
HAL Id: hal-03198363
https://hal.science/hal-03198363v1

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a SMT solver for risk analysis : detecting logical
mistakes in texts

Florence Dupin de Saint-Cyr, Marie-Christine Lagasquie-Schiex, William
Raynaut, Patrick Saint Dizier

To cite this version:
Florence Dupin de Saint-Cyr, Marie-Christine Lagasquie-Schiex, William Raynaut, Patrick Saint
Dizier. Using a SMT solver for risk analysis : detecting logical mistakes in texts. 19ème Congrès
National sur la Reconnaissance de Formes et l’Intelligence Artificielle (RFIA 2014), Jul 2014, Rouen,
France. �hal-03198363�

https://hal.science/hal-03198363v1
https://hal.archives-ouvertes.fr

Using a SMT solver for risk analysis : detecting logical mistakes in texts

Florence Bannay1 Marie-Christine Lagasquie-Schiex1 William Raynaut1 Patrick Saint-Dizier1
1 IRIT, Université de Toulouse, France

Résumé
Cet article décrit une contribution de l’intelligence artifi-
cielle dans un domaine spécifique : l’analyse des risques
dus à la mauvaise rédaction des documents de support
technique. Ce travail combine le traitement du langage
naturel et la vérification logique de satisfaisabilité. Nous
expliquons comment les tests de satisfaisabilité peuvent
permettre de détecter des incohérences, des redondances
ou des incomplètudes dans les textes procéduraux et nous
décrivons l’outil développé.
Mots Clef : Satisfaisabilité, traitement du langage naturel.

Abstract
The purpose of this paper is to describe a contribution of
Artificial Intelligence to a special domain : the analysis of
the risks due to poorly written technical documents. This
contribution combines natural language processing with
logical satisfiability checking. This paper explains how sat-
isfiability checking can be used for detecting inconsisten-
cies, redundancy and incompleteness in procedural texts
and describes the implemented tool.
Keywords : Satisfiability, natural language handling.

1 Introduction
Companies maintain a large number of procedural texts in
various sectors which may lead to risky situations. Poor
requirement compliance in procedures often leads to ac-
cidents, with major health and ecological consequences.
Social and psycho-social problems (e.g. due to poor man-
agement requirements) are also often encountered and, ob-
viously, negative financial situations may be critical. The
negative consequences of bad or poor requirements and
procedures have been investigated in depth. Industry data
show that approximately 50% of product defects originate
from incorrect or unreadable procedures. Perhaps 80% of
the rework effort on a development project can be traced
to requirements defects. Because these defects are the
cause of over 40% of accidents in safety-critical systems
(see [8]), poor requirements and procedures have even been
the ultimate cause of both death and destruction.
The LELIE 1 project was funded by the ANR Emergence 2,
combining ergonomy, language processing and artificial in-

1. LELIE : An intelligent assistant for the analysis and the prevention
of risks in industrial processes, project realized from 2011 to 2013 by
IRIT in collaboration with CRTD-CNAM, Paris

2. ANR : Agence Nationale pour la Recherche ; a French government
agency.

telligence with an applicative orientation. This project aims
at detecting potential risks in industrial documents based
on language processing and logic-based artificial intelli-
gence techniques. This implies the analysis of risks indi-
cators of different kinds (health, ecology, economy, etc.).
In this paper, we present an original appoach proposed in
LELIE where natural language processing combined with
AI is used for an analysis of inconsistencies, redundancies
and incompleteness typical of technical documents. We
concentrate on procedural documents and requirements
(e.g. for installation, production, maintenance) which are,
by large, the main types of technical documents.
Given a set of procedures over a certain domain produced
by a company, and possibly given some domain knowledge
(ontology or terminology and lexical data), the goal is to
detect and model these errors and then to annotate them
wherever potential risks are identified. Procedure authors
could then be invited to revise these documents. Risk anal-
ysis is based on several types of considerations :

1. Inappropriate ways of writing that may lead to poten-
tial risks : texts including a large variety of complex
expressions, fuzzy terms, implicit elements, scoping
difficulties (connectors, conditionals), lack of cohe-
sion, inappropriate granularity level, etc. These in-
appropriate ways were established by cognitive er-
gonomic simulations and analysis (see [1]).

2. Incoherence among procedures : detection of unusual
ways of realizing action (e.g. unusual instrument, tem-
perature, length of treatment, etc.) with regard to 3

similar actions in other procedures. This was based
on a repository of actions from previously processed
procedures (Arias software) on a given domain.

