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Abstract—This paper presents an unsupervised Bayesian

algorithm for hyperspectral image unmixing, accounting for
endmember variability. The pixels are modeled by a linear
combination of endmembers weighted by their corresponding
abundances. However, the endmembers are assumed random
to consider their variability in the image. An additive noise is
also considered in the proposed model, generalizing the normal
compositional model. The proposed algorithm exploits the whole
image to benefi from both spectral and spatial information.
It estimates both the mean and the covariance matrix of each
endmember in the image. This allows the behavior of each
material to be analyzed and its variability to be quantifi d in
the scene. A spatial segmentation is also obtained based on
the estimated abundances. In order to estimate the parameters
associated with the proposed Bayesian model, we propose to
use a Hamiltonian Monte Carlo algorithm. The performance of
the resulting unmixing strategy is evaluated through simulations
conducted on both synthetic and real data.

Index Terms—Hyperspectral imagery, endmember variability,
image classif cation, spectral unmixing, Bayesian algorithm,
Hamiltonian Monte-Carlo, MCMC methods.

I. INTRODUCTION

HYPERSPECTRAL imaging is a remote sensing tech-
nology that collects 3D data cubes composed of 2D

spatial images acquired in numerous contiguous spectral
bands. Due to the limited spatial resolution of the observed
image, each pixel generally consists of several physical
elements that are linearly [1], [2] or nonlinearly [3]–[5]
mixed. Spectral unmixing (SU) consists of decomposing
the pixel spectra to recover these materials, known as
endmembers, and estimating the corresponding proportions
or abundances [6]. The linear mixture model (LMM) has
received great interest in the literature and has been used
intensively for SU. The unmixing is generally performed
using two distinct steps: (i) identifying the endmembers using
an endmember extraction algorithm (EEA) such as vertex
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Fig. 1. Simplex representation for (a) endmembers without variability,
(b) endmembers as a f nite set (or bundle) and (c) endmembers as a
distribution.

component analysis (VCA) [7], pixel purity index (PPI) [8]
and N-FINDR [9], (ii) estimating the abundances under
physical non-negativity and sum-to-one constraints using
algorithms such as the fully constrained least squares [2].
Some algorithms also tackle the SU problem in an
unsupervised manner, i.e., by jointly estimating the end-
members and the abundances. This is generally achieved
under a statistical framework using optimization tech-
niques [10] or Markov chain Monte Carlo (MCMC) simulation
methods [6], [11]. The unsupervised algorithms generally
provide better results and appear to be less sensitive to the
absence of pure pixels [3].
The previous described algorithms provide one endmember

spectrum for each physical component present in the image
(see Fig. 1(a)). This appears as a clear simplificatio since
in many cases, the endmember spectra vary along the image
causing what is known as spectral variability. Spectral vari-
ability has been identifie as one of the most profound sources
of error in abundance estimation and is receiving growing
interest in the hyperspectral community [12], [13]. Many
algorithms have been proposed in the literature to describe
this variability. A detailed discussion about these algorithms,
their advantages and challenges is available in [12], [13]. Most
of these methods can be gathered into two main classes. The
f rst approaches consider each physical material as a set or
bundle of spectra (see Fig. 1(b)). One can distinguish between
algorithms assuming a known spectral library [14], [15]
and those estimating it from the data [16], [17]. SU resulting
from these approaches is generally sensitive to the quality of
the available or extracted endmember libraries. The second
class of methods relies on a statistical representation of the
endmembers that are assumed to be random vectors with given
probability distributions (see Fig. 1(c)). These approaches



