
HAL Id: hal-03198277
https://hal.science/hal-03198277v1

Submitted on 14 Apr 2021 (v1), last revised 18 Oct 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sized Types with Usages for Parallel Complexity of
Pi-Calculus Processes

Patrick Baillot, Alexis Ghyselen, Naoki Kobayashi

To cite this version:
Patrick Baillot, Alexis Ghyselen, Naoki Kobayashi. Sized Types with Usages for Parallel Complexity
of Pi-Calculus Processes. [Research Report] ENS Lyon, CNRS & INRIA; University of Tokyo. 2021.
�hal-03198277v1�

https://hal.science/hal-03198277v1
https://hal.archives-ouvertes.fr

Sized Types with Usages for Parallel Complexity of

Pi-Calculus Processes

Patrick Baillot and Alexis Ghyselen

Univ Lyon, CNRS, ENS de Lyon, Universite Claude-Bernard Lyon 1

LIP, F-69342, Lyon Cedex 07, France

Naoki Kobayashi

The University of Tokyo

Japan

Abstract—We address the problem of analysing the complexity
of concurrent programs written in Pi-calculus. We are interested
in parallel complexity, or span, understood as the execution

time in a model with maximal parallelism. A type system for
parallel complexity has been recently proposed by Baillot and
Ghyselen but it is too imprecise for non-linear channels and
cannot analyse some concurrent processes. Aiming for a more
precise analysis, we design a type system which builds on the
concepts of sized types and usages. The new variant of usages
we define accounts for the various ways a channel is employed
and relies on time annotations to track under which conditions
processes can synchronize. We prove that a type derivation for
a process provides an upper bound on its parallel complexity.

I. INTRODUCTION

Static analysis of complexity is a classic topic of program

analysis. Among the various approaches developed for this

purpose, those based on type systems offer the advantages

of compositionality and verifiability. Several such systems

have been devised for functional programs, e.g. [1]–[6]. If

a program can be assigned a type, then one can obtain from

the type derivation a bound for its execution on any input.

Some of those systems are also equipped with efficient type

inference algorithms allowing typing to be automated.

However, this question has been for the moment far less

explored in the setting of concurrent programming. Indeed,

concurrent programs are harder to analyse and reasoning

on their behaviour is a challenging task. The π-calculus is

an expressive formalism in which these questions can be

explored. In this setting, type systems have been intensively

and successfully employed to guarantee properties such as

termination (e.g. [7], [8]), deadlock-freedom and livelock-

freedom (e.g. [9]–[11]): see [12] for a survey.

We wish to develop an analogous type-based approach for

the analysis of time complexity of concurrent programs, using

the framework of π-calculus. This requires first to clarify

which notion of time we want to consider. Two classic notions

of time cost for parallel systems are sequential time (work)

and parallel time (span). The first one counts the cumulated

total execution time of all processes while the second one

takes into account simultaneous parallel execution, assuming

an unlimited number of processors is available. Thus, the

span or maximally parallelized execution time is an idealized

notion, but it is standard in algorithms analysis and can also

be used to obtain in practice concrete bounds for execution

on a given number of processors. A second aspect we want to

deal with is parametricity, in the sense that we want to be able

to derive bounds depending on the size of some inputs, just

as in the case of complexity analysis of sequential programs.

In [13], [14] two operational semantics and type systems

have been proposed for analysing respectively the work and

the span of π-calculus processes. However, as stressed by the

authors even though the type system for span seems useful for

analysing the complexity of some parallel programs, it fails to

type-check some examples of common concurrent programs,

like semaphores. It is based on a combination of sized types

and input/output types, in order to account suitably for the

behaviour of channels w.r.t. reception and emission.

In the present paper we design a type system for span which

can deal with a much wider range of concurrent computation

patterns including the semaphores. For that we take inspiration

from the notion of type usage, which has been introduced

and explored in [10], [11], initially to guarantee absence of

deadlock during execution. Type usages are a generalization

of input/output types, and describe how each channel is used

for input and output. This description is given as a kind

of CCS process. We formalize the type system with usages

and prove its soundness. We also show through a number of

examples (including semaphores) that our type system is often

much more expressive than the type system of Baillot and

Ghyselen [13].

Paper outline We introduce in Sect. II the π-calculus

and the notion of parallel complexity we consider. Sect. III

is devoted to the definition of types with usages. Then in

Sect. IV we prove the main result of this paper, the complexity

soundness, and provide some examples. Finally related work

is discussed in Sect. V.

II. THE PI-CALCULUS WITH SEMANTICS FOR SPAN

In this work, we take the π-calculus as a model of paral-

lelism and concurrent systems. The main points of π-calculus

are that processes can be composed in parallel, communica-

tions between processes happen with the use of channels, and

channel names can be created dynamically, so the topology

can change at runtime.

A. Syntax and Standard Semantics for π-Calculus

We take as syntax a synchronous π-calculus, with a con-

structor tick that generates the time complexity. More details

about π-calculus and variants of the syntax can be found

1

in [15]. The sets of variables, expressions and processes are

defined by the following grammar.

v := x, y, z | a, b, c e := v | 0 | s(e)

P := 0 | (P | Q) | !a(̃v).P | a(̃v).P | a〈ẽ〉.P | (νa)P

| tick.P | match e {case 0 7→ P ; case s(x) 7→ Q}

We use x, y, z as meta-variables for integer variables, and

a, b, c as those for channel names. The notation ṽ stands for

a sequence of variables v1, v2, . . . , vk. Similarly, ẽ denotes a

sequence of expressions. We work up to α-renaming, and we

write P [̃v := ẽ] to denote the subtitution of ẽ for the free

variables ṽ in P . For the sake of simplicity, we consider only

integers as base types below, but the results can be generalized

to other algebraic data-types such as lists or booleans.

Intuitively, P | Q stands for the parallel composition of P
and Q. The process a(̃v).P represents an input: it stands for

the reception on the channel a of a tuple of values identified

by the variables ṽ in the continuation P. The process !a(̃v).P
is a replicated version of a(̃v).P , it behaves like an infinite

number of a(̃v).P in parallel. The process a〈ẽ〉.P represents

an output: it sends a sequence of expressions on the channel

a, and continues as P . A process (νa)P dynamically creates

a new channel name a and then proceeds as P . We also

have standard pattern matching on data types, and finally,

the tick constructor incurs a cost of one in complexity but

has no semantic relevance. We consider that this constructor

is the only source of time complexity in a program. It can

represent different cost models and it is more general than

counting the number of reduction steps in a standard setting.

For example, by adding a tick after each input, we can count

the number of communications in a process. By adding it

after each replicated input on a channel a, we can count the

number of calls to a. And if we want to count the number

of reduction steps, we can add a tick after each input and

pattern matching.

We now describe the standard semantics for this calculus.

The first step is to define a congruence relation ≡ on those

processes. It is defined as the least congruence containing:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νa)(νb)P ≡ (νb)(νa)P

(νa)(P | Q) ≡ (νa)P | Q (when a is not free in Q)

Note that the last rule can always be applied from right to

left by α-renaming. Also, one can see that contrary to usual

congruence relation for the π-calculus, we do not consider the

rule for replication (!P ≡ !P | P) as it will be captured by

the semantics, and α-conversion is not taken as an explicit

rule in the congruence. By associativity, we will often write

parallel composition for any number of processes and not only

two. Another way to see this congruence relation is that, up to

congruence, a process is entirely described by a set of channel

names and a multiset of guarded processes. Formally, we give

the following definition.

!a(̃v).P | a〈ẽ〉.Q → !a(̃v).P | P [̃v := ẽ] | Q

a(̃v).P | a〈ẽ〉.Q → P [̃v := ẽ] | Q

match 0 {case 0 7→ P ; case s(x) 7→ Q} → P

match s(e) {case 0 7→ P ; case s(x) 7→ Q} → Q[x := e]

P → Q

P | R → Q | R

P → Q

(νa)P → (νa)Q

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

Fig. 1. Standard Reduction Rules

Definition 1 (Guarded Processes and Canonical Form). A

process G is guarded if it has one of the following shapes:

G := !a(̃v).P | a(̃v).P | a〈ẽ〉.P | tick.P

| match e {case 0 7→ P ; case s(x) 7→ Q}

We say that a process is in canonical form if it has the form

(νã)(G1 | · · · | Gn) with G1, . . . , Gn guarded processes.

For each process P , there is a process in canonical form

congruent to P ; thus, it is sufficient to consider only processes

in canonical form. Moreover, this canonical form is unique up

to the ordering of names and processes, and up to congruence

inside guarded processes.

We now define the usual reduction relation for the π-

calculus, that we denote P → Q. It is defined by the rules

given in Figure 1. Note that substitution should be well-defined

in order to do some reduction steps: channel names must be

substituted by other channel names and base type variables

can be substituted by any expression except channel names.

However, when we will consider typed processes, this will

always yield well-defined substitutions.

For now, this relation cannot reduce a process of the

form tick.P . So, we need to introduce a reduction rule for

tick. We will define parallel complexity (span) by taking an

expansion of the standard reduction.

B. Parallel Complexity : The Span

The notion of complexity we are interested in is the parallel

one. Before presenting the semantics, we present with some

simple examples what kind of properties we want for this

parallel complexity.

First, we want a parallel complexity that works as if we had

an infinite number of processors. So, on the process tick.0 |
tick.0 | tick.0 | · · · | tick.0 we want the complexity to be

1, whatever the number of tick in parallel.

Moreover, a reduction step with a zero-cost complexity (in

our setting, this should mean all reduction steps except when

we reduce a tick) should not harm this maximal parallelism.

For example a().tick.0 | a〈〉.0 | tick.0 should also have

complexity one, because intuitively this synchronization be-

tween the input and the output can be done independently of

2

the tick on the right, and then the tick on the left can be

reduced in parallel with the tick on the right.

Finally, adding a tick should not change the behaviour of

a process. For instance, consider the process tick.a().P0 |
a().tick.P1 | a〈〉, where a is not used in P0 and P1. This

process should have the complexity max(1+C0, 1+C1), where

Ci denotes the complexity of the process Pi. Indeed, there are

two possible reductions, either we reduce the tick, and then we

synchronize the left input with the output, and continue with

P0, or we first do the synchronization with the right input and

the output, we then reduce the ticks and continue as P1.
We use the definition of span from [13]. It consists in

introducing a new construction for processes, m : P , where m
is an integer. A process using this constructor will be called
an annotated process. Intuitively, this annotated process has
the meaning P with m ticks before. The congruence relation
≡ is then enriched with the following relations:

0 : P ≡ P m : (P | Q) ≡ (m : P) | (m : Q)

m : (νa)P ≡ (νa)(m : P) m : (n : P) ≡ (m+ n) : P

So, zero tick is equivalent to nothing and ticks can be

distributed over parallel composition as expressed by the

second relation. Name creation can be done before or after

ticks without changing the semantics and finally ticks can be

grouped together.

With this congruence relation and this new constructor, the

canonical form presented in Definition 1 is given a new shape.

Definition 2 (Canonical Form for Annotated Processes). An

annotated process is in canonical form if it has the shape:

(νã)(n1 : G1 | · · · | nm : Gm)

with G1, . . . , Gm guarded processes.

The rules for the reduction relation ⇒ are given in Figure 2.

This semantics works as the usual semantics for π-calculus,

but when doing a synchronization, only the maximal annota-

tion is kept, and ticks are memorized in the annotations.

Parallel complexity or span is then defined by:

Definition 3 (Parallel Complexity). Let P be an annotated
process. Its local complexity Cℓ(P) is defined by:

Cℓ(n : P) = n+ Cℓ(P) Cℓ(P | Q) = max(Cℓ(P),Cℓ(Q))

Cℓ((νa)P) = Cℓ(P) Cℓ(G) = 0 if G is a guarded process

Equivalently, Cℓ(P) is the maximal integer that appears in the

canonical form of P . Then, for an annotated process P , its

global parallel complexity is given by

max{n | P ⇒∗ Q ∧ Cℓ(Q) = n}

where ⇒∗ is the reflexive and transitive closure of ⇒.

This parallel complexity satisfies the following lemma [13]:

Lemma 1 (Reduction and Local Complexity). Let P, P ′ be

annotated processes such that P ⇒ P ′. Then, Cℓ(P
′) ≥ Cℓ(P)

So, in order to bound the complexity of an annotated

process, we need to reduce it with ⇒, and then take the

maximal local complexity over all normal forms. If there

is none, the complexity is the limit of the local complexity

on those infinite reductions. One can see that this semantics

respects the conditions given above.

Example 1. Let us write a〈〉 to represent the process a〈〉.0.

Consider this process, a kind of simplified semaphore:

P := tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉

By reducing P we obtain:

P ⇒2 1 : (a().tick.a〈〉) | 1 : (a().tick.a〈〉) | 0 : a〈〉

⇒ 1 : (a().tick.a〈〉) | 1 : (tick.a〈〉)

⇒ 1 : (a().tick.a〈〉) | 2 : a〈〉

⇒ 2 : (tick.a〈〉) ⇒ 3 : a〈〉

This shows the process has at least complexity 3. As all the

other possible choices we could have made in the reduction

steps are similar, the process has exactly complexity 3.

III. TYPES WITH USAGES

In order to introduce the relevance of usages for complexity,

let us look at another example similar to Example 1.

Example 2 (Motivating Example). We define

P := a().tick.a〈〉

Then, the complexity of P | P | P | · · · | P | a〈〉 is equal to

the number of P in parallel.

The goal of our work is to design a type system for

processes such that if Γ ⊢ Q ⊳ K then K is a bound on the

complexity of Q, such as in [13]. Let us look at the rule for

parallel composition. If we take a rule of the shape:

Γ ⊢ Q1 ⊳ K1 Γ ⊢ Q2 ⊳ K2

Γ ⊢ Q1 | Q2 ⊳ K

The first thing to see is that if we want to take into account the

case where Q1 and Q2 are totally independent, we should take

K = max(K1,K2). But, with our previous example, given a

typing Γ ⊢ P ⊳K , then we would obtain Γ ⊢ P | · · · | P ⊳K
and so we have two processes with different complexity when

composed with a〈〉 that are not distinguished by typing. In

[13], P was not typable and so this problem did not occur,

but it implied some limitations on the expressivity of their type

system. A better alternative is to separate contexts.

Γ ⊢ Q1 ⊳ K1 ∆ ⊢ Q2 ⊳ K2

f(Γ,∆) ⊢ Q1 | Q2 ⊳max(K1,K2)

This could for example lead to linear type systems, or usages

[12]. As we want a type system that can type examples

such as P , usages seem adapted. Indeed, the concept of

reliability, a central notion of usages, that allows types to adapt

compositionally, is especially useful here, as we will see in

Example 4. The type system we present uses an adaptation of

usages combined with sized types [5], [6], [16], in order to

handle recursion by replicated input.

3

(n : a(̃v).P) | (m : a〈ẽ〉.Q) ⇒ max(m,n) : (P [̃v := ẽ] | Q) tick.P ⇒ 1 : P

(n :!a(̃v).P) | (m : a〈ẽ〉.Q) ⇒ (n :!a(̃v).P) | (max(m,n) : (P [̃v := ẽ] | Q))

match 0 {case 0 7→ P ; case s(x) 7→ Q} ⇒ P match s(e) {case 0 7→ P ; case s(x) 7→ Q} ⇒ Q[x := e]

P ⇒ Q

P | R ⇒ Q | R

P ⇒ Q

(νa)P ⇒ (νa)Q

P ⇒ Q

(n : P) ⇒ (n : Q)

P ≡ P ′ P ′ ⇒ Q′ Q′ ≡ Q

P ⇒ Q

Fig. 2. Reduction Rules for Annotated Processes

A. Indices

First, we use integer indices to keep track of the size

of values in a process. The main idea of those types in a

sequential setting is to control recursive calls by ensuring a

decrease in the sizes. In our setting, those sizes are useful to

control replicated inputs.

