
maximization problems. Therefore, we can infer from [4, Theorem 1] that as soon as the
Pareto front is lower semi-continuous, there exists a greedy sequence, and thus a greedy
set sequence.

ProOPOSITION 2.5. If the Pareto front is described by a lower semi-continuous func-
tion f, then there exists a greedy sequence (v, )nen+ relative to any valid reference point.

Proof. If f is lower semi-continuous, then for any valid reference point r, the maxi-
mum of HV,.(.) exists, see [4, Theorem 1]. Therefore, there exists a vector verifying (2.5)
and the problem of maximizing the maximum of a finite number of hypervolume functions
defined in (3.3) admits a solution. Since (2.6) and (3.3) are equivalent by Lemma 3.5, we
can build a sequence (v, )nen+ verifying (2.5) and (2.6), namely a greedy sequence. 0

Additionally, since the hypervolume indicator associated to a valid reference point is
strictly Pareto-compliant (see [15]), this sequence is composed of vectors of the Pareto
front.

PROPOSITION 2.6. If the Pareto front is described by a lower semi-continuous func-
tion f, then any vector of a greedy sequence relative to a valid reference point r belongs to
the Pareto front. Consequently, for such Pareto front and reference point and under As-
sumption 2.3, all final incumbents Pareto front approximations I, of an HV-ISOOMOO
algorithm relative to v are subsets of the Pareto front.

Proof. Since for any valid reference point r, HV,.(.) is strictly Pareto-compliant [15],
its maximum is non-dominated and belongs to the Pareto front. Thus, in particular, a
vector vy verifying (2.5) belongs to the Pareto front. Additionally, by Lemma 3.5, every

6
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solution of (2.6) verifies (3.3) and is solution of at least one hypervolume maximization
problem, and thus also belong to the Pareto front. 0

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.
For example, there are infinitely many greedy sequences associated to any affine Pareto
front with a reference point dominating the nadir point. This statement relies on the fact
that the unique maximizer of the hypervolume relative to a reference point r dominating
the nadir point is the middle of the section of the Pareto front dominating r, see [3,
Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r
is the only candidate for v; but vo can be either at 1/4 or at 3/4 of this section. Similarly,
v3 has to be in the position where vy is not but vy can be at 1/8, 3/8, 5/8 or 7/8 of the
section of the Pareto front dominating r. For any m, we can find an iteration m such
that v, can be placed at 2" different points, whatever the m — 1 first terms of the greedy
sequence are.

2.3. Assumptions on the Pareto front and the objective functions. We
present and discuss here the assumptions on the function f describing the Pareto front
under which we derive convergence results. We typically assume that the function f is
bilipschitz, convex or simultaneously bilipschitz and with a Holder continuous derivative.
Under any of these three assumptions, f is continuous. For the sake of conciseness, we
transfer the properties of f to the Pareto front. For example, we call convex Pareto
front a Pareto front described by a convex function. We recall that a function f is
Hélder continuous with exponent a, namely C®, when there exists H > 0 such that

|[f(@)—f(y)| < Hx|z—y| for all z,y [13]. We note [f], the minimum Holder coefficient

with respect to the exponent a of a C1'® function f, that is [f]a := SUD,zy W

When needed, we detail the bilipschitz constants and say that a bilipschitz function f is
(Lmin,Lmax )-bilipschitz if for all 2, y € [Zmin, Tmax], We have Lyin X |z—y| < |f(z)—f(y)| <
Liax X |z — y| where Lyax > Lmin > 0. We also talk of affine Pareto fronts when
f(z) =ax+bwith a <0 and b € R. As they form a line in the biobjective case, they are
usually referred to as linear Pareto fronts. They provide good examples to illustrate a
point and help to understand the results we prove on the asymptotic convergence behavior.

We remind below sufficient conditions on the search space and on the objective func-
tions which guarantee that f is convex and bilipschitz.

PROPOSITION 2.7. Given a biobjective minimization problem as in (2.1) whose Pareto
front is described by a function f. If Fi and Fy are respectively (Lmin 1, Lmax,1)-bilipschitz
and (Lmin 2, Lmax,2)-bilipschitz, then f is (LLL“], iL‘”"f)—bilipschitz. If the search space

min,

Q and the objective functions Fy and Fs are convex, then f is convex.

The proofs of this proposition can be found for instance in [16]. The conditions on Fy,
F5 and 2 are sufficient but non-necessary conditions. Indeed, adding small discontinuity in
the objective functions far from the Pareto set makes them non-convex and non-bilipschitz
without modifying the Pareto front.

Representing F; values on the absciss and F5 values on the ordinate instead of the
converse is an arbitrary choice. When f is a bijection, if we chose to represent the Fj
values on the z-axis instead of on the y-axis, we would have another representation of
the Pareto front : {(y, f~1(y)) : ¥ € [f(¥max); f(Zmin)]}. If so, the inverse function f~!
would play the role of f. It is interesting to notice that the choice of the objective function
represented on the horizontal axis does not impact whether the function characterizing

7
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the Pareto front is bilipschitz or convex. Indeed, f being bilipschitz is equivalent to both
f and f~! being lipschitz. Additionally, we can prove that given that the function f is
decreasing, f being convex is equivalent to its inverse f~! being convex. The proof of

this property is straightforward. If f is convex, then for all z,y € R, f (M) is

smaller than f(fil(x));f(fil(y)), that is ¥, Since f and therefore f~! are decreasing,
by composing by f~! each side of the inequality, we obtain a characterization of the

convexity of f~1: for all z,y € R, w is larger than f_l(%w).

3. Preliminary results. In this section, we present preliminary results which are
crucial for the analysis of the convergence of HV-ISOOMOOQO. While we expose them as
tools for convergence analysis, they are also interesting for their own sake.

3.1. Decomposition of the optimality gap using gap regions. The optimality
gap is the Lebesgue measure of the total gap region introduced below.

DEFINITION 3.1. The total gap region of S with respect to a fized valid reference
point r, Gg, is defined as the region of the objective space which dominates r and is
weakly dominated by PFy but not by S, namely Dpp, \ Dg.

We introduced DY in (2.3). Its Lebesgue measure is HV,.(S).

When S is a subset of the Pareto front dominating the reference point r, the total
gap region Gg has a particular shape which can be visualized in the rightmost plot of
Figure 1. Tt can be decomposed into the disjoint union of |S| 4 1 sets of the form DZ,
that are formally defined below.

DEFINITION 3.2 (Gap regions, gaps and associated reference points). Let S =
{v1,...,vn} be a set of n distinct vectors of the Pareto front dominating a valid refer-
ence point r. Let o be the permutation ordering the v; by increasing F1 values: vy(1),1 <
Ve(2),1 < v+ < Vg(n),1-

e Foralli € [1,n+ 1], the i-th gap region of the set S, Gg ,;, is the set D;Z'Ff with
the associated reference points r; being ry = (vg(l)’l,rg), Tnt1 = (T1,Vo(n),2) and
s = (Vo(i),15 Vo (i—1),2) for all i € [2,n].

e We refer to Gg 1 and Gg ,, 1 as the left and the right extreme gap region of S,
respectively.

