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MULTIOBJECTIVE HYPERVOLUME BASED ISOOMOO
ALGORITHMS CONVERGE WITH AT LEAST SUBLINEAR SPEED TO
THE ENTIRE PARETO FRONT

EUGENIE MARESCAUX AND ANNE AUGER

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,
respectively. In this context, we introduce a new algorithm framework, Incremental SingleObjective
Optimization for MultiObjective Optimization (ISOOMOO) for approximating the Pareto front with
an increasing number of points. We focus on HV-ISOOMOO, its instanciation with the hypervolume
indicator, a set-quality indicator which is widely used for algorithms design and performance assessment.
HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing the hypervolume. We
study the convergence to the entire Pareto front of HV-ISOOMOO coupled with a perfect singleobjective
optimizer. The convergence is defined as the convergence of the hypervolume of the sets of all meta-
iterations incumbents towards the hypervolume of the Pareto front. We prove tight lower bounds on the
convergence-speed for convex and bilipschitz Pareto fronts in O(1/n¢) with n being the number of meta-
iterations and ¢ = 1 and ¢ < 1, respectively. For convex Pareto fronts, the convergence rate is exactly in
©(1/n), namely the highest convergence rate achievable by a biobjective optimization algorithm. These
are the first results on the convergence-speed of multiobjective optimization algorithms towards the entire
Pareto front. We also analyze theoretically the asymptotic convergence behavior.

Key words. multiobjective optimization, convergence, hypervolume, pareto front

AMS subject classifications. 90C29, 90C30

1. Introduction. Real-world problems often involve the optimization of several con-
flicting objectives. The solution of such problems is the set of non-dominated decision
vectors, the Pareto set defined as the set of solutions that cannot be improved along one
objective without degrading along another one. Its image in the objective-space is the
Pareto front. A decision maker is then often involved to choose, based on its preferences,
a single best compromise. The shape of the Pareto front informs on the trade-off between
objectives. Many algorithms such as evolutionary algorithms approximate the Pareto
front with a number of points fixed in the beginning. But some algorithms, in particular
Direct Multi-Search Methods such as MultiGLODS [9], DMS [10] and D-Multi-MADS [6]
alm at approximating the entire Pareto set or Pareto front with as many well-distributed
points as possible. Ideally, the quality of the Pareto front approximation increases with
time without stagnating and such algorithms can be considered as anytime algorithms.

The convergence speed towards a critical decision vector or a vector of the Pareto
front have been examined for many algorithms such as (14 1) evolutionary multiobjective
algorithms [4] or Newton’s method [13]. Convergence rates are typically similar to the
ones obtained for singleobjective optimization. Indeed, this is still a convergence towards
a single point. Its analysis is sometimes reduced to the study of the convergence of a
singleobjective optimization algorithm. The convergence of anytime algorithms towards
the whole Pareto set or front is of a different kind because these are sets and not points.
It has already been theoretically investigated for some algorithms [9] and more abstract
frameworks [18], but analysis of the rate of convergence are missing. Additionally, empir-
ical studies typically focus on determining which algorithm is faster and do not provide
orders of convergence or precise convergence rate. Yet, while largely overlooked, studying
convergence rates either theoretically or empirically is crucial. In this context, it has been
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proven that convergence towards the whole Pareto front is always sublinear in the number
of function evaluations, at least when measuring convergence with the hypervolume indi-
cator [15] or the multiplicative e-indicator [7], and thus much slower than typical speeds
of convergence to a single point. The hypervolume is a set-quality indicator widely used
in multiobjective optimization, both to guide algorithms and for performance assessment.
It is at the core of all known stricly Pareto-compliant indicators [19].

In this paper, we introduce a new anytime algorithm framework, Incremental Sin-
gleObjective Optimization for MultiObjective Optimization (ISOOMOO). We focus on
its instanciation with the hypervolume indicator, HV-ISOOMOO. HV-ISOOMOO al-
gorithms try to greedily maximize the hypervolume by adding points with the highest
hypervolume contribution. These points are obtained by running a singleobjective opti-
mizer. Greediness is already used in the selection part of some multiobjective optimization
evolutionary algorithms such as SMS-EMOA [5] to approximate the set of p points among
the population with the highest hypervolume. The hypervolume of such discrete greedy
approximation is proven to be at least (e—1)/e times the one of the p-optimal distribution
[16]. To our knowledge, we provide the first continuous equivalent of this result. We in-
vestigate the rate of convergence of HV-ISOOMOO towards the whole Pareto front in the
ideal case of perfect singleobjective optimization, measuring the convergence with the hy-
pervolume. For convex and bilipschitz Pareto fronts, we prove that the convergence-speed
is in O(1/n°) with ¢ = 1 and ¢ < 1, respectively, with n being the number of singleob-
jective optimization runs performed. For convex Pareto fronts, since it has already been
proven that no biobjective optimization algorithm can converge to the Pareto front faster
than in Q(1/n) [15], the convergence rate is exactly in ©(1/n). Additionally, we prove
that for bilipschitz and smooth enough Pareto fronts doubling the number of points in
the approximation halves the optimality gap, asymptotically. In the proof process, we
obtain bounds on the normalized maximum hypervolume and a geometric interpretation
of optimality conditions.

The paper is organized as follows. In Section 2, we lay the foundations of the prob-
lem we investigate. In Section 3, we prove preliminary results later used to investigate
convergence. In Section 4, we derive lower bounds on the convergence rate of the perfect
version of HV-ISOOMOO for bilipschitz and convex Pareto fronts and an insight on the
asymptotic convergence behavior.

Notations and conventions. For a,b € N, we note [a; b] the set {a,a+1,...,0—1,b}.
For a vector u € R?, we note u; and uy respectively its first and its second coordinate. If
the vector notation already contains an index, we separate the two indices with a comma.
For simplicity sake, we often replace the set {u} by u in the notations. We say that a
function f : R — R is decreasing (respectively strictly decreasing) when for all z < y, we

have f(z) > f(y) (vespectively f(z) > f(y)).

2. Background, algorithm framework and assumptions. Here, we lay the
foundations of the problem we analyze. First, we recall some classic concepts of mul-
tiobjective optimization. Then, we introduce the ISOOMOO class of algorithms and
its hypervolume based instanciation HV-ISOOMOO. We also formalize a mathematical
abstraction of HV-ISOOMOO, the greedy set sequences. Finally, we examine our as-
sumptions on the biobjective optimization problem.
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2.1. Biobjective optimization problems, the Pareto front and the hyper-
volume indicator. We consider a biobjective minimization problem:
1 2, Fle)
with F : Q € RY = R? : 2 — (Fi(z), Fa(z)). We define two dominance relations for
vectors in the objective space. We say that u weakly dominates v denoted by u =< v if
u; < v; and us < ve and that u dominates v denoted by u < v if u < v and u # v.
A vector of the objective-space R? is said feasible when it belongs to F(Q2). Solving the
optimization problem consists in finding a good approximation of the Pareto front, the
set of non-dominated feasible vectors, {F(X) : X € Q, V¥ € Q,F(Y) £ F(X)}. We
restrict ourselves to Pareto fronts with an explicit representation:

(2.2) PF; = {(z, f(®)) : © € [Tmin, Tmax] }

with f : R — R decreasing. We denote by umin = (Zmin, f(@min)) and umax =
(Tmax, f(Tmax)) the extreme vectors of the Pareto front. Likewise, we denote by Gmin,» 1=
(Zmin,rs f(Zmin,r)) a0d Umaxr = (Zmax,r; f(Tmax,r)) the extremes vectors of the part of
the Pareto front dominating a reference point r, with Zyin = max(Tmin, [~ (r2)) and
Tmax,r = MiN(Tmax,71). The vector (Tmax, f(Zmin)) is called the nadir point. All these
notations are illustrated in Figure 1.

Fg T

usg

Uy

U2

P
Fig. 1: Tllustration of notations. The extreme vectors umi, and umax and the nadir point
(Tmax, f(Tmin)) (leftmost) ; the extreme vectors relative to the reference point 7 Upin,»
and Umax,» (left) ; three vectors ui, up and uz and the regions weakly dominated by them
and dominating 7, D;, &3, D;, 3 and D;,, &3 (right) ; the greedy set S3 = {v1,vs,v3},
its four gap regions = and the associated reference points (rightmost).

The hypervolume with respect to a reference point r of an assessed set S of objective
vectors, that we denote by HV,.(S), is the Lebesgue measure of the region of the objective-
space dominated by S and strictly dominating the reference point ». When no vector of
the Pareto front dominates the reference point r, the hypervolume with respect to r of
any set of feasible points of the objective space is null. Since this particular case is not
interesting, we only consider reference points dominated by at least one vector of the
Pareto front from now on. We refer to such reference points as valid.

The region of the objective-space dominated by S and dominating r, see the righthand
plot of Figure 1, is denoted by D¢ and formally defined as:

(2.3) Di={weR?*:JuecS:uzw=<r}

3
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120 The hypervolume of a set S relative to the reference point r equals A(Dg) with A(.) being
121 the Lebesgue measure. In this paper, we only consider two-dimensional objective spaces
122 and refer to the Lebesgue measure of a set as its area. The set DY is the union of the Dy,
123 for w € S, D! being the rectangle [uq,r1] X [uz,72] when « dominates r and §) otherwise,
124 see the righthand plot of Figure 1. Note that the D}, are not disjoints.