Definition 4. We take V a countable set of index variables,

usually denoted by i,j or k. The set of indices, representing

integers in N∞ = N∪{∞}, is given by the following grammar.

I, J := IN |∞ IN := i | f(IN, . . . , IN)
where i ∈ V . The symbol f is an element of a given set

of function symbols containing for example integers constants

as nullary operators, addition and multiplication. We also

assume that we have the subtraction as a function symbol,

with n−m = 0 when m ≥ n. We consider that each

function symbol f of arity ar(f) comes with an interpretation

JfK : Nar(f) → N.

Given an index valuation ρ : V → N, we extend the

interpretation of function symbols to indices.

J∞Kρ = ∞ JiKρ = ρ(i)

Jf(IN, . . . , JN)Kρ = JfK(JINKρ, . . . , JJNKρ)

This interpretation takes values in N∞. For an index I , we

denote the substitution of the occurrences of i in I by JN with

I{JN/i}. Note that ∞{JN/i} = ∞.

Definition 5 (Constraints on Indices). Let ϕ ⊂ V be a finite set

of index variables. A constraint C on ϕ is an expression with

the shape I ⊲⊳ J where I and J are indices with free variables

in ϕ and ⊲⊳ denotes a binary relation on N∞. Usually, we take

⊲⊳∈ {≤, <,=, 6=}. A finite set of constraints is denoted Φ.

For a finite set ϕ ⊂ V , we say that a valuation ρ : ϕ → N

satisfies a constraint I ⊲⊳ J on ϕ, noted ρ � I ⊲⊳ J when

JIKρ ⊲⊳ JJKρ holds. Similarly, ρ � Φ holds when ρ � C for all

C ∈ Φ. Likewise, we note ϕ; Φ � C when for all valuations

ρ on ϕ such that ρ � Φ we have ρ � C.

Definition 6 (Notations for Indices). In order to harmonize

notation, we extend some operations on indices IN, JN to

indices I, J . We will use the following operations:

∞+ J = I +∞ = ∞ max(∞, J) = max(I,∞) = ∞

min(∞, J) = min(J,∞) = J ∞−1 = ∞

B. Usages

We use usages to express the channel-wise behaviour of

a process. Our notion of usages has been inspired by the

usages introduced in type systems for deadlock-freedom [10],

[11], [17], but differs from the original one in a significant

manner. We define usages as a kind of CCS processes [18]

on a single channel, where each action is annotated with two

time intervals.

The set of usages, ranged over by U or V , is given by:

U, V ::= 0 | (U |V) | InAo

Jc
.U | OutAo

Jc
.U |!U | U + V

Ao, Bo ::= [I, J] Jc, Ic ::= J | [I, J]

Given a set of index variables ϕ and a set of constraints Φ,

for an interval [I, J], we always require that ϕ; Φ � I ≤ J .

For an interval Ao = [I, J], we denote Left(Ao) = I and

Right(Ao) = J . In the original notion of usages [10], [11],

[17], Ao and Jc were just numbers. The extension to intervals

plays an important role in our analysis. Note that Jc is not

always an interval, as it can be a single index J . However, this

single index J should be understood as the interval [−∞, J].
Intuitively, a channel with usage 0 is not used at all. A

channel of usage U | V can be used according to U and V
possibly in parallel. The usage In

Ao

Jc
.U describes a channel

that may be used for input, and then used according to U .

The two intervals Ao and Jc, called obligation and capacity

respectively, are used to achieve a kind of assume-guarantee

reasoning. The obligation Ao indicates a guarantee that if the

channel is indeed used for input, then the input will become

ready during the interval Ao. The capacity Jc indicates the

assumption that if the environment performs a corresponding

output, that output will be provided during the time interval Jc
after the input becomes ready. For example, if a channel a has

usage In
[1,1]
Jc

.0, then the process tick.a().0 conforms to the

usage, but a().0 and tick.tick.a().0 do not. Furthermore, if

Jc = [0, 1], and if a process tickk.a is running in parallel with

tick.a().0, then k belongs to the interval [1, 1]+[0, 1] = [1, 2].
Similarly, OutAo

Jc
.U has the same meaning but for output. The

usage !U denotes the usage U that can be replicated infinitely,

and U + V denotes a non-deterministic choice between the

usages U and V . This is useful for example in a case of pattern

matching where a channel can be used very differently in the

4

two branches. For the sake of conciseness, we may use αAo

Jc
.U

to denote either the usage OutAo

Jc
.U or InAo

Jc
.U .

Recall that the obligation and capacity intervals in usages

express a sort of assume-guarantee reasoning. We thus require

that the assume-guarantee reasoning in a usage is “consistent”

(or reliable, in the terminology of usages). For example, the

usage In
[0,0]
[1,1] | Out

[1,1]
0 is reliable, since the part In

[0,0]
[1,1]

assumes that a corresponding output will become ready at

time 1, and the other part Out
[1,1]
0 indeed guarantees that.

Then, Out
[1,1]
0 assumes that a corresponding input will be

ready by the time the output becomes ready, and the part

In
[0,0]
[1,1] guarantees that. In contrast, the usage In

[0,0]
[1,1] | Out

[2,2]
0

is problematic because, although the part In
[0,0]
[1,1] assumes that

an output will be ready at time 1, Out
[2,2]
0 provides the output

only at time 2. The consistency on assume-guarantee reasoning

must hold during the whole computation; for example, in the

usage In
[0,0]
[0,0].In

[0,0]
[1,1] | Out

[0,0]
[0,0].Out

[2,2]
0 , the assume/guarantee

on the first input/output pair is fine, but the usage expressing

the next communication: In
[0,0]
[1,1] | Out

[2,2]
0 is problematic.

To properly define the reliability of usages during the whole

computation, we first prepare a reduction semantics for usages,

by viewing usages as CCS processes.

Definition 7 (Congruence for Usages). Congruence on usages

is defined as the least congruence relation closed under:

U | 0 ≡ U U | V ≡ V | U U | (V |W) ≡ (U | V) |W

!0 ≡ 0 !U ≡!U | U !(U | V) ≡!U | !V !!U ≡!U

We have the usual relations for parallel composition. We

also add a relation defining replication !U ≡!U | U . The other

relations allow manipulation of replication. This will be useful

for the subusage relation, as it can increase the set of typable

programs.

Now that we have congruence, as before, we give the

reduction semantics. Let us first introduce some notations.

Definition 8 (Operations on Usages). We define the operations

⊕, ⊔, and + by:

Ao ⊕ J = [0, Left(Ao) + J]
Ao ⊕ [I, J] = [Right(Ao) + I, Left(Ao) + J]
[I, J] ⊔ [I ′, J ′] = [max(I, I ′),max(J, J ′)]
[I, J] + [I ′, J ′] = [I + I ′, J + J ′]

Note that ⊕ is an operation that takes an obligation interval

and a capacity and returns an interval. This is where we see

the fact that a capacity J alone should be understood as the

interval [−∞, J]. Indeed, when considering a single index, the

lower bound of the sum becomes 0. So, in particular, we have

Ao ⊕ J 6= Ao ⊕ [0, J] in general. A case where we need this

single index will be explained in Example 3.

The delaying operation ↑AoU on usages is defined by:

↑Ao0 = 0 ↑Ao(U | V) = ↑AoU | ↑AoV
↑Ao(U + V) = ↑AoU + ↑AoV

↑AoαBo

Jc
.U = αAo+Bo

Jc
.U ↑Ao(!U) =!(↑AoU)

We also define [I, J] + Jc and thus ↑JcU by extending the

operation with: [I, J] + J ′ = [I, J + J ′].

Intuitively, a usage ↑AoU corresponds to the usage U
delayed by a time approximated by the interval Ao. Given two

obligations Ao and Bo, Ao ⊔Bo corresponds to an interval of

time approximating the time for which those two obligations

are respected. For example, if an input has the obligation to

be ready in the interval of time [4, 8] and an output has the

obligation to be ready in the interval of time [5, 7], then we

know for sure that the input and the output will both be ready

in the interval of time [5, 8].
The reduction relation is given by the rules of Figure 3.

The first rule means that to reduce a usage, we choose one

input and one output, and then we trigger the communication

between them. This communication occurs and does not lead

to an error when the capacity of an action corresponds indeed

to a bound on the time the dual action is defined. This is given

by the relation Ao ⊆ Bo ⊕ Jc. As an example, let us suppose

that Bo = [1, 3], and the time for which the output becomes

ready is in fact 2, then the capacity Jc says that after two units

of time, the synchronization should happen in the interval Jc.

So, if we take Jc = [5, 7] for example, then if we call t the

time for which the dual input becomes ready, we must have

t ∈ [2 + 5, 2 + 7]. This should be true for any time value in

Bo, so we want that ∀t′ ∈ [1, 3], ∀t ∈ Ao, t ∈ [t′ + 5, t′ + 7],
and this is equivalent to Ao ⊆ Bo ⊕ [5, 7] = [8, 8]. Indeed, 8
is the only time that is in the three intervals [6, 8], [7, 9] and

[8, 10]. The case where Jc = J is a single index occurs when

t can be smaller than t′, and in this case we only ask that the

upper bound is correct: ∀t′ ∈ Bo, ∀t ∈ Ao, t ≤ t′ + J .

If the bound was incorrect, we trigger an error, see the

second rule. In the case everything went well, the continuation

is delayed by an approximation of the time when this commu-

nication occurs (see ↑Ao⊔Bo in the first rule). The idea is that

we would like, after a communication, to synchronize the time

of the continuation with the other subprocesses of a usage. As

it is not easy to advance the time of all the other subprocesses,

delaying the current subprocess leads to an easier semantics.

In the rules for U + V , a reduction step in usages can also

make a non-deterministic choice.

An error in a usage reduction means that the assume-

guarantee reasoning was inconsistent. Keeping that in mind,

we define what is a reliable usage, that is to say a usage with

consistent time indications.

Definition 9 (Reliability). A usage U is reliable under ϕ; Φ
when for any reduction from U using −→, it does not lead to

an error.

Example 3. Take the usage

U := In
[1,1]
1 .Out

[1,1]
0 | In

[1,1]
1 .Out

[1,1]
0 | Out

[0,0]
[1,1]

The only possible reduction step (with symmetry) is:

U −→ Out
[2,2]
0 | In

[1,1]
1 .Out

[1,1]
0

as we have indeed [1, 1] ⊆ [0, 0]⊕ [1, 1] = [1, 1] and [0, 0] ⊆
[1, 1]⊕1 = [0, 2]. Note that the capacity [0, 1] instead of 1 for

5

ϕ; Φ � Bo ⊆ Ao ⊕ Ic ϕ; Φ � Ao ⊆ Bo ⊕ Jc

ϕ; Φ ⊢ In
Ao

Ic
.U | OutBo

Jc
.V −→ ↑Ao⊔Bo(U | V)

ϕ; Φ 2 (Bo ⊆ Ao ⊕ Ic ∧Ao ⊆ Bo ⊕ Jc)

ϕ; Φ ⊢ In
Ao

Ic
.U | OutBo

Jc
.V −→ err

ϕ; Φ ⊢ U + V −→ U ϕ; Φ ⊢ U + V −→ V

ϕ; Φ ⊢ U −→ U ′ U ′ 6= err

ϕ; Φ ⊢ U | V −→ U ′ | V

ϕ; Φ ⊢ U −→ err

ϕ; Φ ⊢ U | V −→ err

U ≡ U ′ ϕ; Φ ⊢ U ′ −→ V ′ V ′ ≡ V

ϕ; Φ ⊢ U −→ V

Fig. 3. Reduction Rules for Usages

the input would not have worked since [1, 1]⊕ [0, 1] = [1, 2].
Then, we end the reduction with

Out
[2,2]
0 | In

[1,1]
1 .Out

[1,1]
0 −→ Out

[3,3]
0

since [2, 2] ⊆ [1, 1]⊕ 1 = [0, 2] and [1, 1] ⊆ [2, 2]⊕ 0 = [0, 2].
Thus, this usage is reliable. It corresponds for example to the

usage of the channel a in the process P given in Example 1.

tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉

The obligation [1, 1] corresponds to waiting exactly one

tick. Then, the capacities say that once they are ready, the

two input will indeed communicate before one time unit for

any reduction. And at the end, we obtain an output available

at time 3, and this output has no communication. One can

see that those capacities and obligations give indeed the

complexity of this process. Thus, we will ask in the type system

that all usages are reliable, and so the time indications will

give some complexity bounds on the behaviour of a channel.

Example 4. Let us take as another example a non-reliable
usage. We take the previous example and add another input
in parallel

U := In
[1,1]
1 .Out

[1,1]
0 | In

[1,1]
1 .Out

[1,1]
0 | In

[1,1]
1 .Out

[1,1]
0 | Out

[0,0]
[1,1]

Again, the reduction gives:

U −→∗
Out

[3,3]
0 | In

[1,1]
1 .Out

[1,1]
0 −→ err

because [1, 1]⊕ 1 = [0, 2], so the capacity here is not a good
assumption. Therefore, this usage is not reliable. However, if
we change the usage to

U := In
[1,1]
2 .Out

[1,1]
0 | In

[1,1]
2 .Out

[1,1]
0 | In

[1,1]
2 .Out

[1,1]
0 | Out

[0,0]
[1,1]

this time we obtain a reliable channel. This example shows

how reliability adapts compositionally.

We introduce another relation U ⊑ V called the subusage

relation, which will be used later to define the subtyping

relation. It is defined by the rules of Figure 4. The relation

U ⊑ V intuitively means that any channel of usage U may

also be used according to V . For example, U ⊑ 0 says

that we may not use a channel (usage equal to 0). Recall

that an obligation and a capacity express a guarantee and an

assumption respectively. The last but one rule says that it is

safe to strengthen the guarantee and weaken the assumption.

We use the relation Ic ≤ Jc to denote the relation ⊆ on

intervals, where a single index J is considered as the interval

[−∞, J]. The last rule can be understood as follows. The

part ↑Ao+JcV says that a channel may be used according to

V only after the interval Ao + Jc. Since the action αAo

Jc
is

indeed finished during the interval Ao + Jc, we can move V
to under the guard of αAo

Jc
. This last rule is especially useful

for substitution, as explained in the example below.

Example 5. Let us consider the process:

P := a(r).r().b() | a〈b〉

Let us give usages to b and r; here we omit time annotations

for the sake of simplicity.

Ur = In Ub = In | Ur

Indeed, r is used only once as an input, and b is used as an

input on the left, and it is sent to be used as r on the right.

Thus, after a reduction step we obtain P → b().b() where b
has usage U ′

b = In.In. So, the channel b had usage Ub in

P , but it ended up being used according to U ′
b; that is valid

since we have the subusage relation Ub ⊑ U ′
b.

Before continuing to the type system, we give some inter-

mediate results on subusages.

Lemma 2 (Properties of Subusage). For a set of index

variables ϕ and a set of constraints Φ on ϕ we have:

1) If ϕ; Φ ⊢ U ⊑ V then for any interval Ao, we have

ϕ; Φ ⊢ ↑AoU ⊑ ↑AoV .

2) If ϕ; Φ ⊢ U ⊑ V and ϕ; Φ ⊢ V −→ V ′, then there exists

U ′ such that ϕ; Φ ⊢ U −→∗ U ′ and ϕ; Φ ⊢ U ′ ⊑ V ′

(with err ⊑ U for any usage U)

3) If ϕ; Φ ⊢ U ⊑ V and U is reliable under ϕ; Φ then V
is reliable under ϕ; Φ.

The first point shows that subtyping is invariant by delaying.

The second property means that the subusage relation serves as

a simulation relation, and the last one means that the reliability

is closed under the subusage relation. In our setting, it means

that the subusage relation cannot lead to unsound complexity

bounds. Some proof elements can be found in the Appendix A.

Finally, we also have the following lemmas, saying that

delaying does not modify the behaviour of a type.