3. Lack of compliance of procedures wrt domain secu-
rity requirements and regulations, therefore leading to
risks. Inconsistencies or incompleteness situations are
often observed between procedures and requirements.

Only Point 3 is developed in this paper (the study of
Points 1 and 2 is mainly based on the way documents are
written 4). This point mainly deals with contents aspects
and requires several types of inferences and reasoning.The
goal of this paper is threefold. First it demonstrates the
feasability of a tool that can automatically detect poten-
tial risks in natural languages technical documents. It also
shows the benefits of logic-based tools like SMT-solver and

3. wrt for short
4. That also corresponds to a major problematics in industry, see [16].

theoretical concepts such as ATMS for industrial-oriented
applications. Third it shows that it is possible to combine a
natural language analysis with a logical handling of incon-
sistency. Moreover, we show that those tools allow us not
only to detect the existence of a problem but also to point
out the parts of the text that are responsible of it. The iden-
tification of major errors in procedures wrt related require-
ments is a very important result achieved by the LELIE
tool.
Section 2 briefly explains the automatic analysis of the
structure of requirements and of procedures done with the
system TEXTCOOP in order to produce a translation into a
logical form. Then the logical handling part is presented in
Section 3 based on the outputs of the language processing
step carried out with TEXTCOOP. The corresponding im-
plemented tool is described in Section 4. Section 5 gives
some related works and directions for further research.

2 Natural language analysis
Procedural texts and requirements are written in specific
forms and are often very well structured, hence they are
less complex, in terms of structure and ambiguity, to ana-
lyze and translate into a logical form. Indeed, procedures
are often presented under the form of a list of instructions,
each instruction being expressed in a simplified and stan-
dard way following guidelines.

2.1 TEXTCOOP engine
The linguistic part of LELIE, is based on the
TEXTCOOP system (see [15, 16]), a system dedicated
to language analysis, in particular discourse (including
the taking into account of long-distance dependencies).
The kernel of the system is written in Prolog SWI, with
interfaces in Java. Briefly, TEXTCOOP identifies (and
annotates in XML) the following structures which are of
interest for our purpose :
– titles, instructions, requirement statements, prerequi-

sites, definitions, warnings, advice and some form of ex-
planation which are proper to technical texts,

– themes, topics, strengths (for requirements),
– the main verb and its complements, in particular instru-

ments (with equipment or product names) or adjuncts
such as amounts which are numerical values (Ph, Volts,
weights, etc.) and temporal complements.

2.2 Procedural texts tagged by TEXTCOOP

The content analysis is done on three kinds of input data :
– requirements : information describing the context and

the precautions with which a certain action (included
into a procedure) must be carried out,

– procedures : ordered sequences of instructions,
– a list of synonyms enabling us to restrict the vocabulary

and manage the term matching aspects between require-
ments and the related procedures.

Very simple (for readability) examples are provided below.

Example 1 Short extract of a tagged instruction :

<procedure> <predicate>use</predicate> <object>a
rope</object> to tie the harness. </procedure>

The verb ’use’, in the instruction of this procedure, is a
predicate that takes as arguments a subject (here the per-
son who executes the procedure, called the operator, op
for short) and a complement/adjunct (here “the rope”). So,
this sentence can be formally written as : use(op,rope).
The remainder of the instruction is ignored.

<procedure> in order to <theme>sweep a chimney</theme>
<predicate>climb</predicate> <location>on the roof

</location> </procedure>

There are two parts in this instruction ; the first one
can be translated as previously whereas the second one
gives the theme of the procedure, i.e. the execution con-
text of the procedure ; it is expressed by the formula
is(theme,sweep_a_chimney).

Example 2 A set of requirements :

<requirement> in case of <theme>work at a height</theme>
<predicate>do not use</predicate> <object>ropes</object>

</requirement>

Here the verb (with its subject and complements/adjunct)
is translated into ¬use(op,rope). It is given with
a theme : is(theme,work_at_a_height) and they
are linked : if is(theme,work_at_a_height) then
¬use(op,rope) ; (material implication).

Example 3 This example is a part of a synonym file :

SYN = work at a height
sweep a chimney
work on roof

These data are used for simplifying the texts (requirements
or procedures). They come from domain knowledge. By us-
ing this synonym file, the themes of Example 1 and of Ex-
ample 2 become identical, enabling us to detect logical in-
correctness. This method of simplification is rough (an im-
provement could be to use domain ontologies).