provide a f exible way to incorporate some uncertainties
regarding the endmembers [18], [19] and, within an
unsupervised context, this choice makes the SU more robust
to the absence of pure pixels [20]. Two main statistical
models have been considered in the literature to describe
endmember variability. The Beta compositional model [21]
exploits the physically realistic range of the endmember
reflectance by assigning them a Beta distribution. Earlier,
the normal compositional model (NCM) was proposed
to describe the endmember variability by a Gaussian
distribution [18], [20], [22]. An alternative to these parametric
models was introduced in [23] for the specif c issue of
estimating the vegetation fractions in urban environments. In
this work, empirical learning of the endmember distributions
is conducted from a set of pixels identif ed as belonging
to vegetation and non-vegetation areas. In that sense, it
consists of an hybrid method between the two main classes
of approaches introduced above, based on a statistical
description of the endmember variabilities derived from
bundles of spectra.
Adopting a Bayesian perspective, this paper introduces a

generalization of this NCM by considering Gaussian vari-
ability for the endmembers (as for the NCM) while incor-
porating an additive Gaussian noise modeling f tting errors
(which was not present in the NCM). Moreover, the proposed
model considers a different mean and covariance matrix for
each endmember to analyze each component of the mixture
separately. These parameters are both estimated generalizing
the works of [18] and [20] that only estimated the endmembers
means or covariances, respectively. Moreover, the endmember
fl ctuation with respect to the spectral bands is character-
ized by considering non-identically distributed endmember
variances.
Another important point concerning hyperspectral

unmixing is the spatial correlation between pixels. Indeed,
even if many algorithms consider a pixel-by-pixel context,
recent studies have shown the interest of considering spatial
information to improve the unmixing quality [24]–[26].
Within a Bayesian framework, this spatial correlation can be
introduced using Markov random f elds (MRFs) as already
shown in [24], [25], and [27]. In this work, a Potts model
is considered since it has already shown good performance
when processing hyperspectral images [24], [25]. The image
is then segmented into regions sharing similar abundance
characteristics. Note that this segmentation was also achieved
in [10] and [25] by considering Gaussian and Dirichlet
distributions for the abundances.
This paper proposes an unsupervised Bayesian algorithm

to estimate the parameters associated with an unmixing
model accounting for endmember variability. In addition to
the abundance Dirichlet priors, it assumes appropriate priors
for the remaining parameters/hyperparameters to satisfy the
known physical constraints. The joint posterior distribution of
the proposed Bayesian model is then derived. However, the
classical minimum mean square error (MMSE) and maximum
a posteriori (MAP) estimators cannot be easily computed from
this joint posterior. A classical way of alleviating this problem
is to generate samples asymptotically distributed according to

the posterior using MCMC methods. This goal is achieved in
this paper using a Gibbs sampler coupled with a Hamiltonian
Monte Carlo (HMC) method. HMC is well adapted for large
scale problems, i.e., with a large number of parameters to be
estimated [28]. Moreover, this method presents good mixing
properties when compared to the classical Metropolis-Hastings
algorithm. This paper considers a constrained-HMC (CHMC)
that has been introduced in [28, Ch. 5] and successfully
used for hyperspectral SU in [11]. This CHMC accounts
for inequality constraints which are required to satisfy the
physical constraints related to the proposed SU problem.

Main Contributions
The main objective of the paper is to provide a spectral/

spatial algorithm to analyze hyperspectral images accounting
for endmember variability. The fi st contribution of the paper
is the generalization of the works [18] and [20] by estimating
both the mean vector and the variances of the endmembers
This provides important information such as the sensitivity
of each physical material in each spectral wavelength. The
second contribution is the generalization of the NCM model
by introducing an additive noise that accounts for mismodeling
such as non-linearity effects. These contributions provide a
good spectral analysis of the image. In addition to that, and
to exploit the hyperspectral image spatial information, we
consider a Potts model that accounts for spatial correlation
between adjacent pixels. For each class of this Potts model,
we consider a Dirichlet distribution as abundance prior which
allows the abundance constraints to be satisf ed.
The paper is structured as follows. The unmixing problem

considered in this study is formulated in Section II. The
different components of the proposed Bayesian model are
studied in Section III. Section IV introduces the Gibbs sampler
and the CHMC method which will be used to generate samples
asymptotically distributed according to the joint posterior
of the unknown parameters and hyperparameters. Section V
analyzes the performance of the proposed algorithm when
applied to synthetic images. Results on real hyperspectral
images are presented in Section VI whereas conclusions and
future works are reported in Section VII.