Lemma 3 (Invariance by Delaying). For any interval Ao:

1) If ϕ; Φ ⊢ ↑AoU −→ V ′ then, there exists V such that

↑AoV = V ′ and ϕ; Φ ⊢ U −→ V . (with err = ↑Aoerr)

2) If ϕ; Φ ⊢ U −→ V then ϕ; Φ ⊢ ↑AoU −→ ↑AoV .

3) U is reliable under ϕ; Φ if and only if ↑AoU is reliable

under ϕ; Φ.

6

ϕ; Φ ⊢ U ⊑ 0
i ∈ {1; 2}

ϕ; Φ ⊢ U1 + U2 ⊑ Ui

ϕ; Φ ⊢ U ⊑ U ′

ϕ; Φ ⊢ U + V ⊑ U ′ + V

ϕ; Φ ⊢ V ⊑ V ′

ϕ; Φ ⊢ U + V ⊑ U + V ′

ϕ; Φ ⊢ U ⊑ U ′

ϕ; Φ ⊢ U | V ⊑ U ′ | V

ϕ; Φ ⊢ U ⊑ U ′

ϕ; Φ ⊢!U ⊑!U ′

U ≡ U ′ ϕ; Φ ⊢ U ′ ⊑ V ′ V ≡ V ′

ϕ; Φ ⊢ U ⊑ V

ϕ; Φ ⊢ U ⊑ U ′ ϕ; Φ ⊢ U ′ ⊑ U ′′

ϕ; Φ ⊢ U ⊑ U ′′

ϕ; Φ ⊢ U ⊑ U ′

ϕ; Φ ⊢ αAo

Jc
.U ⊑ αAo

Jc
.U ′

ϕ; Φ � Bo ⊆ Ao ϕ; Φ � Ic ≤ Jc

ϕ; Φ ⊢ αAo

Ic
.U ⊑ αBo

Jc
.U

ϕ; Φ ⊢ (αAo

Jc
.U) | (↑Ao+JcV) ⊑ αAo

Jc
.(U | V)

Fig. 4. Subusage

In our setting, this lemma shows among other things that

the tick constructor, or more generally the annotation n : P ,

does not break reliability.

C. Type System

Definition 10 (Usage Types). We define types by the following

grammar:

T, S ::= Nat[I, J] | ch(T̃)/U | ∀̃i.servK(T̃)/U

So, as expected, usual types for π-calculus are replaced by

a type with usage, and we keep track of sizes for integers. An

integer n of type Nat[I, J] must satisfy I ≤ n ≤ J .

Channels are classified into server channels (or just servers)

and simple channels. All the inputs on a server channel must

be replicated (as in !a(̃v).P), while no input on a simple

channel can be replicated. The type ch(T̃)/U describes a

simple channel that is used for transmitting values of type T̃
according to usage U . The type ∀̃i.servK(T̃)/U describes

a server channel that is used for transmitting values of type

T̃ according to usage U ; the superscript K , which we call

the complexity of a server, is an interval. It denotes the cost

incurred when a server is invoked. Note that the server type

allows polymorphism on index variables ĩ.
Also note that for a simple channel, only one type T̃ is

associated to all usages. So for example, in a channel of

type ch(Nat[I, J])/U , at any time this channel is used, all

messages must be integers between I and J .

The subtyping relation is defined by the rules of Figure 5.

The only thing subtyping can do is to change the usage of a

channel or modify the size bound on an integer.

In order to describe the type system for those types, we

need to extend the previous operations on usages to partial

operations on types and typing contexts with Γ = v1 :
T1, . . . , vn : Tn. The delaying of a type ↑AoT is defined as

the delaying of the usage for a channel or a server type, and

it does nothing on integers. We also say that a type is reliable

when it is an integer type, or when it is a server or channel

type with a reliable usage. We define following operations:

Definition 11 (Parallel Composition of Types). The parallel
composition of two types T | T ′ is defined by:

Nat[I, J] | Nat[I, J] = Nat[I, J]

ch(T̃)/U | ch(T̃)/V = ch(T̃)/(U | V)

∀̃i.servK(T̃)/U | ∀̃i.servK(T̃)/V = ∀̃i.servK(T̃)/(U | V)

Definition 12 (Replication of Type). The replication of a type

!T is defined by:

!Nat[I, J] = Nat[I, J] !ch(T̃)/U = ch(T̃)/(!U)

!∀̃i.servK(T̃)/U = ∀̃i.servK(T̃)/(!U)

The (partial) operations on types defined above are extended

pointwise to contexts. For example, for Γ = v1 : T1, . . . , vn :
Tn and ∆ = v1 : T ′

1, . . . , vn : T ′
n, we define Γ | ∆ = v1 :

T1 | T ′
1, . . . , vn : Tn | T ′

n. Note that this is defined just if Γ
and ∆ agree on the typing of integers and associate the same

types (excluding usage) to names.

We also introduce the following notation.

Definition 13. Given a capacity Jc and an interval K =
[K1,K2], we define Jc;K by;

J ; [K1,K2] = [0, J +K2]

[∞,∞]; [K1,K2] = [0, 0] [IN, J]; [K1,K2] = [0, J +K2]

Intuitively, Jc;K represents the complexity of an in-

put/output process when the input/output has capacity Jc
and the complexity of the continuation is K . Jc = [∞,∞]
means the input/output will never succeed (because there is no

corresponding output/input); hence the complexity is 0. A case

where this is useful is given later in Example 8. Otherwise,

an upper-bound is given by J + K2 (the time spent for the

input/output to succeed, plus K). The lower-bound is 0, since

the input/output may be blocked forever.

The type system is given in Figures 6 and 7. The typing

rules for expressions are standard ones for sized types.

A type judgment is of the form ϕ; Φ; Γ ⊢ P ⊳ [I, J] where ϕ
denotes the set of index variables, Φ is a set of constraints on

index variables, and J is a bound on the parallel complexity of

P under those constraints. This complexity bound J can also

be seen as a bound on the open complexity of a process, that

is to say the complexity of P in an environment corresponding

to the types in Γ. For example, a channel with usage In
[1,1]
5

alone cannot be reduced, as it is only used as an input. So,

the typing ·; ·; a : ch()/In
[1,1]
5 ⊢ tick.a() ⊳ [1, 6] says that in

an environment that may provide an output on the channel a
within the time interval [1, 1]⊕ 5 = [0, 6], this process has a

7

ϕ; Φ � I ′ ≤ I ϕ; Φ � J ≤ J ′

ϕ; Φ ⊢ Nat[I, J] ⊑ Nat[I ′, J ′]

ϕ; Φ ⊢ T̃ ⊑ T̃ ′ ϕ; Φ ⊢ T̃ ′ ⊑ T̃ ϕ; Φ ⊢ U ⊑ V

ϕ; Φ ⊢ ch(T̃)/U ⊑ ch(T̃ ′)/V

ϕ, ĩ; Φ ⊢ T̃ ⊑ T̃ ′ ϕ, ĩ; Φ ⊢ T̃ ′ ⊑ T̃ ϕ, ĩ; Φ � K = K ′ ϕ; Φ ⊢ U ⊑ V

ϕ; Φ ⊢ ∀̃i.servK(T̃)/U ⊑ ∀̃i.servK′

(T̃ ′)/V

Fig. 5. Subtyping Rules for Usage Types

v : T ∈ Γ
ϕ; Φ; Γ ⊢ v : T ϕ; Φ; Γ ⊢ 0 : Nat[0, 0]

ϕ; Φ; Γ ⊢ e : Nat[I, J]

ϕ; Φ; Γ ⊢ s(e) : Nat[I + 1, J + 1]

ϕ; Φ;∆ ⊢ e : T ′ ϕ; Φ ⊢ Γ ⊑ ∆ ϕ; Φ ⊢ T ′ ⊑ T

ϕ; Φ; Γ ⊢ e : T

Fig. 6. Typing Rules for Expressions

complexity bounded by 6. Similarly, the lower bound I is a

lower bound on the parallel complexity of P . But in practice,

this lower bound is often too imprecise.1

The (par) rule separates a context into two parts, and the

complexity is the maximum over the two complexities, both

for lower bound and upper bound. The (tick) rule shows the

addition of a tick implies a delay of [1, 1] in the context and the

complexity. The (nu) rules imposes that all names must have a

reliable usage when they are created. In order to type a channel

with the (ich) rule, the channel must have an input usage,

with obligation [0, 0]. Note that with the subusage relation,

we have InAo

Jc
⊑ In

[0,0]
Jc

if and only if Ao = [0, I] for some

I . So, this typing rule imposes that the lower-bound guarantee

is correct, but the rule is not restrictive for upper-bound. This

rule induces a delay of Jc in both context and complexity.

Indeed, in practice this input does not happen immediately as

we need to wait for output. This is where the assumption on

when this output is ready, given by the capacity, is useful. The

rule for output (och) is similar. For a server, the rule for input

(iserv) is similar to (ich) in principles but differs in the way

complexity is managed. Indeed, as a replicated input is never

modified nor erased through a computation, giving it a non-

zero complexity would harm the precision of the type system.

Moreover, if this server represents for example a function on

an integer with linear complexity, then the complexity of this

server depends on the size of the integer it receives, that is

why the complexity is transferred to the output rule on server,

as one can see in the rule (oserv). Indeed, this rule (oserv) is

again similar to (och) but the complexity of a call to the server

is added in the rule. As we have polymorphism on servers, in

order to type an output we need to find an instantiation on

the indices ĩ, which is denoted by ĨN in this rule. Finally, the

1This is because in the definition of JC ;K in Definition 13, we pes-
simistically take into account the possibility that each input/output may be
blokced forever. We can avoid the pessimistic estimation of the lower-bound
by incorporating information about lock-freedom [17], [19].

(case) rule is the only rule that modifies the set of constraints,

and it gives information on the values the sizes can take. As

explained in Example 9, those constraints are crucial in our

sized type system. Note that contexts are not separated in this

rule. In the typing for the expression this is not a problem

since names are not useful for the typing of an integer. Then

for both branches, it means that the usage of channels must be

the same. However, because we have the choice usage (U+V),

in practice we can use different usages in those two branches.

As an illustration of the type system, let us take back again

the reliable usage described in Example 3 and show that it

corresponds indeed to the typing of a in the process described

in Example 1.

Example 6. The typing derivation of the process in Example 1
is given in Figure 8. Note that the process

tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉

is also typable, in the same way, using the usage described
in Example 4, and with complexity [1, 3]. However, we saw in
Example 4 that the usage was not reliable, and that is why we
do not obtain a valid complexity bound. If we take the reliable
usage

U := In
[1,1]
2 .Out

[1,1]
0 | In

[1,1]
2 .Out

[1,1]
0 | In

[1,1]
2 .Out

[1,1]
0 | Out

[0,0]

[1,1]

It gives us back the correct complexity bound [1, 4]

So, our type system can adapt compositionally with the use

of reliability. And we saw on this example that reliability is

needed to obtain soundness. An example for the use of servers

and sizes is given later, in Example 7.

Remark. A careful reader may wonder why we need intervals

for obligations and capacities, instead of single numbers. An

informal justification is given in the Appendix C.

IV. SOUNDNESS AND EXAMPLES

The proof of soundness relies on standard lemmas for type

systems, mainly substitution lemmas and subject reduction.

Note that in order to work on the parallel reduction relation ⇒,

we need to consider annotated processes. So, in the following

we will always consider P as an annotated process. We

introduce the following typing rule, for the annotation:

ϕ; Φ; Γ ⊢ P ⊳ K

ϕ; Φ; ↑[m,m]Γ ⊢ m : P ⊳ K + [m,m]

This rule corresponds to a generalization of the rule for

tick.

8

(zero)
ϕ; Φ; Γ ⊢ 0 ⊳ [0, 0]

ϕ; Φ; Γ ⊢ P ⊳ K1 ϕ; Φ;∆ ⊢ Q ⊳K2
(par)

ϕ; Φ; Γ | ∆ ⊢ P | Q ⊳ K1 ⊔K2

ϕ; Φ; Γ ⊢ P ⊳ K
(tick)

ϕ; Φ; ↑[1,1]Γ ⊢ tick.P ⊳ K + [1, 1]

ϕ; Φ; Γ, a : ch(T̃)/U, ṽ : T̃ ⊢ P ⊳ K
(ich)

ϕ; Φ; ↑JcΓ, a : ch(T̃)/In
[0,0]
Jc

.U ⊢ a(̃v).P ⊳ Jc;K

(ϕ, ĩ); Φ; Γ, a : ∀̃i.servK(T̃)/U, ṽ : T̃ ⊢ P ⊳ K
(iserv)

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.servK(T̃)/!In
[0,0]
Jc

.U ⊢!a(̃v).P ⊳ [0, 0]

ϕ; Φ; Γ′, a : ch(T̃)/V ⊢ ẽ : T̃ ϕ; Φ; Γ, a : ch(T̃)/U ⊢ P ⊳ K
(och)

ϕ; Φ; ↑Jc (Γ | Γ′), a : ch(T̃)/Out
[0,0]
Jc

.(V | U) ⊢ a〈ẽ〉.P ⊳ Jc;K

ϕ; Φ; Γ′, a : ∀̃i.servK(T̃)/V ⊢ ẽ : T̃{ĨN/̃i} ϕ; Φ; Γ, a : ∀̃i.servK(T̃)/U ⊢ P ⊳ K′

(oserv)
ϕ; Φ; ↑Jc (Γ | Γ′), a : ∀̃i.servK(T̃)/Out

[0,0]
Jc

.(V | U) ⊢ a〈ẽ〉.P ⊳ Jc; (K
′ ⊔K{ĨN/̃i})

ϕ; Φ; Γ ⊢ e : Nat[I, J] ϕ; (Φ, I ≤ 0); Γ ⊢ P ⊳ K ϕ; (Φ, J ≥ 1); Γ, x : Nat[I−1, J−1] ⊢ Q ⊳ K
(case)

ϕ; Φ; Γ ⊢ match e {case 0 7→ P ; case s(x) 7→ Q} ⊳ K

ϕ; Φ; Γ, a : T ⊢ P ⊳ K T reliable
(nu)

ϕ; Φ; Γ ⊢ (νa)P ⊳ K

ϕ; Φ;∆ ⊢ P ⊳ K ϕ; Φ ⊢ Γ ⊑ ∆ ϕ; Φ � K ⊆ K′

(subtype)
ϕ; Φ; Γ ⊢ P ⊳ K′

Fig. 7. Typing Rules for Processes with Usages

·; ·; a : ch()/Out
[0,0]
0 ⊢ a〈〉 ⊳ [0, 0]

·; ·; a : ch()/Out
[1,1]
0 ⊢ tick.a〈〉 ⊳ [1, 1]

·; ·; a : ch()/(In
[0,0]
1 .Out

[1,1]
0) ⊢ a().tick.a〈〉 ⊳ [0, 2]

·; ·; a : ch()/(In
[1,1]
1 .Out

[1,1]
0) ⊢ tick.a().tick.a〈〉 ⊳ [1, 3] ·; ·; a : ch()/(Out

[0,0]
[1,1]) ⊢ a〈〉 ⊳ [0, 1]

·; ·; a : ch()/(In
[1,1]
1 .Out

[1,1]
0 | In

[1,1]
1 .Out

[1,1]
0 | Out

[0,0]
[1,1]) ⊢ tick.a().tick.a〈〉 | tick.a().tick.a〈〉 | a〈〉 ⊳ [1, 3]

Fig. 8. Typing of Example 1

A. Intermediate Lemmas

We first give some usual and intermediate lemmas on the

typing system.

Lemma 4 (Weakening). Let ϕ, ϕ′ be disjoint set of index

variables, Φ be a set of constraints on ϕ, Φ′ be a set of

constraints on (ϕ, ϕ′), Γ and Γ′ be contexts on disjoint set

of variables.

1) If ϕ; Φ; Γ ⊢ e : T then (ϕ, ϕ′); (Φ,Φ′); Γ,Γ′ ⊢ e : T .

2) If ϕ; Φ; Γ ⊢ P ⊳ K then (ϕ, ϕ′); (Φ,Φ′); Γ,Γ′ ⊢ P ⊳ K .

