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MULTIOBJECTIVE HYPERVOLUME BASED ISOOMOO1

ALGORITHMS CONVERGE WITH AT LEAST SUBLINEAR SPEED TO2

THE ENTIRE PARETO FRONT3

EUGÉNIE MARESCAUX AND ANNE AUGER4

Abstract. In multiobjective optimization, one is interested in finding a good approximation of the5
Pareto set and the Pareto front, i.e the sets of best compromises in the decision and objective spaces,6
respectively. In this context, we introduce a new algorithm framework, Incremental SingleObjective7
Optimization for MultiObjective Optimization (ISOOMOO) for approximating the Pareto front with8
an increasing number of points. We focus on HV-ISOOMOO, its instanciation with the hypervolume9
indicator, a set-quality indicator which is widely used for algorithms design and performance assessment.10
HV-ISOOMOO algorithms approximate the Pareto front by greedily maximizing the hypervolume. We11
study the convergence to the entire Pareto front of HV-ISOOMOO coupled with a perfect singleobjective12
optimizer. The convergence is defined as the convergence of the hypervolume of the sets of all meta-13
iterations incumbents towards the hypervolume of the Pareto front. We prove tight lower bounds on the14
convergence-speed for convex and bilipschitz Pareto fronts in O(1/nc) with n being the number of meta-15
iterations and c = 1 and c ≤ 1, respectively. For convex Pareto fronts, the convergence rate is exactly in16
Θ(1/n), namely the highest convergence rate achievable by a biobjective optimization algorithm. These17
are the first results on the convergence-speed of multiobjective optimization algorithms towards the entire18
Pareto front. We also analyze theoretically the asymptotic convergence behavior.19

Key words. multiobjective optimization, convergence, hypervolume, pareto front20
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1. Introduction. Real-world problems often involve the optimization of several con-22

flicting objectives. The solution of such problems is the set of non-dominated decision23

vectors, the Pareto set defined as the set of solutions that cannot be improved along one24

objective without degrading along another one. Its image in the objective-space is the25

Pareto front. A decision maker is then often involved to choose, based on its preferences,26

a single best compromise. The shape of the Pareto front informs on the trade-off between27

objectives. Many algorithms such as evolutionary algorithms approximate the Pareto28

front with a number of points fixed in the beginning. But some algorithms, in particular29

Direct Multi-Search Methods such as MultiGLODS [9], DMS [10] and D-Multi-MADS [6]30

aim at approximating the entire Pareto set or Pareto front with as many well-distributed31

points as possible. Ideally, the quality of the Pareto front approximation increases with32

time without stagnating and such algorithms can be considered as anytime algorithms.33

The convergence speed towards a critical decision vector or a vector of the Pareto34

front have been examined for many algorithms such as (1+1) evolutionary multiobjective35

algorithms [4] or Newton’s method [13]. Convergence rates are typically similar to the36

ones obtained for singleobjective optimization. Indeed, this is still a convergence towards37

a single point. Its analysis is sometimes reduced to the study of the convergence of a38

singleobjective optimization algorithm. The convergence of anytime algorithms towards39

the whole Pareto set or front is of a different kind because these are sets and not points.40

It has already been theoretically investigated for some algorithms [9] and more abstract41

frameworks [18], but analysis of the rate of convergence are missing. Additionally, empir-42

ical studies typically focus on determining which algorithm is faster and do not provide43

orders of convergence or precise convergence rate. Yet, while largely overlooked, studying44

convergence rates either theoretically or empirically is crucial. In this context, it has been45
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proven that convergence towards the whole Pareto front is always sublinear in the number46

of function evaluations, at least when measuring convergence with the hypervolume indi-47

cator [15] or the multiplicative ε-indicator [7], and thus much slower than typical speeds48

of convergence to a single point. The hypervolume is a set-quality indicator widely used49

in multiobjective optimization, both to guide algorithms and for performance assessment.50

It is at the core of all known stricly Pareto-compliant indicators [19].51

In this paper, we introduce a new anytime algorithm framework, Incremental Sin-52

gleObjective Optimization for MultiObjective Optimization (ISOOMOO). We focus on53

its instanciation with the hypervolume indicator, HV-ISOOMOO. HV-ISOOMOO al-54

gorithms try to greedily maximize the hypervolume by adding points with the highest55

hypervolume contribution. These points are obtained by running a singleobjective opti-56

mizer. Greediness is already used in the selection part of some multiobjective optimization57

evolutionary algorithms such as SMS-EMOA [5] to approximate the set of p points among58

the population with the highest hypervolume. The hypervolume of such discrete greedy59

approximation is proven to be at least (e−1)/e times the one of the p-optimal distribution60

[16]. To our knowledge, we provide the first continuous equivalent of this result. We in-61

vestigate the rate of convergence of HV-ISOOMOO towards the whole Pareto front in the62

ideal case of perfect singleobjective optimization, measuring the convergence with the hy-63

pervolume. For convex and bilipschitz Pareto fronts, we prove that the convergence-speed64

is in O(1/nc) with c = 1 and c ≤ 1, respectively, with n being the number of singleob-65

jective optimization runs performed. For convex Pareto fronts, since it has already been66

proven that no biobjective optimization algorithm can converge to the Pareto front faster67

than in Ω(1/n) [15], the convergence rate is exactly in Θ(1/n). Additionally, we prove68

that for bilipschitz and smooth enough Pareto fronts doubling the number of points in69

the approximation halves the optimality gap, asymptotically. In the proof process, we70

obtain bounds on the normalized maximum hypervolume and a geometric interpretation71

of optimality conditions.72

The paper is organized as follows. In Section 2, we lay the foundations of the prob-73

lem we investigate. In Section 3, we prove preliminary results later used to investigate74

convergence. In Section 4, we derive lower bounds on the convergence rate of the perfect75

version of HV-ISOOMOO for bilipschitz and convex Pareto fronts and an insight on the76

asymptotic convergence behavior.77

Notations and conventions. For a, b ∈ N, we note Ja; bK the set {a, a+ 1, . . . , b− 1, b}.78

For a vector u ∈ R2, we note u1 and u2 respectively its first and its second coordinate. If79

the vector notation already contains an index, we separate the two indices with a comma.80

For simplicity sake, we often replace the set {u} by u in the notations. We say that a81

function f : R→ R is decreasing (respectively strictly decreasing) when for all x < y, we82

have f(x) ≥ f(y) (respectively f(x) > f(y)).83

2. Background, algorithm framework and assumptions. Here, we lay the84

foundations of the problem we analyze. First, we recall some classic concepts of mul-85

tiobjective optimization. Then, we introduce the ISOOMOO class of algorithms and86

its hypervolume based instanciation HV-ISOOMOO. We also formalize a mathematical87

abstraction of HV-ISOOMOO, the greedy set sequences. Finally, we examine our as-88

sumptions on the biobjective optimization problem.89
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2.1. Biobjective optimization problems, the Pareto front and the hyper-90

volume indicator. We consider a biobjective minimization problem:91

min
x∈Ω⊂Rd

F (x)(2.1)92
93

with F : Ω ⊂ Rd → R2 : x 7→ (F1(x), F2(x)). We define two dominance relations for94

vectors in the objective space. We say that u weakly dominates v denoted by u � v if95

u1 ≤ v1 and u2 ≤ v2 and that u dominates v denoted by u ≺ v if u � v and u 6= v.96

A vector of the objective-space R2 is said feasible when it belongs to F (Ω). Solving the97

optimization problem consists in finding a good approximation of the Pareto front, the98

set of non-dominated feasible vectors, {F (X) : X ∈ Ω, ∀Y ∈ Ω, F (Y ) 6� F (X)}. We99

restrict ourselves to Pareto fronts with an explicit representation:100

PFf = {(x, f(x)) : x ∈ [xmin, xmax]}(2.2)101102

with f : R 7→ R decreasing. We denote by umin := (xmin, f(xmin)) and umax :=103

(xmax, f(xmax)) the extreme vectors of the Pareto front. Likewise, we denote by ũmin,r :=104

(x̃min,r, f(x̃min,r)) and ũmax,r := (x̃max,r, f(x̃max,r)) the extremes vectors of the part of105

the Pareto front dominating a reference point r, with x̃min,r := max(xmin, f
−1(r2)) and106

x̃max,r := min(xmax, r1). The vector (xmax, f(xmin)) is called the nadir point. All these107

notations are illustrated in Figure 1.
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Fig. 1: Illustration of notations. The extreme vectors umin and umax and the nadir point
(xmax, f(xmin)) (leftmost) ; the extreme vectors relative to the reference point r ũmin,r

and ũmax,r (left) ; three vectors u1, u2 and u3 and the regions weakly dominated by them
and dominating r, Dru1

, Dru2
and Dru3

(right) ; the greedy set S3 = {v1, v2, v3},
its four gap regions and the associated reference points (rightmost).

