
HAL Id: hal-03198232
https://hal.science/hal-03198232v1

Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Fly Algorithm for the Service Composition
Problem

Hikmat Farhat, Guillaume Feuillade

To cite this version:
Hikmat Farhat, Guillaume Feuillade. On the Fly Algorithm for the Service Composition Problem.
7th IFIP International Conference on New Technologies, Mobility and Security (NTMS 2015), Jul
2015, Paris, France. pp.1-6, �10.1109/NTMS.2015.7266511�. �hal-03198232�

https://hal.science/hal-03198232v1
https://hal.archives-ouvertes.fr

On-the-Fly Algorithm for the Service Composition

Problem

Hikmat Farhat

Computer Science Department

Notre Dame University

Lebanon

Email: hfarhat@ndu.edu.lb

Guillaume Feuillade

Université Paul Sabatier

Toulouse, France

Email:guillaume.feuillade@irit.fr

Abstract—The behavioral service composition problem arises
when no available service can achieve a target behavior. The
composition problem consists in building a special service, an
orchestrator, which schedules the actions of the services to
produce a behavior equivalent to the target one. In this paper,
services are modeled as nondeterministic transition systems and
the behavior of the composition realizes the behavior of the target.
We propose an algorithm that avoids the full computation of
the product of services, and instead constructs the orchestrator
incrementally. Unlike most algorithms where the whole state
space, which is exponential in the number of services, is visited,
the proposed algorithm can find a solution by visiting only the
pertinent portion of the state space. We also show that this on-
the-fly behavior can be paired with a heuristic to speed up the
synthesis.

I. INTRODUCTION

The Service Oriented Computing paradigm uses indepen-
dent components, called web services, as building blocks
for realizing complex solutions. The main challenge in this
approach is service composition. When a client request cannot
be fulfilled with an existing service, service composition is the
process of combining many available services in such a way as
to satisfy the request. Since almost any software module can
be turned into a web service, SOC has been gaining popularity.

There are many approaches for the composition problem,
ranging from model checking [1],to theorem proving [2] (see
[3] for a survey). The framework we use in this paper, first
proposed in [4], and usually referred to as the ”Roman Model”,
has been dealt with in many works [5][6][7]. Most solutions,
to date that are based on the this framework have either an
elevated complexity (e.g. [4]) or used a global approach (e.g.
[8]) in which the whole state space, which is exponential in
the number of services, needs to be generated beforehand.

Our contribution is a new on-the-fly algorithm that searches
part of the state space. While its worst-case complexity is also
exponential in the number of services (this is a lower bound,
see [9]) we argue that in the average case it is much better.
This paper improves on previous approaches to the problem
and advances the state of the art in service composition by
proposing an algorithm that: 1) visits states as needed, which
allows it to deal efficiently with systems containing a large
number of complex services; 2) is self-contained and can be
easily incorporated in any other model.

In section II the formal setting of the problem is presented.

The local algorithm is presented and analyzed in section III.
Finally, we conclude with section IV.

II. BACKGROUND

In this section we give the necessary definitions and
formally set the service composition problem. Before stating
the problem formally, it is useful to give an overview of the
involved components and how they fit in the framework. In this
work we follow the line of reasoning in [8], [10], originally
proposed in [4]. These needed components include: a target
service, a set of available services, and an environment.

The environment is a system shared by all the services,
which allows them to maintain state and communicate. The
environment also serves as a vehicle to impose behavioral
constraints on the actions of some services.

Having introduced the components we can state the service
composition problem informally as: given a target service and
a set of available services, find an orchestrator, if one exists,
that delegates requested actions to suitably chosen available
services, such that the system will have the same behavior as
the target service. Next we give the formal definition of all
components as well as the composition problem.

Definition 1: An environment E is a tuple E =
〈

E,Σ, e0, δE

〉

where: E is a finite set of states, e0 is the
initial state, Σ is the set of actions that can be performed,
and δE ⊆ E × Σ× E is the transition relation.

It is convenient to write (e1, a, e2) ∈ δE as e1
a
−→ e2. Such

transition means that when the environment is in state e1 and
an action a is performed it will move to a new state e2.
Available services. The available services are a set of compo-
nents that can be partially controlled by the orchestrator and
interact with the environment. Each service is defined formally
as:

Definition 2: An available service S over an environment
E is a tuple S =

〈

S,Σ, s0, G, δ
〉

where: S is a finite
set of states, Σ is a finite set of actions, identical to the
environment’s, s0 is the initial state, G is a set of boolean
functions that are used to impose constraints on some actions:
g : E → {true, false} where E is the set of environment
states. Finally, δ ⊂ S ×G× Σ× S is the transition relation.

