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The purpose of this paper is to outline various results regarding the computational complexity of nonmonotonic entailment in di erent syntax-based approaches. Starting from a (non necessarily consistent) belief base E and a pre-ordering on E, we rst remind di erent mechanisms for selecting preferred consistent subsets in syntax-based approaches. Then we present di erent entailment principles in order to manage these multiple subsets.

The crossing point of each generation mechanism m and each entailment principle p de nes an entailment relation (E; ) j p;m which we study from the computational complexity point of view. The obtained results are not very encouraging since the complexity of all these non-monotonic entailment relations is, even in the most restricted languages, larger than the complexity of monotonic entailment.

Introduction

Formalizing \common sense" reasoning is one of the most important research topics in arti cial intelligence. When the available knowledge may be incomplete, uncertain or inconsistent, the classical logic is no more relevant (for example, anything can be classically inferred from inconsistent knowledge bases). Non-monotonic reasoning is needed. Many researchers have proposed new logics (called non-monotonic logics) in order to formalize non-monotonic reasoning, for instance, Reiter's default logic Rei80]. Others proposed to keep the classical logic but with numerical or symbolic structures for ordering the beliefs. These ordering relations, called priority relations, may be de ned:

either in a semantical way, re ecting logical dependence between beliefs, as the epistemic relevance ordering of G ardenfors G ar91];

or in a syntactical way, considering each belief as a distinct piece of information (it will be accepted or rejected as a whole) as in Neb91].

In this paper, we are concerned with non-monotonic entailment (deductive aspect of reasoning) from a syntactical belief base equipped with symbolic ordering structures, a so called strati ed belief base. In the following, we consider only syntax-based entailment (cf. Bre89, Neb91, CRS92, BCD + 93] for works in the same framework). Following Pinkas and Loui's analysis PL92], it is convenient to see non-monotonic syntax-based entailment as a two-steps procedure which rst generates and selects preferred belief states (generation mechanism) and then manages these multiple states in order to conclude using classical logic (con ict resolution principle). For instance, the inference considered in BCD + 93] is de ned by \E infers i is classically inferred in all the preferred consistent subsets of E". A taxonomy of con ict resolution principles, from credulous to skeptical ones, can be found in PL92]. The selection of preferred subsets relies upon the de nition of aggregation modes which enable to extend the priority ordering de ned on the initial belief base into a preference relation between subsets (see BCD + 93, CRS92]).

In the framework described above, our purpose is to propose a comparative study of various syntax-based entailment relations from the point of view of the computational complexity. This topic is essential for practical applications. Indeed, as far as we know, only few papers have been devoted to computational complexity issues for non-monotonic reasoning. Nebel has thoroughly considered the computational complexity of syntax-based revision procedures Neb91]. Eiter and Gottlob Got92, EG92] have also considered the case of default logic and abductive procedures. The paper is organized as follows. Starting from a belief base E and a pre-ordering on E, we rst present three mechanisms for selecting preferred consistent subsets of E, each one being a more selective re nement of the previous one. Then we present three entailment principles in order to manage these multiple subsets: the skeptical principle, the argumentative principle and the credulous principle. The crossing point of each generation mechanism m and each entailment principle p de nes an entailment relation (E; ) j p;m for which we study the computational complexity. Results are also provided in the two restricted cases of a strictly ordered belief base and of a Horn base.

Selecting preferred belief states

Throughout the paper, E denotes a non-empty nite set of propositional formulae referred to as the \belief base". E is not assumed to be consistent. The most usual idea for handling inconsistency is to work with maximal (w.r.t. set-inclusion) consistent subsets of E, called theses of E.

De nition 1 A subset X of E is a thesis of E i X is consistent and there is no consistent subset of E which strictly contains X. Unfortunately, in the worst case, this approach is not selective enough: too many theses must be taken into account. Now, we assume that E is equipped with a complete pre-ordering (a priority relation). It is equivalent to consider that E is strati ed in a collection (E 1 ; : : :; E n ) of belief bases, where E 1 contains the formulae of highest priority (or relevance) and E n those of lowest priority. The pair (E; ) is called a prioritized (or equivalently strati ed) belief base. Each E i is called a stratum of E. Di erent approaches have been proposed to use the priority relation in order to select \preferred" subsets (see CLS93] for a survey). For the purpose of this paper, we concentrate on the approaches which re ne the set-inclusion and lead to select preferred subsets among the theses of E. Indeed, the priority relation on E induces a preference relation on the set of subsets of E. Let us rst brie y remind the \inclusion-based" preference, which is the most frequently encountered, despite di erent presentations.