108

The hypervolume with respect to a reference point r of an assessed set S of objective109

vectors, that we denote by HVr(S), is the Lebesgue measure of the region of the objective-110

space dominated by S and strictly dominating the reference point r. When no vector of111

the Pareto front dominates the reference point r, the hypervolume with respect to r of112

any set of feasible points of the objective space is null. Since this particular case is not113

interesting, we only consider reference points dominated by at least one vector of the114

Pareto front from now on. We refer to such reference points as valid.115

The region of the objective-space dominated by S and dominating r, see the righthand116

plot of Figure 1, is denoted by DrS and formally defined as:117

DrS = {w ∈ R2 : ∃u ∈ S : u � w ≺ r}.(2.3)118119
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The hypervolume of a set S relative to the reference point r equals λ(DrS) with λ(.) being120

the Lebesgue measure. In this paper, we only consider two-dimensional objective spaces121

and refer to the Lebesgue measure of a set as its area. The set DrS is the union of the Dru122

for u ∈ S, Dru being the rectangle [u1, r1]× [u2, r2] when u dominates r and ∅ otherwise,123

see the righthand plot of Figure 1. Note that the Dru are not disjoints.124

We use the hypervolume to characterize the convergence of a set S of objective vectors125

to the entire Pareto front. For a fixed valid reference point r, a set S is said to converge126

to the Pareto front when the hypervolume difference HVr(PFf ) − HVr(S) converges127

to 0. We define the optimality gap of S with respect to a valid reference point r as128

HVr(PFf )−HVr(S).129

Another quantity of interest is how much adding a vector to a set affects its hy-130

pervolume. The hypervolume improvement with respect to r of the vector u to the set131

S is HVIr(u, S) = HVr(S ∪ {u}) − HVr(S). We also use the term hypervolume im-132

provement to refer to the hypervolume increase of an increasing sequence of sets. More133

precisely, the hypervolume improvement at iteration n of a monotone sequence (Sn)n∈N∗134

is HVr(Sn+1)−HVr(Sn).135

2.2. The ISOOMOO framework, its HV-ISOOMOO instanciation and the136

associated greedy set sequences. The Incremental SingleObjective Optimization for137

MultiObjective Optimization (ISOOMOO) framework builds incrementally a monotone1138

sequence (In)n∈N∗ of sets of vectors of the objective space. The pseudo code of ISOOMOO139

is given in Algorithm 2.1, where the current value of In is denoted by I. At each so-140

called meta-iteration, a generic singleobjective maximization algorithm SOOPTIMIZER141

(line 3 in Algorithm 2.1) is run on the criterion X ∈ Ω ⊂ Rd 7→ J(I, X) and the resulting142

solution is added to I (line 4 in Algorithm 2.1). We use the term meta-iteration to separate143

between the (meta-)iterations of ISOOMOO and the iterations of SOOPTIMIZER. Since144

the set I is composed of the final objective incumbents of previous runs of SOOPTIMIZER145

and (ideally) provides an approximation of the Pareto front, we call it final incumbents146

Pareto front approximation.147

The singleobjective optimization procedure may vary between meta-iterations. More148

precisely, the run of SOOPTIMIZER depends on data about precedent runs stored in149

D (line 4 in Algorithm 2.1). This allows to alternate between various singleobjective150

optimization algorithms with different features, but also to adapt the initialization. This151

could be done by storing in D an iteration index or the final search-space incumbents of152

SOOPTIMIZER runs.153

Algorithm 2.1 Incremental SingleObjective Optimization for MultiObjective Optimiza-
tion (ISOOMOO)

1: while not stopping criterion do
2: Y, d← SOOPTIMIZER(X 7→ J(I, X), D)
3: I ← I ∪ {F (Y )} # update of the approximation of the Pareto front
4: D ← D ∪ {d} # update of the data collected
5: end while

In this paper, we study HV-ISOOMOO, an instanciation of ISOOMOO for which the154

criterion J(I, .) relates to the hypervolume improvement to I. Formally, HV-ISOOMOO155

1A sequence of set {An, n ≥ 0} is monotone if the following inclusions A0 ⊂ A1, . . . ⊂ An ⊂ . . . hold.
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is a class of algorithms derived from ISOOMOO for which the maximization of the cri-156

terion J is compliant with the maximization of the hypervolume improvement as defined157

below.158

Assumption 2.1. (Compliance to hypervolume improvement maximization) The max-159

imization of a criterion J as in ISOOMOO is compliant with the maximization of the160

hypervolume improvement if for any set I of objective vectors, maximizing J(I, .) is161

equivalent to maximizing the hypervolume improvement with respect to a valid reference162

point r to the set I:163

(2.4) argmaxX∈Rd J(I, X) = argmaxX∈Rd HVIr(F (X), I) .164

We simply refer to an algorithm built from the HV-ISOOMOO framework as an HV-165

ISOOMOO algorithm.166

Definition 2.2 (HV-ISOOMOO). We define an HV-ISOOMOO algorithm as an167

ISOOMOO algorithm as described in Algorithm 2.1 where the criterion J satisfies As-168

sumption 2.1.169

At each meta-iteration n, an HV-ISOOMOO algorithm seeks a feasible vector maximiz-170

ing the hypervolume improvement to the final incumbents Pareto front approximation171

In. Ideally, when n goes to infinity, the non-dominated subset of (In)n∈N∗ converges172

to the (entire) Pareto front, namely the non-dominated set of feasible objective vectors,173

which maximizes the hypervolume. In other words, HV-ISOOMOO algorithms try to174

approximate the Pareto front with a greedy approach.175

Definition 2.3. We define the convergence of HV-ISOOMOO as the convergence of176

HVr(In) towards HVr(PFf ).177

The performance of a specific HV-ISOOMOO algorithm depends crucially on the178

choice of the criterion J . In this respect, the hypervolume improvement to I is not a179

good candidate for J(I, .). Indeed, it is constant equal to zero in the region dominated180

by I, which makes it difficult to optimize. A criterion whose maximization is compliant181

with the maximization of the hypervolume improvement and designed to be easier to182

optimize has already been introduced in [17] under the name uncrowded hypervolume183

improvement (UHVI). In the non-zero region of the hypervolume improvement to a set I,184

namely for F (X) not dominated by I, the UHVI is simply the hypervolume improvement.185

Otherwise, in the region where the hypervolume improvement is null, the UHVI is negative186

and equals minus the distance to the empirical non-dominated front of the set I relative187

to r. It is easy to see that the UHVI satisfies (2.4).188

The choice of SOOPTIMIZER also plays a key role in the performance of an HV-189

ISOOMOO algorithm. In this paper, we analyze HV-ISOOMOO under the assumption190

of perfect singleobjective optimization formalized below.191

Assumption 2.4 (Perfect Singleobjective Optimization). At every meta-iteration n,192

for any final incumbents Pareto front approximation In, the run of SOOPTIMIZER (line 2193

in Algorithm 2.1) returns Y ∈ argmaxX∈Ω J(In, F (X)).194

The assumption of perfect singleobjective optimization is reminiscent to the assump-195

tion of perfect line search which is common in the analysis of gradient based methods [11].196

Under this assumption, all choices of criterions verifying Assumption 2.1 are equivalent.197

The convergence of HV-ISOOMOO under perfect singleobjective optimization is a neces-198

sary condition for the soundness of the approach. Additionally, we could obtain a lower199

5
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bound on the convergence-speed of a real instanciation of HV-ISOOMOO by combining200

such lower bounds on the convergence-speed of HV-ISOOMOO under Assumption 2.4201

with existing lower bounds on the convergence speed of singleobjective optimization al-202

gorithms.203

We introduce below the notions of greedy sequence and greedy set sequence, which204

are mathematical abstractions of HV-ISOOMOO under Assumption 2.4 of perfect sin-205

gleobjective optimization.206

Definition 2.5 (Greedy sequence and greedy set sequence). Given a valid reference207

point r, we define as greedy sequence, a sequence {vn, n ≥ 1} satisfying208

v1 ∈ arg max
v∈F (Ω)

HVr(v) and(2.5)209

vn+1 ∈ arg max
v∈F (Ω)

HVr({v1, · · · , vn, v}) for all n ≥ 1 .(2.6)210
211

The greedy set sequence (Sn)n∈N∗ associated to the greedy sequence {vn, n ≥ 1} is com-212

posed of the greedy sets Sn := {vk, k ≤ n}.213

There is a bijection between greedy sequences and greedy set sequences. The n-th element214

of the greedy sequence {vn, n ≥ 1} associated to a greedy set sequence (Sn)n∈N∗ is simply215

the unique element of Sn \ Sn−1 if n > 1 and of S1 if n = 1.216

The recurrence relation of the greedy sequence (2.6) is equivalent to vn+1 belonging217

to arg maxv∈F (Ω) HVIr(v,Sn) for all n ≥ 1. It is immediate to see that under Assump-218

tion 2.4, the final incumbents generated by HV-ISOOMOO constitute a greedy sequence219

while the final incumbents Pareto front approximations form the associated greedy set220

sequence (In)n∈N∗ . The indices n of both greedy and greedy set sequences iterations cor-221

respond to HV-ISOOMOO meta-iterations. In this paper, we derive convergence results222

for greedy set sequences, which transfer to HV-ISOOMOO under Assumption 2.4.223

As we will see in Subsection 3.1, the problem of maximizing the hypervolume improve-224

ment to a fixed set can be rewritten as the maximum of a finite number of hypervolume225

maximization problems. Therefore, we can infer from [3, Theorem 1] that as soon as the226

Pareto front is lower semi-continuous, there exists a greedy sequence and the associated227

greedy set sequence.228

Proposition 2.6. If the Pareto front is described by a lower semi-continuous func-229

tion f , then there exists a greedy sequence {vn, n ≥ 1} associated to any valid reference230

point r.231

Proof. If f is lower semi-continuous, then for any reference point r, the maximum of232

HVr(.) exists, see [3, Theorem 1]. Therefore, there exists a vector verifying (2.5) and the233

problem of maximizing the maximum of a finite number of hypervolume functions defined234

in (3.4) admits a solution. Since the recurrence equation defining greedy sequences (2.6)235

is equivalent to (3.4) by Lemma 3.5, a lemma proven in the next section, we can build a236

sequence {vn, n ≥ 1} verifying (2.5) and (2.6), namely a greedy sequence.237

Additionally, since the hypervolume indicator associated to a valid reference point is238

strictly Pareto-compliant (see [14]), this sequence is composed of vectors of the Pareto239

front.240

Proposition 2.7. If the Pareto front is described by a lower semi-continuous func-241

tion f , then any vector of a greedy sequence associated to a valid reference point r belongs242

6
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to the Pareto front. Consequently, for such Pareto front and reference point and under243

Assumption 2.4 of perfect singleobjective optimization, all final incumbents Pareto front244

approximations In of HV-ISOOMOO algorithms relative to r are subsets of the Pareto245

front.246

Proof. Since for any valid reference point r, HVr(.) is strictly Pareto-compliant [14],247

its maximum always belongs to the set of non-dominated feasible objective vectors, that248

is the Pareto front. Thus, in particular, a vector v1 verifying (2.5) belongs to the Pareto249

front. Additionally, by Lemma 3.5, a lemma proven in the next section, every solution250

of the update equation of greedy sequences (2.6) verifies (3.4). As a consequence, such251

vectors are solution of at least one hypervolume maximization problem, and thus also252

belong to the Pareto front.253

Yet, in general, there exists more than one greedy sequence, and thus greedy set sequence.254

For example, there are infinitely many greedy sequences associated to any affine Pareto255

front with a reference point dominating the nadir point. This statement relies on the fact256

that the unique maximizer of the hypervolume relative to a reference point r dominating257

the nadir point is the middle of the section of the Pareto front dominating r, see [2,258