3 Logical mistakes detection
The solution proposed for answering to Point 3 of Intro-
duction is a tool that applies basic AI reasoning princi-
ples to validate the texts written under a logical form. In
our proposal, this validation is done on the three following
points : inconsistency, incompleteness and redundancy de-
tection. This is a two-step process. First, translate the writ-
ten technical documents into a formal language. Then, us-
ing an open-source solver, reason on this translation.

3.1 The Logical language
We choose a representation language L which is a vari-
ant of a first-order logic language (see [6]). In our case,
L is defined without symbols of function. The terms are
classically defined using constants and variables ; ground
terms are special terms using only constants. For any pred-
icate symbol P of arity n, P (t1, . . . , tn) is an atomic for-
mula (or atom) whenever t1, . . . , tn are terms. Moreover,
if t1, . . . , tn are all ground terms then P (t1, . . . , tn) is a

ground atom. ⊥ is the atomic formula representing the con-
tradiction. A literal is an atom or its negation. Other non
atomic formulas are built by using connectors, and quanti-
fiers applied to variables and the delimitors.
The choice of this language is justified by the following
facts : procedural texts are composed by simple sentences
with a limited set of terms ; first-order logic is a well known
language with an interesting basic expressivity ; there are
many possible extensions if we want to increase this ex-
pressivity (for instance, the reintroduction of functions) ;
several open-source solvers exist whose efficiency has been
proved by decades of research and competitions. In this
project, we choose to use the “Z3” solver (see [13]) that
respects the formalism that is issued from the Satisfiabil-
ity Modulo Theory (SMT) area, see [3]. The SMT library
allows us to perform automated deduction and provides
methods for checking the satisfiability of first-order formu-
las wrt some set of logical formulas T (called a theory).

3.2 Translation of the input data
Requirements and procedures are translated into first-order
logic in a three-step process : 1) “clean” the text of the sen-
tence by using the lists of synonyms and by removing the
articles, and identify the theme(s), 2) find the mask corre-
sponding to the sentence and format it wrt this mask, 3)
translate the clean and formatted sentence into first-order
logic, using the theme(s).
Several types of masks can be considered according to the
form of the sentence :
– a simple component is a mask for a simple sentence : a

verb, its subject, its complements and some adjuncts,
– a complex component is a conjunction or disjunction of

simple components,
– a component with conditions and exceptions is a struc-

ture with 3 complex components.
Each simple component can be instantiated by several vari-
ants depending on the semantics of the sentence. For in-
stance, the subject can be a constant or can be quantified
universally or existentially ; the sentence can be in direct or
indirect form ; the verb can be an action or not . . .
Example 1 (cont) After cleaning (the non-tagged parts are
removed and the synonyms given in Ex. 3 are replaced) :

<procedure> <theme>work at a height</theme>
<predicate>climb</predicate> <location>roof</location>
<predicate>use</predicate> <object>rope</object>
</procedure>

Then, for each sentence, a generic mask is identified and
the sentence is formatted wrt this mask. In this example,
two masks are used (when an element is missing, it is re-
placed by NULL, except for the time-step that is encoded
by an integer incremented at each instruction) :

theme is work_at_a_height 0
(mask:subject state-verb attribute time)
NULL climb NULL NULL roof 1
(mask:subject action-verb direct-obj method place time)
NULL use rope NULL NULL 2
(mask:subject action-verb direct-obj method place time)

Each sentence/instruction is considered as a first-order for-
mula that must be true at the moment corresponding to the

execution of the instruction. So, this procedure corresponds
to the three following first-order formulas :

is(theme,work_at_a_height,0)

climb(op,NULL,NULL,roof,1)

use(op,rope,NULL,NULL,2)

Since, the chosen solver uses the SMT formalism (see [3]),
this procedure is encoded in this formalism and the result-
ing program code consists of :
– first, define the different elements used in the language

(here Agent, Item, Place, Attribute and Method) ;
note that temporal elements are encoded as integers
(Int is predefined in SMT) ;

– then, for each sentence, declare the predicate (a function
in SMT), the constants, and assert the formula.

