
HAL Id: hal-03198256
https://hal.science/hal-03198256

Submitted on 21 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refinement and Proof Based Development of Systems
Characterized by Continuous Functions

Guillaume Babin, Yamine Aït-Ameur, Shin Nakajima, Marc Pantel

To cite this version:
Guillaume Babin, Yamine Aït-Ameur, Shin Nakajima, Marc Pantel. Refinement and Proof Based
Development of Systems Characterized by Continuous Functions. 1st International Symposium on
Dependable Software Engineering: Theories, Tools, and Applications (SETTA 2015), Nov 2015, Nan-
jing, China. pp.55–70, �10.1007/978-3-319-25942-0_4�. �hal-03198256�

https://hal.science/hal-03198256
https://hal.archives-ouvertes.fr

Refinement and Proof Based Development

of Systems Characterized by Continuous

Functions

Guillaume Babin1(B), Yamine Aı̈t-Ameur1, Shin Nakajima2, and Marc Pantel1

1 Université de Toulouse; IRIT / INPT-ENSEEIHT,
2 Rue Charles Camichel, Toulouse, France

guillaume.babin@irit.fr, {yamine,marc.pantel}@enseeiht.fr
2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

nkjm@nii.ac.jp

Abstract. The specification of cyber-physical systems usually relies on
continuous functions over dense real numbers whereas their implementa-
tion is discrete. Proving the correctness of the discrete implementation
with respect to the continuous specification remains a challenge in the
presence of dense real numbers. In this paper, we propose a refinement-
based formal method, relying on Event-B, for such developments. We
illustrate our proposal with the development of a simple stability con-
troller for a generic plant model. The continuous function that models
the system behavior is refined as a discrete model of the same kind pre-
serving stability expressed as a safety invariants of the continuous model.
The obtained discrete model uses discrete time (instants modeled on N),
whereas the continuous model is based on dense time (on R). The Rodin
Platform, together with the Theory plug-in handling the Real datatype
and its properties supported the whole developments and proofs.

Keywords: Continuous and discrete behaviors · Dense real numbers ·
Correct-by-construction · Formal methods · Proved refinements ·
Event-B

1 Introduction

According to Lee [20], cyber-physical systems (CPS) are defined as integrations
of computation, networking, and physical processes. Embedded computers and
networks monitor and control the physical processes, with feedback loops where
physical processes affect computations and vice versa. Most of the time, a software
part (the controller) drives the physical part (the plant) through a loop involving
sensors and actuators. The CPS plant behavior is given by dense time contin-
uous functions solution of differential equations. The CPS controller behavior
is specified by continuous functions over dense time. The CPS software imple-
ments a discretization of these functions in order to control the CPS plant. This
discretization proof is a key challenge in the CPS correctness proof.

DOI: 10.1007/978-3-319-25942-0 4

In the past years, several approaches relying on formal methods, like Hybrid
automata [17] and model checking [5], have been set up to describe the behavior
of the software controllers. Our proposal focuses on the verification of correct
controllers obtained after discretization.

This paper show how proof and refinement based approaches handle the
development of a correct-by-construction discrete controller starting from a dense
time continuous function specification of the continuous controller. A complete
incremental development relying on a theory of reals is conducted to synthesize a
correct discretization of a continuous function. The approach exploits an axioma-
tization of mathematical reals. It maintains a safety invariant characterizing the
physical plant of the studied system. Such invariant defines a safety envelope
(which we called safety corridor) modeling a stability property in which the sys-
tem must evolve i.e. for a continuous function f , we write ∀t ∈ R

+, f(t) ∈ [m,M]
where t is a dense time parameter and the reals m and M define minimum and
maximum values in R

+ ensuring a correct behavior of the physical plant. In
general, these values come from the physics of the studied system. The Event-B
method is used to handle such formal developments. We illustrate our proposal
with the development of a simple stability controller for a generic plant model.

This paper is structured as follows. Section 2 overviews the addressed prob-
lem of discretization. Section 3 summarizes the Event-B method. Sections 4 and
5 are the core of our proposal: the refinement strategy for any continuous func-
tion together with the corresponding requirements are given in section 4 while
the complete Event-B development handling these requirements is provided in
section 5. Related works and possible applications are sketched in section 6. The
conclusion and some perspectives are given in the end.

2 Discretization of Continuous Functions

The behavior of many systems can be characterized by three states: the initial
boot, the nominal behavior, and the final halt. Several CPS involving physical
plants and software controllers follow this pattern such as energy production sys-
tems, smart systems, medical systems, etc. These systems are usually modeled
by differential equations specifying dense time continuous functions. In order to
control their behavior, one has first to discretize these continuous functions. The
main safety property concerns stability where the function values shall be main-
tained inside a safety envelope i.e. an interval of correct values (called corridor).