125 We use the hypervolume to characterize the convergence of a set S of objective vectors
126 to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge
127 to the Pareto front when the hypervolume difference HV,(PF;) — HV,(S) converges
128 to 0. We define the optimality gap of S with respect to a valid reference point r as
120 HV,.(PFf) — HV,(S).

130 Another quantity of interest is how much adding a vector to a set affects its hy-
131 pervolume. The hypervolume improvement with respect to r of the vector u to the set
132 S is HVL.(u,S) = HV,.(S U {u}) — HV,.(S). We also use the term hypervolume im-
133 provement to refer to the hypervolume increase of an increasing sequence of sets. More
134 precisely, the hypervolume improvement at iteration n of a monotone sequence (S, )nen-
135 is HV,(Sp41) — HV,(Sp).

136 2.2. The ISOOMOQO framework, its HV-ISOOMOO instanciation and the
137 associated greedy set sequences. The Incremental SingleObjective Optimization for
138 MultiObjective Optimization (ISOOMOO) framework builds incrementally a monotone'
139 sequence (Z,)nen~ of sets of vectors of the objective space. The pseudo code of ISOOMOO
140 is given in Algorithm 2.1, where the current value of Z,, is denoted by Z. At each so-
141  called meta-iteration, a generic singleobjective maximization algorithm SOOPTIMIZER
142 (line 3 in Algorithm 2.1) is run on the criterion X € Q C R? — J(Z, X) and the resulting
143 solution is added to Z (line 4 in Algorithm 2.1). We use the term meta-iteration to separate
144 between the (meta-)iterations of ISOOMOO and the iterations of SOOPTIMIZER. Since
145 the set Z is composed of the final objective incumbents of previous runs of SOOPTIMIZER
146 and (ideally) provides an approximation of the Pareto front, we call it final incumbents
147 Pareto front approximation.

148 The singleobjective optimization procedure may vary between meta-iterations. More
149 precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in
150 D (line 4 in Algorithm 2.1). This allows to alternate between various singleobjective

151 optimization algorithms with different features, but also to adapt the initialization. This
152 could be done by storing in D an iteration index or the final search-space incumbents of
153 SOOPTIMIZER runs.

Algorithm 2.1 Incremental SingleObjective Optimization for MultiObjective Optimiza-
tion (ISOOMOO)

1: while not stopping criterion do

2. Y,d <+ SOOPTIMIZER(X ~ J(Z,X), D)

3: I+ ITU{F(Y)} 4 update of the approximation of the Pareto front
4: D+ DU{d} # update of the data collected

5: end while

154 In this paper, we study HV-ISOOMOO, an instanciation of ISOOMOOQO for which the
155 criterion J(Z,.) relates to the hypervolume improvement to Z. Formally, HV-ISOOMOO

LA sequence of set {A,,n > 0} is monotone if the following inclusions Ag C A1,... C A, C ... hold.
4
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is a class of algorithms derived from ISOOMOO for which the maximization of the cri-
terion J is compliant with the maximization of the hypervolume improvement as defined
below.

Assumption 2.1. (Compliance to hypervolume improvement maximization) The max-Jj
imization of a criterion J as in ISOOMOO is compliant with the maximization of the
hypervolume improvement if for any set Z of objective vectors, maximizing J(Z,.) is
equivalent to maximizing the hypervolume improvement with respect to a valid reference
point 7 to the set Z:

(2.4) argmax y e J(Z, X) = argmax x cga HVL.(F(X),Z) .

We simply refer to an algorithm built from the HV-ISOOMOO framework as an HV-
ISOOMOO algorithm.

DEFINITION 2.2 (HV-ISOOMOO). We define an HV-ISOOMOO algorithm as an

ISOOMOO algorithm as described in Algorithm 2.1 where the criterion J satisfies As-
sumption 2.1.
At each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible vector maximiz-
ing the hypervolume improvement to the final incumbents Pareto front approximation
Z,. Ideally, when n goes to infinity, the non-dominated subset of (Z,,)nen+ converges
to the (entire) Pareto front, namely the non-dominated set of feasible objective vectors,
which maximizes the hypervolume. In other words, HV-ISOOMOO algorithms try to
approximate the Pareto front with a greedy approach.

DEFINITION 2.3. We define the convergence of HV-ISOOMOO as the convergence of
HV.(Z,) towards HV,(PFy).

The performance of a specific HV-ISOOMOO algorithm depends crucially on the
choice of the criterion J. In this respect, the hypervolume improvement to Z is not a
good candidate for J(Z,.). Indeed, it is constant equal to zero in the region dominated
by Z, which makes it difficult to optimize. A criterion whose maximization is compliant
with the maximization of the hypervolume improvement and designed to be easier to
optimize has already been introduced in [17] under the name uncrowded hypervolume
improvement (UHVI). In the non-zero region of the hypervolume improvement to a set Z,
namely for F/(X) not dominated by Z, the UHVI is simply the hypervolume improvement.
Otherwise, in the region where the hypervolume improvement is null, the UHVT is negative
and equals minus the distance to the empirical non-dominated front of the set Z relative
to r. It is easy to see that the UHVI satisfies (2.4).

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-
ISOOMOQO algorithm. In this paper, we analyze HV-ISOOMOO under the assumption
of perfect singleobjective optimization formalized below.

Assumption 2.4 (Perfect Singleobjective Optimization). At every meta-iteration n,
for any final incumbents Pareto front approximation Z,,, the run of SOOPTIMIZER (line 2
in Algorithm 2.1) returns Y € argmax ycq J(Zn, F(X)).

The assumption of perfect singleobjective optimization is reminiscent to the assump-
tion of perfect line search which is common in the analysis of gradient based methods [11].
Under this assumption, all choices of criterions verifying Assumption 2.1 are equivalent.
The convergence of HV-ISOOMOO under perfect singleobjective optimization is a neces-
sary condition for the soundness of the approach. Additionally, we could obtain a lower

5

This manuscript is for review purposes only.



200
201
202
203
204
205
206
207
208

bound on the convergence-speed of a real instanciation of HV-ISOOMOO by combining
such lower bounds on the convergence-speed of HV-ISOOMOO under Assumption 2.4
with existing lower bounds on the convergence speed of singleobjective optimization al-
gorithms.

We introduce below the notions of greedy sequence and greedy set sequence, which
are mathematical abstractions of HV-ISOOMOO under Assumption 2.4 of perfect sin-
gleobjective optimization.

DEFINITION 2.5 (Greedy sequence and greedy set sequence). Given a valid reference
point r, we define as greedy sequence, a sequence {v,,n > 1} satisfying

2. HV, d

(2.5) vy € argvrenFa(%) Ve(v) an

(2.6) Upt1 € arg max HV,.({vi, - ,v,,v}) foralln >1 .
veF(Q)

The greedy set sequence (Sy)nen+ associated to the greedy sequence {v,,n > 1} is com-
posed of the greedy sets S,, = {vg, k < n}.

There is a bijection between greedy sequences and greedy set sequences. The n-th element
of the greedy sequence {v,,n > 1} associated to a greedy set sequence (S,,)pen+ is simply
the unique element of S, \ Sp—1 if n > 1 and of S; if n = 1.

The recurrence relation of the greedy sequence (2.6) is equivalent to v,+1 belonging
to arg max,cp(q) HVI,(v,S,) for all n > 1. It is immediate to see that under Assump-
tion 2.4, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence
while the final incumbents Pareto front approximations form the associated greedy set
sequence (Z,,)nen+. The indices n of both greedy and greedy set sequences iterations cor-
respond to HV-ISOOMOO meta-iterations. In this paper, we derive convergence results
for greedy set sequences, which transfer to HV-ISOOMOO under Assumption 2.4.

As we will see in Subsection 3.1, the problem of maximizing the hypervolume improve-
ment to a fixed set can be rewritten as the maximum of a finite number of hypervolume
maximization problems. Therefore, we can infer from [3, Theorem 1] that as soon as the
Pareto front is lower semi-continuous, there exists a greedy sequence and the associated
greedy set sequence.

PROPOSITION 2.6. If the Pareto front is described by a lower semi-continuous func-
tion f, then there exists a greedy sequence {v,,n > 1} associated to any valid reference
point r.

Proof. If f is lower semi-continuous, then for any reference point r, the maximum of
HV.,.(.) exists, see [3, Theorem 1]. Therefore, there exists a vector verifying (2.5) and the
problem of maximizing the maximum of a finite number of hypervolume functions defined
in (3.4) admits a solution. Since the recurrence equation defining greedy sequences (2.6)
is equivalent to (3.4) by Lemma 3.5, a lemma proven in the next section, we can build a
sequence {v,,n > 1} verifying (2.5) and (2.6), namely a greedy sequence. d

Additionally, since the hypervolume indicator associated to a valid reference point is
strictly Pareto-compliant (see [14]), this sequence is composed of vectors of the Pareto
front.

PROPOSITION 2.7. If the Pareto front is described by a lower semi-continuous func-
tion f, then any vector of a greedy sequence associated to a valid reference point r belongs

6
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to the Pareto front. Consequently, for such Pareto front and reference point and under
Assumption 2.4 of perfect singleobjective optimization, all final incumbents Pareto front
approximations I, of HV-ISOOMOO algorithms relative to r are subsets of the Pareto
front.