The left (resp. right) extreme gap region is empty when the left (resp. right) extreme
vector of the Pareto front belongs to S. Non-extreme gap regions are never empty.
The total gap region is the disjoint union of the gap regions: G5 = U?:fggmi. This
decomposition of the total gap region, and thus of the optimality gap, is the cornerstone
of the convergence analysis. Since the area of a gap region G5 , is HV,» (PFy), we can
write the optimality gap as the sum of n+1 hypervolumes of the Pareto front with respect
to different reference points.

LEMMA 3.3. At any iteration n, the optimality gap of a greedy set sequence with
respect to a valid reference point can be decomposed as

n+1

(3.1) HV,(PFy) — HV(S,) =Y _ HV,n(PFy) .

i=1
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Proof. The optimality gap at iteration n is the Lebesgue measure of the total gap
region Gg , which is the disjoint union of the gap regions g , = D;,iFf. Therefore, the

optimality gap equals S/ )\(D;i;f) = S HV, . (PFy). 0

Additionally, we can express the hypervolume improvement of any vector to S, as an
hypervolume. It is a trivial assertion for vectors which do not dominate S,,. For other
vectors, the reference point depends on the gap region to which the vector belongs.

LEMMA 3.4. Let (Sp)nen+ be a greedy set sequence relative to a valid reference point
r. At any iteration n, for any u belonging to the i-th gap region of Sy, G5 ;, we have

(3.2) HVI(u,Sy) = HVpn(u) .

Proof. The hypervolume improvement of any u € g, is the Lebesgue-measure of
the intersection between Gg ; and D;,. Therefore, it is equal to /\(DZ?), that is HV,n (u).0
We can now reformulate the recurrence relation defining a greedy sequence at iteration
n + 1. Indeed, picking a vector maximizing the hypervolume improvement to S, is
equivalent to pick a vector where the largest value of the maximum of the hypervolumes
with respect to the ] is reached.

LEMMA 3.5. At any iteration n, the recurrence relation satisfied by v,41, i.e. (2.6),
can be reformulated as

. M H rn .
(3.3) Uni1 € arg max - max o Vin (u)

Proof. The hypervolume improvement of any vector u to Sy, is maX;e[1,nq1] HVyn (u).
It is a consequence of Lemma 3.4 and of the fact that the hypervolume with respect to 7}’
is null outside the i-th gap region of S,,. Additionally, v,+1 belongs to the Pareto front
by Proposition 2.6. Thus, (2.6) is equivalent to (3.3). ad

Similarly, we can express the decrease of the optimality gap at iteration n + 1,
HV,(Sp+1) — HV,.(S,,), as the maximum of n + 1 hypervolume maximization problems.

LEMMA 3.6. Let (Sp)nen+ be a greedy set sequence relative to a valid reference point
r. The hypervolume improvement at iteration n + 1 equals

(3.4) HV,(Sns1) — HV(Sn) = Jhax | max HVyn (u) .

Proof. The hypervolume improvement HV,.(S,4+1) — HV,.(S,) is the hypervolume
improvement of v,41 to S,. With the same arguments as in the proof of Lemma 3.5, we
can prove that it equals max,epr, maX;e1 ny1] HVyr (u). d

3.2. Lower bound of the normalized maximum hypervolume for convex
Pareto fronts. In this section and the next one, we provide bounds on the maximum

hypervolume achievable by a single feasible vector normalized by the maximum hypervol-
u HV, . . . .
ume of a feasible set: %{DFH(H). We refer to this ratio as the normalized mazimum

hypervolume with respect to r. Bounds on the normalized maximum hypervolume are ex-
ploited in Section 4 to provide bounds on the speed of convergence of greedy set sequences
towards the Pareto front.
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The hypervolume relative to a reference point r of a vector u = (z, f(z)) of the Pareto
front is HV,.(u) = (r1 — ) X (ro — f(x)). From this simple formula, we derive in the next
proposition necessary conditions for a vector of the Pareto front to be an hypervolume
maximizer when f has at least left and right derivatives in z*.

PROPOSITION 3.7. Let ©* €]Tmin, Tmax| such that u* = (z*, f(x*)) mazimizes the
hypervolume with respect to a valid reference point r. If the function f describing the
Pareto front admits left and right derivatives in x*, respectively f' (x*) and f! (x*), then

I r2 — f(a¥)
(3'5) _f+(x ) < 7”1—733* <

—fL(@") .

Proof. We define the function HV, ,(.) as  — HV,((z, f(z))). If 2* maximizes
HV, ,(.), then the left and the right derivatives of HV, ,.(.) are positive and negative,
respectively. By replacing the left and right derivatives of HV, ,(.) by their explicit
formulas and reorganizing the terms we obtain (3.5). 0

Equation (3.5) states that the slope of the diagonal of the rectangle DI. is between the
absolute values of the slopes of the right and the left derivatives of f at z* (see the middle
plot of Figure 2). To the best of our knowledge, this geometric interpretation is new. It
becomes simpler when f is differentiable. Then, the absolute value of the slope of the
tangent of the front at a non-extreme vector u* is equal to the slope of the diagonal of
the rectangle DI. (see the lefthand plot of Figure 2).

Fig. 2: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers u*, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PF, and the diagonal of D;,., are equal. Right: The Pareto
front PF. and the hypervolume maximizer u} for e = 1/3 and r = (1,1).

COROLLARY 3.8. Let £* €|@min, Tmax| be such that u* = (z*, f(x*)) mazimizes the
hypervolume with respect to a valid reference point r. If the Pareto front is described by
a differentiable function f in x*, then f'(x*) satisfies

ro — f(z*)
3.6 —f (") = ———~
(3.6) flat) = 22
Proof. 1t is a direct consequence of Proposition 3.7 0

A convex function may not be differentiable, but it always has left and right de-
rivatives. It is also above its left and right tangent lines respectively on the left and

10
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on the right of z*. Therefore, Proposition 3.7 implies that the affine function g : = —
fz*) — % X (z — z*) is a minorant of f. It is the key idea of the proof of the
following lower bound on the normalized maximum hypervolume.

PrOPOSITION 3.9. If the Pareto front is described by a convex function f, then the
following lower bound on the normalized mazimum hypervolume with respect to any valid

reference point v holds:

maxyepr; HV,(u)
AV, (PF;)

1
3.7 > -
(37) >
where the inequality is an equality if and only if the Pareto front is affine and r dominates

the nadir point.