The correct implementation of such continuous functions is a key point in
ensuring the CPS safety. These ones shall be discretized in a correct manner
that guarantees that the discrete behavior simulates the continuous one. In
other words, the continuous states existing between two observed consecutive
states of the discretization are also in the safety corridor. To achieve this goal,
we follow a correct-by-construction approach based on a formal development of
any continuous function discretization, making our development reusable and
scalable. The approach relies on refinement and on the preservation of invari-
ants. Discretization information are incrementally added while moving from the

continuous level to the discrete one. Event-B [1] and the Rodin Platform [2] have
been set up to handle the developments.

3 The Event-B Method

An Event-B model [1] (see Table 1) is defined in a MACHINE. It encodes a
state transition system which consists of: variables declared in the VARIABLES

clause to represent the state; and events declared in the EVENTS clause to
represent the transitions (defined by a Before-After predicate BA) from one
state to another.

Table 1. Structure of Event-B
machines

CONTEXT MACHINE

ctxt id 2 machine id 2

EXTENDS REFINES

ctxt id 1 machine id 1

SETS SEES

s ctxt id 2

CONSTANTS VARIABLES

c v
AXIOMS INVARIANTS

A(s, c) I(s, cv)
THEOREMS THEOREMS

Tc(s, c) Tm(s, c, v)
END VARIANT

V (s, c, v)
EVENTS

Event evt �
any x
where G(s, c, v, x)
then

v : |BA(s, c, v, x, v′)
end

END

Table 2. Generated proof obligations
for an Event-B model

Theorems A(s, c) ⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)

⇒Tm(s, c, v)
Invariant A(s, c) ∧ I(s, c, v)
preservation ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒I(s, c, v′)

Event A(s, c) ∧ I(s, c, v)
feasibility ∧G(s, c, v, x)

⇒∃v′.BA(s, c, v, x, v′)
Variant A(s, c) ∧ I(s, c, v)
progress ∧G(s, c, v, x)

∧BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

A model also holds INVARIANTS and THEOREMS to represent its rele-
vant properties. A decreasing VARIANT may introduce convergence properties
when needed. An Event-B machine is related, through the SEES clause to a
CONTEXT which contains the relevant sets, constants axioms, and theorems.
The refinement capability [4], introduced by the REFINES clause, decomposes
a model (thus a transition system) into another transition system containing
more design decisions thus moving from an abstract level to a less abstract one.
New variables and new events may be introduced at the refinement level. In a
refinement, the invariant shall link the variables of the refined machine with the
ones of the refining machine. A gluing invariant is introduced for this purpose.
It preserves the proved properties and supports the definition of new ones.

Once an Event-B machine is defined, a set of proof obligations is generated.
They are submitted to the prover embedded in the RODIN platform. Proof
obligations associated to an Event-B model are listed in Table 2, here the prime
notation is used to denote the value of a variable after an event is triggered.
More details on proof obligations can be found in [1].

Use of Reals in Event-B. A recent evolution of the Event-B method allows
to extend it with theories [13] similar to algebraic specifications. In the Rodin
Platform, this evolution is provided by the Theory plugin for Rodin [3]. We need
to model and reason on dense reals. We rely on the theory for reals and continuous
functions, written by Abrial and Butler1. It provides a dense mathematical REAL
datatype with arithmetic operators, axioms and proof rules.

Remark. From a tool point of view, the use of reals with the Theory plugin for

Rodin introduces constants like zero and operators defined on the REAL datatype
like smr for <, gtr for > or leq for ≤. Casting operators need to be defined
in order to work with other data types. These ones are used when discretizing
continuous representations by refinement (see section 5.3).

4 Refinement Strategy

The mathematical model and the specification of the system behavior are
sketched below. Following the approach defined in [23], the adopted refinement
strategy consists in three steps: first, as shown in figure 1, we use three states to
define a simple abstract controller that models the system; then, in a first refine-
ment, we introduce a continuous controller characterizing its behaviors with a
continuous function; finally, a second refinement builds a discrete controller.

4.1 The Illustrating System

The considered system goes through three phases. Figure 1 depicts its general
behavior. First, it is booted (transition boot from state 1 to 2). After a while,
once in state 2, it becomes operational in a nominal mode (run transition).
Then, it stays a given amount of time in the nominal or running mode. When
in nominal mode, it may be halted (stop transition from state 2 to state 3) for
example in case a failure occurs or for maintenance purposes. This behavior is
the one of a simple abstract system controller. When booting, the system cannot
be stopped until it reaches the nominal mode. Other complex behavior scenarios
can be defined with more complex transition systems.

In order to guarantee a correct behavior of the system, the previously defined
controller shall fulfill the requirements from table 3. These ones ensure that the sys-
tem is correctly controlled. For example, an energyproduction system requires that
the power produced by a given system belongs to a specific interval or a pacemaker
must be pacing when a sensed signal belongs to another specific interval.

Fig. 1. Controller Automaton

1 http://wiki.event-b.org/index.php/Theory Plug-in#Standard Library

Table 3. Requirements at the top level

At any time, the output value of the controlled system shall be less or
equal to M in any mode.