Theorem 5]. As a consequence, the middle of the section of the Pareto front dominating r259

is the only candidate for v1 but v2 can be either at 1/4 or at 3/4 of this section. Similarly,260

v3 has to be in the position where v2 is not but v4 can be at 1/8, 3/8, 5/8 or 7/8 of the261

section of the Pareto front dominating r. For any n, we can find an iteration m such262

that vm can be placed at 2n different points, whatever the m−1 first terms of the greedy263

sequence are.264

2.3. Assumptions on the Pareto front and the objective functions. We265

present and discuss here the assumptions on the function f describing the Pareto front266

under which we derive convergence results. We typically assume that the function f is267

bilipschitz, convex or simultaneously bilipschitz and with a Hölder continuous derivative,268

namely C1,α. Under any of these three assumptions, f is continuous. For the sake of269

conciseness, we transfer the properties of f to the Pareto front. For example, we call270

convex Pareto front a Pareto front described by a convex function. We recall that a271

function g is Hölder continuous with exponent α when there exists H ≥ 0 such that272

|g(x)− g(y)| ≤ H×|x−y|α for all x, y [12]. We note [g]α the minimum Hölder coefficient273

of g with respect to the exponent α, that is [g]α := supx6=y
|g(x)−g(y)|
|x−y|α . When needed,274

we detail the bilipschitz constants and say that a bilipschitz function f is (Lmin,Lmax)-275

bilipschitz if for all x, y ∈ [xmin, xmax], we have Lmin×|x−y| ≤ |f(x)−f(y)| ≤ Lmax×|x−y|276

where Lmax ≥ Lmin > 0. We also consider affine Pareto fronts, the simplest kind of Pareto277

front. As they form a line in the biobjective case, they are usually refered to as linear278

Pareto fronts. They provide good examples to illustrate a point and help to understand279

the results we prove on the asymptotic convergence behavior.280

We remind below sufficient conditions on the search-space and on the objective func-281

tions which guarantee that f is convex and bilipschitz.282

Proposition 2.8. Given a biobjective minimization problem as in (2.1) whose Pareto283

front is described by a function f . If F1 and F2 are respectively (Lmin,1, Lmax,1)-bilipschitz284

and (Lmin,2, Lmax,2)-bilipschitz, then f is (
Lmin,2

Lmax,1
,
Lmax,2

Lmin,1
)-bilipschitz.285

Proposition 2.9. Given a biobjective minimization problem as in (2.1) whose Pareto286

front is described by a function f . If the search space Ω and the objective functions F1287

7
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and F2 are convex, then f is convex.288

The proofs of both propositions can be found for instance in [15]. The conditions289

on F1, F2 and Ω are sufficient but non-necessary conditions. Indeed, adding small dis-290

continuity in the objective functions far from the Pareto set makes them non-convex and291

non-bilipschitz without modifying the Pareto front.292

Representing F1 values on the absciss and F2 values on the ordinate instead of the293

converse is an arbitrary choice. When f is a bijection, had we chosen to represent the294

F2 values on the absciss instead of on the ordinate, we would have had another repre-295

sentation of the Pareto front : {(y, f−1(y)) : y ∈ [f(xmax); f(xmin)]}. If so, the inverse296

function f−1 would have played the role of f . It is interesting to notice that the choice297

of the objective function represented on the horizontal axis does not impact whether the298

function characterizing the Pareto front is bilipschitz or convex. Indeed, f being bilip-299

schitz is equivalent to both f and f−1 being lipschitz. Additionally, we can prove that300

given that the function f is decreasing, f being convex is equivalent to its inverse f−1301

being convex. The proof of this property is straightforward. If f is convex, then for all302

x, y ∈ R, f
(
f−1(x)+f−1(y)

2

)
is smaller than f(f−1(x))+f(f−1(y))

2 , that is x+y
2 . Since f and303

therefore f−1 are decreasing, by composing by f−1 each side of the inequality, we obtain304

a characterization of the convexity of f−1: for all x, y ∈ R, f−1(x)+f−1(y)
2 is higher than305

f−1(x+y
2 ).306

3. Preliminary results. In this section, we present preliminary results which are307

crucial for the analysis of the convergence of HV-ISOOMOO. While they are here exposed308

as tools for convergence analysis, they are also interesting for their own sake.309

3.1. Decomposition of the optimality gap using gap regions. We introduced310

DrS in (2.3) as the region of the objective space dominating r and weakly dominated by311

S. Its Lebesgue measure is HVr(S). We now introduce total gap regions, whose Lebesgue312

measure are optimality gaps.313

Definition 3.1. The total gap region of S with respect to a fixed valid reference314

point r, GrS, is defined as the region of the objective-space which dominates r and is315

weakly dominated by PFf but not by S, namely DrPFf
\ DrS.316

When S is a subset of the Pareto front dominating the reference point r, the total gap317

region has a particular shape which can be visualized in the rightmost plot of Figure 1.318

The total gap region GrS can be decomposed into the disjoint union of |S|+ 1 sets of the319

form Dr′S′ that are formally defined below.320

Definition 3.2 (Gap regions, gaps and associated reference points). Let S =321

{v1, ..., vn} be a set of n distinct vectors of the Pareto front dominating a valid refer-322

ence point r. Let σ be the permutation ordering the vi by increasing F1 values: vσ(1),1 <323

vσ(2),1 < . . . < vσ(n),1.324

• For all i ∈ J1, n+ 1K, the i-th gap region of the set S, GrS,i, is the set DriPFf
with325

the associated reference points ri being326

r1 = (vσ(1),1, r2), rn+1 = (r1, vσ(n),2) and

ri = (vσ(i),1, vσ(i−1),2) for all i ∈ J2, nK .
(3.1)327

• We refer to GrS,1 and GrS,n+1 as the left and the right extreme gap region of S,328

respectively.329
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The left and the right extreme gap regions are empty when the left and the right extreme330

vectors of the Pareto front belong to S. Non-extreme gap regions are never empty.331

The total gap region is the disjoint union of the gap regions: GrSn = ∪̇n+1
i=1 GrSn,i. This332

decomposition of the total gap region, and thus of the optimality gap, is the cornerstone333

of the convergence analysis. The area of a gap region GrSn,i is the hypervolume of the334

Pareto front with respect to the reference point rni . As a consequence, we can write the335

optimality gap as the sum of n + 1 hypervolumes of the Pareto front with respect to336

different reference points.337

Lemma 3.3. At any iteration n, the optimality gap of a greedy set sequence with338

respect to a valid reference point can be decomposed as the sum of n+ 1 hypervolumes of339

the Pareto front:340

HVr(PFf )−HVr(Sn) =

n+1∑
i=1

HVrni
(PFf ) .(3.2)341

342

Proof. The optimality gap at iteration n is the Lebesgue measure of the total gap343

region GrSn , which is the disjoint union of the gap regions GrSn,i of Sn. Since each gap344

region GrSn,i equals Dr
n
i

PFf
, the optimality gap is equal to

∑n+1
i=1 HVrni

(PFf ).345

Additionally, we can express the hypervolume improvement of any vector to Sn as an346

hypervolume. It is immediate for vectors which do not dominate Sn. For other vectors,347

the reference point depends on the gap region to which the vector belongs.348

Lemma 3.4. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point349

r. At any iteration n, the hypervolume improvement to Sn of any u belonging to the i-th350

gap region of Sn, GrSn,i, satisfies351

HVIr(u,Sn) = HVrni
(u) .(3.3)352353

Proof. The hypervolume improvement of any u ∈ GrSn,i is the Lebesgue-measure of354

the intersection between GrSn,i and Dru. Therefore, it is equal to λ(Dr
n
i
u ), that is HVrni

(u).355

We can now reformulate the recurrence relation defining a greedy sequence at iteration356

n + 1. Indeed, picking a vector maximizing the hypervolume improvement to Sn is357

equivalent to pick a vector where the highest value of the maximum of the hypervolumes358

with respect to the rni is reached.359

Lemma 3.5. At any iteration n, the recurrence formula satisfied by vn+1, i.e. (2.6),360

can be reformulated as361

vn+1 ∈ arg max
u∈PFf

max
i∈J1,n+1K

HVrni
(u).(3.4)362

363

Proof. The hypervolume improvement of any vector u to Sn is maxi∈J1,n+1K HVrni
(u).364

It is a consequence of Lemma 3.4 and of the fact that the hypervolume with respect to rni365

is null outside the i-th gap region of Sn. Additionally, vn+1 belongs to the Pareto front366

by Proposition 2.7. Thus, (2.6) is equivalent to (3.4).367

Similarly, we can express the decrease of the optimality gap at iteration n + 1,368

HVr(Sn+1)−HVr(Sn), as the maximum of n+ 1 hypervolume maximization problems.369
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Lemma 3.6. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference point370

r. The hypervolume improvement at iteration n+ 1 equals371

HVr(Sn+1)−HVr(Sn) = max
u∈PFf

max
i∈J1,n+1K

HVrni
(u) .(3.5)372

373

Proof. The hypervolume improvement HVr(Sn+1) − HVr(Sn) is the hypervolume374

improvement of vn+1 to Sn. With the same arguments as in the proof of Lemma 3.5, we375

can prove that it equals maxu∈PFf maxi∈J1,n+1K HVrni
(u).376

3.2. Lower bound of the normalized maximum hypervolume for convex377

Pareto fronts. In this section and the next one, we provide bounds on the maximum378

hypervolume achievable by a single feasible vector normalized by the maximum hyper-379

volume of a feasible set. We refer to this ratio as the normalized maximum hypervolume380

with respect to r:381

maxu∈PFf HVr(u)

HVr(PFf )
.(3.6)382

383

Bounds on the normalized maximum hypervolume are exploited in Section 4 to provide384

bounds on the speed of convergence of the greedy set sequence towards the Pareto front.385

The hypervolume relative to a reference point r = (r1, r2) of a vector u = (x, f(x)) of386

the Pareto front is HVr(u) = (r1−x)×(r2−f(x)). From this simple formula, we derive in387

the next proposition necessary conditions for a vector of the Pareto front u∗ = (x∗, f(x∗))388

to be an hypervolume maximizer when f has at least left and right derivatives in x∗.389