Proof. As explained in the above paragraph, the convexity of f implies that the
affine function g : = — f(z*) — %(Zr*) X (x — x*) is a minorant of f. Therefore,
PF, := {g(z) : © € [Tmin, Tmax|} dominates PF;, and thus has a higher hypervolume.
We denote Ly := 71 — Zmin,r and Ly = rg — f(Zmaxr) the lengths of the rectangle
R := [Zminr "1] X [[ (Zmax,r ), T2]. We denote I := r1 —a* and Iy := ro — f(2*) the lengths
of the rectangle Dj.. The region of R which dominates PF is a right-angled triangle.
Additionally, by definition, the slope of its hypotenuse is ls/l;, and thus the lengths of
the other sides are Ly — I + (La — l3) X % and Lo — Iy + (L1 — 11) X % (see the middle
plot of Figure 2). Therefore, we have

HV,(PF,) = A(R) — A\{u € R? : v € R,u < PF,})

1 l l
:L1L2—§X(Ll—ll+(L2—l2)Xi)X(LQ—ZQ—F(Ll—ll)Xi)
_ LQ 1 LQ 2 L1 1 L1 2
=bx [m2e2n g () 2 () ]

For all z, we have (z — 2)2 > (0 and thus 2z — %xQ < 2. Therefore, we can conclude that
HV,(PF,), and thus HV,(PF) is smaller than 2 x l1l, that is 2 x HV,(u*). If either
Ly/l; # 2 or Ly/ly # 2, the inequality is strict. Thus, when the inequality is an equality,
the center of R belongs to the Pareto front. Since f is convex, it happens only when f is
affine and the reference point r dominates the nadir point. Conversely, if both conditions
are met, we know that the optimum is in the middle of the Pareto front and that we have
the equality (see [3, Theorem 5]). O

We just proved that one half is a tight lower bound on the normalized maximum
hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,
there is no upper bound valid for every convex Pareto front, even when r dominates the
nadir point. Here is a simple example which illustrates this. Let consider the convex
Pareto front PF. := {max(1 — £,e — e x x) : € [0,1]} represented in the righthand
plot of Figure 2 and the reference point r = (1,1). When ¢ < 1, PF, is convex and
(3.6) implies that uf = (e X (1 —€),e x (1 —€)) is the unique hypervolume minimizer.
Thus, the normalized maximum hypervolume of PF, for this reference point is equal to

(1—6+€2)2
1—ex(1—€)2+(e—e?)

> and converges to 1 when € goes to 0.

3.3. Lower and upper bounds of the normalized maximum hypervolume
for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on
the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.

11
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We consider two affine fronts with the same left extreme vector as PF; and slopes
—Lin and — L.y, see the lefthand plot of Figure 3. We call them PF.;, and PF, .y,
respectively. Formally:

(38) PFmax = {(-77; fmax(l‘)) LT € [xmin,xmax]} and

(39) PFmin = {(x7fmin(x) T e [xmin;l‘max]}

with fmin(l‘) = f($min) - (1’ - xmin) X Lmin and fmax(z) = f(l'min) - (1’ - xmin) X
Lyax. For a (Lpmin,Lmax)-bilipschitz function f, fmm(z) < f(2) < fimax(z) for all z €

[Zmin, Tmax], and thus the Pareto front is dominated by PF,.x and dominates PFyiy.
These two affine fronts provide bounds on both the hypervolume of the Pareto front

Iy,
Aol

F2 A "FT

1:!—>

1 B

Fig. 3: Left : The Pareto front PF; surrounded by PFyax (below) and PF.,in (above).
Right : An illustration that HV, (umin) — HV,(PFy) (mm) becomes negligible compared to
HV, (tmin) (&) for r1 =1 and 73 — 0.

and the largest hypervolume of a vector on the Pareto front. They are key to prove
the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-
bilipschitz Pareto front.

PROPOSITION 3.10. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-
tion f, then for any valid reference point r, we have

maxye pr; HV;(u)

« Lmin
HV,(PFy)

1
3.10 2 _
( ) 2 Lmax

v

Proof. The fronts PF .« and PF,,;, are defined respectively in (3.8) and (3.9). We
note A1 = Zmax,r — Zmin,r, A =71 — Zmax,r, Do =72 — f(Zmin,r) and V 1= Ag x (r; —
Zmin,r), see the lefthand plot of Figure 3. Since the front PF,,,x dominates the Pareto
front, the hypervolume of PF¢ is smaller than the hypervolume of PF .y, V' + Liax X
A x Al + % X Limax X A2. Additionally, since each vector of PF,,;, is dominated by a
vector of PF ¢, the maximum hypervolume of a vector of PFy is larger than the maximum
hypervolume of a vector of PF ;. The front PF i, being an affine and therefore convex
front, we know by Proposition 3.9 that the maximum hypervolume of a vector of PF, is
larger than half of HV, (PFynin ), which is equal to 3 X (V+ Luin X Ap X Al +2 X Ly x A2)
To summarize, the maximum hypervolume of a vector of PF ¢ is larger than % X (V4 Lin X
Ay x A —|—% X Linin x A?). Combining the upper bound on the hypervolume of PF; and the
lower bound on the maximum hypervolume of a vector of PF ¢, the normalized maximum

12
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X (VA Linin XAt XA +1 X Liin xA?)
V+Lmax XA1 XA+ 3 X Linax X A2
Lmin XA1 XA+ 1 X L x A2 Limin X A1 XA, +1 X Linin x A2

e L.AsV >0and 0 < A L
Linax X A1 XA} + 1 X Linax X A2 Linax XA1 XAl 45 X Linax X AY

conclude that the normalized maximum hypervolume is larger than % X fm—"‘ 0

hypervolume is larger than . This quantity is itself larger

than % X <1, we

We cannot guarantee any upper bound strictly inferior to 1 on the normalized maximum
hypervolume without adding an assumption on the reference point. Indeed, for a given
bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes
to 1 for r1 = Tmax and r9 — 0o (see the righthand plot of Figure 3). However, if f is
(Lmin,Lmax )-bilipschitz and r dominates the nadir point, we can prove that the normalized
maximum hypervolume is larger than % X % The proof relies on the fact that if the
reference point r dominates the nadir point, the vector of an affine front with the largest
hypervolume relative to r is its middle (see [3, Theorem 5]), whose hypervolume is half
of the hypervolume of the entire Pareto front.

PROPOSITION 3.11. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-

tion f and the reference point r is valid and dominates the nadir point, the following
upper-bound on the normalized mazximum hypervolume with respect to r holds

maxyepr; HVp(u) 1 L

A1 -
(3.11) HV,.(PFy) ~ 2 Ly

Proof. We use the same notations as in the proof of Proposition 3.10. Since r domi-
nates the nadir point, both A}, Ay and V equal 0, and thus the hypervolumes of PF .«
and PF i, equal % X Liax X A% and % X Lmin X A2, respectively. The domination of
PFnin by PF; implies that the hypervolume of the Pareto front is below % X Lin X A2,
Since PF .« is an affine front whose extremes dominate r, its middle is the unique hyper-
volume maximizer (see [2, Theorem 5]) with an hypervolume equal to 4 X Lyax X A1.The
domination of PF¢ by PF ., implies that the maximum hypervolume of a vector of PF
is larger than % X Limax x A%. Gathering the lower bound on HV,.(PF) and the upper
bound on the maximum hypervolume of a vector of PF s, we retrieve (3.11). |

This upper bound is only relevant for Lyax/Lmin < 2 and is the tightest for Lyax = Lmin,
where it achieves the value 1/2. In this paper, we use this upper bound for Lyax/Lmin
close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.