Req.1

At any time, the output value of the controlled system shall belong to an
interval [m, M] in running mode.

Req.2

At any time, if any future output value of the controlled system does not
belong to an interval [m, M], then the system is stopped.

Req. 3

4.2 Continuous Controller

After modeling the system at an abstract level using three states, we introduce
the continuous controller through the definition of a continuous function of the
dense time f : R

+ → R
+ corresponding to the behavior of the system.

The requirements identified in the previous section, are rewritten (refined)
to handle the introduced continuous function behavior (see table 4).

Table 4. Requirements at the first refinement

m < M Req.0

∀t ∈ R
+, f(t) ≤ M Req.1

∀t ∈ R
+, state(t) = 2 ⇒ f(t) ∈ [m, M] Req.2.1

∀t1, t2 ∈ R
+, t1 < t2, state(t1) = 2 ∧ f(t2) ∈ [m, M] =⇒ state(t2) = 2 Req.2.2

∀t1, t2 ∈ R
+, t1 < t2, state(t1) = 2 ∧ f(t2) 	∈ [m, M] =⇒ state(t2) = 3 Req. 3

The control action over this system is a simple one. It consists in shutting
down the system if the value of f goes out of range. The obtained continuous
controller corresponds to a refinement of the abstract one from the previous
section, it is described by a hybrid automaton [17]. We are aware that the control
actions of the defined system are very simple. Our objective is to show how a
controller (characterized by a simple state transition system) and a physical
plant (characterized by a continuous function) can be formally integrated into a
single Event-B formal development encoding incrementally a hybrid automaton.

The previously described behavior is depicted by the graph in figure 2(a).
The system is initialized (at point A corresponding to the transition init to
enter state 1). It reaches the running mode state at point B (corresponding to
the event boot and entering state 2). The system stays in the safety corridor
(between m and M in state 2). When point C is reached, the controller switches
its state from state 2 to state 3 by the transition stop in order to prevent f

from going over the threshold M . The system is then halted to reach point D

(corresponding to state 3).

4.3 Discrete Controller

In order to implement the previous controller, we need to discretize the obser-
vation of the system behavior. In practice, when using computers to implement
such controllers, time is observed according to specific clocks and frequencies.
In other words, observations are discrete and depend on the available clocks.

Therefore, it is mandatory to define a correct discretization of time that pre-
serves the continuous behavior introduced previously. This preservation entails
the introduction of other requirements on the defined continuous function. Note
that, in practice, these requirements correspond to requirements issued from the
physical plant.

(a) Continuous controller (b) Discrete controller

Fig. 2. Examples of the evolution of the function f

It is mandatory to introduce a margin allowing the controller to anticipate the
next observable behavior before incorrect behavior occurs. Let z be this margin.
z is defined such that the derivation of the function f between two observed
consecutive instants ti and ti+1 shall not be greater than z. Formally, this is
written as z ≥ maxi∈N |f(ti) − f(ti+1)|. We assume that a value for z exists
(even if it is not the optimal one), it is obtained from the physical properties
of the system. This means, that we need to identify the duration δt defining
the amount of time between two consecutive states observed by the discrete
controller. As a consequence, we write z ≥ maxt∈R+ |f(t) − f(t + δt)|. In order
for the problem to be well-defined, δt must be small enough so that the property
m + z < M − z holds. The set D of observation instants can be defined as
D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti+1 = ti + δt} and rewritten as
D = {ti | ti ∈ R ∧ i ∈ N ∧ t0 = 0 ∧ ti = i × δt}.

As a consequence of this definition, the safety corridor becomes the interval
[m + z,M − z]. Moreover, it becomes possible to observe, in the running mode,

Table 5. Requirements at the second refinement

z > 0 ∧ m + z < M − z Req.0
∀ti ∈ D, f(ti) ≤ M Req.1
∀ti ∈ D, state(ti) = 2 ⇒ f(ti) ∈ [m + z, M − z] Req.2.1
∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) ∈ [m, M] =⇒ state(ti + δt) = 2

⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) ∈ [m, M] =⇒ state(ti+1) = 2 Req.2.2
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n + 1) δt) ∈ [m, M] =⇒ state((n + 1) δt) = 2

∀ti ∈ D, state(ti) = 2 ∧ f(ti + δt) 	∈ [m + z, M − z] =⇒ state(ti + δt) = 3
⇔ ∀ti ∈ D, state(ti) = 2 ∧ f(ti+1) 	∈ [m + z, M − z] =⇒ state(ti+1) = 3 Req. 3
⇔ ∀n ∈ N, state(n δt) = 2 ∧ f((n + 1) δt) 	∈ [m + z, M − z]

=⇒ state((n + 1) δt) = 3

two consecutive instants ti and ti+1 such that f(ti) ∈ [m+z,M−z] and f(ti+1) �∈
[m + z,M − z] ∧ f(ti+1) ∈ [m,M]. This condition characterizes an exit from the
safety corridor and thus the condition to stop the system and move to a stopping
mode. Again, the previous requirements are refined to consider the discretization
of time, using the two new parameters z and δt, and D (Table 5).