We also show that we can remove some useless hypothesis.

Lemma 5 (Strengthening). Let ϕ be a set of index variables,

Φ be a set of constraints on ϕ, and C a constraint on ϕ such

that ϕ; Φ � C.

1) If ϕ; (Φ, C); Γ,Γ′ ⊢ e :T and the variables in Γ′ are not

free in e, then ϕ; Φ; Γ ⊢ e : T .

2) If ϕ; (Φ, C); Γ,Γ′ ⊢ P ⊳ K and the variables in Γ′ are

not free in P , then ϕ; Φ; Γ ⊢ P ⊳ K .

Those two lemmas are proved easily by successive induction

on the definitions in this paper. Then, we also have a lemma

expressing that index variables can indeed be replaced by any

index.

Lemma 6 (Index Substitution). Let ϕ be a set of index

variables and i /∈ ϕ. Let JN be an index with free variables

in ϕ. Then,

1) If (ϕ, i); Φ; Γ ⊢ e : T then

ϕ; Φ{JN/i}; Γ{JN/i} ⊢ e : T {JN/i}.

2) If (ϕ, i); Φ; Γ ⊢ P ⊳ K then

ϕ; Φ{JN/i}; Γ{JN/i} ⊢ P ⊳ K{JN/i}.

We now present the variable substitution lemmas. In the

setting of usages, this lemma is a bit more complex than usual.

Indeed, we have a separation of contexts with the parallel

composition, and we have to rely on subusage, especially

the rule ϕ; Φ ⊢ (αAo

J .U) | (↑Ao+JcV) ⊑ αAo

Jc
.(U | V) as

expressed in the Example 5 above. We put some emphasis on

the following notation: when we write Γ, v : T as a context in

typing, it means that v does not appear in Γ.

Lemma 7 (Substitution). Let Γ and ∆ be contexts such that

Γ | ∆ is defined. Then we have:

1) If ϕ; Φ; Γ, v : T ⊢ e′ : T ′ and ∆ ⊢ e : T then

ϕ; Φ; Γ | ∆ ⊢ e′[v := e] : T ′

2) If ϕ; Φ; Γ, v : T ⊢ P ⊳ K and ∆ ⊢ e : T then

ϕ; Φ; Γ | ∆ ⊢ P [v := e] ⊳ K

The first point is straightforward. It uses the fact that we

have the relation ϕ; Φ ⊢ U ⊑ 0 for any usage U , and so we

9

can use ϕ; Φ ⊢ Γ | ∆ ⊑ Γ in order to weaken ∆ (similarly

for Γ) if needed. The second point is more interesting. The

easy case is when T is Nat[I, J] for some [I, J]. Then, we

take a ∆ that only uses the zero usage, and so Γ | ∆ = Γ and

everything becomes simpler. The more interesting cases are:

Lemma 8 (Difficult Cases of Substitution). We have:

• If ϕ; Φ; Γ, b : ch(S̃)/W0, c : ch(S̃)/W1 ⊢ P ⊳ K then

ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1) ⊢ P [c := b] ⊳ K
• If ϕ; Φ; Γ, b : ∀̃i.servK(S̃)/W0, c : ∀̃i.serv

K(S̃)/W1 ⊢
P ⊳ K then

ϕ; Φ; Γ, b : ∀̃i.servK(S̃)/(W0 | W1) ⊢ P [c := b] ⊳ K

Again, the proof is done by induction on the typing deriva-

tion. Some proof elements are given in the Appendix D.

B. Subject Reduction and Soundness

We then explain the subject reduction. Let us first introduce

a notation:

Definition 14 (Reduction for Contexts). We say that a context

Γ reduces to a context Γ′ under ϕ; Φ, denoted ϕ; Φ ⊢ Γ −→∗

Γ′ when one of the following holds:

• Γ = Γ′

• Γ = ∆, a : ch(T̃)/U ϕ; Φ ⊢ U −→∗ U ′

Γ′ = ∆, a : ch(T̃)/U ′

• Γ = ∆, a : ∀̃i.servK(T̃)/U ϕ; Φ ⊢ U −→∗ U ′

Γ′ = ∆, a : ∀̃i.servK(T̃)/U ′

So intuitively, Γ′ is Γ after some reduction steps but only

in a unique usage. Note that we obtain immediately that if all

types in Γ are reliable then all types in Γ′ are also reliable by

definition of reliability.

We then formalize the subject reduction.

Theorem 1 (Subject Reduction). If ϕ; Φ; Γ ⊢ P ⊳ K with

all types in Γ reliable and P ⇒ Q then there exists Γ′ with

ϕ; Φ ⊢ Γ −→∗ Γ′ and ϕ; Φ; Γ′ ⊢ Q ⊳K .

In order to do that, we need first a lemma saying that the

congruence relation behaves well with typing.

Lemma 9 (Congruence and Typing). Let P and Q be anno-

tated processes such that P ≡ Q. Then, ϕ; Φ; Γ ⊢ P ⊳ K if

and only if ϕ; Φ; Γ ⊢ Q ⊳K .

This is proved by induction on P ≡ Q, and it relies on

the congruence in usages and in the cases where we modify

annotations, it mainly relies on the fact that delaying does not

modify the behaviour of a type, as expressed by Lemma 3.

Proof elements are given in the Appendix E.

And now that we can work up to the congruence relation

with Lemma 9, Theorem 1 is proved by induction on P ⇒ Q.

Without surprise, the most difficult case is for a communica-

tion, and it greatly relies on reliability, see Appendix F for

details.

Finally, we conclude with the following theorem:

Theorem 2. Let P be an annotated process and n be its global

parallel complexity. Then, if ϕ; Φ; Γ ⊢ P ⊳ [I, J] with all types

in Γ reliable, then we have ϕ; Φ � J ≥ n. Moreover, if Γ does

not contain any integers variables, we have ϕ; Φ � I ≤ n.

Proof. By Theorem 1, all reductions from P using ⇒ conserve

the typing. The context may be reduced too, but as reducibility

does not harm reliability, we can still apply the subject

reduction through all the reduction steps of ⇒. Moreover, for

a process Q, if we have a typing ϕ; Φ; Γ ⊢ Q ⊳ [I, J], then

J ≥ Cℓ(Q). Indeed, a constructor n : P forces an increment

of the complexity of n both in typing and in the definition

of Cℓ(Q), and for parallel composition the typing imposes a

complexity greater than the maximum as in the definition for

Cℓ(Q). Thus, J is indeed a bound on the parallel complexity by

definition. As for the lower bound, one can see that we do not

always have I ≤ Cℓ(Q) because of two guarded processes: the

process tick.Q′ and match e {case 0 7→ Q1; case s(x) 7→
Q2}. However, those two processes are not in normal form

for ⇒, because tick.Q′ ⇒ 1 : Q′ and as there are no integer

variables in Γ, the pattern matching can also be reduced. Thus,

from a process Q with possibly top guarded processes that are

ticks or pattern matching, we can find Q′ such that Q ⇒ Q′

and Q′ has no guarded processes of this shape. And then,

we obtain I ≤ Cℓ(Q
′) which is smaller than the parallel

complexity of Q by definition.

C. Examples

Let us also present how sizes and polymorphism over

indices in servers can type processes defined by replication

such as the factorial. Please note that by taking inspiration

from the typing in [13], using the type representation given

in the Appendix B, more complicated examples of parallel

programs such as the bitonic sort could be typed in our setting

with a good complexity bound.

Example 7 (Factorial). Suppose given a function on expres-
sions mult : Nat[I, J] × Nat[I ′, J ′] → Nat[I ∗ I ′, J ∗ J ′]. In
practice, this should be encoded as a server in π-calculus, but
for the sake of simplicity we consider it as a function. We will
describe the factorial and count the number of multiplications
with tick. For the sake of conciseness, we write Nat[I] to
denotes Nat[I, I]. We use the usual notation I! to represent the
factorial function in indices. The process representing factorial
and its typing derivation are given in Figure 9. We denote T
the following type:

∀i.serv[0,i](Nat[i], ch(Nat[i!])/Out
[i,i]
0)/(!In[0,0]

∞ .Out
[0,∞]
0)

This type is reliable and it would be reliable even if composed

with any kind of output OutAo

0 if we want to call this server.

Let us denote:

T ′ = ∀i.serv[0,i](Nat[i],ch(Nat[i!])/Out
[i,i]
0)/Out

[0,∞]
0)

and we also pose:

S = ch(Nat[(i−1)!])/(Out
[i−1,i−1]
0 | In

[0,0]

[i−1,i−1]
) = S1 | S2

where S1 and S2 are the expected separation of the usage.

This type S is reliable under (i); (i ≥ 1). Thus, we give the

typing described in Figure 9. From the type of f , we see on

its complexity [0, i] that it does at most a linear number of

10

multiplications. Please note that the constraints that appear

in a match are useful since without them, we could not prove

i; (i ≤ 0) � i! = i == 0 and i; (i ≥ 1) � i ∗ (i−1)! = i!.
Moreover, polymorphism over indices is necessary in order to

find that the recursive call is made on a strictly smaller size

i−1.

Let us now justify the use of this operator Jc;K in order

to treat complexity.

Example 8 (Deadlock). Let us consider the process

P := (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉)

In order to understand the constraints we need to verify in

order to type this process, we will give a typing with variables

for obligation and capacity, and we will look at what values

those variables can take. This is described in Figure 10.

First, as a and b have exactly the same behaviour, they must

have the same typing. And from just this, we already have some

constraints to satisfy. Indeed, because of reliability, we have:

Bo ⊆ Ao ⊕ Ic Ao ⊆ Bo ⊕ Jc

Moreover, in order to continue the typing, we must have

In
Ao

Ic
⊑ In

[0,0]
I′

c
and Out

Bo

Jc
⊑ ↑I

′

c↑[1,1]Out
[0,0]
J′

c
. This gives

us the additional constraints:

[0, 0] ⊆ Ao Ic ≤ I ′c ([1, 1] + I ′c) ⊆ Bo Jc ≤ J ′
c

So, if we put them together, we have:

([1, 1] + Ic) ⊆ ([1, 1] + I ′c) ⊆ Bo ⊆ Ao ⊕ Ic

As [0, 0] ⊆ Ao we have Left(Ao) = 0. In order to have

Right([1, 1] + Ic) ≤ Right(Ao ⊕ Ic) then we are forced to

take Ic = ∞ or Ic = [I,∞] for some I . If we take such a

capacity, this could induce a infinite upper bound. However,

recall that we have the special case [∞,∞];K = [0, 0]. So,

if we can give an infinite lower bound to this capacity, we

recover the complexity 0 of this deadlock. In fact, this is

possible as described in Figure 11. Thus, the capacity [∞,∞],
describing input or output that will never be reduced, allows

us to derive a complexity of zero.

Example 9. Finally, we describe informally an example for
which our system can give a complexity, but fails to catch a
precise bound. Let us consider the process:

P := tick.!a(n).match n {case 0 7→ 0; case s(m) 7→ a〈m〉}

| a〈10〉 | tick.tick.!a(n).0

This process has complexity 2. However, if we want to give a

usage to the server a, we must have a usage:

!In
[1,1]
0 .Out

[0,0]
1 | Out

[0,0]
[1,2] | !In

[2,2]
0

We took as obligations the number of ticks before the action,

and as capacity the minimal number for which we have

reliability. So in particular, because of the capacity 1 in the

usage Out
[0,0]
1 , typing the recursive call a〈m〉 increases the

complexity by one, and so typing n recursive calls generates

a complexity of n in the type system. So, in our setting, the

complexity of this process can only be bounded by 10. Overall,

this type system may not behave well when there are more than

one replicated input process on each server channel, since

an imprecision on a capacity for a recursive call leads to

an overall imprecision depending on the number of recursive

calls. This issue is the only source of imprecision we found

with respect to the type system of [13]: see the conjecture in

Section V.

V. RELATED WORK

Some contributions to the complexity analysis of parallel

functional programs by means of type systems appear in

[20], [21] but the languages studied do not offer the same

communication primitives as the π-calculus and do not express

concurrency.

Alternatively some other works address the problem of

analysing the time complexity of distributed or concurrent

systems [22]–[24]. They provide some interesting analysis on

some instances of systems but are not targeted at a language

with dynamic creation of processes and channel name passing

as the π-calculus. Moreover, the techniques employed in

[22], [23] based on analysis of flow graph or rely-guarantee

reasoning do not seem to offer the same compositionality as

type systems.

More recently [25], [26] proposed a type system with

temporal session types to capture parallel cost models. They

use several time modalities inspired by temporal logic, which

give an interesting expressivity. However, as this work is in the

setting of session types they do not consider in full generality

the concurrent processes that can be written in π-calculus.

To our knowledge, the first work to study parallel com-

plexity in π-calculus by types was given by Kobayashi [17],

as another application of his usage type system for deadlock

freedom. However, the definition of parallel complexity and

thus the definition of usages and reliability in this work is quite

different from ours, as its reduction does not take into account

some non-deterministic paths and the extension with types that

could capture recursive functions is suggested but not detailed

nor formalized. Kobayashi [12], [19], [27] also used the notion

of usages to reason about deadlocks, livelocks, and information

flow, but he used a single number for each obligation and

capacity (the latter is called a “capability” in his work); we

have generalized the number to an interval to improve the

precision of our analysis. More recently, Baillot and Ghyselen

proposed in [13], [14] a type system with the same goal of

analysing parallel complexity in π-calculus. Their type system

builds on sized types and input/output types instead of usages.

Because of that, they cannot manage successive uses of the

same channel as in Example 1, as their names can essentially

be used at only one specific time. In most cases, the time

annotation used for channels in their setting corresponds to the

sum of the lower bound for obligation and the upper bound

for capacity in our setting. We conjecture the following result:

Conjecture (Comparison with [13]). Suppose given a typing

ϕ; Φ; Γi/o ⊢i/o P ⊳ J in the input/output sized type system of

11

P :=!f(n, r).match n {case 0 7→ r〈0〉; case s(m) 7→ (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉)}

i; ·;n : Nat[i] ⊢ n : Nat[i]

i; (i ≤ 0) � i! = i = 0

i; i ≤ 0; f : T ′, n : Nat[i], r : ch(Nat[i!])/Out
[i,i]
0 ⊢ r〈0〉 ⊳ [0, i] π1

i; ·; f : T ′, n : Nat[i], r : ch(Nat[i!])/Out
[i,i]
0 ⊢ match n {case 0 7→ r〈0〉; case s(m) 7→ (νr′)(f 〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉)} ⊳ [0, i]

·; ·; f : T ⊢!f(n, r).match n {case 0 7→ r〈0〉; case s(m) 7→ (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉)} ⊳ [0, 0]

with π1 :

· · · ⊢ (m, r′) : (Nat[i], ch(Nat[i!])/Out
[i,i]
0){i−1/i}

i; i ≥ 1;m : Nat[i−1], r′ : S1, f : T1 ⊢ f〈m,r′〉 ⊳ [0, i]

(i; i ≥ 1) � i ∗ (i−1)! = i!

i; i ≥ 1;n : Nat[i], x : Nat[(i−1)!] ⊢ mult(n, x) : Nat[i!]

i; i ≥ 1;n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out
[0,0]
0 ⊢ r〈mult(n, x)〉 ⊳ [0, 0]

i; i ≥ 1;n : Nat[i], x : Nat[(i−1)!], r : ch(Nat[i!])/Out
[1,1]
0 ⊢ tick.r〈mult(n, x)〉 ⊳ [1, 1]

i; i ≥ 1;n : Nat[i], r′ : S2, r : ch(Nat[i!])/Out
[i,i]
0 ⊢ r′(x).tick.r〈mult(n, x)〉 ⊳ [0, i]

i; i ≥ 1;n : Nat[i],m : Nat[i−1], r : ch(Nat[i!])/Out
[i,i]
0 , f : T ′, r′ : S ⊢ f〈m,r′〉 | r′(x).tick.r〈mult(n, x)〉 ⊳ [0, i]

i; i ≥ 1;n : Nat[i],m : Nat[i−1], r : ch(Nat[i!])/Out
[i,i]
0 , f : T ′ ⊢ (νr′)(f〈m, r′〉 | r′(x).tick.r〈mult(n, x)〉) ⊳ [0, i]