De nition 2 Let E = (E 1 ; : : :; E n ) a strati ed belief base. Z being a subset of E, Z i denotes Z \ E i . The \inclusion-based" preference is the strict ordering dened on the power set of E by: X Incl Y i there exists i such that Y i strictly contains X i and for any j < i, X j = Y j .

Note that Incl -preferred theses are also called preferred sub-theories in Bre89], democratic preferred 1 in CRS92], and exactly correspond to strongly maximal-consistent sub-bases in DLP91].

Another way of selecting preferred subsets is to use consistent subsets of maximum cardinality (see BCD + 93, Leh92]).

De nition 3 A subset X of E is a cardinalitymaximal-consistent subset of E i X is consistent and for each consistent subset Y of E, jY j jXj (with jY j denotes the cardinality of Y ). Taking into account the strati cation of E leads the de nition of the so-called \lexicographic" preference BCD + 93]:

De nition 4 Let E = (E 1 ; : : :; E n ) a strati ed belief base. The \lexicographic" preference is the strict ordering de ned on the power set of E by: X Lex Y i there exists i such that jX i j < jY i j and for any j < i, jX j j = jY j j.

It can be shown that the lexicographic preference re nes the inclusion-based preference: any Lexpreferred consistent subset of E is an Incl -preferred thesis, but the converse is false as illustrated at the end of this section. Moreover, the associated lexicographic pre-ordering is complete. 

Syntax-based entailment principles

As mentioned in the introduction of this paper, nonmonotonic entailment from a given belief base can be viewed as a two steps procedure which rst generates \preferred" belief states, and then manages these different belief states according to cautiousness principles.

In the previous section, we have presented three mechanisms for producing a set of consistent belief states from the initial prioritized belief base (E; ). In the following, we call T the mechanism which produces the set of theses of E (maximal-consistent subsets), Incl the mechanism which produces the inclusionbased preferred theses of E and Lex the re nement which produces the set of preferred theses for the lexicographic ordering.

A taxonomy of numerous entailment principles has been established by Pinkas and Loui PL92] according to their boldness or cautiousness. Here, we are interested in three of them which we now brie y present: We start from a set of consistent subsets of E denoted by m(E) in the following (for instance, m is one of the generation mechanisms T, Incl, Lex). Let be a propositional formula.

De nition 5 is inferred from m(E) according to the skeptical entailment principle i can be classically inferred from each element of m(E). This entailment principle, often called strong consequence or universal consequence in the literature, will be denoted by j 8 and referred to as the Uni principle in the following.

De nition 6 is inferred from m(E) according to the credulous entailment principle i can be classically inferred from at least one element of m(E). This entailment principle, often called weak consequence or existential consequence in the literature, will be denoted by j 9 and referred to as the Exi principle in the following.

These two entailment principles are the most commonly activated in presence of multiple con icting belief states. Obviously, the Uni principle is more cautious than the Exi principle, since each conclusion obtained from m(E) by Uni inference is also obtained by Exi inference. An intermediary principle consists in keeping only the weak consequences whose negation cannot be inferred (see BDP93] for a discussion on the so-called argumentative inference).

De nition 7 is inferred from m(E) according to the argumentative entailment principle i is classically inferred from at least one element of m(E) and no element of m(E) can classically entail : . This entailment principle will be denoted by j A and referred to as the Arg principle in the following.

We are now ready to give a precise de nition of the entailment relations and the associated problems which we will consider from the computational complexity point of view. Each one appears at the crossing point of a belief state generation mechanism m and an entailment principle p. Let (E; ) be the initial belief base and a propositional formula.

De nition 8

The problem Uni-T (resp. Exi-T, Arg-T) is de ned by \verify that is a strong (resp.

weak, argumentative) consequence of E using the theses of E". The T generation mechanism is used. Notation: E j 8(resp. 9;A);T for Uni-T (resp. Exi-T, Arg-T).

In the above notation, it is su cient to mention E instead of (E; ) since producing the theses makes no use of the pre-ordering on E.

De nition 9

The problem Uni-Incl (resp. Exi-Incl, Arg-Incl) is de ned by \verify that is a strong (resp. weak, argumentative) consequence of E using the inclusion-based preferred theses of E".