4. Convergence of HV-ISOOMOO coupled with perfect singleobjective
optimization. We prove in this section various convergence results for HV-ISOOMOO
algorithms coupled with perfect singleobjective optimization. We first prove that when
the Pareto front is either convex or bilipschitz, these algorithms converge to the entire
Pareto front. We transform the bounds on the normalized maximum hypervolume proven
in Section 3 into lower bounds on the speed of convergence. Then, we analyze the asymp-
totic convergence behavior when the Pareto front is bilipschitz with a Holder continuous
derivative.

To analyze the decrease of the optimality gap with n, we track in which gap regions
the vectors of the greedy sequence are inserted over multiple iterations. Naturally, a gap
region of &, persists in being a gap region as long as no greedy vector is added in this
specific gap region. The greedy vector v, 41 is said to fill the gap region of S,, to which it
belongs. At iteration n + 1, this gap region disappears, replaced by two gap regions that
we call its children. More generally, we say that a gap region is a descendant of another
gap region when it is a proper subset of this gap region.

13
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4.1. Convergence of HV-ISOOMOO with guaranteed speed of conver-
gence. We prove some upper bounds on the relation between the optimality gap at
iteration 2n 4+ 1 and at iteration m. These bounds translate into lower bounds on the
speed of convergence of HV-ISOOMOO under Assumption 2.3 of perfect singleobjective
optimization. The proof relies on inequalities of the form
(41) max HVT/ (u) 2 C x HVT/(PFf)

ucPF;
stated in Propositions 3.9 and 3.10 and equations regarding optimality gaps, areas of gap
regions and hypervolume improvement presented in Subsection 3.1. A consequence of
(4.1) being true for any reference point 7’ is that the optimality gap at iteration 2n + 1
is at most (1 — C) times the optimality gap at iteration n.

We sketch the proof idea in the simple case where each of the vy (k € [n+1,2n+1])
is inserted in a distinct gap region of S,,, see the lefthand plot of Figure 4. Inserting vy in
a gap region leads to an hypervolume improvement larger than C times the area of this
gap region by (4.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is
larger than C times the area of the union of all gap regions of S,,, namely the optimality
gap at iteration n. A detailed proof is presented after the theorem statement.

F2 F2

v7

Fig. 4: Left: A Pareto front where each of the gap regions of S5 is filled by one of the
greedy vectors vy, for k € [4,7]. It is described by f(z) = 1 — /z for z € [0,1]. We
represent the region D, (=9) , the gap regions of S3 (=) and the regions corresponding
to HVI. (v, Sk—1) for k € [4,7] (=9). Right: The ordered greedy set [Fj-values wy,
corresponding to the greedy set Sz. The Pareto front is described by f(z) = -5 xe™* +
1— % forz €0,1].

PRrOPOSITION 4.1. Consider a biobjective optimization problem with a Pareto front
described by a function f. Any greedy set sequence (Sp)nen+ relative to a valid reference
point r satisfies for alln

HVT(PFf) - HVT(SQnJ,-l) <1— } % Lmin

(4.2) if f 48 (Lmin,Lmax)-bilipschitz and

HV,.(PF;) = HV,(S,) = 2 Lmax
HV,(PF) — HV(Sons1) _ 1 ., .
4. < = .
(4.3) HV,(PF;) — HV,(S,) = 2 if f is convex

Proof. Fix n > 1. We note o a permutation of [1,n + 1] such that n + (i) is the
index of the first greedy vector vy, inserted in G5, when possible. With this choice of o,

14
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the i-th gap region of S, is a gap region of S, ,(;)—1. As a consequence, the hypervolume
improvement to S, (;)—1 of any vector u belonging to the i-th gap region of Sy, G5 ;.
is equal to HV;n (u) by Lemma 3.5. The hypervolume improvement of the greedy vector
Vnto(i) 10 Spyo(iy—1 being maximal, it is in particular larger than the one of any vector
of g ,; and thus than % X %};’; x HV,n(PF) by Proposition 3.10. In other words, the

1

hypervolume improvement at any iteration n+ o (i) is larger than % X ﬁ x HV,n (PFy).
By adding these inequations for all ¢ € [1,n + 1], we deduce that the hypervolume
improvement from iteration n to 2n + 1 is larger than % X ﬁ X Z?:ll HV,n (PFy).
Since the sum of the HV,. (PFy) is the optimality gap at iteration n, we have (4.2). If
f is convex instead of bilipschitz, we use Proposition 3.9 instead of Proposition 3.10 and
obtain (4.3). |

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation
between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimality
gap associated to a greedy set sequence converges asymptotically to 0. Equivalently, HV-
ISOOMOO algorithms coupled with perfect singleobjective optimization converge to the
entire Pareto front as stated formally below.

THEOREM 4.2. Consider a biobjective optimization problem with a Pareto front de-
scribed by a bilipschitz or convex function f.

The hypervolume of a greedy set sequence relative to a valid reference point r converges
to the hypervolume of the entire Pareto front, i.e. HV,.(S,) — HV,(PFy).

Equivalently, for such Pareto fronts and under Assumption 2.3 of perfect singleobjec-
tive optimization, HV-ISOOMOO algorithms relative to a valid reference point r converge
to the Pareto front in the sense of Definition 2.2.

From the lower bounds on the relation between the optimality gaps at iteration 2n + 1
and at iteration n, we deduce the following upper bounds on the normalized optimality
gap at any iteration.

COROLLARY 4.3. Consider a biobjective optimization problem with a Pareto front
described by a (Lmin,Lmax )-bilipschitz function. A greedy set sequence (Sp)nen+ relative
to a valid reference point r satisfies for all n

Lmin

(4.4) < (2n 4 2)los2(1- 3 X T

HV,(PFy) - HV,(S,) _ ( 1 Lmin>Uogz(n+1)J

1- =
HV,(PF;) 2 T

If the function f is convex, then any greedy set sequence relative to a valid reference point
r satisfies for all n

(4.5)

HV,(PFy) — HV,(S,) _ /1y loga(n+1)] 1
f < (7) < .
HV,(PFy) =\2 = 242

Hence, for such reference points and under Assumption 2.3 of perfect singleobjective op-
timization, HV-ISOOMOO algorithms relative to r satisfy (4.4) if f is (Lmin,Lmax)-
bilipschitz and (4.5) if f is convex where S,, is replaced by Z,,, the final incumbents Pareto
front approxzimation at iteration n.

Proof. The k-th term of the sequence defined by uyp = 1 and w41 = 2 X u,, + 1 for
all n. > 1is 28 — 1. Thus, (4.2) and (4.3) imply that when f is (Lmin,Lmax)-bilipschitz or
convex, the normalized optimality gap at iteration 2¥ — 1 is inferior to (1 — C)¥ with C
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equal to % X % and %, respectively. Since the hypervolume of the greedy set increases

with n, and thus the optimality gap decreases with n, we deduce the first inequalities in
(4.4) and (4.5) via the change of variable k = |logy(n +1)].