Proposition 3.7. Let x∗ ∈]xmin, xmax[ such that u∗ := (x∗, f(x∗)) maximizes the390

hypervolume with respect to a valid reference point r = (r1, r2). If the function f de-391

scribing the Pareto front admits left and right derivatives in x∗, respectively f ′−(x∗) and392

f ′+(x∗), then393

−f ′+(x∗) ≤ r2 − f(x∗)

r1 − x∗
≤ −f ′−(x∗) .(3.7)394

395

Proof. We define the function HVx,r(.) as x 7→ HVr((x, f(x))). If x∗ maximizes396

HVx,r(.), then the left and the right derivatives of HVx,r(.) are positive and negative,397

respectively. By replacing the left and right derivatives of HVx,r(.) by their explicit398

formulas and reorganizing the terms we obtain (3.7).399

Equation (3.7) states that the slope of the diagonal of the rectangle Dru∗ is between the400

absolute values of the slopes of the right and the left derivatives of f at x∗, see the middle401

plot of Figure 2. To the best of our knowledge, this geometric interpretation is new. It402

becomes simpler when f is differentiable. As soon as u∗ is a non-extreme vector, the403

absolute value of the slope of the tangent of the front at u∗ is equal to the slope of the404

diagonal of the rectangle Dru∗ , see the lefthand plot of Figure 2.405

Corollary 3.8. Let x∗ ∈]xmin, xmax[ be such that u∗ := (x∗, f(x∗)) maximizes the406

hypervolume with respect to a valid reference point r = (r1, r2). If the Pareto front is407

described by a differentiable function f in x∗, then f ′(x∗) satisfies408

−f ′(x∗) =
r2 − f(x∗)

r1 − x∗
.(3.8)409

410
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Proof. It is a direct consequence of Proposition 3.7411

A convex function may not be differentiable, but it always has left and right deriva-412

tives. It is also above its left and right tangent lines respectively on the left and on the right413

of x∗. Therefore, (3.7) implies that the affine function g : x 7→ f(x∗)− r2−f(x∗)
r1−x∗ × (x−x∗)414

is a minorant of f , and thus that the hypervolume of PFf is smaller than the hypervol-415

ume of PFg := {g(x) : x ∈ [xmin, xmax]}. This upper bound on HVr(PFf ) involves the416

lengths of the rectangle Dru∗ , whose area is HVr(u
∗). It is the key idea of the proof of the417

following lower bound on the normalized maximum hypervolume.418

Proposition 3.9. If the Pareto front is described by a convex function f , then the419

following lower bound on the normalized maximum hypervolume with respect to any valid420

reference point r holds:421

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
(3.9)422

423

where the inequality is an equality if and only if the Pareto front is affine and r dominates424

the nadir point.425

Proof. The function f being convex, it has left and right derivatives and thus, so does426

HVx,r(.) : x 7→ HVr((x, f(x))). Thus, by Proposition 3.7, (3.7) holds. Since f is convex,427

(3.7) implies that the affine function g : x 7→ f(x∗) − r2−f(x∗)
r1−x∗ × (x − x∗) is a minorant428

of f . Therefore, PFg := {g(x) : x ∈ [xmin, xmax]} dominates PFf , and thus has a higher429

hypervolume.430

We note L1 := r1 − x̃min,r and L2 := r2 − f(x̃max,r) the lengths of the rectangle431

R := [x̃min,r, r1]× [f(x̃max,r), r2]. We note l1 := r1 − x∗ and l2 := r2 − f(x∗) the lengths432

of the rectangle Dru∗ . The region of R which dominates PFg is a right-angled triangle.433

Additionally, by definition, the slope of its hypotenuse is l2
l1

, and thus the lengths of the434

other sides are L1 − l1 + (L2 − l2)× l1
l2

and L2 − l2 + (L1 − l1)× l2
l1

(see the middle plot435

of Figure 2). Therefore436

HVr(PFg) = λ(R)− λ({u ∈ R2 : u ∈ R, u � PFg})437

= L1L2 −
1

2
× (L1 − l1 + (L2 − l2)× l1

l2
)× (L2 − l2 + (L1 − l1)× l2

l1
)438

= l1l2 ×
[
− 2 + 2× L2

l2
− 1

2
×
(L2

l2

)2

+ 2× L1

l1
− 1

2
×
(L1

l1

)2]
.439

440

For all x, we have (x − 2)2 ≥ 0 and thus 2x − 1
2x

2 ≤ 2. Therefore, we can conclude441

that HVr(PFg), and thus HVr(PFf ) is lower than 2× l1l2, that is 2×HVr(u
∗). If either442

L1/l1 6= 2 or L2/l2 6= 2, the inequality is strict. Thus, when the inequality is an equality,443

the center of R belongs to the Pareto front. Since f is convex, it requires from f to444

be affine and from the reference point r to dominate the nadir point (xmax, f(xmin)).445

Conversely, if the Pareto front is affine and the reference point r dominates the nadir446

point, we know that the optimum is in the middle of the Pareto front and that we have447

the equality (see [2, Theorem 5]).448

We just proved that one half is a tight lower bound on the normalized maximum449

hypervolume for convex Pareto fronts. However, except for the trivial upper bound 1,450

there is no upper bound valid for every convex Pareto front, even when r dominates the451
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u∗

Dru∗

F1

F2 r
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Dru∗

L1

L2

l1

l2

F1

F2 r

ε

ε

u∗ε

F1

F2 r

0 1

1

Fig. 2: Left and middle: Two convex Pareto fronts and their respective hypervolume
maximizers u∗, one differentiable (left) and one non-differentiable (middle). The slopes of
the two dotted lines, namely PFg and the diagonal of Dru∗ , are equal. Right: The Pareto
front PFε and the hypervolume maximizer u∗ε for ε = 1/4 and r = (1, 1).

nadir point. Here is a simple example which illustrates this. Let consider the convex452

Pareto front PFε := {max(1 − x
ε , ε − ε × x) : x ∈ [0, 1]} represented in the righthand453

plot of Figure 2 and the reference point r = (1, 1). When ε ≤ 1, PFε is convex and454

(3.8) implies that u∗ε = (ε × (1 − ε), ε × (1 − ε)) is the unique hypervolume minimizer.455

Thus, the normalized maximum hypervolume of PFε for this reference point is equal to456
(1−ε+ε2)2

1−ε×(1−ε)2+(ε−ε2)2 and converges to 1 when ε goes to 0.457

3.3. Lower and upper bounds of the normalized maximum hypervolume458

for bilipschitz Pareto fronts. In this section, we examine lower and upper bounds on459

the normalized maximum hypervolume in the case of bilipschitz Pareto fronts.460

We consider two affine fronts with the same left extreme vector as PFf and slopes461

−Lmin and −Lmax, see Figure 3. We call them PFmin and PFmax, respectively. Formally:462

PFmax := {(x, fmax(x)) : x ∈ [xmin, xmax]},(3.10)463

PFmin := {(x, fmin(x) : x ∈ [xmin, xmax]}(3.11)464465

with fmin(x) = f(xmin) − (x − xmin) × Lmin and fmax(x) = f(xmin) − (x − xmin) ×466

Lmax. For a (Lmin,Lmax)-bilipschitz function f , fmin(x) ≤ f(x) ≤ fmax(x) for x ∈467

[xmin, xmax], and thus the Pareto front is dominated by PFmax and dominates PFmin.468

These two affine fronts provide bounds on both the hypervolume of the Pareto front469

and the highest hypervolume of a vector on the Pareto front. They are key to prove470

the following lower bound on the normalized maximum hypervolume of a (Lmin,Lmax)-471

bilipschitz Pareto front.472

Proposition 3.10. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-473

tion f , then the following bound on the normalized maximum hypervolume with respect to474

any valid reference point r holds475

maxu∈PFf HVr(u)

HVr(PFf )
≥ 1

2
× Lmin

Lmax
.(3.12)476

477

Proof. The fronts PFmax and PFmin are defined respectively in (3.10) and (3.11).478

We note ∆1 := x̃max,r − x̃min,r, ∆′1 := r1 − x̃max,r, ∆2 := r2 − f(x̃min,r) and V :=479
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PFmax

Lmax ×∆1

PFmin

Lmin ×∆1

∆1

∆2

∆′1

F1

F2 r

PFmax

Lmax ×∆1

PFmin

Lmin ×∆1

∆1

F1

F2 r

Fig. 3: The Pareto front PFf surrounded by PFmax and PFmin in the case where the
reference point r does not dominate the nadir point (left) and in the case where it does
(right).

∆2 × (r1 − x̃min,r), see the lefthand plot of Figure 3. Since the front PFmax dominates480

the Pareto front, the hypervolume of PFf is smaller than the hypervolume of PFmax,481

V + Lmax × ∆1 × ∆′1 + 1
2 × Lmax × ∆2

1. Since each vector of PFmin is dominated by a482

vector of PFf , the maximum hypervolume of a vector of PFf is higher than the maximum483

hypervolume of a vector of PFmin. The front PFmin being an affine and therefore convex484

front, we know by Proposition 3.9 that the maximum hypervolume of a vector of PFmin is485

higher than half of HVr(PFmin), which is equal to 1
2×(V +Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1) .486

To summarize, the maximum hypervolume of a vector of PFf is higher than 1
2×(V+Lmin×487

∆1×∆′1+ 1
2×Lmin×∆2

1). Combining the upper bound on the hypervolume of PFf and the488

lower bound on the maximum hypervolume of a vector of PFf , the normalized maximum489

hypervolume is higher than
1
2×(V+Lmin×∆1×∆′1+ 1

2×Lmin×∆2
1)

V+Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. This quantity is itself larger490

than 1
2 ×

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
. As V ≥ 0 and 0 <

Lmin×∆1×∆′1+ 1
2×Lmin×∆2

1

Lmax×∆1×∆′1+ 1
2×Lmax×∆2

1
< 1, we491

conclude that the normalized maximum hypervolume is higher than 1
2 ×

Lmin

Lmax
.492

We cannot guarantee any upper bound strictly inferior to 1 on the normalized maximum493

hypervolume without adding an assumption on the reference point. Indeed, for a given494

bounded Pareto front, it is easy to show that the normalized maximum hypervolume goes495

to 1 when r → ∞. However, if f is (Lmin,Lmax)-bilipschitz and r dominates the nadir496

point, we can prove that the normalized maximum hypervolume is higher than 1
2 ×

Lmax

Lmin
.497

The proof relies on the fact that if the reference point dominates the nadir point, the498

vector of an affine front with the highest hypervolume is its middle (see [2, Theorem 5]),499

whose hypervolume is half of the hypervolume of the entire front.500

Proposition 3.11. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz func-501

tion f and the reference point r is valid and dominates the nadir point, the following502

upper-bound on the normalized maximum hypervolume with respect to r holds503

maxu∈PFf HVr(u)