When (s, g, a, s′) ∈ δ we write s
g,a
−→ s′. A service can

make a transition only if the state of the environment allows

Service 2: V

Service 1: U Environment: E

Target Service: T

t0

t1

t2

e0

e1

e2

v0 v1

v2

u0 u1

u2

buy

pay

buy, pay

search

buy

search

pay

search

buy

buy e2, paye2, pay

search

buy buy

pay

Figure 1. Example setup: U and V are available services, E the environment
and T the target service.

it. So if the environment is in state e then the service can
make the transition only if g(e) = true. Given a service
S =

〈

S,Σ, s0, G, δ
〉

and environment E =
〈

E,Σ, e0, δE

〉

a
trace of S on E is a, possibly infinite, sequence of the form

(s0, e0)
a1

−→ (s1, e1)
a2

−→ . . . where si ∈ S, ei ∈ E,aiΣ,

and for all i if (si, ei)
ai+1

−→ (si+1, ei+1) then si g,ai+1

−→ si+1

in S with g(ei) = true for some g ∈ G and ei ai+1

−→ ei+1.
Thus a service can make a transition only if the environment
can make the same transition, and is in the appropriate state
e. A history is a finite prefix of a trace, ending in a state.

Given history h = (s0, e0)
a1

−→ . . .
ai

−→ (si, ei) the last
state in the history is denoted by last(h) = (si, ei) and
the length the history, denoted by |h |= i, is the number of
actions performed. All available services together with the
environment are grouped into a community of services, the
set C = {S1, . . . ,Sn, E}.

Target service. The target service is the goal service
requested by the client and which the community tries to
satisfy by composing an equivalent service from the available
services. The target service, denoted by St, is defined like
any other service over the same environment, except that it is
deterministic.

Example. We give an example to illustrate the framework. The
main motivation for the example is its simplicity. The setup, as
shown in Figure 1, contains a target service, an environment
and two available services. The target service is a kind of
online bookstore, where one can search for and buy books.
Note that the pay action is also a ”logout” action so in case
no item was purchased the pay action still makes sense. The
environment enforces the idea that a search has to be done

first. Also it is used as a data box where results of search and
buy are saved. The first service U can do all three actions,
search, buy and pay. Service U offers a kind of buy one and
get one for half the price service, therefore a client has to buy
items in pairs before paying. The second service V can search,
buys, and pays for items. The service V forces at least one
buy after a search because the pay transition can be executed
only if the environment is in state e2. To reach that state at
least one item needs to be bought. This is handled by the

v1

e2,pay
−→ v2 transition meaning that this transition can be done

only when the environment is in state e2, i.e. at least one
item was purchased. It should be mentioned that transitions
not labeled explicitly with an environment state are actually
implicitly labeled by g(e) = true for all e ∈ E.

Because both services have access to the environment
where they can store and retrieve data, it is possible for
one service to search for books, store the results in the
environment, and the other service will read the result of the
search from the environment to buy items.

A. Service Composition

Let C = {S1, . . . ,Sn, E} be a community of ser-
vices. A community trace is a sequence of the form

(s0
1, . . . , s

0
n, e0)

k1a1

−→ (s1
1, . . . , s

1
n, e1)

k2a2

−→ . . . such that for all

i > 0 if (si
1, . . . , s

i
n, ei)

ki+1ai+1

−→ (si+1
1 , . . . , si+1

n , ei+1) then

• si
ki+1

g,ai+1

−→ si+1

ki+1 and g(ei) = true for some g.

• ei ai+1

−→ ei+1.

• si+1

k = si
k for all k &= ki+1.

Community histories are finite prefixes of community
traces, ending in a state. Given a community history h, we
denote by last(h) the last state in history h. The set of all
histories of a community is denoted by H.

Orchestrator. An orchestrator controls the actions of the
community of services by selectively enabling and disabling
their actions. Given a set of available services with history
h and an action a, the orchestrator is a function Ω : H ×
Σ × {1, . . . , n} → {0, 1} that enables/disables service k for
performing action a. For example, Ω(h, a, i) = 0 means that
after history h, service i is not allowed to perform action a. If
Ω(h, a, i) = 1 then service i is allowed to perform action a.