Proof. Since for any valid reference point r, HV,.(.) is strictly Pareto-compliant [14],
its maximum always belongs to the set of non-dominated feasible objective vectors, that
is the Pareto front. Thus, in particular, a vector vy verifying (2.5) belongs to the Pareto
front. Additionally, by Lemma 3.5, a lemma proven in the next section, every solution
of the update equation of greedy sequences (2.6) verifies (3.4). As a consequence, such
vectors are solution of at least one hypervolume maximization problem, and thus also
belong to the Pareto front. ]

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.
For example, there are infinitely many greedy sequences associated to any affine Pareto
front with a reference point dominating the nadir point. This statement relies on the fact
that the unique maximizer of the hypervolume relative to a reference point » dominating
the nadir point is the middle of the section of the Pareto front dominating r, see [2,
Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r
is the only candidate for v; but ve can be either at 1/4 or at 3/4 of this section. Similarly,
v3 has to be in the position where vy is not but v4 can be at 1/8, 3/8, 5/8 or 7/8 of the
section of the Pareto front dominating r. For any m, we can find an iteration m such
that v, can be placed at 2" different points, whatever the m — 1 first terms of the greedy
sequence are.

2.3. Assumptions on the Pareto front and the objective functions. We
present and discuss here the assumptions on the function f describing the Pareto front
under which we derive convergence results. We typically assume that the function f is
bilipschitz, convex or simultaneously bilipschitz and with a Hoélder continuous derivative,
namely C1®. Under any of these three assumptions, f is continuous. For the sake of
conciseness, we transfer the properties of f to the Pareto front. For example, we call
convex Pareto front a Pareto front described by a convex function. We recall that a
function ¢ is Hoélder continuous with exponent « when there exists H > 0 such that
lg(x) —g(y)| < H x |z —y|* for all ,y [12]. We note [g], the minimum Holder coefficient
of g with respect to the exponent «, that is [g], = SUPy4y %. When needed,
we detail the bilipschitz constants and say that a bilipschitz function f i8 (Lmin,Lmax)-
bilipschitz if for all z, y € [Tmin, Tmax], We have Ly x|z—y| < [f(2)—f(¥)] < LmaxX|z—Y|
where Lyax > Lmin > 0. We also consider affine Pareto fronts, the simplest kind of Pareto
front. As they form a line in the biobjective case, they are usually refered to as linear
Pareto fronts. They provide good examples to illustrate a point and help to understand
the results we prove on the asymptotic convergence behavior.

We remind below sufficient conditions on the search-space and on the objective func-
tions which guarantee that f is convex and bilipschitz.

PROPOSITION 2.8. Given a biobjective minimization problem as in (2.1) whose Pareto
front is described by a function f. If Fy and Fy are respectively (Luin 1, Lmax,1)-bilipschitz
and (Lwin 2, Lmax,2)-bilipschitz, then f is (f’“f“‘i, szia"‘f)-bilipschitz.

min,

PROPOSITION 2.9. Given a biobjective minimization problem as in (2.1) whose Pareto
front is described by a function f. If the search space ) and the objective functions Fy

7
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and Fy are convex, then f is conver.

The proofs of both propositions can be found for instance in [15]. The conditions
on Fy, Fy and Q are sufficient but non-necessary conditions. Indeed, adding small dis-
continuity in the objective functions far from the Pareto set makes them non-convex and
non-bilipschitz without modifying the Pareto front.

Representing F; values on the absciss and Fy values on the ordinate instead of the
converse is an arbitrary choice. When f is a bijection, had we chosen to represent the
F5 values on the absciss instead of on the ordinate, we would have had another repre-
sentation of the Pareto front : {(y, f~*(y)) : ¥ € [f(Zmax); f(Zmin)]}. If so, the inverse
function f~! would have played the role of f. It is interesting to notice that the choice
of the objective function represented on the horizontal axis does not impact whether the
function characterizing the Pareto front is bilipschitz or convex. Indeed, f being bilip-
schitz is equivalent to both f and f~! being lipschitz. Additionally, we can prove that
given that the function f is decreasing, f being convex is equivalent to its inverse f—!
being convex. The proof of this property is straightforward. If f is convex, then for all

z,y €R, f (w) is smaller than f(fil(x));rf(fil(y)), that is % Since f and

therefore f~' are decreasing, by composing by f~! each side of the inequality, we obtain

—1 -1
a characterization of the convexity of f~1: for all 2,y € R, M

FHE).
3. Preliminary results. In this section, we present preliminary results which are

crucial for the analysis of the convergence of HV-ISOOMOO. While they are here exposed
as tools for convergence analysis, they are also interesting for their own sake.

is higher than

3.1. Decomposition of the optimality gap using gap regions. We introduced

% in (2.3) as the region of the objective space dominating r and weakly dominated by

S. Its Lebesgue measure is HV,.(S). We now introduce total gap regions, whose Lebesgue
measure are optimality gaps.

DEFINITION 3.1. The total gap region of S with respect to a fized valid reference
point r, Gg, is defined as the region of the objective-space which dominates r and is
weakly dominated by PFy but not by S, namely D}Ff \ D5.

When S is a subset of the Pareto front dominating the reference point r, the total gap
region has a particular shape which can be visualized in the rightmost plot of Figure 1.
The total gap region G§ can be decomposed into the disjoint union of |S| + 1 sets of the
form Dgl, that are formally defined below.

DEFINITION 3.2 (Gap regions, gaps and associated reference points). Let S =
{v1,...,vn} be a set of n distinct vectors of the Pareto front dominating a valid refer-
ence point r. Let o be the permutation ordering the v; by increasing F1 values: vy(1),1 <

Vg(2),1 < -+ < Vg(n),1-
e Foralli € [1,n+ 1], the i-th gap region of the set S, Gg ;, is the set DrPiFf with
the associated reference points r; being
(3.1) r = (%(1),177“2),7"n+1 = (Tl,vo(n),Q) and
' s = (Vo(i),1, Vo (i—1),2) for alli € [2,n] .

o We refer to G5, and G5, ., as the left and the right extreme gap region of S,
respectively.
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The left and the right extreme gap regions are empty when the left and the right extreme
vectors of the Pareto front belong to S. Non-extreme gap regions are never empty.
The total gap region is the disjoint union of the gap regions: G5 = U?jfggmi. This
decomposition of the total gap region, and thus of the optimality gap, is the cornerstone
of the convergence analysis. The area of a gap region Gg , is the hypervolume of the
Pareto front with respect to the reference point r}*. As a consequence, we can write the
optimality gap as the sum of n + 1 hypervolumes of the Pareto front with respect to
different reference points.

LEMMA 3.3. At any iteration n, the optimality gap of a greedy set sequence with
respect to a valid reference point can be decomposed as the sum of n+ 1 hypervolumes of
the Pareto front:

n+1
(3.2) HV,(PFy) — HV,(S,) = > _ HVun(PFy) .

i=1

Proof. The optimality gap at iteration n is the Lebesgue measure of the total gap
region Gg , which is the disjoint union of the gap regions Gg ; of S,,. Since each gap

region G5 ; equals Dg;f, the optimality gap is equal to Z?;l HV,n (PFy). O

Additionally, we can express the hypervolume improvement of any vector to S, as an
hypervolume. It is immediate for vectors which do not dominate S,,. For other vectors,
the reference point depends on the gap region to which the vector belongs.

LEMMA 3.4. Let (Sp)nen be a greedy set sequence relative to a valid reference point
r. At any iteration n, the hypervolume improvement to S, of any u belonging to the i-th
gap region of Sp, Gg, ;. satisfies

(3.3) HVI(u,S,) = HVyn (u) .

Proof. The hypervolume improvement of any u € G5 , is the Lebesgue-measure of
the intersection between Gg ; and Dj,. Therefore, it is equal to /\(DZ;L), that is HV,n (u).0
We can now reformulate the recurrence relation defining a greedy sequence at iteration
n + 1. Indeed, picking a vector maximizing the hypervolume improvement to S, is
equivalent to pick a vector where the highest value of the maximum of the hypervolumes
with respect to the r}" is reached.

LEMMA 3.5. At any iteration n, the recurrence formula satisfied by v,11, i.e. (2.6),
can be reformulated as

(3.4) Upt1 € arg urg]&)l%(f ieﬁl,%}iu] HVyn (u).

Proof. The hypervolume improvement of any vector u to S, is max;eq1,p41] HVyn (u).
It is a consequence of Lemma 3.4 and of the fact that the hypervolume with respect to 7}
is null outside the i-th gap region of S,,. Additionally, v,,41 belongs to the Pareto front
by Proposition 2.7. Thus, (2.6) is equivalent to (3.4). 0

Similarly, we can express the decrease of the optimality gap at iteration n + 1,
HV,(Sn+1) — HV,.(S,), as the maximum of n + 1 hypervolume maximization problems.

9
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LEMMA 3.6. Let (Sp)nen be a greedy set sequence relative to a valid reference point
r. The hypervolume improvement at iteration n + 1 equals

3.5 HV,(Sni1) — HV,(S,) = HV,n (1) .
(3.5) (Sn+1) (Sn) Jpax | max n(u)

Proof. The hypervolume improvement HV,.(S,1+1) — HV,(S,,) is the hypervolume
improvement of v,,41 to S,,. With the same arguments as in the proof of Lemma 3.5, we
can prove that it equals max,epr, maXje[1 nt1] HVyn (u). ]

3.2. Lower bound of the normalized maximum hypervolume for convex
Pareto fronts. In this section and the next one, we provide bounds on the maximum
hypervolume achievable by a single feasible vector normalized by the maximum hyper-
volume of a feasible set. We refer to this ratio as the normalized maximum hypervolume
with respect to r:

max,epr, HV,(u)
HV, (PF;)

(3.6)

Bounds on the normalized maximum hypervolume are exploited in Section 4 to provide
bounds on the speed of convergence of the greedy set sequence towards the Pareto front.