HVr(PFf )
≤ 1

2
× Lmax

Lmin
.(3.13)504

505
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Proof. We use the same notations as in the proof of Proposition 3.10. Since r domi-506

nates the nadir point, both ∆′1, ∆2 and V equal 0, and thus the hypervolumes of PFmax507

and PFmin equal 1
2 × Lmax × ∆2

1 and 1
2 × Lmin × ∆2

1, respectively. The domination of508

PFmin by PFf implies that the hypervolume of the Pareto front is below 1
2 ×Lmin ×∆2

1.509

Since PFmax is an affine front whose extremes dominate r, its middle is the unique hyper-510

volume maximizer (see [1, Theorem 5]) with an hypervolume equal to 1
4 ×Lmax×∆1.The511

domination of PFf by PFmax implies that the maximum hypervolume of a vector of PFf512

is higher than 1
4 × Lmax ×∆2

1. Gathering the lower bound on HVr(PFf ) and the upper513

bound on the maximum hypervolume of a vector of PFf , we retrieve (3.13).514

This upper bound is only relevant for Lmax/Lmin < 2. The bound is the tightest for515

Lmax = Lmin, where it achieves the value 1/2. In this paper, we use this upper bound for516

Lmax/Lmin close to 1 to analyze the asymptotic convergence behavior of HV-ISOOMOO.517

4. Convergence of HV-ISOOMOO under perfect singleobjective optimiza-518

tion. We prove in this section various convergence results for HV-ISOOMOO algorithms519

under the assumption of perfect singleobjective optimization. We first prove that when520

the Pareto front is either convex or bilipschitz, these algorithms converge to the entire521

Pareto front with guaranteed convergence-speed. We transform the bounds on the nor-522

malized maximum hypervolume proven in Section 3 into lower bounds on the convergence523

speed. Second, we analyze the asymptotic convergence behavior when the Pareto front is524

bilipschitz with a Hölder continuous derivatives.525

To analyze the decrease of the optimality gap with respect to n, we need to be able to526

track in which gap regions the vectors of the greedy sequence are inserted over multiple527

iterations. Naturally, a gap region of Sn persists in being a gap region in the following528

iterations, as long as no greedy vector is added in this specific gap region. The greedy529

vector vn+1 is said to fill the gap region of Sn to which it belongs. At iteration n + 1,530

this gap region disappears, replaced by two gap regions that we call its children. More531

generally, we say that a gap region is a descendant of another gap region when it is a532

proper subset of this gap region.533

4.1. Convergence of HV-ISOOMOO with guaranteed convergence speed.534

We prove some upper bounds on the relation between the optimality gap at iteration535

2n + 1 and at iteration n. These bounds translate into lower bounds on the speed of536

convergence of HV-ISOOMOO with perfect singleobjective optimization. The proof relies537

on inequalities of the form538

max
u∈PFf

HVr′(u) ≥ C ×HVr′(PFf )(4.1)539
540

stated in Propositions 3.9 and 3.10 and on the reformulation of optimality gaps, areas541

of gap regions and hypervolume improvement done in Subsection 3.1. A consequence of542

(4.1) being true for any reference point r′ is that the optimality gap at iteration 2n + 1543

is at most (1− C) times the optimality gap at iteration n.544

We sketch the proof idea in the simple case where each of the vk (k ∈ Jn+ 1, 2n+ 1K)545

is inserted in a distinct gap region of Sn, see the lefthand plot of Figure 4. Inserting vk in546

a gap region leads to an hypervolume improvement larger than C times the area of this547

gap region by (4.1). Thus, the hypervolume improvement from iteration n to 2n + 1 is548

larger than C times the area of the union of all gap regions of Sn, namely the optimality549

gap at iteration n. A detailed proof is presented after the theorem statement.550
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Fig. 4: Left: A Pareto front where each of the gap regions of S3 is filled by one of the greedy
vectors vk for k ∈ J4, 7K. It is described by f(x) = 1 −

√
x for x ∈ [0, 1]. We represent

the region DrS3 , the regions corresponding to HVIr(vk,Sk−1) for k ∈ J4, 7K and the
gap regions of S3 . Right: The ordered greedy set along F1-values wni,r corresponding
to the greedy set S3. The Pareto front is described by f(x) = e

e−1 × e
−x + 1 − e

e−1 for
x ∈ [0, 1].

Proposition 4.1. Consider a biobjective optimization problem where the Pareto front551

is described by a function f . Any greedy set sequence (Sn)n∈N∗ associated to a valid ref-552

erence point r satisfies for all n553

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1− 1

2
× Lmin

Lmax
if f is (Lmin,Lmax)-bilipschitz and(4.2)554

HVr(PFf )−HVr(S2n+1)

HVr(PFf )−HVr(Sn)
≤ 1

2
if f is convex.(4.3)555

556

Proof. Fix n ≥ 1. We note σ a permutation of J1, n + 1K such that n + σ(i) is the557

index of the first greedy vector vk inserted in GrSn,i when possible. With this choice of σ,558

the i-th gap region of Sn is a gap region of Sn+σ(i)−1. As a consequence, the hypervolume559

improvement to Sn+σ(i)−1 of any vector u belonging to the i-th gap region of Sn is equal560

to HVrni
(u) by (3.3). The hypervolume improvement of the greedy vector vn+σ(i) to561

Sn+σ(i)−1 being maximal, it is in particular larger than the one of any vector of GrSn,i,562

the i-th gap region of Sn, and thus than 1
2 ×

Lmin

Lmax
× HVrni

(PFf ) by Proposition 3.10.563

In other words, the hypervolume improvement at any iteration n + σ(i) is higher than564
1
2 ×

Lmin

Lmax
× HVrni

(PFf ). By adding these inequations for all i ∈ J1, n + 1K, we deduce565

that the hypervolume improvement from iteration n to 2n+ 1 is larger than 1
2 ×

Lmin

Lmax
×566 ∑n+1

i=1 HVrni
(PFf ). Since the sum of the HVrni

(PFf ) is the optimality gap at iteration567

n, we have (4.2). If f is convex instead of bilipschitz, we use Proposition 3.9 instead of568

Proposition 3.10 and obtain (4.3).569

Since the optimality gaps form a decreasing sequence, such lower bounds on the relation570

between the optimality gaps at iteration 2n+1 and at iteration n imply that the optimality571

gap associated to a greedy set sequence converges asymptotically to 0. Equivalently, HV-572

ISOOMOO algorithms converge to the entire Pareto front under Assumption 2.4, as stated573

formally below.574
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Theorem 4.2. Consider a biobjective optimization problem with a Pareto front de-575

scribed by a bilipschitz or convex function f .576

The hypervolume of a greedy set sequence associated to a valid reference point r con-577

verges to the hypervolume of the entire Pareto front, i.e. HVr(Sn) −−−−→
n→∞

HVr(PFf ).578

Equivalently, for such Pareto fronts and under Assumption 2.4 of perfect singleob-579

jective optimization, HV-ISOOMOO algorithms associated to a valid reference point r580

converge to the Pareto front in the sense of Definition 2.3.581

From the lower bounds on the relation between the optimality gaps at iteration 2n + 1582

and at iteration n, we deduce the following upper bounds on the normalized optimality583

gap at any iteration.584

Corollary 4.3. Consider a biobjective optimization problem with a Pareto front585

described by a (Lmin,Lmax)-bilipschitz function. A greedy set sequence (Sn)n∈N∗ associated586

to a valid reference point r satisfies for all n587

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(

1− 1

2
× Lmin

Lmax

)blog2(n+1)c
≤ (2n+ 2)log2(1− 1

2×
Lmin
Lmax

) .(4.4)588
589

If the function f is convex, then any greedy set sequence associated to a valid reference590

point r satisfies for all n591

HVr(PFf )−HVr(Sn)

HVr(PFf )
≤
(1

2

)blog2(n+1)c
≤ 1

2n+ 2
.(4.5)592

593

Consequently, under Assumption 2.4 of perfect singleobjective optimization, HV-ISOOMOO594

algorithms relative to a valid reference point r satisfy (4.4) if f is (Lmin,Lmax)-bilipschitz595

and (4.5) if f is convex where Sn is replaced by In, the final incumbents Pareto front596

approximation at iteration n.597

Proof. The k-th term of the sequence defined by u0 = 1 and un+1 = 2 × un + 1 for598

all n ≥ 1 is 2k − 1. Thus, (4.2) and (4.3) imply that when f is (Lmin,Lmax)-bilipschitz or599

convex, the normalized optimality gap at iteration 2k − 1 is inferior to (1 − C)k with C600

equal to 1
2 ×

Lmin

Lmax
and 1

2 , respectively. Since the hypervolume of the greedy set increases601

with n, and thus the optimality gap decreases with n, we deduce the first inequalities in602

(4.4) and (4.5) via the change of variable k = blog2(n+ 1)c.603

Additionally, for every n, blog2(n+1)c is smaller than log2(n+1)+1, that is log2(2n+604

2). For every C, log2(2n+ 2) equals logC(2n+ 2)× log2(C), and thus C log2(2n+2) equals605

(2n + 2)log2(C). Therefore, we can infer that (2n + 2)log2(C) is an upper bound of the606

normalized optimality gap with C := 1 − 1
2 ×

Lmin

Lmax
and C := 1

2 when f is (Lmin,Lmax)-607

bilipschitz and convex, respectively.608

We focus here on the relation between the optimality gap at iteration n and at609

iteration 2n+ 1. We could similarly examine the relation between the optimality gap at610

iteration n and at any later iteration. For example, we could prove that if f is (Lmin,Lmax)-611

bilipschitz, then for all n, for all k ≤ n + 1,
HVr(PFf )−HVr(Sn+k)
HVr(PFf )−HVr(Sn) is lower than 1 − 1