Definition 3: Given a sequence of actions (a trace) τ =
a1 . . . ak = τ ′ak, the evolution of the community under the
control of orchestrator Ω is defined inductively as

Hτ,Ω =
⋃

h∈Hτ′,Ω

h
ak−→ 〈s′1, . . . , s

′
n, e′〉

where

• For every h, given that last(h) = 〈s1, . . . , sn, e〉,
h

ak−→ 〈s′1, . . . , s
′
n, e′〉 is the set of histories ob-

tained from h by appending to it all the transitions

〈s1, . . . , sn〉
ak−→ 〈s′1, . . . , s

′
n〉 having the properties:

∃i such that si
g,ak−→ s′i with g(e) = true, Ω(h, ak, i) =

1 and sj = s′j for all j &= i.

• Hǫ,Ω =
〈

s0
1, . . . , s

0
n, e0

〉

, the initial state where ǫ is
the empty trace.

Definition 4: Let C = {S1, . . . ,Sn, E} be a community of
services and St =

〈

St,Σ, s0, G, δ
〉

be target service and Ω an
orchestrator. We say that the community C controlled by the
orchestrator Ω is a behavior composition of the target St if: for
all traces τ = a1 . . . ak and for all histories of the community

h ∈ Hτ,Ω and target history t0
a1−→ t1 . . .

ak−→ tk Then

tk
a
−→ tk+1 ⇔ h

a
−→ 〈s1, . . . , sn〉

In other words, after any arbitrary sequence of actions τ if the
target can make an a-transition then the controlled community
can make the same transition. This means that the community
controlled by the orchestrator mimics exactly the behavior of
the target at every step.

Clearly, there are an infinite number of orchestrators for
a any community and not all of them lead to behavior
composition. For the remainder of this paper an orchestrator
means an orchestrator that leads to behavior composition. We
will show that an orchestrator exists if and only if a certain
relation exists between the community and the target. We need
the next definition.

Definition 5: Let C = 〈S1, . . . ,Sn, E〉 be a community of
services and St =

〈

St, s
0
t ,Σ, δt

〉

the target service over the
same environment. We say that C is controllable with respect
to St if there exist a relation Z ⊆ St×E×S1× . . . Sn× such
that:

• (s0
t , s

0
1, . . . , s

0
n, e0) ∈ Z.

• If (st, s1, . . . , sn, e) ∈ Z then for all a ∈ Σ the
following holds:

◦ if (st, e)
a
−→ (s′t, e

′) then ∃k such that

sk
g,a
−→ s′k with g(e) = true for some g and

(s′t, s1, . . . , s
′
k, . . . , sn, e′) ∈ Z.

◦ for all sk
g,a
−→ s′′k such that g(e) = true it is

the case that (s′t, s1, . . . , s
′′
k , . . . , sn, e′) ∈ Z.

Theorem 1: An orchestrator Ω exists such that the com-
munity controlled by Ω is a behavior composition if and only
if the community is controllable with respect to the target.

The proof is shown in the appendix. It is basically by induction
over the length of an arbitrary trace.

Since the union of two controllability relations is also a
controllability relation then there exists a largest controllability
relation, defined as the union of all controllability relations.
Given a relation R ⊆ St × E × S1 × . . . × Sn we define a
function F over the set of relations over St×E×S1×. . .×Sn

as follows:

F (R) = {(t, e, p) | ∀a, (t, e)
a
−→ (t′, e′) ⇒

(∃k, p′.(p, e)
ka
−→ (p′, e′) ∧ (t′, e′, p′) ∈ R

∧(p
ka
−→ p′′ ⇒ (t′, e′, p′′) ∈ R))}

Where t, e are target and environment states. The state
of the n services are represented collectively with p. It is

easy to see that a relation R is an controllability relation
iff R = F (R). A typical procedure, similar to the one for
classical equivalences and preorders [11], for computing the
largest controllability relation would be to define the set of
relations:

R0 = St × E × S1 × . . .× Sn

Ri+1 = F (Ri) (1)

Since the transitions systems under study are finite then there
exists a j such that Rj = F (Rj). The largest fixed point, Rj , is
the largest controllability relation one is seeking. Henceforth,
this procedure for computing the largest controllability is
referred to as ”fixpoint”. The important point to note is that
one always starts with R0, which is, being the product of all
the states, exponential in the number of services. This means
one always has to visit all the states in R0, the full state
space, and more importantly, process all transitions. Clearly
this is an expensive operation and, as will be shown later,
unnecessary. It is worth mentioning that other methods solving
the composition problem, e.g. [12], also start from the full state
space and remove, one by one, non matching states to obtain
a solution.