The hypervolume relative to a reference point r = (r1,72) of a vector u = (z, f(x)) of
the Pareto front is HV,.(u) = (r1 —z) X (re — f(z)). From this simple formula, we derive in
the next proposition necessary conditions for a vector of the Pareto front u* = (a*, f(z*))
to be an hypervolume maximizer when f has at least left and right derivatives in x*.

PROPOSITION 3.7. Let ©* €]Tmin, Tmax| such that u* = (z*, f(x*)) mazimizes the
hypervolume with respect to a valid reference point v = (r1,r2). If the function f de-

scribing the Pareto front admits left and right derivatives in x*, respectively f’ (x*) and
fi(x*), then

(3.7 e < 2 ey
r —x
Proof. We define the function HV, ,.(.) as  — HV,((z, f(z))). If * maximizes
HV, ,(.), then the left and the right derivatives of HV, ,(.) are positive and negative,
respectively. By replacing the left and right derivatives of HV, ,(.) by their explicit
formulas and reorganizing the terms we obtain (3.7). d

Equation (3.7) states that the slope of the diagonal of the rectangle DI. is between the
absolute values of the slopes of the right and the left derivatives of f at z*, see the middle
plot of Figure 2. To the best of our knowledge, this geometric interpretation is new. It
becomes simpler when f is differentiable. As soon as u* is a non-extreme vector, the
absolute value of the slope of the tangent of the front at u* is equal to the slope of the
diagonal of the rectangle D;., see the lefthand plot of Figure 2.

u*o
COROLLARY 3.8. Let £* €]Tmin, Tmax| be such that u* = (z*, f(z*)) maximizes the
hypervolume with respect to a walid reference point r = (ry,73). If the Pareto front is
described by a differentiable function f in x*, then f'(x*) satisfies

T2—f(95*)
ry—a*
10

(3.8) —f(a") =
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Proof. 1t is a direct consequence of Proposition 3.7 O

A convex function may not be differentiable, but it always has left and right deriva-
tives. It is also above its left and right tangent lines respectively on the left and on the right
of z*. Therefore, (3.7) implies that the affine function g : x — f(x*) — %(f:) X (x —x*)
is a minorant of f, and thus that the hypervolume of PF; is smaller than the hypervol-
ume of PFy := {g(z) : € [Zmin, Tmax|}. This upper bound on HV,(PFy) involves the
lengths of the rectangle DI ., whose area is HV,.(u*). It is the key idea of the proof of the

following lower bound on the normalized maximum hypervolume.

PRrROPOSITION 3.9. If the Pareto front is described by a convex function f, then the
following lower bound on the normalized mazimum hypervolume with respect to any valid
reference point r holds:

maxyepr; HV, ()
HV,(PF;)

(3.9) >

1
2
where the inequality is an equality if and only if the Pareto front is affine and r dominates
the nadir point.

Proof. The function f being convex, it has left and right derivatives and thus, so does
HV, () : o = HV,((z, f(z))). Thus, by Proposition 3.7, (3.7) holds. Since f is convex,
(3.7) implies that the affine function g :  — f(z*) — % X (z — x*) is a minorant
of f. Therefore, PF, := {g(z) : © € [%min, Tmax|} dominates PFy, and thus has a higher
hypervolume.

We note Ly := r1 — Zmin,r and Ly 1= r2 — f(Zmax,r) the lengths of the rectangle
R := [Zmin,r 71] X [f (Zmax,r), T2]. We note Iy :=ry —z* and Iy := ro — f(z*) the lengths
of the rectangle Dj,.. The region of R which dominates PF, is a right-angled triangle.
Additionally, by definition, the slope of its hypotenuse is %, and thus the lengths of the
other sides are L1 — l; + (Ly — l3) X % and Lo —lo + (L1 — 1) X % (see the middle plot
of Figure 2). Therefore

HV,(PF,) = A(R) — A\{u € R* : v € R,u < PF,})

1 l l
=L1L2—§><(L1—11+(L2—l2)xi)x(Lz—zﬁ(Ll—ll)xf)
_ Ly 1 Lo\2 L 1 L2
=t x [-2+2x - gx () r2x g1 ()]

For all z, we have (x — 2)2 > 0 and thus 2x — %x2 < 2. Therefore, we can conclude
that HV,.(PF,), and thus HV,(PF}) is lower than 2 x l1l2, that is 2 x HV,.(u*). If either
L1/l # 2 or Ly/ly # 2, the inequality is strict. Thus, when the inequality is an equality,
the center of R belongs to the Pareto front. Since f is convex, it requires from f to
be affine and from the reference point r to dominate the nadir point (Zmax, f(Zmin))-
Conversely, if the Pareto front is affine and the reference point r dominates the nadir
point, we know that the optimum is in the middle of the Pareto front and that we have

the equality (see [2, Theorem 5]). 0

We just proved that one half is a tight lower bound on the normalized maximum
hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,
there is no upper bound valid for every convex Pareto front, even when r dominates the

11

This manuscript is for review purposes only.



Fig. 2: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers u*, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PF, and the diagonal of Dj,., are equal. Right: The Pareto

front PF. and the hypervolume maximizer u} for e = 1/4 and r = (1,1).

nadir point. Here is a simple example which illustrates this. Let consider the convex
Pareto front PF. := {max(1 — £,e — ¢ x x) : € [0,1]} represented in the righthand
plot of Figure 2 and the reference point r = (1,1). When ¢ < 1, PF, is convex and
(3.8) implies that u¥ = (e x (1 —€),e x (1 — ¢)) is the unique hypervolume minimizer.
Thus, the normalized maximum hypervolume of PF, for this reference point is equal to

(1—e4€2)?
1—ex(1—e€)2+(e—€?)?

and converges to 1 when e goes to 0.

3.3. Lower and upper bounds of the normalized maximum hypervolume
for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on
the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.

We consider two affine fronts with the same left extreme vector as PF; and slopes
—Lpin and — L.y, see Figure 3. We call them PF;, and PF,.«, respectively. Formally:

(310) PFax = {(Ia fmax(x)) S [xminyxmax}})
(311) PFmin = {(wvfmin(x) S [xminaxmax]}

with fmin(x) = f(xmin) - ({IJ - xmin) X Lpin and fmax(x) = f(xmin) - ({E - xmin) X
Liax. For a (Lmin,Lmax)-bilipschitz function f, fmn(z) < f(2) < fmax(x) for o €
[©mins Tmax], and thus the Pareto front is dominated by PFy.x and dominates PFpiy,.
These two affine fronts provide bounds on both the hypervolume of the Pareto front
and the highest hypervolume of a vector on the Pareto front. They are key to prove
the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-
bilipschitz Pareto front.

PROPOSITION 3.10. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-
tion f, then the following bound on the normalized mazximum hypervolume with respect to
any valid reference point r holds

maxye pr, HV;(u)

Lmin
X
HV,(PFy)

1
A2 - .

>

Proof. The fronts PF,.x and PF,,;, are defined respectively in (3.10) and (3.11).
We note A1 = -i'max,r - i'min,ro All =T ‘%max,'m AQ =T - f(i'min,r) and V :=
12
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1 Fy

Fig. 3: The Pareto front PFy surrounded by PF.« and PF;, in the case where the
reference point r does not dominate the nadir point (left) and in the case where it does
(right).

Ay X (11 — Zmin,r), see the lefthand plot of Figure 3. Since the front PF),,x dominates
the Pareto front, the hypervolume of PF; is smaller than the hypervolume of PF,x,
V 4+ Limax X A1 x A} + % X Lmax X A2. Since each vector of PFy,;, is dominated by a
vector of PFf, the maximum hypervolume of a vector of PF is higher than the maximum
hypervolume of a vector of PF,;,. The front PF,,;, being an affine and therefore convex
front, we know by Proposition 3.9 that the maximum hypervolume of a vector of PF, is
higher than half of HV, (PF i, ), which is equal to 2 X (V+Lupnin X Ay X Al +3 X Lipin x A2)
To summarize, the maximum hypervolume of a vector of PF is higher than % X (V4 Lypin X
Ay x A —|—% X Linin x A?). Combining the upper bound on the hypervolume of PF; and the

lower bound on the maximum hypervolume of a vector of PF ¢, the normalized maximum
1 X (VA Linin X A1 XAl +4 X Linin xAY)
V+Lmax XA1 XA+ 3 X Linax X A2

1 o LminXA1 XAl 43X Linin XA} > Limin X A1 XAl 43 X Linin X AT
than 5 x Linax X A1 XA+ 1 X Linax x A2 AsV > 0and 0 < Limax X A1 XA} +3 X Linax X A}

conclude that the normalized maximum hypervolume is higher than % X f"““ . ]

We cannot guarantee any upper bound strictly inferior to 1 on the normalized maximum
hypervolume without adding an assumption on the reference point. Indeed, for a given
bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes
to 1 when r — oco. However, if f is (Lmin,Lmax)-bilipschitz and r dominates the nadir
point, we can prove that the normalized maximum hypervolume is higher than % X %
The proof relies on the fact that if the reference point dominates the nadir point, the
vector of an affine front with the highest hypervolume is its middle (see [2, Theorem 5]),
whose hypervolume is half of the hypervolume of the entire front.