So, the final translation of this example is :

(declare-sort Agent)
(declare-sort Item)
(declare-sort Place)
(declare-sort Attribute)
(declare-sort Method)
(echo "<theme> sweep a chimney</theme>")
(declare-fun is (Item Attribute Place Int) Bool)
(declare-const it_theme Item)
(declare-const att_theme_work_at_a_height Attribute)
(declare-const pl_NULL Place)
(declare-const ag_NULL Agent)
(declare-const me_NULL Method)
(assert (is it_theme att_theme_work_at_a_height pl_NULL 0))
(echo "<predicate> climb </predicate>

<object> onto the roof </object>")
(declare-fun climb (Agent Item Method Place Int) Bool)
(declare-const it_roof Item)
(assert (climb ag_NULL it_roof me_NULL pl_NULL 1))
(echo "<predicate> use </predicate>

<object> a rope </object> ")
(declare-const it_rope Item)
(assert (use ag_NULL it_rope me_NULL pl_NULL 2))

3.3 Checking correctness with a SMT solver
We propose 3 kinds of validation for procedures wrt re-
quirements : consistency checking, incompleteness detec-
tion, and non-redundancy checking. All these validations
are realized with the solver Z3 by using the notion of sat-
isfiability of a formula (a set of formulas is handled as the
logical conjunction of the formulas of the set). φ |= ⊥ de-
notes the fact that φ is unsatisfiable.

Notation 1 Fi denotes the formula corresponding to the
ith instruction of the procedure.R denotes the formula cor-
responding to the set of requirements. Lit(F) = {l1, ..., ln}
denotes the set of (positive or negative) literals used in F .

The detection of inconsistency can be done either on a set
of requirements, or on a procedure (a set of instructions),
or between a set of requirements and an instruction (or a
set of instructions) :

Definition 1 (Inconsistency Detection) Let R be a set of
requirements. Let {F1, . . . , Fn} be a set of instructions.
– There exists an inconsistency in the set of requirements

iff R |= ⊥.
– There exists an inconsistency in the set of instructions iff
F1 ∧ . . . ∧ Fn |= ⊥.

– There exists an inconsistency between a set of require-
ments and a set of instructions iffR∧F1∧. . .∧Fn |= ⊥.

Example 4 Input data are the followings :
requirements :

<requirement> in case of <theme>work at a height</theme>
<predicate>be protected</predicate>
<predicate>do not use</predicate> <object>ropes
</object> </requirement>

instructions :

<procedure>in order to <theme> sweep a chimney </theme>
<predicate>climb</predicate> <location>onto the roof
</location>
<predicate>use</predicate> <object>a rope</object>
</procedure>

The logical translation of these data corresponds to the fol-
lowing formulas :
R : (is(theme, work_at_a_height)

→ is(op, protected))
∧(is(theme, work_at_a_height)

→¬use(op, rope))
F1 : is(theme, work_at_a_height)
F2 : climb(op, roof)
F3 : use(op, rope)

Here, requirements are consistent (R 6|= ⊥), instructions
are consistent ((F1 ∧F2 ∧F3) 6|= ⊥) but requirements and
instructions are inconsistent ((R ∧ F1 ∧ F2 ∧ F3) |= ⊥).

Moreover, using an ATMS (see [10]), it is possible to iden-
tify the origin of the inconsistency. This can be done very
simply by first translating every formula in one or several
clauses 5 then introducing a new predicate of arity 0 (called
assumption predicate) for each clause and in each clause.
The ATMS is able to detect the nogoods of the knowledge
base, i.e. subsets N of formulas such that : 1) the formu-
las of N are only assumption predicates, 2) the set N is
inconsistent with the knowledge base, 3) N is minimal wrt
set-inclusion among the sets respecting 1) and 2).
Example 4 (cont) In this example, the knowledge base con-
tains 5 clauses (R produces two clauses) completed with
the assumption predicates R1, R2, F1, F2, F3 :

(R1 ∧ is(theme,work_at_a_height))
→ is(op,protected)

(R2 ∧ is(theme,work_at_a_height))
→¬use(op,rope)

F1→ is(theme,work_at_a_height)
F2→ climb(op,roof)
F3→ use(op,rope)

Then, using an ATMS, the set {R2, F1, F3} is a nogood that
gives the origin of the inconsistency between requirements
and instructions : if someone works at a height then he
cannot use ropes (R2) ; someone works at a height (F1) ;
and he uses ropes (F3).