The Incl generation mechanism is used. Notation:

(E; ) j 8(resp. 9;A);Incl for Uni-Incl (resp. Exi-

Incl, Arg-Incl).
The inclusion-based preference is induced by the preordering (def. 2).

De nition 10

The problem Uni-Lex (resp. Exi-Lex, Arg-Lex) is de ned by \verify that is a strong (resp. weak, argumentative) consequence of E using the lexico-preferred theses of E". The Lex generation mechanism is used. Notation: (E;

) j 8(resp. 9;A);Lex for Uni-Lex (resp. Exi-Lex, Arg-Lex).

The lexicographic preference is induced by the preordering (def. 4).

Example Applying the above principles on the example of the previous section produces:

(E; ) j 8;Incl b (E; ) j 9;Incl nl (E; ) j A;Incl ci (E; ) j 8;Lex np which is equivalent to (E; ) j 9;Lex np and (E; ) j A;Lex np since there is only one lexico-preferred subset.

About complexity

This section is an informal and simpli ed presentation of complexity theory. For more precisions, see for instance GJ79]. The purpose of complexity theory is to classify problems from the point of view of computational complexity, in the worst case. The complexity may be temporal or spatial.

In this paper, we are interested only by the temporal aspect and only for decision problems (each of its instances has either a \yes" or a \no" answer).

The P class contains the problems which are solved eciently (in polynomial time in the size of its instances). These problems are called polynomial or deterministic polynomial.

However, there are many problems for which we can neither prove that there is a polynomial algorithm which solves them nor that there is none. Because of this limitation, the NP class has been introduced. A problem belongs to the NP class (non-deterministic polynomial) if, to each instance I of the problem whose answer is \Yes" (and only for these instances !), it is possible to associate a polynomial certi cate C(I) which enables an algorithm A to verify that the answer is really \Yes" in polynomial time. Intuitively, NP is the class of problems for which it is easy to verify that a potential solution is a real solution. Therefore, Sat (satis ability of a set of clauses C) is in NP because it is su cient to \guess a truth assignment M", this can be done with a polynomial succession of choices (one for each variable of C), then to \verify that M is a model of C", which is done in polynomial time. Note that NP contains P, determinism being a particular case of non-determinism. Then, among the NP problems, the hardest problems called NP-complete problems have been de ned. These problems Q are de ned by the fact that they belong to NP and all the NP problems Q 0 may be e ciently transformed into Q. This polynomial transformation is denoted by Q 0 / Q and informally means that Q is at least as hard as Q 0 . Sat is NP-complete as well as many problems in logic and in operation research. No e cient algorithm is known (at present) for the NP-complete problems. So, we have the essential conjecture of the complexity theory: NP 6 = P. Finding one single polynomial time algorithm for any NP-complete problem would make this conjecture false. Beside this NP class, we nd the co-NP class corresponding to the complementary problems of the NP problems (the \yes" and \no" answers have been exchanged). The complementary problem of an NPcomplete problem is co-NP-complete. Therefore, Un-sat (unsatis ability of a set of clauses) is a co-NPcomplete problem. We will also use the classes of the polynomial hierarchy (called PH), each of them containing supposedly harder and harder problems. This PH is de ned inductively using the notion of oracle. An oracle of complexity X may be viewed as a subroutine which solves any problem of complexity X. Each call to an oracle is counted as one time unit. So, there are polynomial problems using an oracle of complexity X and non-deterministic polynomial problems using an oracle of complexity X. They de ne respectively the P X and NP X classes. 

Complexity of general entailment relations

We consider entailment relations of the form (E;

) j p;m where E, , p and m have been de ned in the previous sections, and where is a single propositional formula. The complexity results for the general case are given in table 1. For lack of space, we just give sketches of proof. Most of the detailed proofs are given in CLS93].