Additionally, for every n, |logs(n+1)] is smaller than log,(n+1)+1, that is log, (2n+
2). For every C, log,(2n + 2) equals logo(2n + 2) x log,(C), and thus C'°82(37+2) equals
(2n + 2)°82(C) | Therefore, we can infer that (2n + 2)'°82(¢) is an upper bound of the
normalized optimality gap with C =1 — % X % and C' = % when f 18 (Lmin,Lmax)-
bilipschitz and convex, respectively. ]

We focus here on the relation between the optimality gap at iteration n and at
iteration 2n + 1. We could similarly examine the relation between the optimality gap at
iteration n and at any later iteration. For example, we could prove that if f is (Lmin,Lmax)-

bilipschitz, then for all n, for all k < n + 1, HI:I/\T/(TF();C;;EII:I/\T/(T‘?S:;)
Limi k
min ><

Lmax - n¥l’
Consider the k gap regions of S,, with the largest areas. The hypervolume improve-

ment from iteration n to n + k is at least % X f“— times the area of the union of these
max
k

n+1

4.2. Asymptotical behavior of the convergence of HV,(S,) to HV,(PFy).
In this section, we analyze the asymptotic convergence behavior for a Pareto front de-
scribed by a bilipschitz function with a Holder continuous derivative. We prove that, in
this case, doubling the number of vectors in the greedy set divides the optimality gap by a
factor which converges asymptotically to two as stated in Theorem 4.10. This asymptotic
limit corresponds to the case of affine Pareto fronts with a reference point dominating
the nadir point. For such Pareto fronts and reference points, the optimality gap is always
halved when the number of vectors in the greedy set goes from n to 2n + 1, see Figure 5.

First, we study the properties of the part of the Pareto front corresponding to a
specific gap region of S,,. For all n, let note o,, the permutation of [1,n] which orders
the vectors of S,, by increasing F}-values and the so-called ordered greedy set Fi-values:

is smaller than 1 — % X

gap regions, which is at least times the optimality gap at iteration n.

(4.6) Wi = Vg, iy for i € [1,n], wg . = Tmin,r and wy g, = Tmax,r -
Naturally, we have w(, < wf, < ... < wp,,,, and the intervals [w], ,,w}, [ for i €

[1,n + 1] form a partition of [Zmin,r, Zmax,r[, see the righthand plot of Figure 4. The
interval [w} ; .,w},.] corresponds to the part of the Pareto front belonging to the i-th
gap region of S,,. When the Pareto front is bilipschitz, the lengths of these intervals
converge asymptotically to 0 as stated in the next lemma. It is a direct consequence of

the convergence of HV,(S,) to HV, (PF) stated in Theorem 4.2.
LEMMA 4.4. If the Pareto front is described by a bilipschitz function f and the greedy

set sequence is associated to a valid reference point r, then the ordered greedy set Fy-values
satisfy max;eqi p1] Wi, — Wiy, —— 0 with the w}, defined in (4.6).
’ ' n—oo ’
Proof. Let Ly, and Ly, be constants such that f is (Lmin,Lmax)-bilipschitz. The
area of the i-th gap region of S, is [ (f(z) — f(w!',))dz. This is larger than
i—1,r ’

wz”r . n . 1 . n n 2 .
fwll Limin X (wf, — z)dr, which equals 5 X Ly, X (wf, —wj";,)°. Since the area

of any gap region of S, is inferior to the optimality gap at iteration n, this implies that
the difference w}, — wj , . is inferior to /2 x (HV,.(PFy) —HV,(S,,)) for all n, for all
16
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i € [1,n+1]. Therefore, the convergence of HV,.(S,,) to HV,(PF ;) stated in Theorem 4.2

implies that the maximum over ¢ of w?, — w}"_; ,. converges to 0. 0

We prove in the next lemma that if the Pareto front is described by a bilipschitz
function f with a Holder continuous derivative, then the the part of the Pareto front
belonging to a specific gap region of S,, is bilipschitz for some constants whose ratio con-
verges asymptotically to 1. Affine functions being the only functions to be (Lmin,Lmax)-
bilipschitz with Lyin/Lmax = 1, it supports the interpretation that the convergence of
a greedy set sequence for such Pareto fronts and for affine Pareto fronts share some
asymptotic similarities.

When f is bilipschitz, its restriction to the part of the Pareto front dominating 7},

that is [w} ., w},], is s (L5 Lun )-bilipschitz with
Lfﬁ?n::inf{’M z,y € [wi ., wi,],z #y} and
(4.7) o
Lmaxzsup{‘(x)_y() xye[zlr? ] %y

At iteration n, the ratio between L:”.  and L™ | the bilipschitz constants on the i-th gap

max min?’

region of S, is by definition smaller than

Li,n
(4.8) In ::max{Lz‘Zx,ie[[l,n—i—l]]:[ wi g Wy, ]75(2)}

min

The proof of the convergence of ¢, to 1 relies on the fact that a derivable function can
be approximated locally by an affine function. The quality of this approximation is
guaranteed by the Holder continuity of the derivative.

LEMMA 4.5. We consider a greedy set sequence (Sp)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Holder continuous
derivative, then g, defined in (4.8) converges asymptotically to 1.

Proof. We take a such that f’ is Holder continuous with exponent «, i.e f is C1,
and Lyin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-
bilipschitz. We recall that f is decreasing, and thus for all z < y, we have f(z)— f(y) > 0.
Since f is C1'® and therefore C', the Taylor formula with Lagrange remainder states that
for all x < y, there exists £ € [z, y] such that f(y) = f(z)+ (y—x) x f(£). Since f is C1:*,
this implies that for all z < y, |f(y) — f(z) — (y —2) x f'(z)| < (y — )" T x [f']¢a. Thus,
ng(x) is smaller than —f'(x) + [f']ce X (y — 2)*. We now restrict ourselves to x and

y belonging to the non-empty interval [w] 1,00 Wi ] Our goal is to find an upper bound

depending on i but not on either z or y. Since f is 1, the difference between —f/ (x)
and —f'(wi; ,.) is smaller than [f']ca X (z —w]"; ; )%, and thus [f']ce X (W], —w]* ;)

i,T i—1,r
Addltlonally, the difference between x and y is smaller than w}’, —w;" ; .. We conclude
that for z,y € [w!

P W, %‘iw is smaller than —f"(w}" ; ;,.) + 2[f'lca x (W], —
wi ;,)*, and thus so is Lj7%, defined in (4.7).

Following the same approach, we can also infer that L:"  defined in (4.7) is greater
than the symmetric quantity —f’(wy_ L ») = 2[f']ea x (w}, —wi ;). The quantity
—f'(wf_y ;) is greater than Ly, and (wf, —wp_ ,.)* is smaller than max;ec [y n 417 (wy, —
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n Lmin+2[f/]ca XmaX;e[1,n+1] (w;'n,r_winfly-p)a By
i—1,r Linin—2[f']ce Xmax;e 1, n+1) (W] . —wi 4 )"

Lemma 4.4, max;e[1 ny1] Wiy — Wiy, converges to 0 and thus, this upper bound on ¢,
converges to 1. Since ¢, is always larger than 1, it converges to 1. 0

w

)®. As a consequence, ¢, is smaller than

A consequence of the previous lemma is that the bounds on the hypervolume improvement
of v,41 to S, normalized by the area of the gap region filled by v,1 that we can infer
from Propositions 3.10 and 3.11 converge asymptotically to 1/2, see (4.9). Similarly,
the bounds on the normalized area of the child of a gap region that we can infer from
Lemma A.2 converge to 1/4, see (4.10). These asymptotic values correspond to the case
of an affine Pareto front with a reference point dominating the nadir point, see Figure 5.