The safety margin z is defined such that if f(n δt) is in [m+z,M −z] then the
value of f observed by the controller, f((n+1) δt), is in [m,M]. The definition of
this discretization guarantees that Req.2.1 is fulfilled until the next value due to
∀n ∈ N, ∀t ∈ [n · δt, (n + 1) · δt], |f(t) − f(n δt)| ≤ z. If the monitor observes
a value in [m,m + z[or in]M − z,M], it shuts the system down because in the
next step, the value might be out of range (Req. 3).

4.4 Top-Down Refinement

According to the previous definitions, the refinement starts from a generic defi-
nition of the system with the three identified events. The first refinement intro-
duces the continuous function and the corresponding requirements of table 4.
We start with a continuous model Mc of the system, describing the complete
relevant physical behavior of the system. Then a second refinement defines the
discrete model Md of the behavior correctly glued with the continuous one.
Here, the refined requirements of table 5 are taken into account. Gluing invari-
ants, formalizing the refined requirements, are introduced in order to preserve
the proofs and the behavior of the abstraction. When proving the refinement, we
demonstrate that our discrete model is a correct implementation of the desired
continuous behavior (the specification).

To summarize, in Mc, the continuous function fc : R −→ R is considered. In
Md, we introduce a discrete function fd : N −→ R, where i ∈ N is an instant
and δt is the time discretization interval duration. The functions fd and fc are
glued by the following property: ∀n ∈ 0..i, fc(n × δt) = fd(n).

4.5 About Modeling of Time

In order to reduce the complexity of the proof of the discretization refinement
corresponding to the introduction of fd, we have split the behavior of fc during
an ith discrete macro step [ti, (ti +δt)] into three kinds of smaller discrete micro

steps (see figure 3). For example, at the running state (or nominal phase), we
define the following micro steps.

Fig. 3. Collapsing continuous time micro steps into a discrete time macro step

1. RFT: run from tick is the first micro step inside a macro step starting at a
tick (a discrete time ti = i × δt). Its duration is strictly smaller than δt.

2. RBT: run between ticks is a micro step strictly in the macro step (not the
first nor the last micro step in a macro step). Its duration is denoted dt > 0. A
macro step contains V occurrences of such micro steps.

3. ROT: run on ticks is the last micro step in the macro step.

The Zeno problem is avoided by guaranteeing that the number of micro steps
of type RBT is finite, and that dt > 0. From a modeling point of view, it will be
formalized as a decreasing variant (natural number V in N). The trace of micro
steps between ti and ti+1 = ti + δt is defined as RFT (RBT)V ROT.

Our Event-B models introduce events aligned with these macro and micro
steps either in the continuous case of in the discrete one.

5 A Formal Development of a Discrete Controller with

Event-B

Our developments expressed within Event-B follow exactly the refinement strat-
egy defined in section 4. According to [23], three development steps have been
used. Contexts and machines are defined according to figure 4.

Fig. 4. Project structure

5.1 Abstract Machine: The Top-Level Specification

The top-level specification introduces the abstract controller with three events
according to figure 1.

Needed Theories. To be able to handle real numbers and the corresponding
theory, we have defined the context C0 reals which uses the theory defining
reals. Listing 1.1 gives an extract of this context with axioms and theorems.

Several other axioms and theorems have been defined and proved. We show
an extract of this theory. As mentioned in section 3 specific operators for manip-
ulating reals are used.

CONTEXT C0 reals
CONSTANTS REAL POS, REAL STR POS
AXIOMS

def01:REAL POS={x | x ∈ REAL∧ leq(zero,x)}
def02:REAL STR POS={x| x∈ REAL

∧ smr(zero,x)}
...

THEOREMS

thm01: ∀a,b · (a ∈ REAL ∧b ∈ REAL)
⇒(smr(zero,b) ⇒smr(a sub b , a))

thm02: ∀a,b · smr(a,b) ⇔¬leq(b,a)
...

END

Listing 1.1. Part of context C0 reals

CONTEXT C1 corridor
EXTENDS C0 reals
CONSTANTS m, M
AXIOMS

axm01: m ∈ REAL STR POS
axm02: M ∈ REAL STR POS
axm03: smr(m,M)

END

Listing 1.2. Part of context C1 corridor

A second context defines the safety corridor with the values of m and M .
Listing 1.2 defines this context C1 corridor extending the context C0 reals.

The Top-Level Event-B Machine. It defines the global continuous values
issued from the controlled system. The machine introduces the invariant inv03,
guaranteeing Req.1 and Req.2.1 stating that in running mode (identified by
active=true), the continuous value (defining the values of a continuous function
introduced in the first refinement) fv shall be correct. This machine also models
the abstract controller with three events boot, run and stop corresponding to
the transition system of figure 1. These events manipulate fv the real positive
value corresponding to the current continuous value.