For each problem Q, the complexity proof is done in two steps: rst, we exhibit an algorithm which solves Q and whose complexity class is X ( 

Class membership for strong relations: For

Uni-T and Uni-Incl, we use the results of Nebel in Neb91], because these entailment relations correspond to the Sbr and Pbr revision procedures for which Nebel has proved the p 2 -completeness. Therefore, Uni-T and Uni-Incl belong to the class p 2 . For Uni-Lex, a very interesting phenomena appears. Let (E; ) a strati ed base and a propositional formula, we consider the function f: f((E; )) = (f ! `g E f:`g; ) where `is a new propositional variable (`does not appear in E). The pre-ordering is extended so that the rst stratum of f((E; )) is composed of the single formula ( ! `) and the last stratum of f((E; )) is composed of the single formula (:`). Using f, both Uni-Lex and co-Uni-Lex can be polynomially transformed to Exi-Lex and co-Uni-Lex can be polynomially transformed to Uni-Lex. Therefore, we have the following algorithm:

1. E 0 f ! `g E f:`g 2. k < 0; 0; : : : ; 0 > (*k: array of dimension n=number of strata in E 0 *) 3. For ns from 1 to n do 4. nf number of formulae in the stratum E 0 ns 5. End? false 6. while (nf 0) and (not End?) do 7.

k ns] nf 8.

if Max-Gsat-Array(E 0 ; k) then End? true else nf nf 1 9. Verify that k n] 6 = 1

In this algorithm, we use an oracle Max-Gsat-Array de ned by: Instance: a pre-ordered set (Y; ) of propositional formulae, an array k of dimension n with n=number of strata in Y .

Question: Is there a truth assignment which satis es for each stratum i of Y at least k i] formulae ? This problem is NP-complete (NP class membership is obvious, completeness is proven by restriction to Sat). Therefore the previous algorithm (and its dichotomic version too) is deterministic polynomial and uses a non-deterministic polynomial oracle. So, Uni-Lex belongs to the class p 2 .

Completeness for strong relations: For Uni-T and Uni-Incl, the completeness is still proven using the Sbr and Pbr revision procedures (see Neb91]).

For Uni-Lex, we prove p 2 -completeness using a p 2complete problem de ned in EG93] and referred to as Alm in the following (instance: C = fC 1 ; : : :; C m g a satis able set of clauses, X = fx 1 ; : : :; x n g the set of propositional variables of C, O(X) =< x 1 ; : : :; x n > a prioritization of X, question: does V M , the truth assignment lexicographically maximal with respect to O(X) satisfying C, ful ll V M (x n ) = true ?). Consider the following polynomial transformation from Alm to Uni-Lex: let \C = fC 1 ; : : :; C m g satis able, X = fx 1 ; : : :; x n g, O(X) =< x 1 ; : : :; x n >" an instance of Alm, the instance of Uni-Lex is de ned by = x n and (E; ) = fC 1 ^: : : ^Cm ; x 1 ; : : :; x n g with the following ordering: the formula C 1 ^: : : ^Cm has greater priority than the formula x 1 which has greater priority than the formula x 2 which has greater priority than . .. the formula x n . Therefore Alm / Uni-Lex and Uni-Lex is p 2 -complete.

Class membership for weak relations: For the Exi-m problems (8m 2 fT; Incl; Lexg), we may consider the following algorithm:

1. Guess a subset Y of (E; ) 2. Verify that Y is:

-a thesis (for Exi-T) -an inclusion based preferred thesis (for Exi-Incl) -a lexicographic preferred thesis (for Exi-Lex)

Verify that Y classically entails

First of all, note that \verify that Y classically entails " is co-NP-complete. Then, \verify that Y is a thesis" consists only in checking Y consistency and checking Y fgg inconsistency for each formula g 2 E n Y . For inclusion based preferred thesis, the same principle applies except that the veri cation must be done stratum per stratum. Therefore, the previous algorithm is nondeterministic polynomial and uses non-deterministic polynomial time oracles. Therefore, Exi-T and Exi-Incl belong to the class NP NP = p 2 . For \verify that Y is a lexicographic preferred thesis", we have to rely on an oracle which solves the following problem (called Max-Gsat-Strict):

Instance: a set Y of propositional formulae, an integer k jY j. Question: Is there a consistent subset Y 0 of Y such that jY 0 j > k ?

This problem is NP-complete (NP class membership is obvious, completeness is proven by restriction to Sat). Therefore, this algorithm is non-deterministic polynomial and relies on non-deterministic polynomial time oracles. Therefore, Exi-m belongs to the class NP NP = p 2 .

Completeness for weak relations: For Exi-T, we consider the following polynomial transformation from 2-Qbf to Exi-T: let \9a8bH(a; b)" be an instance of 2-Qbf, we consider the instance of Exi-T de ned by E = fa 1 ; : : :; a n ; :a 1 ; : : :; :a n g and = H(a; b) 1 .