Iy Iy r

U1

Fig. 5: The three greedy sets S1 (left), So (middle) and Ss (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point. The area
of any of the gap regions of S; are half of HV,.(PF) (left). The area of any of the new
gap regions of Sy is a quarter of the area of their parents (middle). The optimality gap
of 83 (right) is half of the optimality gap of Sj.

LEMMA 4.6. We consider a greedy set sequence (S, )nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Holder continuous
derivative, then for all € > 0, for n large enough, for every non-empty gap region G
and every child ggmj of ggmi, we have

1 max,egy | HVI-(u,S,) 1
4.9 - x(l—-¢< s < =x(1+¢€) and
(49) S x(1-0 < Y <5 x(1+0)
1 A5, 1
(4.10) < M5,5)
Ix(+e = AlGs,) ~Ax(1-9
Proof. The interval [w}' ; ., w,] is the set of the first coordinates of the vectors of

the Pareto front which dominate r]' . The restriction to [w;’_l,r, wa] of fis (Lmin,Lmax)-
bilipschitz for some L, and Lyax such that i‘““" = ¢, with ¢, defined in (4.8). Ad-

ditionally, as stated in Proposition B.2, for n lafngig enough, all the r}* corresponding to
non-empty gap regions dominate the nadir point. As a consequence, the conditions to

apply Lemma A.2 and Proposition 3.11 are met by non-extremes gap regions.
maxyecpr,; HV,n (u)

By Propositions 3.10 and 3.11, HVT?(PFf)" is between % X i and % X Gn- Ad-
s \NGE ). 1 1-lx L .
ditionally, by Lemma A.2, Hv(,gzsi(r:élz“)ﬂ is between - 11:%{1" and 1i:;" . The maximum

an
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over the vectors u belonging to the Pareto front of HV,»(u) is equal to the maximum
over u belonging to the i-th gap region of S,, of HVI,.(u,S,,). Indeed, HV,n (.) is null for
vectors outside the i-th gap region of S,, while it is nonnegative, equal to HVI,.(.,Sy),
otherwise. Additionally, HV,» (PFy) equals A\(G5 ;). The convergence of g, to 1 stated
in Lemma 4.5 imply that the bounds proven so far converge to a half and a quarter,
respectively. Thus, we have (4.9) and (4.10) for n large enough. |

The following lemma states that for n large enough, the area of two non-empty gap regions
relative to the same greedy set cannot be too different. More precisely, the area of any
gap region of S,, cannot be more than 4 X (1+o0(e)) times greater than the area of another
gap region of S,,. The proof relies on considering the parents of the gap regions.

LEMMA 4.7. We consider a greedy set sequence (S )nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Hélder continuous
derivative, then for all € > 0, for n large enough and for any non-empty gap regions of
Sn, G5, ; and G 5 with i,j € [1,n + 1], we have

T 2
(4.11) 7:\\(9‘?”) cax LE
(gsn,j) I—e

Proof. Fix ¢ > 0. By Lemma 4.6, there exists N; € N* such that for all n greater
than Ny, (4.9) and (4.10) are verified for any non-empty gap region of S,, and its children.
Since maX;e[1,ny1] Wi, — W1, converges to 0 by Lemma 4.4, every non-empty gap region
is filled at some point. Take Ny such that all the non-empty gap regions of Sy, are filled
at iteration No. For all n greater than Na, (4.9) and (4.10) are true for any non-empty
gap region of S,, and its children, but also for its parents.

Taken > N,. Wenote G, := Gg ;and G, := G5 ; two distinct non-empty gap regions
of &, and P; and P, their respective parents. When two sets correspond to gap regions
relative to the same greedy set S,,, we say that they cohabit at iteration m. Since only
one vector is added to S, at a time, the cohabitation of G; and G, implies that either G,
and P, or G, and P; cohabit at some earlier iteration. In the first case, there necessarily
exists m > Ny such that P, and G, are gap regions relative to S,, and v,,+1 belongs
to P, otherwise, G; and G, would not cohabit. By (4.9), the maximum hypervolume
improvement to S, of a vector of G; and of a vector of P, are at least 3 x (1 —€) x A(G,)
and at most 3 x (14 €) x A(P,), respectively. Since a vector of P,, vp,41, maximizes the
hypervolume improvement to S,,, we have A(G;) x 3 x (1 —€) < A(P,) x 2 x (1+¢). Since
A(P,) is smaller than 4 x (1+¢) times the area of its child A(G,) by (4.10), this inequality
implies (4.11). In the second case, P, is filled before P;. Thus, there exists m > Ny such
that P, and P, cohabit at iteration m and v,,+1 belongs to P,. Since the area of P; is
larger than the one of its child G;, the hypervolume improvement of v,,+1 to Sy, is still
larger than £ x (1 —€) x A(Gy). The rest of the argumentation remains valid. ad

We now have all the results needed to analyze the asymptotic impact of doubling the
number of points in the greedy set. To prove the following asymptotic upper bound,
we rely on similar arguments as for its nonasymptotic counterpart, Proposition 4.1. The
previous lemma guarantees that the impact of doubling the number of points in the greedy
set is asymptotically similar to the impact of passing from n points to 2n + 1.

PROPOSITION 4.8. Let (Sy)nen+ be a greedy set sequence relative to valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Hélder continuous

19
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derivative, then for all € > 0, we have for n large enough

HV,(PFf) — HV,(S2n)

(4.12) HV,(PFy) — HV,(S,)

< - +o(e) .

1
2

Proof. Fix e > 0. Fix n large enough to verify (4.9) and (4.11) for this particular e.

Let o be a permutation of [1,n + 1] such that the i-th gap region of S, is filled by
Un+to(;) When it is filled before iteration 2n + 1. With this choice of permutation, Gg ;
is always a gap region of S, ,(;)—1. Thus, HVIL,.(vy15(i), Spte(i)—1) is superior to the
maximum hypervolume improvement of a vector of Gg ; to 8,1 ,(i)—1, which is superior
to 3 x(1—€)x A(Gs, ;) by (4.9). Tt is equivalent to say that the hypervolume improvement
at iteration n + o (i) is larger than £ x (1 —€) x A(Gs, ;). Summing over i € [1,n+ 1], we
obtain that the hypervolume improvement between iteration n and 2n + 1 is larger than
the sum over i of 2 x (1 —€) x A(Gs, i), that is 1 x (1 — €) times the optimality gap at
iteration n.

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is
HVI, (vant1,S2,). It is smaller than 1 x (14 €) x max;eq1,2n41] A(Gs,, i) by (3.3) and
(4.9). Since the area of a gap region is smaller than the one of its parent, the maximum
area of a gap region is lower at iteration 2n than at iteration n. The maximum area of
one of the more than n — 1 gap regions of S, is itself smaller than ﬁ X %
the optimality gap at iteration n by (4.11).