We illustrate with the example discussed earlier. The full
state space and a possible solution, together with the target,
are shown in Figure 2. When the largest controllability is
computed, the dashed state is related to the target state (t0, e0),
the double ovals are related to the state (t1, e1), the ovals
are related to (t1, e2) and all community states are related to
(t2, e1) and (t2, e2) since these two target states don’t have any
transitions, and thus are related to any other state. On the other
hand we show in red a much smaller controllability relation.
The red transitions are the composition, or the ”proof” that
the relation is indeed a controllability relation. If one starts
with (u0, v0, e0) and at each step, and each target transition,
tries to match it with a community transition it is possible to
obtain an controllability relation in a much smaller number
of computations than required by a fixpoint algorithm. One
can see that in this case a fraction of the state space is
visited whereas in the fixpoint algorithms all the state space,
which includes testing all the transitions, will be visited. The
solution in red can be obtained, for example, if the user
has a preference for service 1, which means that the system
will always try to match the target transition using service
1. Alternatively, one can use information obtained from a
different method, say some kind of abstraction, to determine
that among the two possible s transitions from (u0, v0, e0),
choose (u0, v0, e0), and therefore prune the search space.
Obviously all the aforementioned techniques are just heuristics
and it is possible that such on-the-fly procedure makes the
”worst” decision on every step.

III. ON-THE-FLY ALGORITHM

In this section we present an on-the-fly algorithm to find a
controllability relation, if one exists. Let Si be the set of states
of available service i, E be the set of environment states and St

the set of states of the target service. The algorithm maintains
two relations A and B, both initially empty.

The relation A ⊆ St × E × S1 × . . . × Sn, represents
the controllability relation that the algorithm is trying to find

t0, e0

Target

Full State Space

t1, e1

t2, e1 t1, e2

t2, e2

s

p
b

p

b

u0, v0, e0

u1, v0, e1

u0, v0, e2

u2, v0, e2

u1, v0, e2

u0, v0, e1 u0, v1, e1

(u0, v2, e2)

(u0, v1, e2)

u1, v1, e2

u2, v1, e2

(u1, v2, e2)

u2, v2, e2

2s

2b

2p

2b
2b

2p

1p

2p
2b

2b

1p

1b

1b

1s

2b
1b1p

2b

2p
1b

1b

2b

2p

1b 1b

2b

1p

2p

Figure 2. Full state space of the community and the target service. The red nodes and transition denote one controllability relation. The transitions search, pay,
and buy are shortened to s,p, and b respectively.

between the states of the community and the target. Note that
there might be more than one controllability relations.

During the execution of the algorithm states are
added and removed from A. The second relation,
B ⊆ St × E × S1 × . . . × Sn represents the set of
states that were found by the algorithm to be not related.
Because two states found to be not related cannot become
related at some later stage, states are added to B but never
removed. The set B is maintained so that a given state is not
processed more than once. The algorithm is composed of two
mutually recursive functions CONTROL and MATCH
that are described next.
Function CONTROL. Given a target state (t, e),
and a community state (s1, . . . , sn, e) the function
CONTROL(t, e, s1, . . . , sn) returns true iff the states
〈t, e, s1, . . . , sn〉 are related. Basically, CONTROL performs
a depth-first search over the state space. When a state is
visited for the first time, i.e. not in A nor in B, it is assumed
to be related and therefore added to A (lines 2-6). Then the
state is processed by checking that every transition of the
target can be matched by a transition of the community (lines
8-17).

After a state is processed, if it is found to be not related, then
it is removed from A and added to B (lines 19-21).

Given a target state (t, e) and a community state
(s1, . . . , sn, e), the function CONTROL tests whether they
are related. This is the case iff for every possible transition of

the target state (t, e)
a
−→ (t′, e′) the community can match it

with an ”a” transition to a state that is related to (t′, e′) (lines
8-17 in CONTROL).