For Exi-Incl, the completeness is obvious, since Exi-T is a restriction of Exi-Incl.

For Exi-Lex, we may use the previous proof for Exi-T since any thesis of E, when E is of the form E = fa 1 ; : : :; a n ; :a 1 ; : : :; :a n g is also a lexicographic preferred thesis of E.

Class membership for argumentative relations: 8m 2 fT; Incl; Lexg, the Arg-m problems can be solved by the following algorithm:

1. Verify that (E; ) j 6 9;m : 2. Verify that (E; ) j 9;m This algorithm is deterministic polynomial and uses a p 2 oracle solving Exi-m. Therefore, we conclude that 8m, Arg-m belongs to the class P p2 = p 3 .

Completeness for argumentative relations: We haven't proven p 3 -completeness for any of these problems, but we re ne the class membership, as in Neb91]. Indeed, we prove that the most of Arg-m problems are in p 3 ( p Gottlob de ne an abductive problem A: instance: P = (V; H; M; T) a propositional abduction problem with V a set of propositional variables, H a set of hypotheses (propositional atoms), M a set of manifestations (propositional formulae), T a consistent theory (propositional formulae), question: is there an explanation to P ? This problem may be transformed to Exi-T by the following transformation:

E = T H and = M.
instance of co-Exi-T, simply consider the function g de ned by g(E) = E f: g and g( ) = : . Therefore, both Exi-T and co-Exi-T can be polynomially transformed to Arg-T. Since Exi-T is p 2complete and co-Exi-T is p 2 -complete, assuming that Arg-T2 ( p 2 p 2 ) would lead to p 2 = p 2 . For Arg-Incl, we still rely on the fact that Arg-T is a restriction of Arg-Incl: Arg-T / Arg-Incl. Since Exi-T / Arg-T and co-Exi-T / Arg-T, we obtain the same conclusion as for Arg-T. For Arg-Lex, similarly as for Arg-T, it is possible to prove that Exi-Lex / Arg-Lex. However, we haven't found a polynomial transformation from co-Exi-Lex (or any other p 2 -complete problem) to Arg-Lex. We simply conclude by saying that Arg-Lex is p 2 -hard.

Complexity of restricted entailment relations

In this section, we consider two possible restrictions of the problems previously considered 2 . First we assume that the belief base is completely and strictly ordered.

In that case E is strati ed with exactly one formula per stratum. In the second case, we suppose that E and are restricted to Horn clauses.

The complexity of the problems p-T (for p in fUni, Exi, Argg) is not a ected by the rst restriction since the pre-ordering on the belief base is not taken into account by the generation mechanism T. We will show that all the other problems become equivalent to a single problem called 1/Stratum. As for the second restriction, both Sat and the entailment problem in classical propositional logic become polynomial.

Strati ed bases with one formula per stratum

Proposition 1 Let < be a complete and strict ordering on E. There is only one inclusion based preferred thesis, which is also the only lexicographic preferred thesis (proof in CLS93]).

Corollary This algorithm (and its dichotomic version too) is deterministic polynomial and relies on an NP-complete oracle. Therefore, 1/Stratum is in p 2 .

Completeness for 1/Stratum: Using the same transformation as in the proof of Uni-Lex, we prove that 1/Stratum is p 2 -complete, since the belief base E considered in that transformation is a strictly ordered base.

Horn clauses language

The belief base is a nite set of conjunctions of propositional Horn clauses and the formula is also a conjunction of Horn clauses. The complexity results are given in the table 3. Once again, the lexicographic based problems are quite speci c: their complexity seems unchanged in case of Horn clauses while all the other problems shift down by one level in the polynomial hierarchy. Completeness for m = T: For Uni-T-Horn, we use an idea previously proposed in EG92]:

Sat / co-Uni-T-Horn (Sat is the satis ability problem for any set of clauses, not only Horn clauses). Let C = fC j g for j 2 f1; : : :; qg a given set of clauses, let V (C) = fx 1 ; : : :; x n g the set of propositional variables used in C, take: E = fP; x 1 ; : : :; x n ; y 1 ; : : :; y n ; :z 1 ; : : :; :z n ; :sg and = :s where y 1 ; : : :; y n ; z 1 ; : : :; z n ; s are new propositional variables and where P is the formula:

(z 1 : : :z n ! s) q ĵ=1 C j y] n î =1

((:x i _ :y i ) ^(y i ! z i ) ^(x i ! z i ))

where C j y] denotes the result of replacing every positive literal x i by the negative literal :y i in C j . This transformation allows to transform any instance of Sat (using any type of clause) into an instance of co-Uni-T-Horn (using only Horn clauses). Therefore, co-Uni-T-Horn is NP-complete and Uni-T-Horn is co-NP-complete.