2 ×612

Lmin

Lmax
× k

n+1 .613

Sketch of proof. We consider the k gap regions of Sn with the highest areas. The614

hypervolume improvement from iteration n to n+k is at least 1
2 ×

Lmin

Lmax
times the area of615

the union of these gap regions, which is at least k
n+1 times the optimality gap at iteration616

n.617
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4.2. Asymptotical behavior of the convergence of HVr(Sn) to HVr(PFf ).618

In this section, we analyze the asymptotic convergence behavior for a Pareto front de-619

scribed by a bilipschitz function with a Hölder continuous derivative. We prove that, in620

this case, doubling the number of vectors in the greedy set divides the optimality gap by a621

factor which converges asymptotically to two as stated in Theorem 4.10. This asymptotic622

limit corresponds to the case of affine Pareto fronts with a reference point dominating623

the nadir point. Indeed, for such Pareto fronts and reference points, the optimality gap624

is always halved when the number of vectors in the greedy set goes from n to 2n+ 1, see625

Figure 5.626

First, we study the properties of the part of the Pareto front corresponding to a627

specific gap region of Sn. For all n, let note σn the permutation of J1, nK which orders the628

vectors of Sn by increasing F1-values and the so-called ordered greedy set along F1-values:629

wni,r := vσn(i),1 for i ∈ J1, nK(4.6)630

wn0,r := x̃min,r and wnn+1,r := x̃max,r .(4.7)631632

Naturally, we have wn0,r ≤ wn1,r ≤ . . . ≤ wnn+1,r, and the intervals [wni−1,r, w
n
i,r[ for633

i ∈ J1, n + 1K form a partition of [x̃min,r, x̃max,r[, see the righthand plot of Figure 4.634

The interval [wni−1,r, w
n
i,r] corresponds to the part of the Pareto front dominating rni , the635

reference point associated to the i-th gap region of Sn. When the Pareto front is bilip-636

schitz, the lengths of these intervals converge asymptotically to 0 as stated in the next637

lemma. It is a direct consequence of the convergence of HVr(Sn) to HVr(PFf ) stated in638

Theorem 4.2.639

Lemma 4.4. If the Pareto front is described by a bilipschitz function f and the greedy640

set sequence is associated to a valid reference point r, then the ordered greedy set along641

F1-values satisfy maxi∈J1,n+1K w
n
i,r − wni−1,r −−−−→n→∞

0 with the wni,r defined in (4.7).642

Proof. Let Lmin and Lmax be constants such that f is (Lmin,Lmax)-bilipschitz. The643

area of the i-th gap region of Sn is
∫ wni,r
wni−1,r

(f(x) − f(wni,r))dx. This is larger than644 ∫ wni,r
wni−1,r

Lmin × (wni,r − x)dx, which equals 1
2 × Lmin × (wni,r − wni−1,r)

2. Since the area645

of any gap region of Sn is inferior to the optimality gap at iteration n, this implies that646

the difference wni,r − wni−1,r is inferior to
√

2× (HVr(PFf )−HVr(Sn)) for all n, for all647

i ∈ J1, n+1K. Therefore, the convergence of HVr(Sn) to HVr(PFf ) stated in Theorem 4.2648

implies that the maximum over i of wni,r − wni−1,r converges to 0.649

We prove in the next lemma that if the Pareto front is described by a bilipschitz func-650

tion with a Hölder continuous derivative, then the restriction of this function associated651

to a gap region of Sn is bilipschitz for some constants whose ratio converges asymptoti-652

cally to 1. Linear functions being the only functions to be (Lmin,Lmax)-bilipschitz with653

Lmin/Lmax = 1, it supports the interpretation that for such Pareto fronts, the conver-654

gence of the greedy set sequence is asymptotically similar as if they were affine Pareto655

fronts.656

When the function describing the Pareto front is bilipschitz, its restriction to the part657
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of the Pareto front dominating rni , that is [wni−1,r, w
n
i,r], is (Li,nmin,Li,nmax)-bilipschitz with658

(4.8)

Li,nmin := inf

ß∣∣∣f(x)− f(y)

x− y

∣∣∣, x, y ∈ [wni−1,r, w
n
i,r], x 6= y

™
and

Li,nmax := sup

ß∣∣∣f(x)− f(y)

x− y

∣∣∣, x, y ∈ [wni−1,r, w
n
i,r], x 6= y

™
.

659

At iteration n, the ratio between Li,nmax and Li,nmin, the bilipschitz constants on the i-th660

gap region of Sn, is by definition smaller than661

qn := max

®
Li,nmax

Li,nmin

, i ∈ J1, n+ 1K : [wni−1,r, w
n
i,r] 6= ∅

´
.(4.9)662

663

The proof of the convergence of qn to 1 relies on the fact that a derivable function can664

be approximated locally by an affine function. The quality of this approximation is665

guaranteed by the Hölder continuity of the derivative.666

Lemma 4.5. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference667

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous668

derivative, then qn defined in (4.9) converges asymptotically to 1.669

Proof. We take α such that f ′ is Hölder continuous with exponent α, i.e f is C1,α,670

and Lmin, Lmax > 0 such that the function f describing the Pareto front is (Lmin,Lmax)-671

bilipschitz. We recall that f is decreasing, and thus for all x < y, we have f(x)−f(y) ≥ 0.672

Since f is C1,α and therefore C1, the Taylor formula with Lagrange remainder states that673

for all x < y, there exists ξ ∈ [x, y] such that f(y) = f(x)+(y−x)×f ′(ξ). Since f is C1,α,674

this implies that for all x < y, |f(y)− f(x)− (y−x)× f ′(x)| ≤ (y−x)1+α× [f ′]Cα . Thus,675
f(y)−f(x)

x−y is lower than −f ′(x) + [f ′]Cα × (y − x)α. We now restrict ourselves to x and676

y belonging to the non-empty interval [wni−1,r, w
n
i,r]. Our goal is to find an upper bound677

depending on i but not on either x or y. Since f is C1,α, the difference between −f ′(x)678

and −f ′(wni−1,r) is lower than [f ′]Cα × (x−wni−1,1,r)
α, and thus [f ′]Cα × (wni,r−wni−1,r)

α .679

Additionally, the difference between x and y is lower than wni,r−wni−1,r. We conclude that680

for x, y ∈ [wni−1,r, w
n
i,r],

f(y)−f(x)
x−y is lower than −f ′(wni−1,1,r) + 2[f ′]Cα × (wni,r −wni−1,r)

α,681

and thus so is Li,nmax defined in (4.8).682

Following the same approach, we can also infer that Li,nmax defined in (4.8) is greater683

than the symmetric quantity −f ′(wni−1,1,r) − 2[f ′]Cα × (wni,r − wni−1,r)
α. The quantity684

−f ′(wni−1,1,r) is greater than Lmin and (wni,r−wni−1,r)
α is smaller than maxi∈J1,n+1K(w

n
i,r−685

wni−1,r)
α. As a consequence, qn is lower than

Lmin+2[f ′]Cα×maxi∈J1,n+1K(wni,r−w
n
i−1,r)α

Lmin−2[f ′]Cα×maxi∈J1,n+1K(wni,r−wni−1,r)α . By686

Lemma 4.4, maxi∈J1,n+1K w
n
i,r − wni−1,r converges to 0 and thus, this upper bound on qn687

converges to 1. By definition, qn is always higher than 1, and thus converges to 1.688

A consequence of the previous lemma is that the bounds on the normalized hypervolume689

improvement of vn+1 to Sn that we can infer from Propositions 3.10 and 3.11 converge690

asymptotically to 1/2, see (4.10). Similarly, the bounds on the normalized area of the691

child of a gap region that we can infer from Lemma A.2 converge to 1/4, see (4.11). These692

asymptotic values correspond to the case of an affine Pareto front with a reference point693

dominating the nadir point, see Figure 5.694
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Fig. 5: The three greedy sets S1 (left), S2 (middle) and S3 (right) and their gap regions
for an affine Pareto front with a reference point r dominating the nadir point (1, 1). The
area of the gap regions of S1 are half of HVr(PFf ) (left). The area of the new gap regions
of S2 is a quarter of the area of their parents (middle). The optimality gap of S3 (right)
is half of the optimality gap of S1.

Lemma 4.6. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference695

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous696

derivative, then for all ε > 0, for n large enough, for every non-empty gap region GrSn,i697

and every child GrSm,j of GrSn,i, we have698

1

2
× (1− ε) ≤

maxu∈GrSn,i HVIr(u,Sn)

λ(GrSn,i)
≤ 1

2
× (1 + ε) and(4.10)699

1

4× (1 + ε)
≤
λ(GrSm,j)
λ(GrSn,i)

≤ 1

4× (1− ε)
.(4.11)700

701

Proof. The set of the first coordinates of the vectors of the Pareto front which dom-702

inate rni is the interval [wni−1,r, w
n
i,r]. The restriction to [wni−1,r, w

n
i,r] of the function f703

describing the Pareto front is (Lmin,Lmax)-bilipschitz for some Lmin and Lmax such that704
Lmax

Lmin
= qn with qn defined in (4.9). Additionally, as stated in Proposition B.2, for n large705

enough, all the rni corresponding to non-empty gap regions dominate the nadir point.706

It allows us to apply both Lemma A.2 and Proposition 3.11 to such gap regions. By707

Propositions 3.10 and 3.11,
maxu∈PFf

HVrn
i

(u)

HVrn
i

(PFf ) is between 1
2 ×

1
qn

and 1
2 × qn.708

Additionally, by Lemma A.2,
λ(GrSm,j)

HVrn
i

(PFf ) is between
1− 1

2×qn
1+q2n

and
1− 1

2×
1
qn

1+ 1
q2n

. The maxi-709

mum over the vectors u belonging to the Pareto front of HVrni
(u) is equal to the maximum710

over u belonging to the i-th gap region of Sn of HVIr(u,Sn). Indeed, HVrni
(.) is null for711

vectors outside the i-th gap region of Sn while it is nonnegative, equal to HVIr(.,Sn),712

otherwise. Additionally, HVrni
(PFf ) equals λ(GrSn,i). The convergence of qn to 1 stated713

in Lemma 4.5 imply that the bounds proven so far converge to a half and a quarter,714

respectively. Thus, we have (4.10) and (4.11) for n large enough.715

The following lemma states that for n large enough, the area of two non-empty gap regions716

relative to the same greedy set cannot be too different. More precisely, the area of any717

gap region of Sn cannot be more than 4×(1+o(ε)) times greater than the area of another718

gap region of Sn. The proof relies on considering the parents of the gap regions.719
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Lemma 4.7. We consider a greedy set sequence (Sn)n∈N∗ relative to a valid reference720

point r. If the Pareto front is described by a bilipschitz function with a Hölder continuous721

derivative, then for all ε > 0, for n large enough and for any non-empty gap regions of722