We conclude that the relation between the optimality gap at iteration 2n and at
iteration n is smaller than 1 — 1 x (1 —¢) + % 0

times

We roughly follow the same approach to obtain the following asymptotic lower bound on
the impact of doubling the number of points in the greedy set. Lemmas 4.6 and 4.7 are
key to prove an upper bound on the hypervolume improvement at iteration k. They allow
to prove that filling a gap region of S,, more than once gives, up to a factor 1+ o(e), a
lower hypervolume improvement than filling a gap region which was not filled. Indeed,
the area of a descendant of a gap region of &, is at most % + o(e) times the area of its
parent by Lemma 4.6, which is itself at most 4 4+ o(e) times the area of any other gap
region of S, by Lemma 4.7.

PROPOSITION 4.9. Let (Sy)nen+ be a greedy set sequence relative to a valid reference
point r. If the Pareto front is desribed by a bilipschitz function f with a Hélder continuous
derivative, then for all € > 0, we have for n large enough

HV,.(PFy) — HV,(Sa,)
HV,.(PFy) — HV,(S,)

(4.13) > —+o(e) .

1
2

Proof. Fix ¢ > 0. Fix n large enough to verify (4.9), (4.10) and (4.11) for this
particular e. Let 6 € {—1,0,1} be such that S,, has n + ¢ non-empty gap regions. Let
i9 := 1 when the left extreme gap region is empty and iy := 0 otherwise.

Let o be a permutation of [1,n 4 0] such that the i-th non-empty gap region of
Sns G§, ip+i0 18 filled by the vector v, ;) when it is filled before iteration 2n + 9. We
distinguish two cases. In the first case, v,44(;) is the child of the i-th non-empty gap
region of Sy, and consequently its hypervolume improvement to S, ,(;)—1 is at most
1

3 X (14 €) x A(G5, i) by (4.9). In the second case, v,y q(;) belongs to Gg , .., the

j-th non-empty gap region of S,,, with j # ¢ and, by definition of o, fills a descendant of
20

This manuscript is for review purposes only.



786
787
788
789

790
791
792
793
794

795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

this gap region not g, ; itself. By (4.9), the hypervolume improvement of v, ;) to
Snto(i)—1 is still at most % X (14 €) times the area of the gap region it fills. By (4.10),
the area of a descendant of Gg ;. . is smaller than ﬁ times the area of its ancestor.
By (4.11), we also know that the area of the i-th non-empty gap region of S, is at most
4 x % times the area of any other gap region of S,,, in particular its i-th non-empty
gap region. We conclude that the hypervolume improvement of v, ,(;) t0 Spyq@iy—1 18

1y (Ite)® (149)° e

smaller than 5 x =z X )\(ggmiOJri). To summarize, since 1+ ¢ is smaller than =2

3
hypervolume improvement at any iteration n + o (i) is smaller than % X 81’32 X /\(Q‘gmi).

Summing over i € [1,n + ¢], the hypervolume improvement from iteration n to 2n + &

3
is smaller than % X 84:32 times the sum over 7 of )\(ggmi)7 that is the optimality gap at

iteration n.

Now, it is left to prove an upper bound on HV,(S3,) — HV,(Sap,45). This quantity
is maximal for 6 = —1, where it is simply the hypervolume improvement at iteration 2n.
As in the previous proof, it is smaller than 2X1(Ij1) times the optimality gap at iteration
n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n

is larger than 1 — % X E}fgz _ 2><1(:i1)~ ]

We combine the lower and upper asymptotic bounds to obtain the following theorem.

THEOREM 4.10. Consider a biobjective optimization problem and a greedy set se-
quence (Sp)nen+ relative to a valid reference point r. If the Pareto front is described by a
bilipschitz function f with a Holder continuous derivative, we have

HV,(PFy) — HV,.(San) 1
HV,(PFf) — HV.(S,) n—o 2 °

(4.14)

Consequently, for such Pareto front and reference point and under Assumption 2.3 of
perfect singleobjective optimization, HV-ISOOMOO algorithms relative to r satisfy (4.14)
where S, is replaced by T,,, the final incumbents Pareto front approximation at iteration
n.

5. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a singleob-
jective optimizer converge in O(1/n) on convex Pareto fronts and in O(1/n°) on bilipschitz
Pareto fronts with ¢ < 1 depending on the bilipschitz constants where n is the number
of meta-iterations. Each meta-iteration corresponds to a singleobjective optimization
run. Both bounds are tight over the class of Pareto fronts and reference points consid-
ered. They are reached for affine Pareto fronts and reference points dominating the nadir
point. On convex Pareto fronts, the convergence is exactly in ©(1/p), the fastest con-
vergence achievable by biobjective optimization algorithms [16]. It shows that greedily
adding points maximizing the hypervolume contribution as in HV-ISOOMOO algorithms
is an effective way to quickly increase the hypervolume. Additionally, we prove that for
bilipschitz Pareto fronts with a Holder continuous derivative, doubling the number of
meta-iterations divides the optimality gap by a factor which converges asymptotically to
two. This asymptotic behavior resembles what we would observe with an affine Pareto
front and a reference point dominating the nadir point. Yet, it does not guarantee con-
vergence in O(1/n). Both <@)%N* and (m)new
verifying this property without converging in ©(1/n). The convergence on nonconvex
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Pareto fronts could theoretically be slower than in ©(1/n), but not faster [16].

Appendix A. Normalized areas of the gap regions relative to an hyper-
volume maximizer. The goal of this section is to prove bounds on the normalized
areas of the gap regions gff;t and gg;ht relative to an hypervolume maximizer u* (see the
lefthand plot of Figure 6) in the case of a bilipschitz Pareto front and of a reference point
r dominating the nadir point. These bounds are stated in Lemma A.2. The proof relies
on the bounds on the normalized maximum hypervolume proven in Subsection 3.3 and
the following lower and upper bounds on the relation between A(Gj;) and ,\(gnght)

0.5

0 04f1

Fig. 6: Illustration of elements of the proofs of Proposition A.1 in the case r1 < ZTax
(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
P41 - 55 forx € [0, 1] Left: the gap regions gleft and gnght with a segment of
slope —Lnin passmg through v*. Middle: the hypervolume improvements HVI,. (u*, u,)
(=) and HVI, (ue, u*) (=) . Right: the hypervolume improvement HVI, (tpin, ) (=) and
its counterpart HVI, (u, umin) (28) where u is a vector of the Pareto front which dominates
T.