Listing 1.3 gives an extract of the top specification machine M0 spec. To
keep this paper in a reasonable length, only details for the event run are given2.
Therefore, the Req. 3 will not explicitly be handled in this paper, it mainly
concerns the stop event.

MACHINE M0_spec SEES C1_corridor
VARIABLES fv, active
INVARIANTS

inv01: fv ∈ REAL_POS
inv02: active ∈ BOOL
inv03: active = TRUE ⇒leq(m,fv) ∧leq(fv,M)
inv04: active = FALSE ⇒fv = zero

EVENTS

INITIALISATION �
THEN

act01: active := FALSE
act02: fv := zero

END

boot � ...

run �
ANY new_fv WHERE

grd01: active = TRUE
grd02: new_fv ∈ REAL_POS
grd03: leq(m,new_fv) ∧leq(new_fv,M)

// new_fv ∈ [m,M]
THEN

act01: fv := new_fv
END

stop � ...
END

Listing 1.3. Extract of machine M0 spec

2 The complete Event-B developments can be downloaded from
http://babin.perso.enseeiht.fr/r/SETTA2015EventBModels.pdf

5.2 The First Refinement: Introducing Continuous Functions

Needed Theories. As shown on figure 4, the context C2 margin introducing
the margin z is defined. Note that axm02 corresponds to the requirement Req.0.

CONTEXT C2 margin EXTENDS C1 corridor
CONSTANTS z
AXIOMS

axm01: z ∈ REAL POS // z ∈ R+
axm02: gtr(M sub m , (one plus one) mult z) // M−m > 2∗z

END

Listing 1.4. Extract of context C2 margin

The Event-B First Refinement with Continuous Functions. The first
refinement M1 cntn ctrl of the controller explicitly introduces

– the continuous function fc producing the values fv of the abstract machine
and the corresponding invariant prop01

– dense time with the current instant noted now

– an important invariant glue01 gluing the continuous values of the abstrac-
tion with the continuous function defined on dense time fv = fc(now)

– the variable active t recoding the dense time where the system enters a
running mode and the corresponding invariants glue02, glue03 and glue04

gluing the behavior of active t with the active boolean variable.

The events of the M1 cntn ctrl machine refine the ones of the top level specifi-
cation. The boot event fixes the value of active t and the run event builds the
continuous function fc with steps of duration dt. fc becomes the function nfc,
acting until now+dt instant.

MACHINE M1 cntn ctrl REFINES M0 spec SEES C2 margin
VARIABLES

fv , active , fc , now, active t
INVARIANTS

type01: now ∈ REAL POS
type02: fc ∈ REAL POS →REAL POS
type03: active t ∈ REAL POS
prop01: cnt int (fc , zero, now) // fc is continous on [0,now]
glue01: fv = fc(now)
glue02: active = TRUE ⇒(∀t ·t ∈ REAL ∧leq(active t,t) ∧leq(t,now) ⇒

(leq(m plus z , fc(t)) ∧ leq(fc(t) , M sub z)))
glue03: ∀t · t ∈ REAL ∧leq(zero,t) ∧leq(t ,now) ⇒leq(fc(t),M)
glue04: active = TRUE ⇒leq(active t,now)

EVENTS

boot � REFINES boot ...
THEN

...
act04: now := now plus dt
act05: active t := now plus dt

run � REFINES run
ANY dt, nfc , new fv WHERE

...
grd04: dt ∈ REAL STR POS // dt > 0
grd05: nfc ∈ REAL POS
→REAL POS
grd06: dom(nfc) = {t | t ∈ REAL ∧leq(now,t) ∧leq(t , now plus dt)} // dom(nf) = [now,now+dt]
grd07: nfc(now) = fc(now)

grd08: nfc(now plus dt) = new fv
grd09: leq(fv ,new fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc) ∧leq(t1,t2) ⇒

leq(nfc(t1) , nfc(t2)))
grd10: cnt int (nfc , now , now plus dt) // nfc is continuous on [now,now+dt]
grd11: leq(new fv,fv) ⇒(∀ t1,t2 · t1 ∈ dom(nfc) ∧t2 ∈ dom(nfc) ∧leq(t1,t2) ⇒

leq(nfc(t2) , nfc(t1)))
grd12: ∀t · t ∈ dom(nfc) ⇒leq(m plus z , nfc(t) ∧ leq(nfc(t) , M sub z)

THEN

...
act02: now := now plus dt
act03: fc := fc ⊳−nfc

END

stop � REFINES stop...
END

Listing 1.5. Extract of machine M1 cntn ctrl

The current instant now is incremented by the step duration dt as well. The
guards of the event run introduce the relevant conditions to trigger this event.