II. PROBLEM FORMULATION

The variables used in this paper are described in Table I.

A. Mixing Model and Endmember Variability
This section introduces the proposed mixture model. The

classical LMM assumes that the pixel spectrum yn, n ∈
{1, · · · , N}, where N is the number of pixels in the image, is
a linear combination of R deterministic endmembers sr , r ∈
{1, · · · , R}, corrupted by an additive noise as follows [6], [25]

yn =
R∑

r=1
arn sr + en = San + en (1)

with

en ∼ N
(
0L, ψ2IL

)
(2)



TABLE I
NOTATION TABLE

where ∼ means “is distributed according to”, R is the number
of endmembers, yn is an (L × 1) vector representing the nth
observed pixel, L is the number of spectral bands, 0L is an
(L × 1) vector of 0, IL is the (L × L) identity matrix, an =
[a1n, · · · , aRn]T is the (R × 1) abundance vector of the nth
pixel, S = [s1, · · · , sR] is an (L × R) matrix of endmembers
and en is a white Gaussian noise.
The endmembers are generally not constant in the

observed image due to environmental conditions or inherent
variability [12], [13]. The normal compositional model (NCM)
has been widely used in the literature to take into account
this variability by assuming random endmembers distributed
according to Gaussian distributions. The NCM is define as

yn =
R∑

r=1
arnsrn = Snan (3)

with

srn ∼ N (mr , diag
(
σ 2
r
))

(4)

where Sn = [s1n, · · · , sRn], σ 2
r = [

σ 2r1, · · · , σ 2r L
]
is the

variance vector of the r th endmember and M = [m1, · · · ,mR]
is the (L× R) matrix containing the endmember means of the
image. Note that (3)-(4) is a general formulation for the NCM
that encompasses the model described in [18] since it considers
different endmember variances with respect to spectral bands.
Note also that the model described in [20] introduces a full
covariance matrix for each endmember. However, this covari-
ance matrix was simplif ed to a diagonal covariance matrix
in the algorithmic implementation. In the following, NCM
will refer to the model given by (3) and (4) unless otherwise
stated.
In this paper, we introduce a new model taking endmember

variability into account. More precisely, the proposed model
can be seen as a generalized NCM model (GNCM) since it
introduces an additional residual Gaussian noise en as follows

yn =
R∑

r=1
arnsrn + en = Snan + en. (5)

The noise en is assumed to be Gaussian, i.e.,
en ∼ N (0L, ψ2

n IL
)
and independent from the variables

s1n, · · · , sRn . The presence of this noise makes the proposed
model more robust to mismodeling. Moreover, we consider
that the endmember variability is the main source of

randomness in the observed pixel [12], which is ensured
by assigning a prior enforcing small values for the noise
variances (see Eq. (17)). The model (5) reduces to the NCM
(3) for ψ2

n = 0,∀n. Thus, it generalizes the model of [18]
by considering band-dependent endmember variances for
each physical element #r (i.e., the endmember variance σ 2r�
depends on each spectral band #�). This allows the GNCM to
capture the spectral variations of each physical element with
respect to each spectral band. The GNCM model can also be
seen as a generalization of the LMM model used in [6], since
the endmember matrix Sn depends on each observed pixel.
This allows the spectral variability to be explicitly introduced
while it is fi ed with the LMM. Finally, note that the GNCM
reduces to the LMM for σ 2r� = 0,∀�,∀r and ψ2

n = ψ2,∀n.
The abundance vector an usually represents the spatial
coverage of the material in the nth pixel. Therefore, it should
satisfy the positivity and sum-to-one (PSTO) constraints
associated with both LMM and GNCM

arn ≥ 0, ∀r ∈ {1, . . . , R} and
R∑

r=1
arn = 1. (6)