hypervolume is higher than . This quantity is itself larger

<1, we

PROPOSITION 3.11. If the Pareto front is described by a (Lmin,Lmax )-bilipschitz func-
tion [ and the reference point r is valid and dominates the nadir point, the following
upper-bound on the normalized mazimum hypervolume with respect to r holds

maxye pr; HV(u)
HV, (PF;)

Lmax

(3.13)

IN

1 X
2 Lmin

13
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Proof. We use the same notations as in the proof of Proposition 3.10. Since r domi-
nates the nadir point, both A}, Ay and V equal 0, and thus the hypervolumes of PF .«
and PF,, equal % X Liax X A% and % X Lmin X A2, respectively. The domination of
PFin by PF implies that the hypervolume of the Pareto front is below % X Linin X A3,
Since PF .« is an affine front whose extremes dominate r, its middle is the unique hyper-
volume maximizer (see [1, Theorem 5]) with an hypervolume equal to i X Lmax X A1.The
domination of PF; by PF .y implies that the maximum hypervolume of a vector of PF¢
is higher than i X Lmax X A2, Gathering the lower bound on HV, (PFy) and the upper

bound on the maximum hypervolume of a vector of PF ¢, we retrieve (3.13). O

This upper bound is only relevant for Lyax/Lmin < 2. The bound is the tightest for
Linax = Lmin, where it achieves the value 1/2. In this paper, we use this upper bound for
Linax/Limin close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.

4. Convergence of HV-ISOOMOO under perfect singleobjective optimiza-
tion. We prove in this section various convergence results for HV-ISOOMOO algorithms
under the assumption of perfect singleobjective optimization. We first prove that when
the Pareto front is either convex or bilipschitz, these algorithms converge to the entire
Pareto front with guaranteed convergence-speed. We transform the bounds on the nor-
malized maximum hypervolume proven in Section 3 into lower bounds on the convergence
speed. Second, we analyze the asymptotic convergence behavior when the Pareto front is
bilipschitz with a Hélder continuous derivatives.

To analyze the decrease of the optimality gap with respect to n, we need to be able to
track in which gap regions the vectors of the greedy sequence are inserted over multiple
iterations. Naturally, a gap region of S, persists in being a gap region in the following
iterations, as long as no greedy vector is added in this specific gap region. The greedy
vector v,4+1 is said to fill the gap region of S, to which it belongs. At iteration n + 1,
this gap region disappears, replaced by two gap regions that we call its children. More
generally, we say that a gap region is a descendant of another gap region when it is a
proper subset of this gap region.

4.1. Convergence of HV-ISOOMOO with guaranteed convergence speed.
We prove some upper bounds on the relation between the optimality gap at iteration
2n + 1 and at iteration n. These bounds translate into lower bounds on the speed of
convergence of HV-ISOOMOO with perfect singleobjective optimization. The proof relies
on inequalities of the form

(4.1) max HV, (u) > C x HV,.(PFy)
u€PF

stated in Propositions 3.9 and 3.10 and on the reformulation of optimality gaps, areas
of gap regions and hypervolume improvement done in Subsection 3.1. A consequence of
(4.1) being true for any reference point 7’ is that the optimality gap at iteration 2n + 1
is at most (1 — C) times the optimality gap at iteration n.

We sketch the proof idea in the simple case where each of the vy, (k € [n+1,2n+1])
is inserted in a distinct gap region of S,,, see the lefthand plot of Figure 4. Inserting vy in
a gap region leads to an hypervolume improvement larger than C times the area of this
gap region by (4.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is
larger than C' times the area of the union of all gap regions of S, namely the optimality
gap at iteration n. A detailed proof is presented after the theorem statement.

14
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Fig. 4: Left: A Pareto front where each of the gap regions of Ss is filled by one of the greedy
vectors vy for k € [4,7]. Tt is described by f(z) =1 — /z for z € [0,1]. We represent
the region Dy, =, the regions corresponding to HVI,.(vy, Sk—1) for k € [4,7] == and the
gap regions of S3 =3 . Right: The ordered greedy set along Fi-values wy', corresponding
to the greedy set S3. The Pareto front is described by f(z) = %45 x e ™ +1 — &5 for
z € 0,1].

PRrROPOSITION 4.1. Consider a biobjective optimization problem where the Pareto frontll
is described by a function f. Any greedy set sequence (Sp)nen+ associated to a valid ref-
erence point r satisfies for all n

VT(PFf) — VT(SQn—i-l) 1 Lmin . . o ‘
12) 1 A <1--= Lonin: Lanas)-
(4.2) HV,.(PF) — HV,.(S,) = B X T if f 18 (Liin,Lmax )-bilipschitz and
HV.(PFy) — HV;(Sant1) _ 1 .., .
. < Z :
(4.3) HV,(PF;) — HV,(S,) = 2 if f is convex

Proof. Fix n > 1. We note o a permutation of [1,n + 1] such that n + (i) is the
index of the first greedy vector vy inserted in Gg , when possible. With this choice of o,
the i-th gap region of S,, is a gap region of Sn+g(ij_1. As a consequence, the hypervolume
improvement to S, ,(;)—1 of any vector u belonging to the i-th gap region of S, is equal
to HV,n(u) by (3.3). The hypervolume improvement of the greedy vector v, s(;) to
Snto(i)—1 being maximal, it is in particular larger than the one of any vector of Gg .

the i-th gap region of S,,, and thus than % X f:—: x HV,»(PFy) by Proposition 3.10.

In other words, the hypervolume improvement at any iteration n + o(4) is higher than
1 x ﬁ x HV,n(PFy). By adding these inequations for all i € [1,n + 1], we deduce
that the hypervolume improvement from iteration n to 2n + 1 is larger than % X Lmin 5

LIIIBX
Z?:ll HV,»(PFy). Since the sum of the HV,»(PF;) is the optimality gap at iteration
n, we have (4.2). If f is convex instead of bilipschitz, we use Proposition 3.9 instead of
Proposition 3.10 and obtain (4.3). |

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation
between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimality
gap associated to a greedy set sequence converges asymptotically to 0. Equivalently, HV-
ISOOMOQO algorithms converge to the entire Pareto front under Assumption 2.4, as stated
formally below.

15
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75 THEOREM 4.2. Consider a biobjective optimization problem with a Pareto front de-
76 scribed by a bilipschitz or convex function f.

77 The hypervolume of a greedy set sequence associated to a valid reference point r con-
78 wverges to the hypervolume of the entire Pareto front, i.e. HV,(Sy) — HV,(PFy).

579 Equivalently, for such Pareto fronts and under Assumption 2.4 of perfect singleob-
580 jective optimization, HV-ISOOMOO algorithms associated to a valid reference point r
581  converge to the Pareto front in the sense of Definition 2.3.

582  From the lower bounds on the relation between the optimality gaps at iteration 2n + 1
583 and at iteration n, we deduce the following upper bounds on the normalized optimality
584 gap at any iteration.

585 COROLLARY 4.3. Consider a biobjective optimization problem with a Pareto front
586 described by a (Lmin,Lmax )-bilipschitz function. A greedy set sequence (S, )nen+ associated
587 to a wvalid reference point r satisfies for all n

HVT(PFf) — HV,.(S,) < (1 _ 1 y Lin > [logy (n+1)] < (@n+ 2)10g2(17%>< fﬁ;i)

2 Lmax

588 (4.4
589 44 HV,.(PFy)

590 If the function f is convex, then any greedy set sequence associated to a wvalid reference
591 point v satisfies for all n

HV,.(PFy) — HV,. (S, 1 lloga(n+1)] 1
592 (4.5) (PFy) (Sn) < (7) ’ < .
593 HV,(PFy) 2 2n + 2

594 Consequently, under Assumption 2.4 of perfect singleobjective optimization, HV-ISOOMOOR
595  algorithms relative to a valid reference point r satisfy (4.4) if f is (Limin,Lmax )-bilipschitz

596 and (4.5) if f is conver where S,, is replaced by I,, the final incumbents Pareto front
597 approximation at iteration n.

598 Proof. The k-th term of the sequence defined by ug = 1 and w41 = 2 X u,, + 1 for
500 all m > 11is 2% — 1. Thus, (4.2) and (4.3) imply that when f is (Lmin,Lmax)-bilipschitz or
600  convex, the normalized optimality gap at iteration 2* — 1 is inferior to (1 — C)* with C
601 equal to % X ﬁ and %7 respectively. Since the hypervolume of the greedy set increases
602 with n, and thus the optimality gap decreases with n, we deduce the first inequalities in
603 (4.4) and (4.5) via the change of variable k = |logy(n +1)].