Note that the computation of the nogoods is already par-
tially implemented in the SMT-solver Z3, since it is possi-
ble to assign a name for each assertion and to extract un-
satisfiable cores (i.e., a subset of assertions that are mutu-
ally unsatisfiable). However this set is not guaranteed to be

5. A clause is a disjunction of atomic formulas.

minimal and only one set is returned even when there are
several possible causes for inconsistency 6 ; so using Z3,
we can directly obtain a set containing one of the nogoods.
The check of non-redundancy consists in verifying that the
addition of a new instruction to a set of instructions allows
the inference of new formulas (otherwise it is the symp-
tom that this new instruction is useless). This check can be
formally defined as follows :

Definition 2 (Non-redundancy check) Let {F1, . . . , Fj}
be a set of instructions. Let Fk be a new instruction. If
F1 ∧ . . . ∧ Fj ∧ Fk 6|= ⊥ then Fk is not redundant iff
F1 ∧ . . . ∧ Fj ∧ ¬Fk 6|= ⊥ 7.

Example 4 (cont) In this example, let us consider that the
third instruction F3 (which produces an inconsistency) has
been replaced by the following new instruction F ′

3 :

<predicate>climb</predicate>
<location>onto the roof</location>

This instruction is exactly the instruction F2. So there is a
redundancy that is detected as follows : F1 ∧F2 ∧F ′

3 6|= ⊥
(no inconsistency in the procedure) and F1 ∧ F2 ∧ ¬F ′

3 |=
⊥ (so F1 ∧ F2 |= F ′

3). This means that F ′
3 is inferred by

F1 ∧ F2 and so F ′
3 is useless.

Note that it is possible to explain the source of redun-
dancy (as done for inconsistency) by extracting unsatisfi-
able cores containing the negation of the new instruction.
In the previous example we would obtain that F ′

3 is redun-
dant with {F2} (since {F2,¬F3} is an unsatisfiable core).
Searching for incompleteness corresponds to two distinct
options that can be formally define as follows :

Definition 3 (Incompleteness detection) LetR be a set of
requirements. Let {F1, . . . , Fj} be a set of instructions and
Fk be a new instruction.
– There exists an incompleteness in the set of requirements

iff there is at least a ground literal l ∈ Lit(R) s.t. R |= l.
– There exists an incompleteness of the instruction wrt to

the set of requirements iff there is at least one ground
literal l ∈ Lit(R∧Fk) such that R 6|= l, F1 ∧ . . .∧Fj ∧
Fk 6|= l, R ∧ F1 ∧ . . . ∧ Fj ∧ Fk |= l.

The first point of Definition 3 is not, strictly speaking, an
“incompleteness” (it rather means that the set R is too
strong deductively), whereas the second point exactly cor-
responds to an incompleteness since it means that the union
of requirements and instructions allows the inference of
new formulas that are not inferred by the instructions alone
(i.e. these instructions are too weak deductively).
Example 4 (cont) In this example, if consider only
the requirements R and the first instruction F1 then
there is an incompleteness of this instruction wrt

6. A solution has been proposed by Liffiton and Malik [12] but it is
not yet available in the standard solver.

7. That means that Fk is not inferred by {F1, . . . , Fj}.

requirements. Indeed, considering the ground lit-
erals that can be defined from R ∧ F1, we have :

ground atom v |= by |= by
R ∧ F1 F1

is(theme, work_at_a_height) Yes Yes
is(op, protected) Yes No ?
use(op, rope) No No

¬is(theme, work_at_a_height) No No
¬is(op, protected) No No
¬use(op, rope) Yes No ?

Using only the instruction, it is not possible to deduce the
ground atoms indicated with the ? symbol. This means that
the instruction is incomplete wrt the requirements. Indeed,
the procedure lacks at least an instruction in order to be
protected and another one for forbidding the use of ropes.

4 Functional description of the tool
The logical part of the tool (described on the french website
[14]) has been realized in Java ; it mainly implements four
features :

1. Project definition : a project gathers several textual
procedures, requirements and synonyms files, the user
can create and modify projects.

2. “Cleaning” and cutting sentences : it consists in sup-
pressing useless words and replacing some words
by their standard synonyms. The tool also translates
tagged sentences issued from TEXTCOOP into for-
matted sentences according to their mask (the tagged
sentences may be requirements or instructions). At
this stage “manual correction” is enabled : the user
can propose other synonyms or other masks.