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model
for GNCM-based unsupervised hyperspectral SU accounting
for spectral variability. The Bayesian approach assigns prior
distributions to the unknown parameters summarizing the
prior knowledge about these parameters. This approach is
interesting to alleviate the indeterminacy resulting from
ill-posed problems and has been successfully applied for
HU [6], [30], [31]. More precisely, if f (θ) denotes the
prior distribution assigned to the parameter θ, the Bayesian
approach computes the posterior distribution of θ using the
Bayes rule

f (θ |Y ) ∝ f (Y |θ) f (θ) (7)

where ∝ means “proportional to” and f (Y |θ) is the
likelihood of the observation vector Y . The vector θ is then
estimated from this posterior distribution by computing its
mean (MMSE estimator) or its maximum (MAP estimator).
The following paragraphs introduce the likelihood and the
considered prior distributions for θ . The unknown parameters
of our model include the (L×R) endmember mean matrix M,
the (R × L) matrix � gathering the endmember variances
(with �r,l = σ 2rl ), the (R × N) abundance matrix A (whose
nth column is A:n = an), and the (1 × N) vector
� = [ψ1, . . . , ψN ].

A. Likelihood

Using the observation model (5), the Gaussian properties
of both the noise sequence en and the endmembers,
and exploiting independence between the observations in
different spectral bands, yield the following likelihood



(see [32, Appendix A])

f (yn|A,M,�,�) ∝
( L∏

�=1
��n

) 1
2

exp
{

− 1
2
�T:n[(yn − Man)

� (yn − Man)]
}

(8)

where � is an (L × N) matrix whose elements are given
by ��n =

(∑R
r=1 a2rnσ 2r� + ψ2

n

)−1
, A = [a1, · · · , aN ] is an

(R × N) abundance matrix, and � denotes the Hadamard
(termwise) product. Moreover, contrary to the LMM,
Eq. (8) shows that the elements1 of � depend on the pixel
abundances and thus on the pixel index #n. This property
was also satisf ed by the NCM model as previously shown
in [18] and [20]. Note f nally that the joint likelihood of
the observation matrix Y can be obtained by exploiting
independence between the observed pixels

f (Y |A,M,�,�) ∝
N∏

n=1
f (yn|A,M,�,�). (9)

B. Parameter Priors
This section introduces the prior distributions that we have

chosen for the parameters of interest.
1) Classifica ion Prior Modeling: Many recent works

related to hyperspectral imaging have considered spatial cor-
relation between the image pixels to partition the image into
homogeneous regions with similar abundances [10], [25].
In this paper, we propose to exploit this correlation by dividing
the observed image into K classes sharing the same abundance
properties [25]. Each pixel is assigned to a specif c class
by using a latent label variable zn that takes its value into
a f nite set {1, · · · , K }. The whole set of random variables
{zn}n=1,··· ,N forms a random f eld. The correlation between
neighboring pixels is then introduced by considering a Markov
random f eld prior for zn as follows

f
(
zn |z\n

) = f
(
zn |zν(n)

)
(10)

where ν(n) denotes the neighborhood of the nth pixel as
in [25] (a four neighborhood structure will be considered in the
rest of the paper), zν(n) = {zi , i ∈ ν(n)} and z\n = {zi , i �= n}.
As in [24], [25], and [29], this paper considers a Potts model
which is appropriate for hyperspectral image segmentation.
The prior of z is then obtained using the Hammersley-Clifford
theorem

f (z) = 1
G(β)

exp

⎡

⎣β
N∑

n=1

∑

n′∈ν(n)
δ (zn − zn′)

⎤

⎦ (11)

where β > 0 is the granularity coeff cient, G(β) is a normaliz-
ing (or partition) constant and δ(.) is the Dirac delta function.
The parameter β controls the degree of homogeneity of each
region in the image. It is assumed known a priori in this paper.
However, it could be also included within the Bayesian model
and estimated using the strategy described in [33].

1The matrix � depends on the noise and endmember variances.