For Exi-T-Horn, we use the previous transformation, except that is taken equal to s. For Arg-T-Horn, we can not keep the Arg-T proof, because our polynomial transformations from Exi-T to Arg-T and from co-Exi-T to Arg-T do not preserve Horn clauses. We have to consider a new problem (called Exi-T-Horn-Pos):

Instance: E a Horn base, `a positive literal. Question: Is it true that E j 9;T `? It is clear that this problem is NP-complete (see the Exi-T-Horn proof). Therefore, we may use the polynomial transformations de ned for Arg-T on Exi-T-Horn-Pos and co-Exi-T-Horn-Pos. We conclude that Arg-T-Horn is in p 2 (NP co-NP) if NP 6 = co-NP.

Class membership and completeness for m = Incl: We may use the algorithms previously considered in the unrestricted case. All the polynomial transformations we used preserve Horn clauses and we conclude that Uni-Incl-Horn is co-NP-complete, Exi-Incl-Horn is NP-complete and Arg-Incl-Horn is in p 2 (NP co-NP) if NP 6 = co-NP. Class membership for m = Lex: For these problems, we used two oracles: one for Sat and one for Max-Gsat-Strict or Max-Gsat-Array. The rst problem becomes polynomial when restricted to Horn clauses, but the other problems (called Max-Horn-Sat-Strict and Max-Horn-Sat-Array) remain NP-complete. NP-membership is obvious, NPcompleteness is proven for Max-Horn-Sat-Strict using the following polynomial transformation: let \C a collection of n clauses with at most 2 literals per clause and an integer k n" be an instance of Max-2Sat which is NP-complete GJ79]. Simply consider the instance of Max-Horn-Sat-Strict de ned by the collection C 0 of Horn clauses composed of (and only of):

the Horn clauses of C unchanged;

for each of the p non-Horn clauses c = (`_ `0) 2 C, the three Horn clauses f`, `0, (:`_ :`0)g.

and the integer k 0 = k + p 1. For Max-Horn-Sat-Array, we use Max-Horn-Sat-Strict which can be polynomially transformed to Max-Horn-Sat-Array.

Completeness for m = Lex: For Uni-Lex-Horn, we prove p 2 -completeness using a p 2 -complete problem de ned in EG93] and referred to as Acm in the following (instance: C = fC 1 ; : : :; C m g a set of clauses, X = fx 1 ; : : :; x n g the variables of C, k 2 f1; : : :; mg an integer, question: does every truth assignment V cardinal maximal of X, ful ll V (C k ) = true ?). Consider the following polynomial transformation from Acm to Uni-Lex-Horn: let \C = fC 1 ; : : :; C m g, X = fx 1 ; : : :; x n g, k" an instance of Acm, the instance of Uni-Lex-Horn is de ned by = C k y] ^s and (E; ) = fP 1 ; : : :; P m ; x 1 ; : : :; x n ; y 1 ; : : :; y n ; :z 1 ; : : :; :z n ; :sg where y 1 ; : : :; y n ; z 1 ; : : :; z n ; s are new propositional variables and where each P j is the formula:

(z 1 : : :z n ! s) ^Cj y] n î =1 ((:x 

i _ :y i ) ^(y i ! z i ) ^(x i ! z i ))
where C j y] denotes the result of replacing every positive literal x i by the negative literal :y i in C j , and where the ordering between formulae of E is the following: P 1 ; : : :; P m have greater priority than x 1 ; : : :; x n ; y 1 ; : : :; y n which have greater priority than :z 1 ; : : :; :z n ; :s. Therefore, we have Acm / Uni-Lex-Horn.

For Exi-Lex-Horn and for Arg-Lex-Horn, we have neither proved completeness nor re ned the class membership result.