604 Additionally, for every n, |logy(n+1)] is smaller than log,(n+1)+1, that is log,(2n+
605 2). For every C, log,(2n + 2) equals log(2n + 2) x logy(C), and thus C'°82(27+2) equals
606 (2n + 2)1°82(C) " Therefore, we can infer that (2n + 2)'°82(¢) is an upper bound of the
607 normalized optimality gap with C := 1 — % X % and C := % when f is (Lmin,Lmax)-
608  bilipschitz and convex, respectively. O
609 We focus here on the relation between the optimality gap at iteration n and at
610 iteration 2n 4+ 1. We could similarly examine the relation between the optimality gap at
611 iteration n and at any later iteration. For example, we could prove that if f is (Lmin,Lmax)-

612 bilipschitz, then for all n, for all k < n + 1, Hg&ﬁ?ﬁél}i{g{}ﬁfﬁ:?) is lower than 1 — % X

o Lmi k
613 Fmin x K

Lmax n+1
614 Sketch of proof. We consider the k gap regions of S,, with the highest areas. The
615 hypervolume improvement from iteration n to n+ k is at least % X f— times the area of
616 the union of these gap regions, which is at least HLH times the optimality gap at iteration

617 mn.
16
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2. Asymptotical behavior of the convergence of HV,(S,) to HV,(PFy).
In this section, we analyze the asymptotic convergence behavior for a Pareto front de-
scribed by a bilipschitz function with a Holder continuous derivative. We prove that, in
this case, doubling the number of vectors in the greedy set divides the optimality gap by a
factor which converges asymptotically to two as stated in Theorem 4.10. This asymptotic
limit corresponds to the case of affine Pareto fronts with a reference point dominating
the nadir point. Indeed, for such Pareto fronts and reference points, the optimality gap
is always halved when the number of vectors in the greedy set goes from n to 2n + 1, see
Figure 5
First, we study the properties of the part of the Pareto front corresponding to a
specific gap region of S,,. For all n, let note o,, the permutation of [1,n] which orders the
vectors of §,, by increasing Fj-values and the so-called ordered greedy set along F}-values:

(4.6) W}, 1= Vg, iy for i € [1,n]

\T

noo.__ & n A
W p *= Tmin,r and Wp41,r = Lmax,r -

s

Naturally, we have wg, < wi, < ... < wp,,,, and the intervals [w

;n 1, W [ for
i € [1,n + 1] form a partition of [xmmr,xmaxr[ see the righthand plot of Flgure 4.
The interval [w] , ,.,w},] corresponds to the part of the Pareto front dominating 77, the
reference point associated to the i-th gap region of §,. When the Pareto front is b1hp—
schitz, the lengths of these intervals converge asymptotically to 0 as stated in the next
lemma. It is a direct consequence of the convergence of HV,.(S,,) to HV, (PF) stated in

Theorem 4.2.

LEMMA 4.4. If the Pareto front is described by a bilipschitz function f and the greedy
set sequence is associated to a valid reference point r, then the ordered greedy set along

Fi-values satisfy max;e n1] Wi, — wi' 1, — 0 with the wy, defined in (4.7).
? 7 n—oo ’

Proof. Let Luyin and Lyax be constants such that f is (Lmin,Lmax)-bilipschitz. The
area of the i-th gap region of S, is [" (f(z) — f(w},))dz. This is larger than

w! . .
Jork™  Liin X (wl', — x)dz, which equals § X Lyin x (w}’, — wl" ;)% Since the area
i—1,r ? ] 3

of any gap region of S, is inferior to the optimality gap at iteration n, this implies that
the difference w’, — w! ;. is inferior to /2 x (HV,(PF;) — HV,(S,,)) for all n, for all

1—1,r

i€ l,n+1]. Therefore the convergence of HV,.(S,,) to HV,(PF ) stated in Theorem 4.2

implies that the maximum over ¢ of wy’, — w;" , , converges to 0. 0

We prove in the next lemma that if the Pareto front is described by a bilipschitz func-
tion with a Holder continuous derivative, then the restriction of this function associated
to a gap region of S, is bilipschitz for some constants whose ratio converges asymptoti-
cally to 1. Linear functions being the only functions to be (Lmin,Lmax)-bilipschitz with
Liin/Lmax = 1, it supports the interpretation that for such Pareto fronts, the conver-
gence of the greedy set sequence is asymptotically similar as if they were affine Pareto
fronts.

When the function describing the Pareto front is bilipschitz, its restriction to the part

17
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of the Pareto front dominating r7*, that is [w]"

i—1,r9
L'Ln . 1nf{ f(x)_g(y)

min °
T —

Lbn = sup {‘7f(2 : ?J;(y)

max

wit,], is (LB Lin )-bilipschitz with

min’—~max

LT,y € [wi 1 W'y ]x;«éy} and

(4.8)
acye[ w;— 17‘7 l]x#y}

At iteration n, the ratio between L:" and L“" . the bilipschitz constants on the i-th

max min’

gap region of S,,, is by definition smaller than

Li,n
(4.9) ¢r, = Max { LTZX,Z' € [Ln+1]: [wi,y,,w]# @}

min

The proof of the convergence of g, to 1 relies on the fact that a derivable function can
be approximated locally by an affine function. The quality of this approximation is
guaranteed by the Holder continuity of the derivative.

LEMMA 4.5. We consider a greedy set sequence (Sp)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Hélder continuous
derivative, then q, defined in (4.9) converges asymptotically to 1.

Proof. We take o such that f’ is Holder continuous with exponent «, i.e f is C1¥,
and Lmin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-
bilipschitz. We recall that f is decreasing, and thus for all < y, we have f(z)— f(y) > 0.
Since f is C1'* and therefore C', the Taylor formula with Lagrange remainder states that
for all z < y, there exists £ € [z,y] such that f(y) = f(x)+(y—z) x f'(£). Since f is C1®,
this implies that for all z < y, |f(y) — f(z) — (y —2) x f'(z)| < (y — 2)1 7% x [f']ca. Thus,
f(y) f( ) is lower than —f(x) + [f'lee X (y — x)*. We now restrict ourselves to z and

y belonglng to the non-empty interval [w Z"r] Our goal is to find an upper bound

Ww;_y 7
depending on i but not on either = or y. Since f is C®, the difference between —f/ (x)
and —f'(wf_; ) is lower than [f']ca X (z —w}' )%, and thus [f’] X (wit, —wity )Y
Additionally, the difference between z and y is lower than w(’, —w;’ We conclude that

i—1,r"
for = Y € [ W;_q T’wznr]’ %{;(@ is lower than _fl(win—l,l,r) + 2[f ]Ca X ( - wz 1 r>a7
and thus so is L7 defined in (4.8).

Following the same approach, we can also infer that Li"  defined in (4.8) is greater
n

than the symmetric quantity —f'(wi ;) — 2[f'lca x (w}, —wf,,)* The quantity

! n 3 n n [0 n
—f'(wf_y 1) is greater than Ly, and (wf, —w;_; ,.)* is smaller than max;c [y n17(wy, —
Lmin+2[f']ce Xmaxieﬂl,n+l]](w7 PWE T)a

w?ﬁlﬁr)a, As a consequence, ¢, is lower than ] P Y (T T L By
Lemma 4.4, max;e[1,ny1] Wi, — Wiy, converges to 0 and thus, this upper bound on an
converges to 1. By definition, ¢, is always higher than 1, and thus converges to 1. ]

A consequence of the previous lemma is that the bounds on the normalized hypervolume
improvement of v,411 to S, that we can infer from Propositions 3.10 and 3.11 converge
asymptotically to 1/2, see (4.10). Similarly, the bounds on the normalized area of the
child of a gap region that we can infer from Lemma A.2 converge to 1/4, see (4.11). These
asymptotic values correspond to the case of an affine Pareto front with a reference point
dominating the nadir point, see Figure 5
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Fig. 5: The three greedy sets S1 (left), So (middle) and Ss (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point (1,1). The
area of the gap regions of S; are half of HV,(PFy) (left). The area of the new gap regions
of 8 is a quarter of the area of their parents (middle). The optimality gap of S3 (right)
is half of the optimality gap of S;.

LEMMA 4.6. We consider a greedy set sequence (Sy)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Holder continuous
derivative, then for all € > 0, for n large enough, for every non-empty gap region G
and every child ggmj of ngi, we have '

1 maxyegr, | HVI-(u,S,) 1
4.1 — 1—¢) < et <= 1
(4.10) 2><( €) < G ) _2><( +¢€) and
(o
(4.11) 1 < NG5, L

Ix(1+e  MGs,.) 4x(l-¢

Proof. The set of the first coordinates of the vectors of the Pareto front which dom-
inate 7' is the interval [w} , ,,wf,]. The restriction to [wj", ,.,w},] of the function f
describing the Pareto front is (Lmin,Lmax)-bilipschitz for some Ly, and L.y such that
Luwax — ¢ with g, defined in (4.9). Additionally, as stated in Proposition B.2, for n large
en“(l)utllgh, all the r' corresponding to non-empty gap regions dominate the nadir point.