Fig. 9. Representation and Typing of Factorial

·; ·; a : ch()/InAo

Ic
, b : ch()/OutBo

Jc
⊢ a().tick.b〈〉 ⊳ K1 ·; ·; a : ch()/OutBo

Jc
, b : ch()/InAo

Ic
⊢ b().tick.a〈〉 ⊳ K2

·; ·; a : ch()/(InAo

Ic
| OutBo

Jc
), b : ch()/(OutBo

Jc
| InAo

Ic
) ⊢ a().tick.b〈〉 | b().tick.a〈〉 ⊳ K1 ⊔K2

·; ·; · ⊢ (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉) ⊳ K1 ⊔K2

Fig. 10. Typing Constraints for Example 8

·; ·; a : ch()/0, b : ch()/Out
[0,0]
0 ⊢ b〈〉 ⊳ [0, 0]

·; ·; a : ch()/0, b : ch()/Out
[1,1]
0 ⊢ tick.b〈〉 ⊳ [1, 1]

·; ·; a : ch()/In
[0,0]
[∞,∞]

, b : ch()/Out
[∞,∞]
0 ⊢ a().tick.b〈〉 ⊳ [0, 0]

·; ·; a : ch()/Out
[0,0]
0 , b : ch()/0 ⊢ a〈〉 ⊳ [0, 0]

·; ·; a : ch()/Out
[1,1]
0 , b : ch()/0 ⊢ tick.a〈〉 ⊳ [1, 1]

·; ·; a : ch()/Out
[∞,∞]
0 , b : ch()/In

[0,0]
[∞,∞]

⊢ b().tick.a〈〉 ⊳ [0, 0]

·; ·; a : ch()/(In
[0,0]
[∞,∞]

| Out
[∞,∞]
0), b : ch()/(Out

[∞,∞]
0 | In

[0,0]
[0,0]

) ⊢ a().tick.b〈〉 | b().tick.a〈〉 ⊳ [0, 0]

·; ·; · ⊢ (νa)(νb)(a().tick.b〈〉 | b().tick.a〈〉) ⊳ [0, 0]

Fig. 11. Typing of Example 8

[13], such that this process P has a linear use of channels.

Then, there exists a reliable context Γ such that ϕ; Φ; Γ ⊢
P ⊳ [0, J].

More details and some intuitions are given in the Ap-

pendix B. So, on a simple use of names our system is strictly

more precise if this conjecture is true. However, on other cases,

like in Example 9, their system is more precise as the loss of

precision because of usage does not happen in their setting. On

the contrary, our setting has fairly more precision for processes

with a non-trivial use of channels, as in Example 1. Indeed,

their type system cannot express such a sequential use of

channels, and so they cannot give a bound.

Some works have also been carried out in implicit computa-

tional complexity to characterize some complexity classes with

process calculi [28]–[30] but for some languages which are not

as expressive as the π-calculus and considering generally the

work rather than the span. The paper [31] by contrast considers

the π-calculus and causal (parallel) complexity, but the goal

here is more to delineate a characterization of polynomial

complexity rather than to give a sharp bound for a given

process.

VI. CONCLUSION

We presented a type system built on sized types and usages

such that a type derivation for a process gives an upper bound

on the parallel complexity of this process. The type system

relies on intervals in order to give an approximation of the

sizes of integers in the process, and an approximation of the

time an input or an output need to synchronize. In comparison

to [13], we showed with examples that our type system can

type some concurrent behaviour that was not captured in their

type system, and on some subset of processes, we conjecture

that we are strictly more precise.

Building on previous work by Kobayashi on type inference

for usages [11], [19], we plan to investigate type inference, by

the way of constraints solving procedures for indices.

12

REFERENCES

[1] J. Hoffmann, K. Aehlig, and M. Hofmann, “Resource aware ML,” in
Computer Aided Verification - 24th International Conference, CAV 2012,

Berkeley, CA, USA, July 7-13, 2012 Proceedings, ser. Lecture Notes in
Computer Science, vol. 7358. Springer, 2012, pp. 781–786.

[2] M. Hofmann and S. Jost, “Static prediction of heap space usage for first-
order functional programs,” in Conference Record of POPL 2003: The

30th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, New Orleans, Louisisana, USA, January 15-17, 2003. ACM,
2003, pp. 185–197.

[3] J. Hoffmann and M. Hofmann, “Amortized resource analysis with
polynomial potential,” in Programming Languages and Systems, 19th
European Symposium on Programming, ESOP 2010, Held as Part of

the Joint European Conferences on Theory and Practice of Software,

ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, ser.
Lecture Notes in Computer Science, vol. 6012. Springer, 2010, pp.
287–306.

[4] J. Hoffmann, K. Aehlig, and M. Hofmann, “Multivariate amortized
resource analysis,” ACM Trans. Program. Lang. Syst., vol. 34, no. 3,
pp. 14:1–14:62, 2012.

[5] U. Dal Lago and M. Gaboardi, “Linear dependent types and relative
completeness,” in Logic in Computer Science (LICS), 2011 26th Annual

IEEE Symposium on. IEEE, 2011, pp. 133–142.

[6] M. Avanzini and U. Dal Lago, “Automating sized-type inference for
complexity analysis,” Proceedings of the ACM on Programming Lan-

guages, vol. 1, no. ICFP, p. 43, 2017.

[7] Y. Deng and D. Sangiorgi, “Ensuring termination by typability,” Infor-

mation and Computation, vol. 204, no. 7, pp. 1045 – 1082, 2006.

[8] R. Demangeon, D. Hirschkoff, N. Kobayashi, and D. Sangiorgi,
“On the complexity of termination inference for processes,” in
Trustworthy Global Computing, Third Symposium, TGC 2007, Sophia-
Antipolis, France, November 5-6, 2007, Revised Selected Papers, ser.
Lecture Notes in Computer Science, G. Barthe and C. Fournet,
Eds., vol. 4912. Springer, 2007, pp. 140–155. [Online]. Available:
https://doi.org/10.1007/978-3-540-78663-4 11

[9] N. Kobayashi, “A partially deadlock-free typed process calculus,”
in Proceedings, 12th Annual IEEE Symposium on Logic in

Computer Science, Warsaw, Poland, June 29 - July 2, 1997.
IEEE Computer Society, 1997, pp. 128–139. [Online]. Available:
https://doi.org/10.1109/LICS.1997.614941

[10] E. Sumii and N. Kobayashi, “A generalized deadlock-free process
calculus,” in Proc. of Workshop on High-Level Concurrent Language

(HLCL’98), ser. ENTCS, vol. 16(3), no. 3, 1998, pp. 55–77.

[11] N. Kobayashi, S. Saito, and E. Sumii, “An implicitly-typed deadlock-
free process calculus,” in CONCUR 2000 — Concurrency Theory,
C. Palamidessi, Ed. Springer Berlin Heidelberg, 2000, pp. 489–504.

[12] N. Kobayashi, “Type systems for concurrent programs,” in Formal
Methods at the Crossroads. From Panacea to Foundational Support.
Springer, 2003, pp. 439–453.

[13] P. Baillot and A. Ghyselen, “Types for complexity of parallel compu-
tation in pi-calculus,” in To appear on 30th European Symposium on
Programming, ESOP 2021, 2021.

[14] ——, “Types for Complexity of Parallel Computation in Pi-calculus
(Technical Report),” Oct. 2020, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02961427

[15] D. Sangiorgi and D. Walker, The pi-calculus: a Theory of Mobile

Processes. Cambridge university press, 2003.

[16] J. Hughes, L. Pareto, and A. Sabry, “Proving the correctness of reactive
systems using sized types,” in Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. ACM,
1996, pp. 410–423.

[17] N. Kobayashi, “A type system for lock-free processes,” Information and

Computation, vol. 177, no. 2, pp. 122 – 159, 2002.

[18] R. Milner, Communication and concurrency, ser. PHI Series in computer
science. Prentice Hall, 1989.

[19] N. Kobayashi, “Type-based information flow analysis for the π-
calculus,” Acta Informatica, vol. 42, no. 4-5, pp. 291–347, 2005.

[20] J. Hoffmann and Z. Shao, “Automatic static cost analysis for parallel
programs,” in Programming Languages and Systems, J. Vitek, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 132–157.

[21] S. Gimenez and G. Moser, “The complexity of interaction,” in Pro-
ceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2016, St. Petersburg, FL,

USA, January 20 - 22, 2016, 2016, pp. 243–255.
[22] E. Albert, J. Correas, E. B. Johnsen, and G. Román-Dı́ez, “Parallel cost

analysis of distributed systems,” in Static Analysis - 22nd International

Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015, Pro-

ceedings, ser. Lecture Notes in Computer Science, vol. 9291. Springer,
2015, pp. 275–292.

[23] E. Albert, A. Flores-Montoya, S. Genaim, and E. Martin-Martin, “Rely-
guarantee termination and cost analyses of loops with concurrent inter-
leavings,” Journal of Automated Reasoning, vol. 59, no. 1, pp. 47–85,
2017.

[24] E. Giachino, E. B. Johnsen, C. Laneve, and K. I. Pun, “Time complexity
of concurrent programs - - A technique based on behavioural types -,” in
Formal Aspects of Component Software - 12th International Conference,

FACS 2015, Niterói, Brazil, October 14-16, 2015, Revised Selected

Papers, ser. Lecture Notes in Computer Science, vol. 9539. Springer,
2016, pp. 199–216.

[25] A. Das, J. Hoffmann, and F. Pfenning, “Parallel complexity analysis
with temporal session types,” Proc. ACM Program. Lang., vol. 2, no.
ICFP, pp. 91:1–91:30, 2018.

[26] ——, “Work analysis with resource-aware session types,” in Proceedings

of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2018, Oxford, UK, July 09-12, 2018. ACM, 2018, pp.
305–314.

[27] N. Kobayashi, “A new type system for deadlock-free processes,” in
International Conference on Concurrency Theory. Springer, 2006, pp.
233–247.

[28] A. Madet and R. M. Amadio, “An elementary affine λ-calculus with
multithreading and side effects,” in Typed Lambda Calculi and Appli-

cations - 10th International Conference, TLCA 2011, Novi Sad, Serbia,

June 1-3, 2011. Proceedings, ser. Lecture Notes in Computer Science,
vol. 6690. Springer, 2011, pp. 138–152.

[29] P. Di Giamberardino and U. Dal Lago, “On session types and polynomial
time,” Mathematical Structures in Computer Science, vol. -1, 2015.

[30] U. Dal Lago, S. Martini, and D. Sangiorgi, “Light logics and higher-
order processes,” Mathematical Structures in Computer Science, vol. 26,
no. 6, pp. 969–992, 2016.

[31] R. Demangeon and N. Yoshida, “Causal computational complexity of
distributed processes,” in Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, ser. LICS ’18. ACM, 2018,
pp. 344–353.

13

APPENDIX

In the appendix, we describe some proofs elements of

lemmas and theorems given in the paper.

A. Proprieties of Subusage

First, we have the following lemma:

Lemma 10. If ϕ; Φ � Bo ⊆ Ao then ϕ; Φ ⊢ (↑AoU) ⊑
(↑BoU)

This can be proved easily by induction on U . We now give

elements of proof for Point 2 and Point 3 of Lemma 2. For

Point 2, we can see two possible directions, either proceed

by induction on U ⊑ V and then do a case analysis on

V −→ V ′ on proceed by induction on V −→ V ′ and then

do a case analysis on U ⊑ V . In both cases, the definition of

subusage with the transitivity rule and congruence that can be

used everywhere make the proof complicated. So, we chose

to first simplify the definition of subusage.

Definition 15 (Decomposition of Subusage). Let us call ⊑ct

the relation defined by the rule of Figure 4 without using

congruence and transitivity. Then, we define ⊑t as:

U ≡ U ′ ϕ; Φ ⊢ U ′ ⊑ct V
′ V ′ ≡ V ′

ϕ; Φ ⊢ U ⊑t V

And we have the following lemma.

Lemma 11 (Decomposition of Subusage). The subusage re-

lation ⊑ is equivalent to the reflexive and transitive closure of

⊑t.

The proof can be done by induction on ⊑, and it relies

mainly on the fact that congruence can be used in any context,

so we can use it at the end. In the same way, as the subusage

relation can also be used in any context, the transitivity can

be done at the end. So, with this lemma we got rid of

the complicated rules by putting them always at the end

of a derivation. Moreover, note that it is easy to describe

exhaustively subtyping for ⊑t. Let us drop the ϕ; Φ notation

for the sake of conciseness, and we have:

Lemma 12 (Exhaustive Description of Subusage). Let us use
∗ ∈ {·, !}. Then, ∗U denotes either U or !U according to the
value of ∗. If U ⊑t V , then one of the following cases hold.

U ≡ (U0 | ∗U1) V ≡ U0

U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗Ui i ∈ {1; 2}

U ≡ U0 | ∗αAo
Jc

.W V ≡ U0 | ∗αAo
Jc

.W ′ W ⊑ct W
′

U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗(U ′

1 + U2) U1 ⊑ct U
′

1

U ≡ U0 | ∗(U1 + U2) V ≡ U0 | ∗(U1 + U ′

2) U2 ⊑ct U
′

2

U ≡ U0 | ∗αAo
Jc

.W V ≡ U0 | ∗α
A′

o

J′

c
.W A′

o ⊆ Ao Jc ≤ J ′

c

U ≡ U0 | ∗((αAo

Jc
.W) | (↑Ao+JcU1)) V ≡ U0 | ∗αAo

Jc
.(W | U1)

This proof is done directly by induction on U ⊑ct V . The

replication context rules works because we have !(U0 | W) ≡
!U0 | !W and !!W ≡!W . We now go back to Point 2 of

Lemma 2.

Proof. We rely on Lemma 11. So, we will prove first this

intermediate lemma:

Lemma 13. If U ⊑t V and V → V ′, then there exists U ′

such that U →∗ U ′ and U ′ ⊑ V ′

Then, if this lemma is proved, we conclude by transitivity

of the propriety. So, we only have to prove We will also use

the following lemma

Lemma 14. If V ≡ U0 | !U1 and V −→ V ′ then V ′ ≡ W | !U1

with U0 | U1 −→ W

Indeed, there are three cases for V −→ V ′. Either it is

only a reduction step in U0 independently of !U1, either it

is a reduction step within U1 (note that one copy is always

sufficient), either it is a synchronization between one action in

U0 and one action in U1. In the first case, the lemma is true

because we can arbitrarily add U1. In the same way, in the

second case the lemma is correct because we can just ignore

U0. In the third case, the lemma is verified since we allow this

synchronization between U0 and U1.

We now start the proof. We proceed by induction on U ⊑ct

V , and we use the exhaustive description given by Lemma 12.

We always consider the case ∗ =! as it is the harder of the

two cases. Let us give some interesting cases:

•

U ≡ U0 | !α
Ao

Jc
.W V ≡ U0 | !α

Ao

Jc
.W ′ W ⊑ct W

′

The easy case is when V ′ is obtained by a reduction
step in U0. So, we suppose that the reduction step is a
synchronization between U0 and αAo

Jc
.W ′. So, we have:

U0 ≡ U ′

0 | αBo

Ic
.W0

If V ′ = err, then we take U ′ = err and concludes this
case. Otherwise, we have:

V ′ ≡ U ′

0 | !α
Ao

Jc
.W ′ | ↑(Ao⊔Bo)(W0 | W ′)

So, we take

U ′ = U ′

0 | !α
Ao

Jc
.W | ↑Ao⊔Bo(W0 | W)

And, we have indeed:

U −→ U ′ U ′ ⊑ V ′

The fact that U ′ ⊑ V ′ is given by the previous point of

Lemma 2.
•

U ≡ U0 | !α
Ao

Jc
.W V ≡ U0 | !α

A′

o

J′

c
.W

A′

o ⊆ Ao Jc ≤ J ′

c

Again, the only interesting case is when the synchroniza-
tion is not only in U0. So, we have:

U0 ≡ U ′

0 | !α
Bo

Ic
.W0

If we have Ao ⊆ Bo ⊕ Ic and Bo ⊆ Ao ⊕ Jc then

V ′ ≡ U ′

0 | !α
A′

o

J′

c
.W | ↑A

′

o⊔Bo(W0 | W)

14

because A′
o ⊆ Ao and Jc ≤ J ′

c so we have A′
o ⊆ Bo⊕Ic

and Bo ⊆ Ao ⊕ J ′
c. Thus, we take

U ′ = U ′

0 | !α
Ao

Jc
.W | ↑Ao⊔Bo(W0 | W)

We have indeed U −→ U ′ and U ′ ⊑ V ′ by Lemma 10.