3. Consistency, completeness and non-redundancy
checking : these functionalities are available after
a translation of formatted sentences into first-order
formulas using the SMT formalism. Completeness
and non-redundancy cannot be performed without a
previous consistency check.

4. Miscellaneous : two other functionalities have been
proposed, the possibility to automatically load the re-
quirements associated with a procedure by using its
theme(s) and the possibility to take into account nu-
meric interval values checking.

4.1 Project definition
In order to provide a convivial tool, several files can be
gathered in one project. Those files and the ones that will
be generated will be stored in the same directory. The in-
terface for the project handling divides the screen in three
parts, requirement files, procedure files and synonyms files.
The tool enables the user to add or remove files.

4.2 “Cleaning” and cutting
This functionality consists of removing the words that are
not tagged by TEXTCOOP. In a second time all articles and
prepositions are removed. Moreover the text is updated in
order to reduce at most the vocabulary used, this is done by

using synonyms files. Before this update, the tool checks
for the consistency of synonyms files in order to avoid
problems like “word A should be replaced by word B”,
and “word A should be replaced by word C” ; then the tool
does a transitive closure of the synonyms files in order to
simplify cases where “word A should be replaced by word
B” and “word B should be replaced by word C”.
The cutting part consists in matching the clean sentence
with a predefined mask. In practice this is done by studying
the tags given by TEXTCOOP in order to fit the mask.
It is possible for the user to browse the different files, and
to open a detailed view of these files in the main part of the
screen. The different stages of the cleaning and cutting pro-
cesses are shown to the user who can check for the validity
of the current translation (and may alert the system if there
is a wrong mask selected). Since the tool is in an experi-
mental stage, manual corrections are available : the user is
enabled to give new synonyms, to alert about some mask
mistakes and to propose another tagging of some words
and eventually to write an explanation/comment for the
TEXTCOOP administrator.

4.3 Logical correctness
Once the clean and corrected sentences have been asso-
ciated with a mask, they are translated into logic (as ex-
plained in Section 3.2), then the logical formula is sent to
Z3 solver. The results are parsed in order to give a clear di-
agnostic and they are presented thanks to a translation into
XSL which allows us to show the texts in a browser in a
more convenient way, using colors and fold/unfold effects.
More precisely the original sentences are shown in the or-
der they had in the procedure, they are coloured by the sys-
tem (for instance the inconsistencies appear in red while
correct instructions are in green), every item is unfoldable
in order to see their different translation stages and it is pos-
sible to obtain an explanation of the inconsistency by click-
ing on the item “inconsistency sources” (i.e., nogoods).
A procedure being consistent, its completeness should be
checked. An item “Completeness check” is proposed to the
user and can be unfold by clicking on it. The red color is
used to signal the requirements that are not fulfilled, redun-
dancies are colored in yellow.

4.4 Miscellaneous
The tool is able to select automatically the requirements
related to a procedure according to its theme. The consis-
tency of a procedure can be checked either instruction by
instruction or by checking a group of instructions together
and by shifting the entire group forward of one instruction.
Another feature is the ability to detect and reason about
numerical values and intervals of numeric values. For in-
stance, it is possible to use numbers in instructions or re-
quirements “check that the sensor temperature is equal to
25”, “the sensor temperature should be between 5 and 10”.
This has been done by adding comparison tags to the masks
as well as values or interval values. In particular, it is pos-
sible to set the time as well as the place of an instruction.

The time being represented by an integer, it can be used in
comparisons.
Note that due to the many possible file format for text
encoding (specially for French), this encoding should be
specified by the user. The tool may run on different operat-
ing systems, the operating system is detected automatically
(it is necessary for a correct handling of the file storage).