Function MATCH. For every target transition, this function
tries to find a community transition that matches it. It is
possible that there could be multiple services that can make an
”a” transitions from the current state of the community. The
MATCH function needs to try them one by one until it finds
a match. To this end, MATCH maintains all potentially valid
system transitions in a queue.
QUEUE. The algorithm maintains a queue that holds all
potential transitions of the system from state (s1, . . . , sn, e)
that can potentially match a target transition (t, e)

a
−→ (t′, e′).

Since for every system state (s1, . . . , sn, e) and target transi-

tion (t, e)
a
−→ (t′, e′) pair we have a different set of possible

transitions the algorithm maintains a different queue for each.
Therefore the queue Qs used in the MATCH function, is
indexed by s which is a shorthand for s1 . . . sntet′e′. Note
that a given Qs is created when it is needed and keeps the
state between different calls of MATCH . Once we find that
a transition does not match we discard it and dequeue the
next possible transition. We keep doing this until a matching
transition is found or the queue becomes empty. If the queue
becomes empty then there is no match and the function
MATCH returns the value 0, no matching service is found.
In this work we use a FIFO queue but one can as well use a
priority queue where the priority is assigned for a given service
according to some user preference to implement non-functional
requirements, or as a quality of service weight. Also, if the
algorithm uses a heuristic based on some already obtained
information that makes one transition more likely to succeed,
it will be given higher weight. Finally, the queue is defined
in such a way that if there are, in a given service k, many s′k
such that sk

a
−→ s′k then ENQUEUE(Qs, k, s′) will add the

first such s′k only.

1 CONTROL(t, e, s1, . . . , sn)

2 if 〈t, e, s1, . . . , sn〉 ∈ B then
3 return false
4 if 〈t, e, s1, . . . , sn〉 ∈ A then
5 return true
6 A = A ∪ 〈t, e, s1, . . . , sn〉
7 res=true
8 foreach a ∈ Σ do

9 foreach (t, e)
a
−→ (t′, e′) do

10 CONT: k=MATCH (s1, . . . , sn, e
a
−→ e′, t

a
−→ t′)

11 if k=0 then
12 res=false
13 Goto Exit

/* Now for the reverse match */

14 foreach (s1, . . . , sk, . . . , sn, e)
a
−→

(s1, . . . , s
′
k, . . . , sn, e′) do

15 res=CONTROL (t′, e′, s1, . . . , s
′
k, . . . , sn)

16 if res=false then
/* this community state did

not match. Try a
different possibility
from the queue */

17 Goto CONT
18 Exit:
19 if res=false then
20 B = B ∪ 〈t, e, s1, . . . , sn〉
21 A = A− 〈t, e, s1, . . . , sn〉
22 changed = true
23 return res

Algorithm 1: function CONTROL

Theorem 2: The algorithm CONTROL is polynomial in
the number of states of a given service and exponential in the
number of services.

The proof is shown in the appendix. The algorithm is es-
sentially a depth-first search (DFS) on a graph where each node
is visited only once. A similar reasoning to the complexity of
DFS leads to the result.

IV. CONCLUSION

We have proposed a new on-the-fly search algorithm for
the service composition of partially controllable web services.
The worst-case complexity of the algorithm matches the known
lower bound for the problem. However, in practice it will
have better performance due to its local nature. Moreover, the
algorithm doesn’t need to build a priori the composition state
space which allows it to handle larger system than solutions
using a global search technique.

We believe that the presented algorithm can be improved
further by providing it with additional information that allows
it to make better decisions when confronted with equivalent
choices. One approach that we are currently working on, is
to use an abstraction techniques, similar to the ones used in
model checking, to gain additional information that improves
the decision process of the algorithm. Another issue would be
to incorporate non-functional requirements in the framework
as well as quality of service, which could be done by using a
priority queue as suggested in the course of the paper.

1 MATCH((s1, . . . , sn, e
a
−→ e′, t

a
−→ t′)

/* Let s = s1 . . . sntt′ee′ serve as a queue
index. This way a separate queue Qs

is created for each different index
s */

/* Also Qs is initialized at the start
of every run but maintains state
within one run. */

2 if Qs does not exist then
3 create Qs

4 for i = 1 to n do

5 if si
g,a
−−→ s′i ∧ gi(e) = true then

6 ENQUEUE (Qs,i,s′i)
7 res = false
8 while Q &= ∅ ∧ res = false do
9 s′k = DEQUEUE(Qs)

10 res=CONTROL(t′, e′, s1, . . . , s
′
k, . . . , sn)

11 if res=false then
12 k = 0
13 return k

Algorithm 2: function MATCH

REFERENCES

[1] Y. Feng, A. Veeramani, R. Kanagasabai, and S. Rho, “Automatic service
composition via model checking,” in Services Computing Conference

(APSCC), 2011 IEEE Asia-Pacific, 2011, pp. 477–482.