It allows us to apply both Lemma A.2 and Proposition 3.11 to such gap regions. By

u HV,n
Propositions 3.10 and 3.11, W z
E 1 1

Additionally, by Lemma A.2, }{\\ffnsig,bl)” is between 1_1_%_;;"’ and 1_1J§r q%ﬁ. The maxi-
mum over the vectors u belonging to the Pareto front of HV.» (u) is equal to the maximum
over u belonging to the i-th gap region of S,, of HVI,(u,S,). Indeed, HV,»(.) is null for
vectors outside the i-th gap region of S, while it is nonnegative, equal to HVL.(.,S,),
otherwise. Additionally, HV,» (PFy) equals A\(Gs ;). The convergence of g, to 1 stated
in Lemma 4.5 imply that the bounds proven so far converge to a half and a quarter,

respectively. Thus, we have (4.10) and (4.11) for n large enough. d

is between 5 x qi and % X Qn.-

The following lemma states that for n large enough, the area of two non-empty gap regions
relative to the same greedy set cannot be too different. More precisely, the area of any
gap region of S,, cannot be more than 4 x (1+o0(¢)) times greater than the area of another
gap region of S,,. The proof relies on considering the parents of the gap regions.
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LEMMA 4.7. We consider a greedy set sequence (Sp)nen+ relative to a valid reference
point r. If the Pareto front is described by a bilipschitz function with a Hélder continuous
derivative, then for all ¢ > 0, for n large enough and for any non-empty gap regions of
Sn, G5, and Gg, ; with i,j € [1,n+ 1], we have

A(Gs,, ) (1+¢€)?
NG5, ) C 0 1—e

Proof. Fix € > 0. By Lemma 4.6, there exists N; € N* such that for all n greater than
N, (4.10) and (4.11) are verified for any non-empty gap region of S,, and its children.
Since maX;e[1,ny1] Wi, — W1, converges to 0 by Lemma 4.4, every non-empty gap region
is filled at some point. Take Ny such that all the non-empty gap regions of Sy, are filled
at iteration Ns. For all n greater than Na, (4.10) and (4.11) are true for any non-empty
gap region of S,, and its children, but also for its parents.

Taken > Ny. Wenote G, := Gg ;and G, := G ; two distinct non-empty gap regions
of &, and P; and P, their respective parents. When two sets correspond to gap regions
relative to the same greedy set S,,, we say that they cohabit at iteration m. Since only
one vector is added to S, at a time, the cohabitation of G, and G, implies that either G,
and P, or G, and P; cohabit at some earlier iteration. In the first case, there necessarily
exists m > Ny such that P, and G, are gap regions relative to S,, and v,,+1 belongs
to P,, otherwise, G; and G, would not cohabit. By (4.10), the maximum hypervolume
improvement to S,,, of a vector of G, and of a vector of P, are at least 3 x (1 —€) x A(G,)
and at most 3 x (14 €) x A(P,), respectively. Since a vector of P,, vp,41, maximizes the
hypervolume improvement to S,,, we have A(G;) x 3 x (1 —€) < A(P,) x 2 x (1+¢). Since
A(P,) is lower than 4 x (1 + €) times the area of its child A(G,) by (4.11), this inequality
implies (4.12). In the second case, P, is filled before P;. Thus, there exists m > Ny such
that P, and P, cohabit at iteration m and v,,1 belongs to P,. Since the area of P; is
higher than the one of its child G, the hypervolume improvement of v,,11 to &, is still
higher than £ x (1 —€) X A(G,). The rest of the argumentation remains valid. ad

(4.12)

We now have all the results needed to analyze the asymptotic impact of doubling the
number of points in the greedy set. To prove the following asymptotic upper bound,
we rely on similar arguments as for its nonasymptotic counterpart, Proposition 4.1. The
previous lemma guarantees that the impact of doubling the number of points in the greedy
set is asymptotically similar to the impact of passing from n points to 2n + 1.

PROPOSITION 4.8. Let (Sp)nen+ be a greedy set sequence relative to valid reference
point r. If the Pareto front is described by a bilipschitz function f with a Holder continuous
derivative, then for all € > 0, we have for n large enough

HV,.(PFy) — HV,(S2n)

(4.13) HV,(PFy) — HV,(S,)

< =+ o(e).

1
2
Proof. Fix e > 0. Fix n large enough to verify (4.10) and (4.12) for this particular e.
Let o be a permutation of [1,n + 1] such that the i-th gap region of S, is filled by
Unto(i) When it is filled before iteration 2n + 1. With this choice of permutation, Gg
is always a gap region of S, ,(;)—1. Thus, HVL.(vy 403}, Snte(i)—1) is superior to the
maximum hypervolume improvement of a vector of Gg ; t0 8,1 5(;)—1, which is superior
to 3 x(1—€)x (G5, ;) by (4.10). Tt is equivalent to say that the hypervolume improvement
20
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at iteration n + o(i) is higher than 1 x (1 —¢) x A(Gs, ;). Summing over i € [1,n + 1],
we obtain that the hypervolume improvement between iteration n and 2n + 1 is higher
than the sum over i of 3 x (1 —€) X A(Gg_ ,), that is § x (1 —¢) times the optimality gap
at iteration n.

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is
HVL, (02541, S2n). It is lower than § x (14€) X maxeq1 2n+1] A(G5,, ;) by (3.4) and (4.10).
Since the area of a gap region is lower than the one of its parent, the maximum area of
a gap region is lower at iteration 2n than at iteration m. The maximum area of one of

1 4x(14€)?

the more than n — 1 gap regions of S, is lower than —5 x ————— times the optimality

gap at iteration n by (4.12). To summarize, the hypervolume improvement at iteration
3
2n + 1 is lower than (nzfl()l% times the optimality gap at iteration n.
We conclude that the relation between the optimality gap at iteration 2n and at

iteration n is lower than 1 — 1 x (1 —€) + ﬁ |

We broadly follow the same approach to obtain the following asymptotic lower bound on
the impact of doubling the number of points in the greedy set. Lemmas 4.6 and 4.7 are
key to prove a lower bound on the hypervolume improvement at iteration k. They allow
to prove that filling a gap region of S,, more than once gives, up to a factor 1+ o(e), a
lower hypervolume improvement than filling a gap region which was not filled. Indeed,
the area of a descendant of a gap region of S, is at most i + o(€) times the area of its
parent by Lemma 4.6, which is itself at most 4 4 o(e) times the area of any other gap
region of S, by Lemma 4.7.

PROPOSITION 4.9. Let (Sp)nen+ be a greedy set sequence relative to a valid reference
point r. If the Pareto front is desribed by a bilipschitz function f with a Hélder continuous
derivative, then for all e > 0, we have for n large enough

HV,(PFy) — HV,.(San)
HV,(PFy) — HV,.(S,)

(4.14) > —+o(e).

1
2

Proof. Fix € > 0. Fix n large enough to verify (4.10), (4.11) and (4.12) for this
particular e. Let 6 € {—1,0,1} be such that S,, has n + ¢ non-empty gap regions. Let
i9 := 1 when the left extreme gap region is empty and iy := 0 otherwise.

Let o be a permutation of [1,n 4+ 0] such that the i-th non-empty gap region of
Sns G§, iy+i» 18 filled by the vector v, ;) when it is filled before iteration 2n + 4. We
distinguish two cases. In the first case, v, y,(;) is the child of the i-th non-empty gap
region of Sy, and consequently its hypervolume improvement to S, ;)1 is at most
% X (L+¢€) x AM(G§, j,+:) by (4.10). In the second case, v, q(;) belongs to Gg , .., the
j-th non-empty gap region of S,,, with j # ¢ and, by definition of o, fills a descendant of
this gap region not gg_; . ; itself. By (4.10), the hypervolume improvement of v, 4 (;) to
Spto(iy—1 is still at most % x (1 + €) times the area of the gap region it fills. By (4.11),

the area of a descendant of Q};MO + is smaller than times the area of its ancestor.

1

4x(1—¢)

By (4.12), we also know that the area of the i-th non-empty gap region of S, is at most
2

4 x % times the area of any other gap region of S, in particular its i-th non-empty

gap region. We conclude that the hypervolume improvement of v, () t0 Spyqiy—1 18

3 3
lower than % X Eifé% X /\(gfsn,io+i). To summarize, since 1 + € is lower than %, the

3
hypervolume improvement at any iteration n + o(7) is lower than % X E}fZgQ x AGs, 1)
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Summing over i € [1,n + ¢], the hypervolume improvement from iteration n to 2n + &

3
is lower than % X 81'32 times the sum over ¢ of A(ggmi), that is the optimality gap at

iteration n.

Now, it is left to prove an upper bound on HV,(S2,) — HV,(S2,,45). This quantity is
the highest for 6 = —1, where it is simply the hypervolume improvement at iteration 2n.
As in the previous proof, it is lower than 2X1(:i1) times the optimality gap at iteration
n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n

is higher than 1 — % X 81‘32 _ 2><1(:i1)~ 0

We combine the lower and upper asymptotic bounds to obtain the following theorem.

THEOREM 4.10. Consider a biobjective optimization problem and a greedy set se-
quence (Sp)nen+ relative to a valid reference point r. If the Pareto front is described by a
bilipschitz function f with a Holder continuous derivative, we have

HV,.(PFy) — HV,(Say,) 1
HV,(PFf) — HV,(S,,) n—oc 2

(4.15)

Consequently, for such Pareto front and reference point and under Assumption 2.4 of
perfect singleobjective optimization, HV-ISOOMOO algorithms relative to r satisfy (4.15)
where Sy, is replaced by I,,, the final incumbents Pareto front approximation at iteration
n.

5. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a singleob-
jective optimizer converge in O(1/n) on convex Pareto fronts and in O(1/n°) on bilipschitz
Pareto fronts with ¢ < 1 depending on the bilipschitz constants where n is the number of
meta-iterations. Each meta-iteration corresponds to a singleobjective optimization run.
Both bounds are tight over the class of Pareto fronts and reference points considered. In-
deed, they are reached for affine Pareto fronts and reference points dominating the nadir
point. On convex Pareto fronts, the highest achievable convergence-speed is reached
[15]. Tt shows that greedily adding points maximizing the hypervolume contribution as in
HV-ISOOMOO algorithms is an effective way to quickly increase the hypervolume. Ad-
ditionally, we prove that for bilipschitz Pareto fronts with a Holder continuous derivative,
asymptotically, doubling the number of meta-iterations halves the optimality gap. This
asymptotic behavior resembles what we would observe with an affine Pareto front and a
reference point dominating the nadir point. Beware that this does not guarantee a rate of
convergence in O(1/n). For example, the sequences (%)HGN* and (m)”GN* both
verify this property. The convergence rate on nonconvex Pareto fronts could theoretically
be slower than ©(1/n), but not faster by [15].

Appendix A. Normalized areas of the gap regions relative to an hypervol-
ume maximizer. The goal of this section is to prove bounds on the normalized areas of
the gap regions gfgt and Qr“i;ht relative to an hypervolume maximizer u* = (z*, f(z*)) (see
the lefthand plot of Figure 6) in the case of a bilipschitz Pareto front and of a reference
point r dominating the nadir point. These bounds are stated in Lemma A.2.

We exploit the bounds on the normalized maximum hypervolume proven in Subsec-

tion 3.3 and the following lower and upper bounds on the relation between (G}, ) and

*

A(Gignt)-
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Fig. 6: Illustration of elements of the proofs of Proposition A.1 in the case r1 < Tpax
(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
S5 xe P +1— % for 2 € [0,1]. Left: the gap regions Gt and Q;‘i;ht with a segment of
slope —Lin passing through u*. Middle: the hypervolume improvements HVL, (u*, u,)
= and HVL, (u., v*) = . Right: the hypervolume improvement HVL, (tpin, ) B8 and its

counterpart HVI,.(u, umin) B8 where u is a vector of the Pareto front which dominates r.

PROPOSITION A.1. We assume that the Pareto front is described by a (Lmin,Lmax)-
bilipschitz function f. Let u* be a non-extreme vector of the Pareto front which maximizes

*

the hypervolume with respect to a valid reference pointr. If r1 < Tyax, we have A(g?ight) >
L2 - . " L2 . *
Lhis  \Gty). IF 12 < Flomn), we have MGLy) > B x A(G).

Proof. We consider the case where 71 < Tpax. We note Ly := ry — z* and Lo :=
ro— f(2*) the lengths of the sides of the rectangle D.. For all «,y € [Zmin, Tmax], We have
|f(2) = f(y)| > Lmin X | —y|. Additionally, since r; < Zpax, the segment [x*, * + L] is
included in [Zpmin, Tmax]- As a consequence, the section of the Pareto front on the right of
u* dominates the segment between u* and u* 4+ Ly X (1, —Lin), see the lefthand plot of

*

Figure 6. Therefore, A(ggght) is larger than the area of the region of the objective space
dominated by this segment, not dominated by ©v* and dominating r, that is % X Liin X L2.
For all 2,y € [Zmin, Tmax), we also have |f(z) — f(y)| € Lmax X | — y|. Therefore, the
part of the Pareto front on the left of u* is dominated by the segment between u* and
u* + Lo x (—ﬁ, 1), and A(GY,) is lower than § x ﬁ x L3. We have yet to prove a
lower bound on f—: The vector u* being different from iy, for € > 0 small enough, the
vector u, := (z* — ¢, f(z* — €)) belongs to the Pareto front. As we can see in the middle
plot of Figure 6, HVI,.(u*, u.) is lower than Ly X L.y X € and HVI,. (u,, u*) is higher than
€ X (Ly — € X Lyayx). Additionally, u* being an hypervolume maximizer, HVI,. (u*, u.) is
higher than HVI,.(u.,u*), and thus Ly X Lpax > Ly — € X Lyax for all € > 0. Taking
the limit of this inequality when ¢ — 0, we obtain that L; X Ly.x > Lo. Combining
the bounds on A(G,) and A( ﬁ;ht) with the lower-bound on f—;, we obtain the desired
lower bound on A(gg;ht). We can obtain the symmetric inequality when ro > f(Zmin) by
following the same approach. 0

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.
We are now able to prove the desired bounds on the normalized area of the gap regions
Glegy and g;tight'
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LEMMA A.2. Let u* be a vector which mazimizes the hypervolume with respect to
a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)- bz’lipschitz
function f and the reference pomt r dominates the nadir pomt both gleﬂ and G* .. are

between (1 — 5 X %:::)/(1 + ma:) and (1 — 32 x me)/(l + n)

right

Proof. Let note arbitrarily G; and 92 the two gap reglons of the set S = {u*}.
By Proposition A.1, A(G,) is between fgﬂi“ x A(G;) and m‘“‘ x A(Gy). Additionally,
Propositions 3.10 and 3.11, the normaliznéadx maximum hypervolume max,ecpr,; HV,(u)
over HV,(PFy) is between 3 x £mix and 1 x Lmex . These bounds can be transformed

2 max

into bounds on HV,.(PFs) — max,cpr, HV ( ) that is A(G,) + A(G,). As a consequence,
(gl) is between (1—3 x L"’ax )xHV,.(PFy)— ""‘“‘ =X A(G,) and (1—3 x ﬁ) xHV,.(PF¢)—

‘“‘“ A(G,). Moving all the A(G;) terms on the same side and re-normalizing this side, we

obtaln the desired bounds for G;, which can be chosen to be either G or G% d

rlght

Appendix B. The nadir point is dominated by all the r corresponding to
non-empty gap regions for n large. = We show in this section that for bilipschitz
Pareto fronts, the nadir point is dominated by all the r' corresponding to non-empty
gap regions, for n large enough. This result is stated in Proposition B.2 and used in
Subsection 4.2. It is equivalent to prove that the extreme vectors which dominate the
reference point belong to the greedy set for n large enough.

First, we prove in the next proposition that if 71 > Tynax (resp. ro > f(Zmin)), then
for ro (resp. 71) close enough to f(Zmax) (resp. Zmin) the extreme vector umax (resp.
Umin) is the only hypervolume maximizer, see the righthand plot of Figure 6. There are
similar statements in [8] for the set of p points maximizing the hypervolume, but they
only apply to u > 2.

LEMMA B.1. We assume that the Pareto front is described by a function f which is
(Lmin, Limax )-bilipschitz. For any valid reference pointr = (r1,r2) such that ri > Tmax and
f(@max) < 72 < f(Tmax)+ Lmin X (1 — Tmax), the right extreme of the Pareto front umax 18
the only mazimizer of HV,.(.). Additionally, for any valid reference point r = (ry,rs) such
that ro > f(Zmin) and Tmin < 11 < Tmin + %
is the only mazimizer of HV,.(.).

, the vector Umin = (Tmin, [ (Tmin))

Proof. This proof is illustrated in the righthand plot of Figure 6. Let r be a reference
point such that ro > f(Zmin) and zymin < 71 < xmm—i—w Let u = (z, f(2)) # Umin
be a vector of the Pareto front which dominates r. The hypervolume improvement of wmin
to {u}is (ra— f(Zmin)) X (€ —Tmin). The hypervolume improvement of u t0 {umin } is equal
to (f (xmin) — f(z)) X (r1 — ), which is smaller than Lyax X (& — Zmin) X (11 — Zmin) since u
dominates r and f i8S (Lmin,Lmax)-bilipschitz. Since we assume that Lyax X (11 — Tmin) <
79 — f(Zmin), the upper bound on HVI, (u, umiy) is strictly lower than HVL, (umin, u). As
a consequence, the hypervolume of uy,;, is strictly higher than the one of u. We conclude
that i, is the unique hypervolume maximizer. The symmetric result can be obtained
with the same approach. 0

It is left to prove that when r; > Zmax (resp. 72 > f(Zmin)), the second coordinate of
Ty (resp. the first coordinate of r{j) indeed converge to f(Zmax) (r€sp. Tmin). It is a
straightforward consequence of Lemma 4.4. Therefore, we are able to conclude.
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ProrosiTION B.2. We assume that the the Pareto front is described by a bilipschitz
function. Let (Sp)nen+ be a greedy set sequence associated to a wvalid reference point .
For n large enough, every reference point r}' corresponding to a non-empty gap region
Gs, i dominates the nadir point.

Proof. By Lemma 4.4, wy, , converges t0 Tmax, and thus the right extreme reference
point 77,4 = (71, f(wy; ,.)) converges to (71, f(Zmax)) by continuity of f. Therefore, if rq
is strictly higher than 2.y, then there exists N such that for all n > N, r) | verifies
the assumptions on the reference point of Lemma B.1 which guarantee that upax is the

unique maximizer of HV,.(.) over the right extreme gap region G5 ;. Let assume that

Umax does not belong to S,,. Then, wY | # Zyax, and since wy, . converges t0 Tmax, the

left extreme gap region Gg ; is necessafily filled at some later iteration. When the right

extreme gap region is filled, umax, the unique minimizer of HV,.(.) over this gap region,
is added to the greedy set. To summarize, if 71 > Tpax, then for n large enough S,
contains umy,x, and thus the right extreme gap region is empty. We can prove with the
same approach that for 7o > f(Zmin), Sp contains um;, for n large enough.

At any iteration, the non-extreme reference points dominate the nadir point. Addi-
tionally, we proved that either r1 < Zpax (resp. 2 < f(Zmin)), and thus the left (resp.
right) extreme reference point dominates the nadir point or for n large enough, the left
(resp. right) extreme gap region is empty. d
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