5 Related works and discussion
This paper describes a part of a tool that is based on
AI-techniques and automatic natural language processing.
More precisely the tool is able to translate procedural texts
into a predicate language in order to detect logical incor-
rectness. This detection is done thanks to the Z3 SMT-
solver. The choice to use a SMT-solver and not a SAT-
solver is justified by the fact that it is easier to translate a
sentence in natural language by a logical expression using a
predicative form than into an expression with propositional
variables. Moreover in a SMT-solver it is possible to han-
dle numerical values which are frequent in industrial do-
mains, the availability of quantifiers and function symbols
was also one reason for our choice even if we do not use
them in the current version of the tool. The use of Prolog
could also have been chosen in order to check logical in-
consistencies, the benefit of SMT-solver is their efficiency
in time (this is due to the SAT research progress that have
been stimulated by the international competitions among
SAT-solvers [9] and among SMT-solvers [2]).
Our use of the SMT-solver Z3 is a new application for
this kind of solvers that were initially designed for soft-
ware verification and analysis [13, 11]. It also has numer-
ous other applications in automated theorem proving, in
hardware verification [4], and in scheduling and planning
problems [7] for instance. But as far as we know this is the
first use of Z3 in combination with an automatic handling
of natural language in order to detect logical incorrectness
in texts.
The LELIE project is a new approach for analyzing texts.
The existing systems were either only able to correct gram-
matical mistakes or only dedicated to manage the require-
ments files and handle requirements traceability (see [5]
for a review of the existing softwares). The idea to help
people to correct higher-level mistakes like logical ones is
completely new in the domain of automatic and interactive
correction of written texts. The checks that are carried out
by our tool are crucial to reduce complexity and mistakes
in industrial texts hence to prevent industrial risks.
Several directions of improvement can be considered, e.g, :
– the use of ontologies in order to exploit the hierarchical

links between the manipulated objects (for instance to
exploit more intelligently the synonym files).

– a user-validation of the set of existing masks on real-
cases (for instance, do we need masks containing uni-
versal/existential quantifiers ?) ; and, more generally, the
use of real-case is needed for validating the principles
and the tool, since the scalability of the tool is very im-

portant, it is an ongoing task,
– the automatic correction of inconsistencies (possibly by

giving priorities to some requirements),
– an applet version of this tool.

Références
[1] F. Barcellini, C. Albert, and P. Saint-Dizier. Risk analysis

and prevention : Lelie, a tool dedicated to procedure and
requirement authoring. In Proc. of LREC. ACL, 2012.

[2] C. Barrett, L. de Moura, and A. Stump. SMT-COMP : Sat-
isfiability modulo theories competition. In Computer Aided
Verification, pages 20–23. Springer, 2005.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Stan-
dard : Version 2.0. In A. Gupta and D. Kroening, editors,
Proc. of the 8th Intl. WS on Satisfiability Modulo Theories,
2010.

[4] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio,
Z. Hanna, A. Nadel, A. Palti, and R. Sebastiani. A lazy and
layered SMT (BV) solver for hard industrial verification
problems. In Computer Aided Verification, pages 547–560.
Springer, 2007.

[5] C. Ebert and R. Wieringa. Requirements engineering : So-
lutions and trends. In A. Aurum and C. Wohlin, editors,
Engineering and Managing Software Requirements, pages
453–476. Springer Berlin Heidelberg, 2005.

[6] M. Fitting. First-Order Logic and Automated Theorem
Proving. Graduate Texts in Computer Science. Springer,
1996.

[7] P. Gregory, D. Long, M. Fox, and J.C. Beck. Planning mod-
ulo theories : Extending the planning paradigm. In ICAPS,
2012.

[8] Health and Safety Executive. Fatal injury statistics.
http ://www.hse.gov.uk/statistics/fatals.htm.

[9] M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon.
The international SAT solver competitions. AI Magazine,
33(1) :89–92, 2012.

[10] J. De Kleer. An assumption-based TMS. Artificial Intelli-
gence, 28 :127–162, 1986.

[11] S. Lahiri and S. Qadeer. Back to the future : revisiting pre-
cise program verification using SMT solvers. ACM SIG-
PLAN Notices, 43(1) :171–182, 2008.

[12] M. Liffiton and A. Malik. Enumerating Infeasibility : Find-
ing Multiple MUSes Quickly. In Proc. of CPAIOR, pages
160–175, 2013.

[13] L. Moura and N. Bjørner. Z3 : An efficient SMT solver. In
C.R. Ramakrishnan and J. Rehof, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, volume
4963 of LNCS, pages 337–340. Springer, 2008.

[14] W. Raynaut. Module IA de l’Outil Lelie. Un logiciel intelli-
gent d’aide au diagnostic de risques dans les procédures in-
dustrielles. IRIT, www.irit.fr/∼Marie-Christine.Lagasquie-
Schiex/Lelie, 2013.

[15] P. Saint-Dizier. Processing natural language arguments with
the textcoop platform. Argumentation and Computation,
3(1) :49–82, 2012.

[16] P. Saint-Dizier. Challenges of Discourse Processing : the
case of technical texts. Cambridge University Press, 2014.