[2] P. Papapanagiotou and J. Fleuriot, “Formal verification of web services
composition using linear logic and the pi-calculus,” in Web Services

(ECOWS), 2011 Ninth IEEE European Conference on, 2011, pp. 31–
38.

[3] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proceedings of the First international conference on Se-

mantic Web Services and Web Process Composition, ser. SWSWPC’04.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 43–54.

[4] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Me-
cella, “Automatic composition of e-services that export their behavior,”
in ICSOC, 2003, pp. 43–58.

[5] P. Balbiani, F. Cheikh, and G. Feuillade, “Composition of interactive
web services based on controller synthesis,” Congress on Services -

Part I, 2008. SERVICES ’08. IEEE, pp. 521–528, July 2008.

[6] G. De Giacomo and F. Patrizi, “Automated composition of
nondeterministic stateful services,” in Proceedings of the 6th

international conference on Web services and formal methods, ser.
WS-FM’09. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 147–160.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1880906.1880915

[7] D. Berardi, F. Cheikh, G. D. Giacomo, and F. Patrizi, “Automatic service
composition via simulation,” Int. J. Found. Comput. Sci., vol. 19, no. 2,
pp. 429–451, 2008.

[8] G. D. Giacomo, F. Patrizi, and S. Sardiña, “Automatic behavior com-
position synthesis,” Artif. Intell., vol. 196, pp. 106–142, 2013.

[9] A. Muscholl and I. Walukiewicz, “A lower bound on web services
composition,” Logical Methods in Computer Science, vol. 4, no. 2, 2008.

[10] S. Sardina, F. Patrizi, and G. De Giacomo, “Behavior composition in
the presence of failure,” in Proceedings of Principles of Knowledge

Representation and Reasoning (KR), G. Brewka and J. Lang, Eds.
AAAI Press, 2008, pp. 640–650.

[11] R. Cleaveland and O. Sokolsky, Handbook of Process Algebra. El-
sevier, 2001, ch. Equivalence and Preorder Checking for Finite-State
Systems, pp. 391–424.

[12] T. Ströder and M. Pagnucco, “Realising deterministic behavior
from multiple non-deterministic behaviors,” in Proceedings of

the 21st international jont conference on Artifical intelligence,
ser. IJCAI’09, 2009, pp. 936–941. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1661445.1661594

V. APPENDIX

A. Proof of theorem 1

Proof: We prove the theorem by induction on the length
of the trace τ = a1 . . . ak. Assume that R is a controllability
relation between community and target. It is convenient to
refer to a community state with a single symbol so let
sm = 〈sm

1 , . . . , sm
n 〉.

Base case: Since R is a controllability relation then if t0
a1−→ t1

then ∃k such that s0
k

a1−→ s1
k and (t1, s1) ∈ R. Choose

Ω(s0, k, a1) = 1 and Ω(s0, i, a1) = 0 for all i &= k. Since

a1 is arbitrary then t0
a1−→ t1 ⇔ h

a1−→ s1.

Induction hypothesis: assume that tl−1 al

−→ tl ⇔ h
al

−→ sl for
all histories h of length l. Furthermore, (tl, sl) ∈ R.

Induction step: since (tl, sl) ∈ R then tl
al+1

−→ tl+1 implies that

∃k such that sl
k

al+1

−→ sl+1

k and thus sl al+1

−→ sl+1 then choose

Ω(h, k, al+1) = 1 and Ω(h, i, al+1) = 0 for all i &= k.

B. Correctness and Complexity of the Algorithm

Let n be the number of available services with each service
having Ni states, Nt the number of target service states, and
Ne the number of environment states. Let N = Nt × Ne ×
N1 × . . .×Nn.

Theorem 3: The algorithm CONTROL terminates in a
finite number of steps and when it does it returns true iff
(t0, e0, s0

1, . . . , s
0
n) are related.