PROPOSITION A.l. We assume that the Pareto front is described by a (Lmin,Lmax)-
bilipschitz function f. Let u* be a non-extreme vector of the Pareto front which mcw:z'mizes
the hypervolume with respect to a valid reference point r. If 11 < Tmax, we have A\(GY . .) >

2
ﬁ X A(gleft)' If ra < f(@min), we have )‘(gleft) L X )‘(gnght)

Proof. We consider the case where r; < Zpax. Let z* be the first coordinate of u*.
We denote Ly :=r; — a* and Lo := ry — f(z*) the lengths of the sides of the rectangle
Dr.. For all z,y € [Tmin, Tmax]|, we have |f(z) — f(y)| > Lmin X |z — y|. Additionally,
since 1 < Zmayx, the segment [2*,2* + Lq] is included in [Zmin, Tmax]- AS a consequence,
the section of the Pareto front on the right of u* dominates the segment between u* and
u* 4+ L1 X (1, —Lpin), see the lefthand plot of Figure 6. Therefore, /\(Q;”g;ht) is larger than
the area of the region of the objective space dominated by this segment, not dominated
by v* and dominating r, that is % X Liin X L2. For all 2,y € [Tmin, Tmax], We also have
|7 (@) = f(y)| < Lmax X |z —y|. Therefore, the part of the Pareto front on the left of u*

dominated by the segment between u* and u* + Lo x (— 12—, 1), and A(Gl,) is smaller

than 1 5 X % x L2. We have yet to prove a lower bound on % The vector u* being

different from Umin, for € > 0 small enough, the vector u. := (z* — ¢, f(z* — €)) belongs
to the Pareto front. As we can see in the middle plot of Figure 6, HVI, (u* ,ue) is smaller
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than L1 X Lyax X € and HVI, (ue, u*) is larger than € X (Le — € X Lyax). Additionally,
u* being an hypervolume maximizer, HVL,.(u*, u.) is larger than HVI, (u.,u*), and thus
L1 X Lyax > Lo — € X Liyax for all € > 0. Taking the limit of this inequality when € — 0,
we obtain that L X Lyayx > Lo. Combining the bounds on )\(Qleft) and A( rlght) with the

lower-bound on %, we obtain the desired lower bound on )\(gmght) We can obtain the
symmetric inequality when 73 > f(zmin) by following the same approach. |

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.
We now prove the desired bounds on the normalized area of the gap regions gfgt and

gright'

LEMMA A.2. Let u* be a wvector which mazimizes the hypervolume with respect to
a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)- bilipschitz
function f and the reference point r dominates the nadir point, both )\(gleﬂ) and ,\(gmght)

are between (1 — 5 x im")/(l + m") and (1 — 5 x me ) /(1 + me)

min in max

Proof. Let note arbitrarily G; and G, the two gap regions of the set S = {u*}.

2
By Proposition A.1, A(G,) is between 2‘5’““ x A(G;) and ""‘“‘ x A(G;). Additionally,
by Propositions 3.10 and 3.11, the normalized maximum hypervolurne maxyepr, HV,(u)

over HV,.(PFy) is between 1 3 X f and 1 5 X i’“‘“‘ These bounds can be transformed into
bounds on HV,. (PFf) maxueppf HV,(u ) that is M(G1)+A(Gs). As a consequence, A(G;)

is between (1 — 35 x Lm""‘) x HV,(PFy) — max x A(Gy) and (1 -3 x f::;) x HV,(PFy) —

Lz"i“ ,\(gl) Moving all the A\(G,) terms on the same side and re—normalizing this side, we
O

obtaln the desired bounds for G;, which can be chosen to be either gleft or gmght

Appendix B. The nadir point is dominated by all the r} corresponding to
non-empty gap regions for n large. = We show in this section that for bilipschitz
Pareto fronts, the nadir point is dominated by all the r}* corresponding to non-empty
gap regions, for n large enough. This result is stated in Proposition B.2 and used in
Subsection 4.2. It is equivalent to prove that the extreme vectors which dominate the
reference point belong to the greedy set for n large enough.

First, we prove in the next proposition that if 71 > Zmax (resp. ro > f(Zmin)), then
for ro (resp. 71) close enough to f(Zmax) (reSp. Tmin) the extreme vector umay (resp.
Umin) is the only hypervolume maximizer, see the righthand plot of Figure 6. There are
similar statements in [9] for the set of p points maximizing the hypervolume, but they
only apply to u > 2.

LEMMA B.1. We assume that the Pareto front is described by a function f which is
(Linin, Limax )-bilipschitz and that the reference point r is valid. Ifr1 > Tmax and f(Tmax) <
r9 < f(Tmax) + Lmin X ("1 — Tmax), the right extreme of the Pareto front umay is the only
mazimizer of HV,.(.). Additionally, if ro > f(Zmin) and Tmin < 71 < Tmin + W,
the vector umin = (Tmin, f(Tmin)) @s the only maximizer of HV,.(.).

Proof. This proof is illustrated in the righthand plot of Figure 6. Let r be a reference
point such that ro > f(Zmin) and Tmin < r1 < Tmin+ M Let u = (z, f(2)) # %min
be a vector of the Pareto front which dominates r. The hyrf)agrvolume improvement of Ui
to {u} is (r2 — f(Zmin)) X (€ — Tmin). The hypervolume improvement of u to {umin} is
(f(@min) — f(2)) X (ry — &), which is smaller than Lyax X ( — Zmin) X (11 — Tmin) since u
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dominates r and f iS (Lmin,Lmax)-bilipschitz. Since we assume that Lyax X (11 — Tmin) <
79 — f(Zmin), the upper bound on HVI,.(u, tmiy) is strictly smaller than HVI, (tumin, u).
Therefore, the hypervolume of wy;y, is strictly larger than the one of u. We conclude that
Umin 18 the unique hypervolume maximizer. The symmetric result can be obtained with
the same approach. O

It is left to prove that when 71 > Zpax (resp. r2 > f(Zmin)), the second coordinate of
rn.1 (vesp. the first coordinate of () indeed converge to f(Zmax) (resp. Tmin). It is a
straightforward consequence of Lemma 4.4. Therefore, we are able to conclude.

ProproOSITION B.2. We assume that the Pareto front is described by a bilipschitz func-
tion f. Let (Sp)nen+ be a greedy set sequence relative to a valid reference point r. For
n large enough, every reference point ri' corresponding to a non-empty gap region Gg
dominates the nadir point.

Proof. By Lemma 4.4, wy, . converges t0 Tmax, and thus the right extreme reference
point ryy 1 = (r1, f(wy, ,.)) converges to (71, f(Tmax)) by continuity of f. Therefore, if
is strictly larger than zyax, then there exists N such that for all n > N, rj . verifies
the assumptions on the reference point of Lemma B.1 which guarantee that umay is the

unique maximizer of HV,.(.) over the right extreme gap region G5, nt1- Let assume that

Umax does not belong to S,,. Then, wﬁ,’r # Tmax, and since w;,’ . converges to Tmax, the

left extreme gap region Gg _; is necessafily filled at some later iteration. When the right
extreme gap region is filled, umax, the unique minimizer of HV,.(.) over this gap region,
is added to the greedy set. To summarize, if 71 > Tyax, then for n large enough S,
contains upyax, and thus the right extreme gap region is empty. We can prove with the
same approach that for ro > f(Zmin), S, contains umi, for n large enough.

At any iteration, the non-extreme reference points dominate the nadir point. Addi-
tionally, we proved that either 11 < Zmax (resp. re < f(Zmin)), and thus the left (resp.
right) extreme reference point dominates the nadir point or for n large enough, the left
(resp. right) extreme gap region is empty. O
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mality gap and for the conjecture of (4.14).
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