Conclusion

We have studied the computational complexity of various syntax-based entailment relations which can be de ned as: (E; ) j p;m . E denotes a set of beliefs, a priority relation on E, a propositional formula, and p, m enable to combine the classical entailment and the selection of preferred consistent subsets. A similar study has been done for other entailment relations in CLS93] (when is the Best-out ordering DLP91], when the preferred subsets are Extensions of default logic Rei80, Got92]). The results reported in this paper show that most of the non-monotonic entailment problems have very likely exponential time complexity with respect to the problem size. Although the complexities observed are limited by the third level of the PH, they are prohibitive and applications may likely wait for an answer for hours, days or centuries ! We have considered two restrictions (strictly ordered belief base, Horn base), but none of them has lead us to a polynomialproblem, eventhough these restrictions are rather strong. Note that the computational complexity is not related of cautiousness: though Arg-m is more cautious than Exi-m and less cautious than Uni-m, Arg-m is more complex than Exi-m and Uni-m. A more complete analysis permits to distinguish the Uni-Lex entailment, whose complexity never leaves the second level of the polynomial hierarchy ( p 2 , NP, co-NP). Paradoxically, Uni-Lex complexity is not a ected by the strongest restriction considered (Horn clauses) when most of the other entailment relations complexities shift down by one level. These results should not prevent us from using the considered formalisms: complexity is already a problem for classical logic (entailment is co-NP-complete), however recent algorithms have obtained interesting results (see results of Gsat in LMS92]) ; we may hope that faster and faster massively parallel machines will lead to further enhancements, although it is not obvious; nally, these results concern worst case, and there are, hopefully, many problems that should be much easier to solve. However, in order to use these formalisms on practical applications, we think it is necessary to identify speci c useful restrictions, or even approximations (numerical or not) of these problems that can be e ciently solved. The next step of our comparative study will concern logical properties of non-monotonic syntax-based entailment relations such as rational monotony for instance (see KLM90, G ar91, GM94] for a catalog of entailment relations properties). A similar study has been reported in BCD + 93], but only for the Uni entailment principle.

  these classes, we also have the notion of completeness (a p k+1 -complete problem is harder than a p k or a p k+1 problem, 8k 0). The conjecture NP 6 = P is generalized to the PH with the following stronger conjectures: NP 6 = co-NP and 8k; p k 6 = p k . Note that NP = P implies that the PH collapses into P. The problem stated below, called 2-Qbf et denoted by 9a8bH(a; b), is an example of a p 2 -complete problem (see Joh90, Neb91]).Instance: a propositional formula H(a; b) where a and b denote sets of propositional variables: a = fa 1 ; : : :; a n g and b = fb 1 ; : : :; b m g Question: Is there a truth assignment of the variables in a such that H(a; b) is true for any truth assignment of the variables in b ?

  Complexities in case of Horn clausesClass membership for m = T: We may still use the previously stated algorithms. Using the fact that the complexity of the entailment problem is reduced, we conclude that Uni-T-Horn is in co-NP, Exi-T-Horn is in NP and Arg-T-Horn is in p 2 .

Table 1 :

 1 Complexities in the general case then, we prove that Q is X-complete by giving a polynomial transformation from an X-complete problem to Q (or else give any other lower bound for the complexity).

	class membership proof which gives an upper bound for the complexity);

  1 The problems Uni-Incl (resp. Lex),

	Class membership for 1/Stratum: Consider the following algorithm for solving 1/Stratum:
	1. X ? 2. ns 1 (current stratum) 3. if X En s is consistent then X X En s 4. ns ns + 1 5. if ns = (total number of strata in E) then verify that X classically entails else go to step 3
	Exi-Incl (resp. Lex), Arg-Incl (resp. Lex) are equivalent to a single problem called 1/Stratum.
	The complexity of the problem 1/Stratum is given in table 2.
	Problem 1/Stratum Table 2: Complexities in the restricted case \one for-Complexity class p 2 -complete mula per stratum"
	2 When E and are CNF formulae (conjunctive normal form), the complexity results remain unchanged.

p 2 ). For Arg-T, we proved that there is a polynomial transformation from Exi-T to Arg-T: let (E; ) be an instance of Exi-T. Simply consider the function f de ned by f(E) = E f ! `g where `is a new propositional variable (`does not appear in E) and f( ) = `. Furthermore, there is a polynomial transformation from co-Exi-T to Arg-T: let (E; ) be an 1 This result is not surprising. In EG93],Eiter and 
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