Proof: First we prove the termination. Let CONTROLi

be the ith iteration of CONTROL(t0, e0, s0
0, . . . , s

0
n) and

Bi the set of states that are not related after CONTROLi

finishes. The variable changed is set to true iff during the
run ∃(t, e, s1, . . . , sn) /∈ Bi−1 and (t, e, s1, . . . , sn) ∈ Bi,
meaning that (t, e, s1, . . . , sn) was found to be not related
during the execution of CONTROLi. Recall that at no point
in the algorithm, states are removed from B. But if no new
state is added to B then the algorithm stops. This means
the set B is strictly increasing. On the other hand, the total
number of states N is finite. Then there is an iteration j
such that the variable change = false and at that point the
algorithm terminates.

Next we show that it yields the correct result. Observe
that in a given iteration i of the algorithm, we have that
if CONTROL(t, e, s1, . . . , sn) returns true it means that
it has finished processing the state 〈t, e, s1, . . . , sn〉 and that
〈t, e, s1, . . . , sn〉 ∈ A. Also, recall that it returns true iff for
every a:

1) And for every transition (t, e)
a
−→ (t′, e′) there exists

a community transition (s1, . . . , sk, . . . , sn, e)
a
−→

(s1, . . . , s
′
k, . . . , sn, e′) such that

〈t′, e′, s1, . . . , s
′
k, . . . , sn〉 ∈ A.

2) And for every s′′k such that

(s1, . . . , sk, . . . , sn, e)
a
−→ (s1, . . . , s

′′
k , . . . , sn, e′) it

is the case that 〈t, e, s1, . . . , s
′′
k , . . . , sn〉 ∈ A.

The above two conditions hold in the final iteration, when
changed = false and therefore no 〈t′, e′, s1, . . . , s

′
k, . . . , sn〉

was removed from A, imply that the relation A is a

controllability relation.

Theorem 4: The algorithm CONTROL is polynomial in
the number of states of a given service and exponential in the
number of services.

First recall that N = Nt × Ne × N1 × N2 × . . . × Nn is
the number of possible states of the community and target
combined. Since we are doing a worst-case analysis, we
assume that all the above states are reachable.
In a single run of CONTROL(t0, e0, s0

1, . . . , s
0
n) each state

is considered once. This is because after the first visit it is
either in A or in B. On any subsequent call it will not be
visited again (lines 2-5 in CONTROL). This means that each
iteration of CONTROL(t0, e0, s0

1, . . . , s
0
n) considers at most

N states. Next we compute the cost of visiting a single state.
The loops in lines 8-17 have the following cost:
∑

a

|{(t, e)
a
−→}| · |MATCH(s1, . . . , sn, e

a
−→ e′, t

a
−→ t′) |

=
∑

a

|{(t, e)
a
−→}| · |{(s1, . . . , sn, e)

a
−→}|

The last equality is true because for a given (t, e)
a
−→

(t′, e′) the function MATCH will process at most |
{(s1, . . . , sn, e)

a
−→} | transitions. The above is the contri-

bution of a single state. Because every state is visited at most
once the total cost of one iteration of CONTROL is

=
∑

e

∑

t

∑

s1,...,sn

∑

a

|{(t, e)
a
−→}| · |{(s1, . . . , sn, e)

a
−→}|

≤

(

∑

t

∑

e

|{(t, e)
a
−→}|

)

·

(

∑

s1,...,sn

∑

a

|{(s1, . . . , sn, e)
a
−→}|

)

=|Lt | · |Ls | (2)

Where Lt is the number of transitions of the target system
synchronized with the environment and Ls is the number of
transitions of the asynchronous product of all the services,
synchronized with the environment. To get an idea about the
complexity of the algorithm as a function of the number of
services, n, we note that for a given action a, if service i
can make |Lai| transitions then the asynchronous product can
make

∏

i |Lia|. On the other hand, the system cannot make a
transition unless the environment does so then we get:

|Ls|=
∑

a

|Lea| · |L1a| · · · |Lan|

In the worst-case every state has an ”a” transition to every
other state. Thus |Lia |= O(N2

i), where Ni is the number
of states in service i. Finally, the complexity of processing a
single iteration of CONTROl is

O(N2
t ·N

2
e ·N

2
1 · · ·N

2
n)

Since CONTROL is called at most O(Nt · Ne · N1 · · ·Nn)
times on (t0, e0, s0

1, . . . , s
0
n), the total complexity is O(N3

t ·
N3

e ·N
3
1 · · ·N

3
n). Therefore, the algorithm is polynomial in the

number of states of target, environment, or a given services. It
is exponential in the number of services. Considering that the
problem is EXPTIME-hard [9], this is optimal.