Note that during the time interval of the step, the function fc shall be con-
tinuous and monotonic so as its value is never outside the safety corridor (grd09
to grd11). This condition is fundamental when the function is discretized. Thus,
grd09 through grd12 guarantee the requirement Req2.2 and are of particular
importance when discretizing.

5.3 The Second Refinement: Introducing Discrete Representation

This refinement introduces the discretization function fd corresponding to the
continuous function fc on each discrete observed instants. This fundamen-
tal property corresponds to requirement Req2.2 of table 5. It is expressed by
the gluing invariants between the continuous controller and the discrete con-
troller. It links the continuous fc and and discrete fd functions by the property
∀n ∈ 0 .. i, fc(n × δt) = fd(n) and is represented by invariant glue01.

CONTEXT C3 cast EXTENDS C0 reals, Nat
CONSTANTS cast
AXIOMS

axm01: cast ∈ N→REAL POS // type
axm02: cast(0) = zero // initial case
axm03: ∀a · a ∈ N ⇒ // induction case

(cast(a+1) = cast(a) plus one)
THEOREMS

...
thm11: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’<’

⇒(a < b ⇔smr(cast(a),cast(b)))
thm12: ∀a,b · (a ∈ N ∧ b ∈ N) // equiv. over ’=’

⇒(a = b ⇔cast(a) = cast(b))
thm13: cast ∈ N ֌։ cast[N] // cast is a bijection
...

END

Listing 1.6. Definition and properties of
the cast function

CONTEXT C4 discrete EXTENDS C2 margin
SETS VT
CONSTANTS

tstep // discrete time step duration (δt)
max df // maximum delta for f during tstep
RBT, RV

AXIOMS

axm01: tstep ∈ REAL STR POS
axm02: max df ∈ REAL POS

// max diff of f during tstep
axm03: leq(max df,z)
axm04: partition(VT, {RBT}, {RV})

END

Listing 1.7. Extract of context
C4 discrete

MACHINE M2_dsct_ctrl REFINES M1_cntn_ctrl SEES C3_cast, C4_discrete
VARIABLES

fv , active , fc , now, active_t,
fd // discrete power function
i // the current instant number
et // time elapsed from previous discrete value sampling time
rs // remaining continuous micro steps inside the discrete macro step
nv // next variant−related event type

INVARIANTS

type01: fd ∈ 0..i →REAL_POS
type02: i ∈ N

type03: et ∈ REAL_POS
type04: rs ∈ N

type05: nv ∈ VT
glue01: ∀ n · n ∈ 0..i ⇒fc(cast(n) mult tstep) = fd(n) // n ∈ 0..i ⇒fc(n∗tstep) = fd(n)
glue02: now = (cast(i) mult tstep) plus et // now = i∗tstep + et
inv01: ∀ n · n ∈ 0..i−1 ⇒(

∀ t · (leq(cast(n) mult tstep , t) ∧ leq(t , cast(n+1) mult tstep)) ⇒(
leq(fd(n) sub max_df , fc(t)) ∧ leq(fc(t) , fd(n) plus max_df)))

inv02: ∀ t · (leq(cast(i) mult tstep , t) ∧ leq(t , now)) ⇒(
leq(fd(i) sub max_df , fc(t)) ∧ leq(fc(t) , fd(i) plus max_df))

inv03: smr(et,tstep)
VARIANT

rs

EVENTS

run_from_tick � REFINES run

WHERE

...
grd13: et = zero
grd14: smr(dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)

// physical assumption
THEN

...
act04: et := et plus dt
act05: rs :∈ N

act06: nv := RBT
END

run_between_ticks � REFINES run

WHERE

...
grd13: smr(zero, et)
grd14: smr(et plus dt , tstep)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)

grd16: nv = RBT
grd17: rs > 0

THEN

...
act04: et := et plus dt
act05: nv := RV

END

run_variant �

WHERE

grd01: nv = RV
grd02: rs > 0

THEN

act01: rs :| rs ’ ∈ N∧ rs ’ < rs
act02: nv := RBT

END

run_on_tick � REFINES run

WHERE

...
grd13: et plus dt = tstep
grd14: smr(zero,et)
grd15: ∀t · t ∈ dom(nfc) ⇒

leq(fd(i) sub max_df , nfc(t))
∧ leq(nfc(t) , fd(i) plus max_df)

grd16: rs = 0
THEOREMS

thm03: cast(i+1) mult tstep = now plus dt
THEN

...
act04: i := i + 1
act05: fd(i+1) := new_f
act06: et := zero

END

END

Listing 1.8. Extract of machine M2 dsct ctrl

Needed Theories. Two contexts are introduced. As mentioned in section 3 the
first context C3 cast is a technical context related to casting reals and integers.
For example, the invariant ∀n ∈ 0..i, fc(n×δt) = fd(n) corresponding to glue01

is written as ∀n · n∈0..i ⇒ fc(cast(n) mult tstep) = fd(n).
Note that the context C3 cast extends the Nat context3 by Thai Son Hoang

needed for handling inductive proofs on sets 4. The last context C4 discrete

introduces the discrete time macro steps duration tstep corresponding to δt on
figure 3 and the values RBT and RV to identify the different events corresponding
to the run event. It also defines the max df constant corresponding to the max-
imum evolution of the function in a macro step is never more that the margin
z. This assumption usually comes from the conditions on the physical plant.