Sn, GrSn,i and GrSn,j with i, j ∈ J1, n+ 1K, we have723

λ(GrSn,i)
λ(GrSn,j)

≤ 4× (1 + ε)2

1− ε
.(4.12)724

725

Proof. Fix ε > 0. By Lemma 4.6, there exists N1 ∈ N∗ such that for all n greater than726

N1, (4.10) and (4.11) are verified for any non-empty gap region of Sn and its children.727

Since maxi∈J1,n+1K w
n
i,r−wni−1,r converges to 0 by Lemma 4.4, every non-empty gap region728

is filled at some point. Take N2 such that all the non-empty gap regions of SN1
are filled729

at iteration N2. For all n greater than N2, (4.10) and (4.11) are true for any non-empty730

gap region of Sn and its children, but also for its parents.731

Take n ≥ N2. We note G1 := GrSn,i and G2 := GrSn,j two distinct non-empty gap regions732

of Sn, and P1 and P2 their respective parents. When two sets correspond to gap regions733

relative to the same greedy set Sm, we say that they cohabit at iteration m. Since only734

one vector is added to Sn at a time, the cohabitation of G1 and G2 implies that either G1735

and P2 or G2 and P1 cohabit at some earlier iteration. In the first case, there necessarily736

exists m ≥ N2 such that P2 and G1 are gap regions relative to Sm and vm+1 belongs737

to P2, otherwise, G1 and G2 would not cohabit. By (4.10), the maximum hypervolume738

improvement to Sm of a vector of G1 and of a vector of P2 are at least 1
2 × (1− ε)×λ(G1)739

and at most 1
2 × (1 + ε)× λ(P2), respectively. Since a vector of P2, vm+1, maximizes the740

hypervolume improvement to Sm, we have λ(G1)× 1
2 × (1− ε) ≤ λ(P2)× 1

2 × (1+ ε). Since741

λ(P2) is lower than 4× (1 + ε) times the area of its child λ(G2) by (4.11), this inequality742

implies (4.12). In the second case, P2 is filled before P1. Thus, there exists m ≥ N2 such743

that P1 and P2 cohabit at iteration m and vm+1 belongs to P2. Since the area of P1 is744

higher than the one of its child G1, the hypervolume improvement of vm+1 to Sm is still745

higher than 1
2 × (1− ε)× λ(G1). The rest of the argumentation remains valid.746

We now have all the results needed to analyze the asymptotic impact of doubling the747

number of points in the greedy set. To prove the following asymptotic upper bound,748

we rely on similar arguments as for its nonasymptotic counterpart, Proposition 4.1. The749

previous lemma guarantees that the impact of doubling the number of points in the greedy750

set is asymptotically similar to the impact of passing from n points to 2n+ 1.751

Proposition 4.8. Let (Sn)n∈N∗ be a greedy set sequence relative to valid reference752

point r. If the Pareto front is described by a bilipschitz function f with a Hölder continuous753

derivative, then for all ε > 0, we have for n large enough754

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≤ 1

2
+ o(ε).(4.13)755

756

Proof. Fix ε > 0. Fix n large enough to verify (4.10) and (4.12) for this particular ε.757

Let σ be a permutation of J1, n + 1K such that the i-th gap region of Sn is filled by758

vn+σ(i) when it is filled before iteration 2n + 1. With this choice of permutation, GrSn,i759

is always a gap region of Sn+σ(i)−1. Thus, HVIr(vn+σ(i),Sn+σ(i)−1) is superior to the760

maximum hypervolume improvement of a vector of GrSn,i to Sn+σ(i)−1, which is superior761

to 1
2×(1−ε)×λ(GrSn,i) by (4.10). It is equivalent to say that the hypervolume improvement762
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at iteration n + σ(i) is higher than 1
2 × (1 − ε) × λ(GrSn,i). Summing over i ∈ J1, n + 1K,763

we obtain that the hypervolume improvement between iteration n and 2n + 1 is higher764

than the sum over i of 1
2 × (1− ε)× λ(GrSn,i), that is 1

2 × (1− ε) times the optimality gap765

at iteration n.766

Now, we need to bound the hypervolume improvement at iteration 2n + 1, that is767

HVIr(v2n+1,S2n). It is lower than 1
2×(1+ε)×maxi∈J1,2n+1K λ(GrS2n,i) by (3.4) and (4.10).768

Since the area of a gap region is lower than the one of its parent, the maximum area of769

a gap region is lower at iteration 2n than at iteration n. The maximum area of one of770

the more than n− 1 gap regions of Sn is lower than 1
n−1 ×

4×(1+ε)2

1−ε times the optimality771

gap at iteration n by (4.12). To summarize, the hypervolume improvement at iteration772

2n+ 1 is lower than 2×(1+ε)3

(n−1)×(1−ε) times the optimality gap at iteration n.773

We conclude that the relation between the optimality gap at iteration 2n and at774

iteration n is lower than 1− 1
2 × (1− ε) + 1−ε

2×(n−1) .775

We broadly follow the same approach to obtain the following asymptotic lower bound on776

the impact of doubling the number of points in the greedy set. Lemmas 4.6 and 4.7 are777

key to prove a lower bound on the hypervolume improvement at iteration k. They allow778

to prove that filling a gap region of Sn more than once gives, up to a factor 1 + o(ε), a779

lower hypervolume improvement than filling a gap region which was not filled. Indeed,780

the area of a descendant of a gap region of Sn is at most 1
4 + o(ε) times the area of its781

parent by Lemma 4.6, which is itself at most 4 + o(ε) times the area of any other gap782

region of Sn by Lemma 4.7.783

Proposition 4.9. Let (Sn)n∈N∗ be a greedy set sequence relative to a valid reference784

point r. If the Pareto front is desribed by a bilipschitz function f with a Hölder continuous785

derivative, then for all ε > 0, we have for n large enough786

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
≥ 1

2
+ o(ε).(4.14)787

788

Proof. Fix ε > 0. Fix n large enough to verify (4.10), (4.11) and (4.12) for this789

particular ε. Let δ ∈ {−1, 0, 1} be such that Sn has n + δ non-empty gap regions. Let790

i0 := 1 when the left extreme gap region is empty and i0 := 0 otherwise.791

Let σ be a permutation of J1, n + δK such that the i-th non-empty gap region of792

Sn, GrSn,i0+i, is filled by the vector vn+σ(i) when it is filled before iteration 2n + δ. We793

distinguish two cases. In the first case, vn+σ(i) is the child of the i-th non-empty gap794

region of Sn, and consequently its hypervolume improvement to Sn+σ(i)−1 is at most795
1
2 × (1 + ε) × λ(GrSn,i0+i) by (4.10). In the second case, vn+σ(i) belongs to GrSn,i0+j , the796

j-th non-empty gap region of Sn, with j 6= i and, by definition of σ, fills a descendant of797

this gap region not GrSn,i0+j itself. By (4.10), the hypervolume improvement of vn+σ(i) to798

Sn+σ(i)−1 is still at most 1
2 × (1 + ε) times the area of the gap region it fills. By (4.11),799

the area of a descendant of GrSn,i0+j is smaller than 1
4×(1−ε) times the area of its ancestor.800

By (4.12), we also know that the area of the i-th non-empty gap region of Sn is at most801

4× (1+ε)2

1−ε times the area of any other gap region of Sn, in particular its i-th non-empty802

gap region. We conclude that the hypervolume improvement of vn+σ(i) to Sn+σ(i)−1 is803

lower than 1
2 ×

(1+ε)3

(1−ε)2 × λ(GrSn,i0+i). To summarize, since 1 + ε is lower than (1+ε)3

(1−ε)2 , the804

hypervolume improvement at any iteration n + σ(i) is lower than 1
2 ×

(1+ε)3

(1−ε)2 × λ(GrSn,i).805
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Summing over i ∈ J1, n + δK, the hypervolume improvement from iteration n to 2n + δ806

is lower than 1
2 ×

(1+ε)3

(1−ε)2 times the sum over i of λ(GrSn,i), that is the optimality gap at807

iteration n.808

Now, it is left to prove an upper bound on HVr(S2n)−HVr(S2n+δ). This quantity is809

the highest for δ = −1, where it is simply the hypervolume improvement at iteration 2n.810

As in the previous proof, it is lower than 1+ε
2×(n−1) times the optimality gap at iteration811

n. Therefore, the relation between the optimality gap at iteration 2n and at iteration n812

is higher than 1− 1
2 ×

(1+ε)3

(1−ε)2 −
1+ε

2×(n−1) .813

We combine the lower and upper asymptotic bounds to obtain the following theorem.814

Theorem 4.10. Consider a biobjective optimization problem and a greedy set se-815

quence (Sn)n∈N∗ relative to a valid reference point r. If the Pareto front is described by a816

bilipschitz function f with a Hölder continuous derivative, we have817

HVr(PFf )−HVr(S2n)

HVr(PFf )−HVr(Sn)
−−−−→
n→∞

1

2
.(4.15)818

819

Consequently, for such Pareto front and reference point and under Assumption 2.4 of820

perfect singleobjective optimization, HV-ISOOMOO algorithms relative to r satisfy (4.15)821

where Sn is replaced by In, the final incumbents Pareto front approximation at iteration822

n.823

5. Conclusion. We prove that HV-ISOOMOO algorithms coupled with a singleob-824

jective optimizer converge in O(1/n) on convex Pareto fronts and in O(1/nc) on bilipschitz825

Pareto fronts with c ≤ 1 depending on the bilipschitz constants where n is the number of826

meta-iterations. Each meta-iteration corresponds to a singleobjective optimization run.827

Both bounds are tight over the class of Pareto fronts and reference points considered. In-828

deed, they are reached for affine Pareto fronts and reference points dominating the nadir829

point. On convex Pareto fronts, the highest achievable convergence-speed is reached830

[15]. It shows that greedily adding points maximizing the hypervolume contribution as in831