Otherwise, we obtain an error for U ′ and so it indeed is

a subusage of V ′.
•

U ≡ U0 | !((α
Ao

Jc
.W) | (↑Ao+JcU1))

V ≡ U0 | !α
Ao

Jc
.(W | U1)

Again, if the reduction step V → V ′ is a synchronization
between subprocesses in U0, it is simple. So let us
suppose that:

U0 ≡ U ′

0 | αBo

Ic
.W0

If we have Bo ⊆ Ao ⊕ Jc and Ao ⊆ Bo ⊕ Ic, then

V ′ ≡ U ′

0 | !α
Ao

Jc
.(W | U1) | (↑Ao⊔Bo(W | U1 | W0))

We pose U ′ equal to:

U ′

0 | !((α
Ao

J .W) | (↑Ao+JcU1)) | (↑Ao⊔Bo(W | W0))

We have indeed U → U ′ and we have U ′ ⊑ V ′ because
Ao ⊔Bo ⊆ Ao + Jc. Indeed,

Left(Ao + Jc) ≤ max(Left(Ao), Left(Bo))

As either Jc = J and so Left(Ao = Jc) = Left(Ao),
either Jc = [I, J] and

Left(Ao) + I ≤ Right(Ao) + I ≤ Left(Bo)

since Bo ⊆ Ao ⊕ Jc. Moreover, we have

max(Right(Ao),Right(Bo)) ≤ Right(Ao + Jc)

again because Bo ⊆ Ao ⊕ Jc.

Thus, we have indeed Lemma 13, and we deduce the second

point of Lemma 2.

Finally, the third point is a direct consequence of the third

point. Indeed, suppose that U is reliable. So, for any reduction

from U , it does not lead to an error. Let us take a reduction

from V . By the third point, it gives us a reduction from U
where some steps are a subtype of the steps in V . So, as an

error cannot happen in the steps from U , and the only usage

U such that U ⊑ err is err, we know that the reduction from

V does not lead to an error. Thus, V is reliable.

B. Elements of Comparison with Baillot and Ghyselen

In this section, we give intuitively a description of how to

simulate types on [13] in a linear setting with usage. We

say that a process has a linear use of channels if it use

channel names at most one time for input and at most one

time for output. For servers, we suppose that the replicated

input is once and for all defined at the beginning of a process,

and as free variables it can only use others servers. In their

type system, a channel is given a type ChI(T̃) where I is

an upper bound on the time this channel communicates. It

can also be a variant of this type with only input or only

output capability. Such a channel would be represented in out

type system by a type ch(T̃)/(In
[I1,I1]
J1
c

| OutI2,I2
J2
c

) where

either J1
c is 0 and then I1 ≤ I , either J1

c = [J1, J1] and

then I1 + J1 ≤ I . We have the same thing for J2
c and I2.

To be more precise, the typing in our setting should be a

non-deterministic choice (using +) over such usages, and the

capacity should adapt to the obligation of the dual action in

order to be reliable. So, for example if I1 ≤ I2, then we would

take: ch(T̃)/(In
[I1,I1]

[I2−I1,I2−I1]
| OutI2,I2

0). Note that this shape

of type adapts well to the way time is delayed in their setting.

For example, the tick constructor in their setting make the

time advance by 1, and in our setting, then we would obtain

the usage (In
[I1+1,I1+1]

[I2−I1,I2−I1]
| OutI2+1,I2+1

0) and we still have

I2−I1 = (I2 + 1)−(I1 + 1).

In the same way, in their setting when doing an output (or

input), the time is delayed by I . Here, with usages, it would

be delayed by Jc which is, by definition, a delay of the shape

↑[J,J] with J ≤ I . So, we would keep the invariant that our

time annotation have the shape of singleton interval with a

smaller value than the time annotation in their setting.

For servers, in the linear setting, their types have the shape:

I ∀̃i.serv
J(T̃) where I = 0 is again a time annotation giving

an upper bound on the time the input action of this server is

defined, and J is a complexity as in our setting. So, in our

setting it would be:

∀̃i.serv[0,J](T̃)/!In[0,0]
∞ .!Out

[0,∞]
0 | !Out

[0,∞]
0

Note that this usage is reliable. The main point here is

this infinite capacity for input. Please note that because of

our input rule for servers, it does not generates an infinite

complexity. However, it imposes a delaying ↑[0,∞]!Γ in the

context. Because of the shape we gave to types, it means

that the context can only have outputs for other servers as

free variables, but this was the condition imposed by linearity.

Note that in [13], they have a restriction on the free variables

of servers that is in fact the same restriction so it does not

harm the comparison to take this restriction on free variables.

As an example, the bitonic sort described in [13] could be

typed similarly in our setting with this kind of type.

Finally, choice in usages U1 + U2 is used to put together

the different usages we obtain in the two branches of a pattern

matching.

C. On the Need for Intervals in Usages

We describe informally on an example where the use of

intervals is important in our work. The need for an interval

capacity is apparent for the process

a().b〈〉 | match e {case 0 7→ a〈〉; case s(x) 7→ tick.a〈〉}

Indeed, depending on the value of e (which may be statically

unknown), an output on a may be available at time 0 or 1.

Thus, the input usage on a should have a capacity interval

[0, 1]. As a result, the obligation of the output usage on b
should also be an interval [0, 1].

Now, one may think that we can assume that lower-bounds

are always 0 (or ∞, to consider processes like Example 8) and

15

omit lower-bounds, since we are mainly interested in an upper-

bound of the parallel complexity. Information about lower-

bounds is, however, actually required for precise reasoning on

upper-bounds. For example, consider the following process:

a().b〈〉 | tick.a〈〉.b()

With intervals, a have the usage In
[0,0]
[1,1] | Out

[1,1]
0 and so b

has the usage Out
[1,1]
[0,0] | In

[1,1]
[0,0], and the parallel complexity

of the process can be precisely inferred to be 1.

If we set lower-bounds to 0 and assign to a the usage

In
[0,0]
[0,1] | Out

[0,1]
0 to a, then the usage of b can only be:

Out
[0,1]
1 | In

[0,1]
1 . Note that according to the imprecise usage

of a, the output on b may become ready at time 0 and then have

to wait for one time unit until the input on b becomes ready;

thus, the capacity of the output on b is 1, instead of [0, 0].
An upper-bound of the parallel complexity would therefore

be inferred to be 1 + 1 = 2 (because the usages tell us that

the lefthand side process may wait for one time unit at a, and

then for another time unit at b), which is too imprecise.

D. Substitution Lemma

Let us recall that the difficult cases for substitution lemma

(Lemma 7) are:

1) If ϕ; Φ; Γ, b : ch(S̃)/W0, c : ch(S̃)/W1 ⊢ P ⊳ K then

ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1) ⊢ P [c := b] ⊳ K
2) If ϕ; Φ; Γ, b : ∀̃i.servK(S̃)/W0, c : ∀̃i.serv

K(S̃)/W1 ⊢
P ⊳ K then

ϕ; Φ; Γ, b : ∀̃i.servK(S̃)/(W0 | W1) ⊢ P [c := b] ⊳ K

For those two points, the main difficulty is for the input and

output rules. We first detail the first point of this lemma, and

we will detail the difference for the second point.

16

1) • Case of input, with a 6= b and a 6= c.
ϕ; Φ; Γ, b : ch(S̃)/W0, c : ch(S̃)/W1, a : ch(T̃)/U, ṽ : T̃ ⊢ P ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(S̃)/(↑JcW0), c : ch(S̃)/(↑
JcW1), a : ch(T̃)/In

[0,0]
Jc

.U ⊢ a(̃v).P ⊳ Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1), a : ch(T̃)/U, ṽ : T̃ ⊢ P [c := b] ⊳ K .

We then give the following proof:

ϕ; Φ; Γ, b : ch(S̃)/(W0 | W1), a : ch(T̃)/U, ṽ : T̃ ⊢ P [c := b] ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(S̃)/(↑Jc (W0 | W1)), a : ch(T̃)/In
[0,0]
Jc

.U ⊢ a(̃v).P ⊳ Jc;K

This case is similar to all other cases when b and c does not interfere with the typing rule. Thus, we know only

show the cases when they interfere.

• Case of input, with a = b.
ϕ; Φ; Γ, b : ch(T̃)/U, c : ch(T̃)/W1, ṽ : T̃ ⊢ P ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/In
[0,0]
Jc

.U, c : ch(T̃)/(↑JcW1) ⊢ b(̃v).P ⊳ Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(T̃)/(U | W1), ṽ : T̃ ⊢ P [c := b] ⊳ K . So, we give the typing:

ϕ; Φ; Γ, b : ch(T̃)/(U | W1), ṽ : T̃ ⊢ P [c := b] ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/In
[0,0]
Jc

.(U | W1) ⊢ b(̃v).P [c := b] ⊳ Jc;K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/In
[0,0]
Jc

.U | (↑JcW1) ⊢ b(̃v).P [c := b] ⊳ Jc;K

Indeed, the last rule represents subtyping. This concludes this case.

• Case of input, with a = c.
ϕ; Φ; Γ, b : ch(T̃)/W0, c : ch(T̃)/U, ṽ : T̃ ⊢ P ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/(↑JcW0), c : ch(T̃)/In
[0,0]
Jc

.U ⊢ c(̃v).P ⊳ Jc;K

By induction hypothesis, we obtain ϕ; Φ; Γ, b : ch(T̃)/(W0 | U), ṽ : T̃ ⊢ P [c := b] ⊳ K . So, we give the typing:

ϕ; Φ; Γ, b : ch(T̃)/(W0 | U), ṽ : T̃ ⊢ P [c := b] ⊳ K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/In
[0,0]
Jc

.(W0 | U) ⊢ b(̃v).P [c := b] ⊳ Jc;K

ϕ; Φ; ↑JcΓ, b : ch(T̃)/In
[0,0]
Jc

.U | (↑JcW0) ⊢ (c(̃v).P)[c := b] ⊳ Jc;K

• Case of output, with a = b.
ϕ; Φ; Γ′, b : ch(T̃)/V, c : ch(T̃)/W ′

1 ⊢ ẽ : T̃ ϕ; Φ; Γ, b : ch(T̃)/U, c : ch(T̃)/W1 ⊢ P ⊳ K

ϕ; Φ; ↑Jc (Γ | Γ′), b : ch(T̃)/Out
[0,0]
Jc

.(V | U), c : ch(T̃)/↑Jc (W ′

1 | W1) ⊢ b〈ẽ〉.P ⊳ Jc;K

By point 1 of Lemma 7 and induction hypothesis, we obtain ϕ; Φ; Γ′, b : ch(T̃)/(V | W ′
1) ⊢ ẽ : T̃ and ϕ; Φ; Γ, b :

ch(T̃)/(U | W1) ⊢ P ⊳ K . Thus, we have:

ϕ; Φ; Γ′, b : ch(T̃)/(V | W ′

1) ⊢ ẽ : T̃ ϕ; Φ; Γ, b : ch(T̃)/(U | W1) ⊢ P ⊳ K

ϕ; Φ; ↑Jc(Γ | Γ′), b : ch(T̃)/Out
[0,0]
Jc

.(V | U | W1 | W ′

1) ⊢ b〈ẽ〉.P ⊳ Jc;K

ϕ; Φ; ↑Jc(Γ | Γ′), b : ch(T̃)/Out
[0,0]
Jc

.(V | U) | ↑Jc (W1 | W ′

1) ⊢ b〈ẽ〉.P ⊳ Jc;K

Again, the last rule is obtained by subtyping. We have a similar proof for the case a = c.
2) We know work on the case of servers. The notations are a bit cumbersome but the proofs are similar to the one for

channels. The only point that need some details is for server input as there is the replication in usages that appear.

• Case of input, with a 6= b and a 6= c.

(ϕ, ĩ); Φ; Γ, a : ∀̃i.servK(T̃)/U, b : ∀j̃.servK′

(S̃)/W0, c : ∀j̃.serv
K′

(S̃)/W1, ṽ : T̃ ⊢ P ⊳ K

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.servK(T̃)/!In
[0,0]
Jc

.U, b : ∀j̃.servK(′)/S̃(↑Jc !W0), c : ∀j̃.serv
K′

(S̃)/(↑Jc !W1) ⊢!a(̃v).P ⊳ [0, 0]

By induction hypothesis, we have (ϕ, ĩ); Φ; Γ, a:∀̃i.servK(T̃)/U, b:∀j̃.servK′

(S̃)/(W0 |W1), ṽ:T̃ ⊢ P [c := b]⊳K .

So, we have the proof

(ϕ, ĩ); Φ; Γ, a : ∀̃i.servK′

(T̃)/U, b : ∀j̃.servK′

(S̃)/(W0 | W1), ṽ : T̃ ⊢ P [c := b] ⊳ K

ϕ; Φ; ↑Jc !Γ, a : ∀̃i.servK(T̃)/!In
[0,0]
Jc

.U, b : ∀j̃.servK′

(S̃)/(↑Jc !(W0 | W1)) ⊢!a(̃v).P [c := b] ⊳ [0, 0]

• Case of input, with a = b.
(ϕ, ĩ); Φ; Γ, b : ∀̃i.servK(T̃)/U, c : ∀̃i.servK(T̃)/W1, ṽ : T̃ ⊢ P ⊳ K

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.servK(T̃)/!In
[0,0]
Jc

.U, c : ∀̃i.servK(T̃)/(↑Jc !W1) ⊢!a(̃v).P ⊳ [0, 0]

By induction hypothesis, we obtain (ϕ, ĩ); Φ; Γ, b : ∀̃i.servK(T̃)/(U | W1), ṽ : T̃ ⊢ P ⊳ K

(ϕ, ĩ); Φ; Γ, b : ∀̃i.servK(T̃)/(U | W1), ṽ : T̃ ⊢ P [c := b] ⊳ K

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.servK(T̃)/!In
[0,0]
Jc

.(U | W1) ⊢!a(̃v).P [c := b] ⊳ [0, 0]

ϕ; Φ; ↑Jc !Γ, b : ∀̃i.servK(T̃)/(!In
[0,0]
Jc

.U | ↑Jc !W1) ⊢!a(̃v).P [c := b] ⊳ [0, 0]

17

This last derivation is obtained by subtyping. Indeed, by definition we have ↑Jc !W1 =!↑JcW1. Then,

!In
[0,0]
Jc

.U | !↑JcW1 ≡!(In
[0,0]
Jc

.U | ↑JcW1) ⊑!In
[0,0]
Jc

.(U | W1)

• The case a = c is similar to the previous one.

This concludes the proof.