The Event-B Refinement with Discretization. The defined machine
M2 dsct ctrl produces the discrete behavior of the continuous function fc with
the discrete function fd glued by the invariant glue01. The other invariants
inv01 and inv02 preserve Req2.2 and inv03 states that the elapsed time et is
less that the discrete time tstep. According to figure 3, three events for ROT,

RBT and RFT are defined refine the run event. The run from tick (RFT) event
starts the computation between two consecutive discrete values of function fd

and fixes an arbitrary value of the variant rs.
The most interesting part in this machine relates to the run between tick

(RBT) event which shall avoid the Zeno problem. For this purpose, each time this
event is active, it triggers the event run variant which decreases the variant.
Once, this variant reaches the value 0, the run on tick (ROT) event is triggered
to compute the final value corresponding to next discrete value of the function
fd. Note that the guard grd15 is fundamental to guarantee that the values do
not exit the safety corridor. This assumption relates to the physical plant.

5.4 Proofs Statistics

All these models have been encoded within the Rodin Platform [2]. As shown
on table 6, the main machine and the refinement led to 265 proof obligations.

Table 6. Rodin proofs statistics

Event-B model Automatic proofs Interactive proofs Total
C0 reals 1 29 30
C1 corridor 0 6 6
C2 margin 0 10 10
C3 cast 11 26 37
C4 discrete 0 1 1
M0 spec (top-level) 11 6 17
M1 cntn ctrl (1st ref.) 22 51 73
M2 dsct ctrl (2nd ref.) 22 67 89
Total 67 198 265

3 http://sourceforge.net/p/rodin-b-sharp/mailman/message/30378566/
4 induction: ∀S · S ⊆ N ∧ 0 ∈ S ∧ (∀x · x ∈ S ⇒ x + 1 ∈ S) ⇒ N ⊆ S

67 were proved automatically and 198 needed numerous interactive proof steps.
The interactive proofs mainly relate to the use of the Theory plugin for handling
the reals. The lack of dedicated heuristics due to the representation of reals as
an abstract data type, and not as a native type led to more interactive proofs.

6 Related Works and Applications

Two kinds of approaches for modeling hybrid systems can be distinguished. The
first one relies on hybrid automata. They are mainly analyzed and verified by
model checking [5]. Tools like HyTech [18] have succeeded in analyzing complex
hybrid systems. While this approach enables automatic verification, it requires
elaborate optimization techniques in order to handle the state space explosion
as well as symbolic parameters and non-linear equations. To address these prob-
lems, logical analysis of hybrid automata brought interesting results [19]. They
address classes of automata. The second kind of approaches relates to analysis
of hybrid programs. One of the most successful tool is KeYmaera by Platzer et
al. [22]. This tool is dedicated to hybrid system modeling and verification. It
is equipped with an interactive theorem prover. Compared to Event-B, it does
not provide a built-in refinement development operator. In the meantime, other
approaches use Event-B to model hybrid systems. The work initiated in [23], and
pursued in [12] proposes to model first the discrete events of a hybrid systems
and then refine each event by introducing the continuous elements. It includes
the use of a “now” variable, a “click” event that jumps in time to the next instant
where an event can be triggered and simulated real numbers. In our proposal,
we use this notion of “now” variable on dense time. Time jumps are encoded by
the events. We use mathematical reals thanks to the latest developments of the
Rodin Platform. Moreover, compared to [23], we have another refinement that
introduces discretization of continuous elements. However, [23] incorporate ana-
lytical results from the study of differential equations into the Event-B models
through the complementary use of Matlab/Simulink. The second proposed app-
roach based on Event-B, initiated by Banach, is Hybrid Event-B [8]. This is an
extension of Event-B which includes pliant events [7] as a way to model contin-
uous behavior, allowing the direct use of differential equations in the modeling.
However, there is no tool currently supporting this extension whereas our app-
roach enabled us to develop and prove the models using available tools. Banach
also worked on similar topics with ASM [9,10]. In our development we use reals
defined by a minimal set of axioms. We do not use floating-point numbers, they
may be introduced in a further refinement which is out of the scope of this
paper. So, we are not exploiting the results from automated verification tools on
floating-point numbers [21]. Static analysis [16] or abstract interpretation [14]
(with tools such as Astrée [15]) have proved very powerful to analyze such pro-
grams. Our approach is at a modeling level. Moreover, the set of axioms for
reals in the Theory plug-in we have used does not define reals in a construc-
tive manner. So, we were not able to use the results obtained by the Coq [11]
advanced proof tactics on reals. Indeed, our proofs have been discharged using
the interactive prover of Rodin, leading to a large proof effort.