HV-ISOOMOO algorithms is an effective way to quickly increase the hypervolume. Ad-832

ditionally, we prove that for bilipschitz Pareto fronts with a Hölder continuous derivative,833

asymptotically, doubling the number of meta-iterations halves the optimality gap. This834

asymptotic behavior resembles what we would observe with an affine Pareto front and a835

reference point dominating the nadir point. Beware that this does not guarantee a rate of836

convergence in Θ(1/n). For example, the sequences ( log(n)
n )n∈N∗ and ( 1

n×log(n) )n∈N∗ both837

verify this property. The convergence rate on nonconvex Pareto fronts could theoretically838

be slower than Θ(1/n), but not faster by [15].839

Appendix A. Normalized areas of the gap regions relative to an hypervol-840

ume maximizer. The goal of this section is to prove bounds on the normalized areas of841

the gap regions Gu∗left and Gu∗right relative to an hypervolume maximizer u∗ = (x∗, f(x∗)) (see842

the lefthand plot of Figure 6) in the case of a bilipschitz Pareto front and of a reference843

point r dominating the nadir point. These bounds are stated in Lemma A.2.844

We exploit the bounds on the normalized maximum hypervolume proven in Subsec-845

tion 3.3 and the following lower and upper bounds on the relation between λ(Gu∗left) and846

λ(Gu∗right).847
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Fig. 6: Illustration of elements of the proofs of Proposition A.1 in the case r1 ≤ xmax

(left and middle) and of Lemma B.1 (right). The Pareto front is described by f(x) =
e
e−1 × e

−x + 1− e
e−1 for x ∈ [0, 1]. Left: the gap regions Gu∗left and Gu∗right with a segment of

slope −Lmin passing through u∗. Middle: the hypervolume improvements HVIr(u
∗, uε)

and HVIr(uε, u
∗) . Right: the hypervolume improvement HVIr(umin, u) and its

counterpart HVIr(u, umin) where u is a vector of the Pareto front which dominates r.

Proposition A.1. We assume that the Pareto front is described by a (Lmin,Lmax)-848

bilipschitz function f . Let u∗ be a non-extreme vector of the Pareto front which maximizes849

the hypervolume with respect to a valid reference point r. If r1 ≤ xmax, we have λ(Gu∗right) ≥850

L2
min

L2
max
× λ(Gu∗left). If r2 ≤ f(xmin), we have λ(Gu∗left) ≥

L2
min

L2
max
× λ(Gu∗right).851

Proof. We consider the case where r1 ≤ xmax. We note L1 := r1 − x∗ and L2 :=852

r2−f(x∗) the lengths of the sides of the rectangle Dru∗ . For all x, y ∈ [xmin, xmax], we have853

|f(x)− f(y)| ≥ Lmin× |x− y|. Additionally, since r1 ≤ xmax, the segment [x∗, x∗+L1] is854

included in [xmin, xmax]. As a consequence, the section of the Pareto front on the right of855

u∗ dominates the segment between u∗ and u∗ + L1 × (1,−Lmin), see the lefthand plot of856

Figure 6. Therefore, λ(Gu∗right) is larger than the area of the region of the objective space857

dominated by this segment, not dominated by u∗ and dominating r, that is 1
2×Lmin×L2

1.858

For all x, y ∈ [xmin, xmax], we also have |f(x) − f(y)| ≤ Lmax × |x − y|. Therefore, the859

part of the Pareto front on the left of u∗ is dominated by the segment between u∗ and860

u∗ + L2 × (− 1
Lmin

, 1), and λ(Gu∗left) is lower than 1
2 ×

1
Lmin

× L2
2. We have yet to prove a861

lower bound on L1

L2
. The vector u∗ being different from umin, for ε > 0 small enough, the862

vector uε := (x∗ − ε, f(x∗ − ε)) belongs to the Pareto front. As we can see in the middle863

plot of Figure 6, HVIr(u
∗, uε) is lower than L1×Lmax× ε and HVIr(uε, u

∗) is higher than864

ε × (L2 − ε × Lmax). Additionally, u∗ being an hypervolume maximizer, HVIr(u
∗, uε) is865

higher than HVIr(uε, u
∗), and thus L1 × Lmax ≥ L2 − ε × Lmax for all ε > 0. Taking866

the limit of this inequality when ε → 0, we obtain that L1 × Lmax ≥ L2. Combining867

the bounds on λ(Gu∗left) and λ(Gu∗right) with the lower-bound on L1

L2
, we obtain the desired868

lower bound on λ(Gu∗right). We can obtain the symmetric inequality when r2 ≥ f(xmin) by869

following the same approach.870

In particular, when f is bilipschitz and r dominates the nadir point, both bounds hold.871

We are now able to prove the desired bounds on the normalized area of the gap regions872

Gu∗left and Gu∗right.873
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Lemma A.2. Let u∗ be a vector which maximizes the hypervolume with respect to874

a valid reference point r. If the Pareto front is described by a (Lmin,Lmax)-bilipschitz875

function f and the reference point r dominates the nadir point, both Gu∗left and Gu∗right are876

between (1− 1
2 ×

Lmax

Lmin
)/(1 +

L2
max

L2
min

) and (1− 1
2 ×

Lmin

Lmax
)/(1 +

L2
min

L2
max

).877

Proof. Let note arbitrarily G1 and G2 the two gap regions of the set S = {u∗}.878

By Proposition A.1, λ(G2) is between
L2

min

L2
max
× λ(G1) and

L2
max

L2
min
× λ(G1). Additionally,879

Propositions 3.10 and 3.11, the normalized maximum hypervolume maxu∈PFf HVr(u)880

over HVr(PFf ) is between 1
2 ×

Lmin

Lmax
and 1

2 ×
Lmax

Lmin
. These bounds can be transformed881

into bounds on HVr(PFf )−maxu∈PFf HVr(u), that is λ(G1) + λ(G2). As a consequence,882

λ(G1) is between (1− 1
2×

Lmax

Lmin
)×HVr(PFf )−L2

max

L2
min
×λ(G1) and (1− 1

2×
Lmin

Lmax
)×HVr(PFf )−883

L2
min

L2
max

λ(G1). Moving all the λ(G1) terms on the same side and re-normalizing this side, we884

obtain the desired bounds for G1, which can be chosen to be either Gu∗left or Gu∗right.885

Appendix B. The nadir point is dominated by all the rni corresponding to886

non-empty gap regions for n large. We show in this section that for bilipschitz887

Pareto fronts, the nadir point is dominated by all the rni corresponding to non-empty888

gap regions, for n large enough. This result is stated in Proposition B.2 and used in889

Subsection 4.2. It is equivalent to prove that the extreme vectors which dominate the890

reference point belong to the greedy set for n large enough.891

First, we prove in the next proposition that if r1 > xmax (resp. r2 > f(xmin)), then892

for r2 (resp. r1) close enough to f(xmax) (resp. xmin) the extreme vector umax (resp.893

umin) is the only hypervolume maximizer, see the righthand plot of Figure 6. There are894

similar statements in [8] for the set of µ points maximizing the hypervolume, but they895

only apply to µ ≥ 2.896

Lemma B.1. We assume that the Pareto front is described by a function f which is897

(Lmin,Lmax)-bilipschitz. For any valid reference point r = (r1, r2) such that r1 > xmax and898

f(xmax) < r2 < f(xmax)+Lmin×(r1−xmax), the right extreme of the Pareto front umax is899

the only maximizer of HVr(.). Additionally, for any valid reference point r = (r1, r2) such900

that r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

, the vector umin = (xmin, f(xmin))901

is the only maximizer of HVr(.).902

Proof. This proof is illustrated in the righthand plot of Figure 6. Let r be a reference903

point such that r2 > f(xmin) and xmin < r1 < xmin + r2−f(xmin)
Lmax

. Let u = (x, f(x)) 6= umin904

be a vector of the Pareto front which dominates r. The hypervolume improvement of umin905

to {u} is (r2−f(xmin))×(x−xmin). The hypervolume improvement of u to {umin} is equal906

to (f(xmin)−f(x))×(r1−x), which is smaller than Lmax×(x−xmin)×(r1−xmin) since u907

dominates r and f is (Lmin,Lmax)-bilipschitz. Since we assume that Lmax× (r1−xmin) <908

r2 − f(xmin), the upper bound on HVIr(u, umin) is strictly lower than HVIr(umin, u). As909

a consequence, the hypervolume of umin is strictly higher than the one of u. We conclude910

that umin is the unique hypervolume maximizer. The symmetric result can be obtained911

with the same approach.912

It is left to prove that when r1 > xmax (resp. r2 > f(xmin)), the second coordinate of913

rnn+1 (resp. the first coordinate of rn0 ) indeed converge to f(xmax) (resp. xmin). It is a914

straightforward consequence of Lemma 4.4. Therefore, we are able to conclude.915
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Proposition B.2. We assume that the the Pareto front is described by a bilipschitz916

function. Let (Sn)n∈N∗ be a greedy set sequence associated to a valid reference point r.917

For n large enough, every reference point rni corresponding to a non-empty gap region918

GrSn,i dominates the nadir point.919

Proof. By Lemma 4.4, wnn,r converges to xmax, and thus the right extreme reference920

point rnn+1 := (r1, f(wnn,r)) converges to (r1, f(xmax)) by continuity of f . Therefore, if r1921

is strictly higher than xmax, then there exists N such that for all n ≥ N , rnn+1 verifies922

the assumptions on the reference point of Lemma B.1 which guarantee that umax is the923

unique maximizer of HVr(.) over the right extreme gap region GrSn,n+1. Let assume that924

umax does not belong to Sn. Then, wNN,r 6= xmax, and since wnn,r converges to xmax, the925

left extreme gap region GrSn,i is necessarily filled at some later iteration. When the right926

extreme gap region is filled, umax, the unique minimizer of HVr(.) over this gap region,927

is added to the greedy set. To summarize, if r1 > xmax, then for n large enough Sn928

contains umax, and thus the right extreme gap region is empty. We can prove with the929

same approach that for r2 > f(xmin), Sn contains umin for n large enough.930

At any iteration, the non-extreme reference points dominate the nadir point. Addi-931

tionally, we proved that either r1 < xmax (resp. r2 < f(xmin)), and thus the left (resp.932

right) extreme reference point dominates the nadir point or for n large enough, the left933

(resp. right) extreme gap region is empty.934
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