E. Congruence Equivalence

Proof. Let us show Lemma 9. We prove this by induction on P ≡ Q. Note that for a process P , the typing system is not

syntax-directed because of the subtyping rule. However, by reflexivity and transitivity of subtyping, we can always assume

that a proof has exactly one subtyping rule before any syntax-directed rule. Moreover, notice that in those kinds of proof, the

top-level rule of subtyping can be ignored. Indeed, we can always simulate exactly the same subtyping rule for both P and Q
We first show this propriety for base case of congruence. The reflexivity is trivial then we have those interesting cases:

• Case (νa)P | Q ≡ (νa)(P | Q) with a not free in Q. Suppose ϕ; Φ; Γ | ∆ ⊢ (νa)P | Q ⊳ K . Then the proof has the

shape:
π

ϕ; Φ; Γ′, a : T ⊢ P ⊳ K ′

1 T reliable

ϕ; Φ; Γ′ ⊢ (νa)P ⊳ K ′

1 ϕ; Φ ⊢ Γ ⊑ Γ′;K ′

1 ⊆ K1

ϕ; Φ; Γ ⊢ (νa)P ⊳ K1

π′

ϕ; Φ;∆ ⊢ Q ⊳ K2

ϕ; Φ; Γ | ∆ ⊢ (νa)P | Q ⊳ K1 ⊔K2

By weakening (Lemma 4), we obtain a proof π′
w of ϕ; Φ;∆, a : (T/0) ⊢ Q⊳K2. Thus, we have the following derivation:

π

ϕ; Φ; Γ′, a : T ⊢ P ⊳ K ′

1 ϕ; Φ ⊢ Γ ⊑ Γ′;K ′

1 ⊆ K1

ϕ; Φ; Γ, a : T ⊢ P ⊳ K1

π′

w

ϕ; Φ;∆, a : (T/0) ⊢ Q ⊳ K2

ϕ; Φ; Γ | ∆, a : T ⊢ P | Q ⊳ K1 ⊔K2 T reliable

ϕ; Φ; Γ | ∆ ⊢ (νa)(P | Q) ⊳ K1 ⊔K2

For the converse, suppose ϕ; Φ; Γ ⊢ (νa)(P | Q) ⊳ K . Then the proof has the shape:

π
ϕ; Φ; ΓP , a : TP ⊢ P ⊳ K1

π′

ϕ; Φ; ΓQ, a : TQ ⊢ Q ⊳ K2

ϕ; Φ; ΓP | ΓQ, a : TP | TQ ⊢ P | Q ⊳ K1 ⊔K2 ϕ; Φ ⊢ Γ ⊑ ΓP | ΓQ; T ⊑ TP | TQ;K1 ⊔K2 ⊆ K

ϕ; Φ; Γ, a : T ⊢ P | Q ⊳ K T reliable

ϕ; Φ; Γ ⊢ (νa)(P | Q) ⊳ K

Since a is not free in Q, by Lemma 5, from π′ we obtain a proof π′
s of ϕ; Φ; ΓQ ⊢ Q⊳K2. We then derive the following

typing:
π

ϕ; Φ; ΓP , a : TP ⊢ P ⊳ K1 ϕ; Φ ⊢ T ⊑ TP | TQ ⊑ TP

ϕ; Φ; ΓP , a : T ⊢ P ⊳ K1 T reliable

ϕ; Φ; ΓP ⊢ (νa)P ⊳ K1

π′

s

ϕ; Φ; ΓQ ⊢ Q ⊳ K2

ϕ; Φ; ΓP | ΓQ ⊢ (νa)P | Q ⊳ K1 ⊔K2 ϕ; Φ ⊢ Γ ⊑ ΓP | ΓQ;K1 ⊔K2 ⊆ K

ϕ; Φ; Γ ⊢ (νa)P | Q ⊳ K

• Case m : (P | Q) ≡ m : P | m : Q. Suppose ϕ; Φ; ↑[m,m]Γ ⊢ m : (P | Q) ⊳ K + [m,m]. Then we have:

πP

ϕ; Φ; ΓP ⊢ P ⊳ K1

πQ

ϕ; Φ; ΓQ ⊢ Q ⊳K2

ϕ; Φ; ΓP | ΓQ ⊢ (P | Q) ⊳ K1 ⊔K2 ϕ; Φ ⊢ Γ ⊑ ΓP | ΓQ;K1 ⊔K2 ⊆ K

ϕ; Φ; Γ ⊢ (P | Q) ⊳ K

ϕ; Φ; ↑[m,m]Γ ⊢ m : (P | Q) ⊳ K + [m,m]

By Lemma 2, from ϕ; Φ ⊢ Γ ⊑ ΓP | ΓQ we obtain ϕ; Φ ⊢ ↑[m,m]Γ ⊑ (↑[m,m]ΓP) | (↑
[m,m]ΓQ). So, we give the following

derivation:

πP

ϕ; Φ; ΓP ⊢ P ⊳ K1

ϕ; Φ; ↑[m,m]ΓP ⊢ m : P ⊳ K1 + [m,m]

πQ

ϕ; Φ; ΓQ ⊢ Q ⊳ K2

ϕ; Φ; ↑[m,m]ΓQ ⊢ m : Q ⊳ K2 + [m,m]

ϕ; Φ; (↑[m,m]ΓP) | (↑[m,m]ΓQ) ⊢ m : P | m : Q ⊳ (K1 ⊔K2) + [m,m] ϕ; Φ ⊢ ↑[m,m]Γ ⊑ (↑[m,m]ΓP) | (↑[m,m]ΓQ)

ϕ; Φ; ↑[m,m]Γ ⊢ m : P | m : Q ⊳ (K1 ⊔K2) + [m,m] ϕ; Φ � K1 ⊔K2 ⊆ K

ϕ; Φ; ↑[m,m]Γ ⊢ m : P | m : Q ⊳ K + [m,m]

Now, suppose we have a typing ϕ; Φ; ΓP | ΓQ ⊢ m : P | m : Q ⊳K1 ⊔K2. The typing has the shape:

18

πP

ϕ; Φ;∆P ⊢ P ⊳ KP

ϕ; Φ; ↑[m,m]∆P ⊢ m : P ⊳ KP + [m,m]

ϕ; Φ; ΓP ⊢ m : P ⊳ K1

πQ

ϕ; Φ;∆Q ⊢ Q ⊳ KQ

ϕ; Φ; ↑[m,m]∆Q ⊢ m : Q ⊳ KQ + [m,m]

ϕ; Φ; ΓQ ⊢ m : Q ⊳ K2

ϕ; Φ; ΓP | ΓQ ⊢ m : P | m : Q ⊳ K1 ⊔K2

with

ϕ; Φ ⊢ ΓP ⊑ ↑[m,m]∆P ϕ; Φ ⊢ ΓQ ⊑ ↑[m,m]∆Q ϕ; Φ � KP + [m,m] ⊆ K1 ϕ; Φ � KQ + [m,m] ⊆ K2

So, we derive:

πP

ϕ; Φ; ∆P ⊢ P ⊳ KP

πQ

ϕ; Φ; ∆Q ⊢ Q ⊳ KQ

ϕ; Φ;∆P | ∆Q ⊢ (P | Q) ⊳ KP ⊔KQ

ϕ; Φ; ↑[m,m](∆P | ∆Q) ⊢ m : (P | Q) ⊳ (KP ⊔ KQ) + [m,m] ϕ; Φ ⊢ ΓP | ΓQ ⊑ ↑[m,m](∆P | ∆Q); (KP ⊔ KQ) + [m,m] ⊆ K1 ⊔ K2

ϕ; Φ; ΓP | ΓQ ⊢ m : (P | Q) ⊳ K

This concludes this case.

• Case m : (νa)P ≡ (νa)(m : P).
Suppose ϕ; Φ; ↑[m,m]Γ ⊢ m : (νa)P ⊳ K + [m,m]. Then, the typing has the shape:

π

ϕ; Φ; Γ′, a : T ⊢ P ⊳ K ′ T reliable

ϕ; Φ; Γ′ ⊢ (νa)P ⊳ K ′ ϕ; Φ ⊢ Γ ⊑ Γ′;K ′ ⊆ K

ϕ; Φ; Γ ⊢ (νa)P ⊳ K

ϕ; Φ; ↑[m,m]Γ ⊢ m : (νa)P ⊳K + [m,m]

By Lemma 3, we know that ↑[m,m]T is reliable. So, we have:

π

ϕ; Φ; Γ′, a : T ⊢ P ⊳ K ′ ϕ; Φ ⊢ Γ ⊑ Γ′;K ′ ⊆ K

ϕ; Φ; Γ, a : T ⊢ P ⊳ K

ϕ; Φ; ↑[m,m](Γ, a : T) ⊢ (m : P) ⊳ K + [m,m] ↑[m,m]T reliable

ϕ; Φ; ↑[m,m]Γ ⊢ (νa)(m : P) ⊳ K + [m,m]

For the converse, suppose we have ϕ; Φ; Γ ⊢ (νa)(m : P) ⊳ K . Then, the typing has the shape:

π

ϕ; Φ; Γ′, a : T ′ ⊢ P ⊳ K ′

ϕ; Φ; ↑[m,m]Γ′, a : ↑[m,m]T ′ ⊢ (m : P) ⊳ K ′ + [m,m] ϕ; Φ ⊢ Γ ⊑ ↑[m,m]Γ′; T ⊑ ↑[m,m]T ′;K ′ + [m,m] ⊆ K

ϕ; Φ; Γ, a : T ⊢ (m : P) ⊳ K T reliable

ϕ; Φ; Γ ⊢ (νa)(m : P) ⊳ K

As T is reliable, by Lemma 2, we have ↑[m,m]T ′ reliable. Then, by Lemma 3, we have T ′ reliable. So, we give the

typing:

π

ϕ; Φ; Γ′, a : T ′ ⊢ P ⊳ K ′ T ′ reliable

ϕ; Φ; Γ′ ⊢ (νa)P ⊳ K ′

ϕ; Φ; ↑[m,m]Γ′ ⊢ m : (νa)P ⊳ K ′ + [m,m] ϕ; Φ ⊢ Γ ⊑ ↑[m,m]Γ′;K ′ + [m,m] ⊆ K

ϕ; Φ; Γ ⊢ m : (νa)P ⊳ K

This concludes the interesting base case. Symmetry and transitivity are direct, and for the cases of contextual congruence,

the proof is straightforward.

F. Subject Reduction

We now give elements for Theorem 1.

Again, when considering the typing of P , the first subtyping rule has no importance. We now proceed by doing the case

analysis on the rules of Figure 2. In order to simplify the proof, we will also consider that types and indexes invariant by

subtyping (like the complexity in a server) are not renamed with subtyping. Note that this only add cumbersome notations but

it does not change the core of the proof.

• Case (n :!a(̃v).P) | (m : a〈ẽ〉.Q) ⇒ (n :!a(̃v).P) | (max(m,n) : (P [̃v := ẽ] | Q)). Consider the typing ϕ; Φ; Γ0 | ∆0, a :
∀̃i.servKa(T̃)/(U0 | V0) ⊢ (n :!a(̃v).P) | (m : a〈ẽ〉.Q) ⊳ K0 ⊔K ′

0. The first rule is the rule for parallel composition,

then the proof is split into the two following subtree:

19

πP

(ϕ, ĩ); Φ; Γ2, a : ∀̃i.servKa (T̃)/U2, ṽ : T̃ ⊢ P ⊳ Ka

ϕ; Φ; ↑Jc !Γ2, a : ∀̃i.servKa (T̃)/!In
[0,0]
Jc

.U2 ⊢!a(̃v).P ⊳ [0, 0] ϕ; Φ ⊢ Γ1 ⊑ ↑Jc !Γ2;U1 ⊑!In
[0,0]
Jc

.U2; [0, 0] ⊆ K1

ϕ; Φ; Γ1, a : ∀̃i.servKa(T̃)/U1 ⊢!a(̃v).P ⊳ K1

ϕ; Φ; ↑[n,n]Γ1, a : ∀̃i.servKa (T̃)/↑[n,n]U1 ⊢ n :!a(̃v).P ⊳ K1 + [n, n] ϕ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1;U0 ⊑ ↑[n,n]U1;K1 + [n, n] ⊆ K0

ϕ; Φ; Γ0, a : ∀̃i.servKa(T̃)/U0 ⊢ n :!a(̃v).P ⊳ K0

πe

ϕ; Φ;∆2, a : ∀̃i.servKa (T̃)/V2 ⊢ ẽ : T̃{ĨN/̃i}

πQ

ϕ; Φ; ∆′

2, a : ∀̃i.servKa (T̃)/V ′

2 ⊢ Q ⊳ K2

ϕ; Φ; ↑J′

c (∆2 | ∆′

2), a : ∀̃i.servKa (T̃)/Out
[0,0]

J′
c

.(V2 | V ′

2) ⊢ a〈ẽ〉.Q ⊳ J′

c; (K2 ⊔ Ka{ĨN/̃i}) (1)

ϕ; Φ;∆1, a : ∀̃i.servKa (T̃)/V1 ⊢ a〈ẽ〉.Q ⊳ K′

1

ϕ; Φ; ↑[m,m]∆1, a : ∀̃i.servKa (T̃)/↑[m,m]V1 ⊢ m : a〈ẽ〉.Q ⊳ K′

1 + [m,m] ϕ; Φ ⊢ ∆0 ⊑ ↑[n,n]∆1;V0 ⊑ ↑[m,m]V1;K
′

1 + [m,m] ⊆ K′

0

ϕ; Φ; ∆0, a : ∀̃i.servKa (T̃)/V0 ⊢ m : a〈ẽ〉.Q ⊳ K′

0

where

(1) ϕ; Φ ⊢ ∆1 ⊑ ↑J
′

c(∆2 | ∆′
2) ϕ; Φ ⊢ V1 ⊑ Out

[0,0]
J′

c
.(V2 | V ′

2) ϕ; Φ � J ′
c; (K2 ⊔Ka{ĨN/̃i}) ⊆ K ′

1

First, by the index substitution lemma (Lemma 6), from πP we obtain a proof:

πP {ĨN/̃i} : ϕ; Φ; Γ2, a : ∀̃i.servKa(T̃)/U2, ṽ : T̃{ĨN/̃i} ⊢ P ⊳ Ka{ĨN/̃i}

Since the index variables ĩ can only be free in T̃ and Ka.

Then, we know that Γ0 | ∆0 is defined. Moreover, we have

ϕ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1 ϕ; Φ ⊢ Γ1 ⊑ ↑Jc !Γ2 ϕ; Φ ⊢ ∆0 ⊑ ↑[m,m]∆1 ∆1 ⊑ ↑J
′

c(∆2 | ∆′
2)

So, for the channel and server types, in those seven contexts, the shape of the type does not change (only the usage can

change). Let us look at base types. For a context Γ, we write ΓNat the restriction of Γ to base types. Then, we have:

ΓNat

0 = ∆Nat

0 ϕ; Φ ⊢ ΓNat

0 ⊑ ΓNat

1 ⊑ ΓNat

2 ϕ; Φ ⊢ ∆Nat

0 ⊑ ∆Nat

1 ⊑ ∆Nat

2 ∆Nat

2 = ∆′Nat

2

Similarly, we note Γν the restriction of a context to its channel and server types. Thus, we have Γ = Γν ,ΓNat.