7 Conclusion

The development of cyber-physical systems needs to handle the behavior of the
physical plant (environment). This behavior is usually described by continuous
functions producing feedback information to the controller, which in turns pro-
duces orders to the actuators. In this paper, we have shown that it is possible to
compose the development of both a controller and the corresponding behavior of
the physical plant. The controller corresponds to a hybrid automaton. A simple
one has been considered in this paper. It consists in booting, running and then
stopping a physical plant (see figure 1). The main contribution of this paper
concerns the synthesis of a discrete controller. We have shown that the synthesis
of a correct-by-construction discretization of a continuous function associated to
the behavior of a physical plant can be obtained by refinement. The proof of the
preservation of the invariants gluing the continuous and discrete levels guarantees
this correctness. We have introduced at the discrete level a variant guaranteeing
that the model is Zeno-free. The Theory plug-in for the Rodin Platform and a
theory of real numbers have been used to model continuous functions. To the
best of our knowledge, this is the first attempt to model continuous controller
discretization with the Event-B method and mathematical reals.

As future work, we plan to address more complex hybrid automata by gener-
alizing the approach presented in this paper. A particular case we expect to study
relates to the system substitution in case of failure for example, already addressed
in the discrete case in [6]. Another research path concerns the refinement by float-
ing point numbers as another discretization step. This refinement will use the
intermediate value theorem as gluing invariant between the obtained discretiza-
tion level and the floating point level. Finally, an effort should be devoted to
handle more efficiently the complex proof process set up in this paper.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, New York, NY, USA (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Technical report (2009)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: Application to Event-B. Fundamenta Informat. 77(1), 1–28 (2007)

5. Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A.,
Baruah, S. K., Fischmeister, S. (eds.) Proceedings of the 11th International Confer-
ence on Embedded Software, EMSOFT - ESWeek, Taipei, Taiwan, October 9–14,
2011, pp. 273–278. ACM (2011)

6. Babin, G., At-Ameur, Y., Pantel, M.: Formal verification of runtime compensation
of web service compositions: A refinement and proof based proposal with Event-B.
In: International Conference on SCC 2015 IEEE, pp. 98–105, June

7. Banach, R.: Pliant modalities in Hybrid Event-B. In: Liu, Z., Woodcock, J.,
Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051,
pp. 37–53. Springer, Heidelberg (2013)

8. Banach, R., Butler, M., Qin, S., Verma, N., Zhu, H.: Core Hybrid Event-B I: Single
Hybrid Event-B machines. Science of Computer Programming (2015)

9. Banach, R., Zhu, H., Su, W., Huang, R.: Formalising the continuous/discrete mod-
eling step. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Proceedings 15th Inter-
national Refinement Workshop, Refine 2011, Limerick, Ireland, 20th June 2011,
volume 55 of EPTCS, pp. 121–138 (2011)

10. Banach, R., Zhu, H., Su, W., Wu, X.: ASM and controller synthesis. In: Derrick, J.,
Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.)
ABZ 2012. LNCS, vol. 7316, pp. 51–64. Springer, Heidelberg (2012)

11. Boldo, S., Lelay, C., Melquiond, G.: Coquelicot: A user-friendly library of real
analysis for Coq. Math. Comput. Sci. 9(1), 41–62 (2015)

12. Butler, M., Abrial, J.-R., Banach, R.: From Action Systems to Distributed Systems:
The Refinement Approach, chapter Modelling and Refining Hybrid Systems in
Event-B and Rodin, p. 300. Taylor & Francis, February 2016

13. Butler, M., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS,
vol. 8051, pp. 67–81. Springer, Heidelberg (2013)

14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM POPL 1977, pp. 238–252, New York, NY, USA. ACM (1977)

15. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D.,
Rival, X.: The ASTRÉE analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

16. Goubault, É.: Static analyses of the precision of floating-point operations. In:
Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, p. 234. Springer, Heidelberg (2001)

17. Henzinger. T. A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems, volume 170 of NATO ASI Series,
pp. 265–292. Springer-Verlag (2000)

18. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A model checker for hybrid
systems. International Journal on STTT 1(1–2), 110–122 (1997)

19. Ishii, D., Melquiond, G., Nakajima, S.: Inductive verification of hybrid automata
with strongest postcondition calculus. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013.
LNCS, vol. 7940, pp. 139–153. Springer, Heidelberg (2013)

20. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach. LeeSeshia.org, edition 1.5 edition (2014)

21. Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefévre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser (2010)

22. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex
Dynamics. Springer-Verlag, Heidelberg (2010)

23. Su, W., Abrial, J.-R., Zhu, H.: Formalizing hybrid systems with Event-B and the
Rodin platform. Science of Computer Programming, 94, Part 2:164–202 (2014)