So, from πe and πP {ĨN/̃i} we obtain by subtyping:

π′
P : ϕ; Φ; ΓNat

0 ,Γν
2 , a : ∀̃i.servKa(T̃)/U2, ṽ : T̃{ĨN/̃i} ⊢ P ⊳ Ka{ĨN/̃i}

π′
e : ϕ; Φ; ΓNat

0 ,∆ν
2 , a : ∀̃i.servKa(T̃)/V2 ⊢ ẽ : T̃{ĨN/̃i}

So, we use the substitution lemma (Lemma 7) and we obtain:

πsub : ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2), a : ∀̃i.servKa(T̃)/(U2 | V2) ⊢ P [ṽ := ẽ] ⊳ Ka{ĨN/̃i}

As previously, by subtyping from πQ, we have:

π′
Q : ϕ; Φ; ΓNat

0 ,∆′ν
2 , a : ∀̃i.servKa(T̃)/V ′

2 ⊢ Q ⊳K2

Thus, with the parallel composition rule (as parallel composition of context is defined) and subtyping we have:

πPQ : ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa(T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔Ka{ĨN/̃i}

Let us denote M = max(m,n). Thus, we derive the proof:
πPQ

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa (T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔Ka{ĨN/̃i}

ϕ; Φ; ΓNat

0 , ↑[M,M](Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa (T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ (K2 ⊔ Ka{ĨN/̃i}) + [M,M]

Now, recall that by hypothesis, U0 | V0 is reliable. We have:

ϕ; Φ ⊢ U0 ⊑ ↑[n,n]U1 ϕ; Φ ⊢ U1 ⊑!In
[0,0]
Jc

.U2 ϕ; Φ ⊢ V0 ⊑ ↑[m,m]V1 ϕ; Φ ⊢ V1 ⊑ Out
[0,0]
J′

c
(V2 | V ′

2)

So, by Point 1 of Lemma 2, with transitivity and parallel composition of subusage, we have:

20

ϕ; Φ ⊢ U0 | V0 ⊑ (↑[n,n]U1) | (↑[m,m]V1) ⊑!In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2)

By Point 3 of Lemma 2, we have !In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2) reliable. So, in particular, we have:

ϕ; Φ ⊢!In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2) −→!In
[n,n]
Jc

.U2 | ↑[M,M](U2 | V2 | V ′
2)

ϕ; Φ � [n, n] ⊆ [m,m]⊕ J ′
c ϕ; Φ � [m,m] ⊆ [n, n]⊕ Jc

Thus, we deduce immediately that neither Jc or J ′
c are [∞,∞] and that

ϕ; Φ � [M,M] ⊆ [m,M] ⊆ [n, n] + Jc ϕ; Φ � [M,M] ⊆ [n,M] ⊆ [m,m] + J ′
c

So, we have in particular, with Lemma 10 and Point 1 of Lemma 2 and parallel composition:

ϕ; Φ ⊢ Γ0 | ∆0 ⊑ (↑[n,n]Γ1) | ↑[m,m]∆1 ⊑ (↑[n,n]+Jc !Γ2) | (↑[m,m]+J′

c(∆2 | ∆′
2)) ⊑ ↑[M,M](!Γ2 | ∆2 | ∆′

2)

We also have

ϕ; Φ � (K2 ⊔Ka{ĨN/̃i}) + [M,M] ⊆ (J ′
c; (K2 ⊔Ka{ĨN/̃i}) + [m,m]) ⊆ K ′

0

As Thus, we simplify a bit the derivation given above, and we have:

πPQ

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa (T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔Ka{ĨN/̃i}

ϕ; Φ; ΓNat

0 , ↑[M,M](Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa (T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ (K2 ⊔ Ka{ĨN/̃i}) + [M,M]

ϕ; Φ; ΓNat

0 , ↑[M,M](Γν
2 | ∆ν

2 | ∆′ν
2), a : ∀̃i.servKa (T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ K′

0

We also have the following derivation:

πP

(ϕ, ĩ); Φ; Γ2, a : ∀̃i.servKa (T̃)/U2, ṽ : T̃ ⊢ P ⊳ Ka

ϕ; Φ; ↑Jc !Γ2, a : ∀̃i.servKa (T̃)/!In
[0,0]
Jc

.U2 ⊢!a(̃v).P ⊳ [0, 0]

ϕ; Φ; ↑[n,n]+Jc !Γ2, a : ∀̃i.servKa(T̃)/!In
[n,n]
Jc

.U2 ⊢ n :!a(̃v).P ⊳ [n, n]

ϕ; Φ; ΓNat

0 , ↑[M,M]!Γν
2 , a : ∀̃i.servKa(T̃)/!In

[n,n]
Jc

.U2 ⊢ n :!a(̃v).P ⊳ K0

So, by parallel composition of those two derivation we obtain a proof of:

ϕ; Φ; ΓNat

0 , ↑[M,M](!Γν
2 | Γν

2 |∆ν
2 |∆′ν

2), a : ∀̃i.servKa (T̃)/!In
[n,n]
Jc

.U2 | (↑[M,M](U2 | V2 | V ′

2)) ⊢ (n :!a(̃v).P) |M : (P [ṽ := ẽ] |Q)⊳K0⊔K ′

0

By Point 2 of Lemma 2, there exists W such that:

ϕ; Φ ⊢ U0 | V0 −→∗ W ϕ; Φ ⊢ W ⊑!In
[n,n]
Jc

.U2 | ↑[M,M](U2 | V2 | V ′
2)

So, by subtyping we have a proof:

ϕ; Φ; ΓNat

0 ,Γν
0 | ∆ν

0 , a : ∀̃i.servKa(T̃)/W ⊢ (n :!a(̃v).P) | M : (P [ṽ := ẽ] | Q) ⊳ K0 ⊔K ′
0

This concludes this case.

• Case (n : a(̃v).P) | (m : a〈ẽ〉.Q) ⇒ (max(m,n) : (P [̃v := ẽ] | Q)). Consider the typing ϕ; Φ; Γ0 | ∆0, a : ch(T̃)/(U0 |
V0) ⊢ (n : a(̃v).P) | (m : a〈ẽ〉.Q) ⊳ K0 ⊔K ′

0. The first rule is the rule for parallel composition, then the proof is split

into the two following subtree:

πP

ϕ; Φ; Γ2, a : ch(T̃)/U2, ṽ : T̃ ⊢ P ⊳ K2

ϕ; Φ; ↑JcΓ2, a : ch(T̃)/In
[0,0]
Jc

.U2 ⊢ a(̃v).P ⊳ Jc;K2 ϕ; Φ ⊢ Γ1 ⊑ ↑JcΓ2;U1 ⊑ In
[0,0]
Jc

.U2; Jc;K2 ⊆ K1

ϕ; Φ; Γ1, a : ch(T̃)/U1 ⊢ a(̃v).P ⊳ K1

ϕ; Φ; ↑[n,n]Γ1, a : ch(T̃)/↑[n,n]U1 ⊢ n : a(̃v).P ⊳ K1 + [n, n] ϕ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1;U0 ⊑ ↑[n,n]U1;K1 + [n, n] ⊆ K0

ϕ; Φ; Γ0, a : ch(T̃)/U0 ⊢ n : a(̃v).P ⊳ K0

21

πe

ϕ; Φ;∆2, a : ch(T̃)/V2 ⊢ ẽ : T̃

πQ

ϕ; Φ;∆′

2, a : ch(T̃)/V ′

2 ⊢ Q ⊳ K′

2

ϕ; Φ; ↑J′

c (∆2 | ∆′

2), a : ch(T̃)/Out
[0,0]

J′
c

.(V2 | V ′

2) ⊢ a〈ẽ〉.Q ⊳ J′

c;K
′

2 (1)

ϕ; Φ;∆1, a : ch(T̃)/V1 ⊢ a〈ẽ〉.Q ⊳ K′

1

ϕ; Φ; ↑[m,m]∆1, a : ch(T̃)/↑[m,m]V1 ⊢ m : a〈ẽ〉.Q ⊳ K′

1 + [m,m] ϕ; Φ ⊢ ∆0 ⊑ ↑[n,n]∆1; V0 ⊑ ↑[m,m]V1;K
′

1 + [m,m] ⊆ K′

0

ϕ; Φ; ∆0, a : ch(T̃)/V0 ⊢ m : a〈ẽ〉.Q ⊳ K′

0

where

(1) ϕ; Φ ⊢ ∆1 ⊑ ↑J
′

c(∆2 | ∆′
2) ϕ; Φ ⊢ V1 ⊑ Out

[0,0]
J′

c
.(V2 | V ′

2) ϕ; Φ � J ′
c;K

′
2 ⊆ K ′

1

First, we know that Γ0 | ∆0 is defined. Moreover, we have

ϕ; Φ ⊢ Γ0 ⊑ ↑[n,n]Γ1 ϕ; Φ ⊢ Γ1 ⊑ ↑JcΓ2 ϕ; Φ ⊢ ∆0 ⊑ ↑[m,m]∆1 ∆1 ⊑ ↑J
′

c(∆2 | ∆′
2)

So, for the channel and server types, in those seven contexts, the shape of the type does not change (only the usage can

change). We also have:

ΓNat

0 = ∆Nat

0 ϕ; Φ ⊢ ΓNat

0 ⊑ ΓNat

1 ⊑ ΓNat

2 ϕ; Φ ⊢ ∆Nat

0 ⊑ ∆Nat

1 ⊑ ∆Nat

2 ∆Nat

2 = ∆′Nat

2

So, from πe and πP we obtain by subtyping:

ϕ; Φ; ΓNat

0 ,Γν
2 , a : ch(T̃)/U2, ṽ : T̃ ⊢ P ⊳ K2 ϕ; Φ; ΓNat

0 ,∆ν
2 , a : ch(T̃)/V2 ⊢ ẽ : T̃

So, we use the substitution lemma (Lemma 7) and we obtain:

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2), a : ch(T̃)/(U2 | V2) ⊢ P [ṽ := ẽ] ⊳ K2

As previously, by subtyping from πQ, we have:

ϕ; Φ; ΓNat

0 ,∆′ν
2 , a : ch(T̃)/V ′

2 ⊢ Q ⊳K ′
2

Thus, with the parallel composition rule (as parallel composition of context is defined) and subtyping we have:

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ch(T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔K ′
2

Let us denote M = max(m,n). Thus, we derive the proof:

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ch(T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔ K′

2

ϕ; Φ; ΓNat

0 , ↑[M,M](Γν
2 | ∆ν

2 | ∆′ν
2), a : ch(T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ (K2 ⊔ K′

2) + [M,M]

Now, recall that by hypothesis, U0 | V0 is reliable. We have:

ϕ; Φ ⊢ U0 ⊑ ↑[n,n]U1 ϕ; Φ ⊢ U1 ⊑ In
[0,0]
Jc

.U2 ϕ; Φ ⊢ V0 ⊑ ↑[m,m]V1 ϕ; Φ ⊢ V1 ⊑ Out
[0,0]
J′

c
(V2 | V ′

2)

So, by Point 1 of Lemma 2, with transitivity and parallel composition of subusage, we have:

ϕ; Φ ⊢ U0 | V0 ⊑ (↑[n,n]U1) | (↑[m,m]V1) ⊑ In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2)

By Point 3 of Lemma 2, we have In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2) reliable. So, in particular, we have:

ϕ; Φ ⊢ In
[n,n]
Jc

.U2 | Out
[m,m]
J′

c
(V2 | V ′

2) −→ ↑[M,M](U2 | V2 | V ′
2)

ϕ; Φ � [n, n] ⊆ [m,m]⊕ J ′
c ϕ; Φ � [m,m] ⊆ [n, n]⊕ Jc

Thus, we deduce that

ϕ; Φ � [M,M] ⊆ [n, n] + Jc ϕ; Φ � [M,M] ⊆ [m,m] + J ′
c

So, we have in particular, with Lemma 10 and Point 1 of Lemma 2 and parallel composition:

ϕ; Φ ⊢ Γ0 | ∆0 ⊑ (↑[n,n]Γ1) | ↑[m,m]∆1 ⊑ (↑[n,n]+JcΓ2) | (↑[m,m]+J′

c(∆2 | ∆′
2)) ⊑ ↑[M,M](Γ2 | ∆2 | ∆′

2)

We also have

22

ϕ; Φ � K2 + [M,M] ⊆ Jc;K2 + [n, n] ⊆ K0 ϕ; Φ � K ′
2 + [M,M] ⊆ J ′

c;K
′
2 + [m,m] ⊆ K ′

0

So, we obtain direclty ϕ; Φ � (K2 ⊔K ′
2) + [M,M] ⊆ K0 ⊔K ′

0

Thus, we can simplify a bit the derivation given above, and we have:

ϕ; Φ; ΓNat

0 , (Γν
2 | ∆ν

2 | ∆′ν
2), a : ch(T̃)/(U2 | V2 | V ′

2) ⊢ (P [ṽ := ẽ] | Q) ⊳ K2 ⊔ K′

2

ϕ; Φ; ΓNat

0 , ↑[M,M](Γν
2 | ∆ν

2 | ∆′ν
2), a : ch(T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ (K2 ⊔ K′

2) + [M,M]

ϕ; Φ; (Γ0 | ∆0), a : ch(T̃)/↑[M,M](U2 | V2 | V ′

2) ⊢ M : (P [ṽ := ẽ] | Q) ⊳ K0 ⊔ K′

0

By Point 2 of Lemma 2, there exists W such that:

ϕ; Φ ⊢ U0 | V0 −→∗ W ϕ; Φ ⊢ W ⊑ ↑[M,M](U2 | V2 | V ′
2)

So, by subtyping we have a proof:

ϕ; Φ; Γ0 | ∆0, a : ch(T̃)/W ⊢ M : (P [ṽ := ẽ] | Q) ⊳ K0 ⊔K ′
0

This concludes this case.

• Case match s(e) {case 0 7→ P ; case s(x) 7→ Q} ⇒ Q[x := e]. The case for an expression equals to 0 is similar, so

we only present this one. Suppose given a derivation match s(e) {case 0 7→ P ; case s(x) 7→ Q} ⊳ K . Then the proof

has the shape:
πe

ϕ; Φ;∆ ⊢ e : Nat[I′, J ′]

ϕ; Φ;∆ ⊢ s(e) : Nat[I′ + 1, J ′ + 1] ϕ; Φ ⊢ Γ ⊑ ∆;Nat[I′ + 1, J ′ + 1] ⊑ Nat[I, J]

ϕ; Φ; Γ ⊢ s(e) : Nat[I, J] πP πQ

match s(e) {case 0 7→ P ; case s(x) 7→ Q} ⊳ K

Where πQ is a proof of φ; (Φ, J ≥ 1); Γ, x : Nat[I−1][J−1] ⊢ Q ⊳ K , and πP is a typing derivation for P that does not

interest us in this case.

By definition of subtyping, we have:

ϕ; Φ � I ≤ I ′ + 1 ϕ; Φ � J ′ + 1 ≤ J

From this, we deduce the following constraints:

ϕ; Φ � J ≥ 1 ϕ; Φ � I−1 ≤ I ′ ϕ; Φ � J ′ ≤ J−1

Thus, with the subtyping rule and the proof πe we obtain:

ϕ; Φ;∆ ⊢ e : Nat[I−1, J−1]

Then, by Lemma 5, from πQ we obtain a proof of ϕ; Φ; Γ, x : Nat[I−1][J−1] ⊢ Q ⊳ K . By the substitution lemma

(Lemma 7), we obtain ϕ; Φ; Γ ⊢ Q[x := e] ⊳ K . This concludes this case.

• Case n : P ⇒ n : Q with P ⇒ Q. Suppose that ϕ; Φ; ↑[n,n]Γ ⊢ n : P ⊳K + [n, n]. Then, the proof has the shape:

ϕ; Φ; Γ ⊢ P ⊳ K

ϕ; Φ; ↑[n,n]Γ ⊢ n : P ⊳ K + [n, n]

By Lemma 3, if ↑[n,n]Γ is reliable then Γ is reliable. By induction hypothesis, we have a proof ϕ; Φ; Γ′ ⊢ Q ⊳ K with

ϕ; Φ ⊢ Γ −→∗ Γ′.

We give the proof:

ϕ; Φ; Γ′ ⊢ Q ⊳K

ϕ; Φ; ↑[n,n]Γ′ ⊢ n : Q ⊳K + [n, n]

And we have indeed ϕ; Φ ⊢ ↑[n,n]Γ −→∗ ↑[n,n]Γ′ by Lemma 3.

• Case P ⇒ Q with P ≡ P ′, P ′ ⇒ Q′ and Q ≡ Q′. Suppose that ϕ; Φ; Γ ⊢ P ⊳K . By Lemma 9, we have ϕ; Φ; Γ ⊢ P ′⊳K .

By induction hypothesis, we obtain ϕ; Φ; Γ′ ⊢ Q′ ⊳ K with ϕ; Φ ⊢ Γ −→∗ Γ′. Then, again by Lemma 9, we have

ϕ; Φ; Γ′ ⊢ Q ⊳K . This concludes this case.

This concludes the proof of Theorem 1.

23