2) Abundance Matrix A: In order to satisfy the con-
straints (6), the abundance vector should live in the following
simplex S

S =
{

an
∣∣arn ≥ 0,∀r and

R∑

r=1
arn = 1

}
. (12)

Thus, a natural choice for the prior of an is a uniform
distribution on S [5], [34]. However, we want to defin a
prior enforcing stronger correlations for spatially close pixels.
Therefore, we propose to assign a Dirichlet prior to the
abundances of the kth class of the image with Dirichlet
parameters ck = (c1k, · · · , cRk)T as follows

an|zn = k, ck ∼ Dir(ck), for n ∈ Ik (13)

where Dir(.) denotes the Dirichlet distribution, and n ∈ Ik
means that yn belongs to the kth class (which is also equivalent
to zn = k). This prior allows the data to be located in
several different clusters inside the simplex [10]. Moreover,
the Dirichlet prior is well suited for modeling the abundances
since it takes into account the PSTO constraints.
3) Endmember Means: The endmember mean matrix M

contains ref ectances that should satisfy the following
constraints [11]

0 < mrl < 1, ∀r ∈ {1, · · · , R} , ∀l ∈ {1, · · · , L} . (14)

Moreover, it makes sense to assume that the reflectance
are close to estimates identif ed by an EEA. Therefore, we
choose a truncated Gaussian prior for each endmember as
follows [11], [20]

mr ∼ N[0,1]L
(
m̃r , ε

2IL
)

(15)

where m̃r denotes an estimated endmember (resulting from an
EEA such as VCA2) and ε2 is a variance term definin the
conf dence that we have on this estimated endmember m̃r .
4) Endmember Variances: As in [18] and [34], the

endmember variances have been assigned the following non
informative prior

f (�:l) ∝
R∏

r=1

1
σ 2rl

1R+
(
σ 2rl
)

(16)

where we have assumed prior independence between the
endmember variances. This distribution introduces some prior
knowledge such as the positivity of the endmember variances
(the reader is invited to consult [35] for motivations about this
prior for scale parameters such as the noise variances).
5) Noise Variance Prior: As stated in [12], endmember

variability represents the main source of error in spectral
mixture analysis. Moreover, hyperspectral images are gener-
ally corrupted by a reduced noise level. Therefore, we assume
that the noise effect is smaller than the effect of endmember
variability.3 This can be achieved by choosing an exponential

2We consider in this paper the VCA algorithm even if other algorithms such
as N-FINDR [9] and pixel purity index (PPI) [8] could also be investigated.
3This assumption is no longer satisf ed in absence of endmember variability.

However, even in this case, we show in Section V that the proposed algorithm
provides good results for both abundance and endmember estimates.



Fig. 2. DAG for the parameter and hyperparameter priors (the fi ed
parameters appear in boxes). Note that the dashed box def nes the statistical
distribution of the endmember matrix S.

prior

f
(
ψ2
n |λ
) = λ exp

(− λψ2
n
)
1R+
(
ψ2
n
)

(17)

where λ has a large value imposing sparsity for ψ2
n (λ = 107 in

our simulations). We furthermore assume prior independence
between the random variables ψ2

n ,∀n ∈ {1, · · · , N}.
One interest of choosing the prior (17) is that it avoids
identifia ility problems between the noise and endmember
variances (see [32] for the proof of the problem identifia ility).
Note that the considered exponential prior includes positivity
contraints for the laplace prior that has been widely used
in Bayesian contexts to ensure sparsity [36], [37]. Note
also that the estimation of ψ2

n can be removed from the
proposed Bayesian algorithm without changing signif cantly
the estimation performance (see Section V-D). In particular,
the proposed model is suff ciently general since the noise
effect can be easily removed by setting to zero the noise
variances ψ2

n .

C. Dirichlet Parameters
The Dirichlet parameters ck are assigned the following

conjugate prior [38]

f (ck |zn= k)=
⎡

⎣


(∑R

r=1 crk
)

∏R
r=1 
 (crk)

⎤

⎦
γ

× exp

(
−α

R∑

r=1
crk + Rα

) R∏

r=1
1R+ (crk) (18)

where α and γ are f xed constants that have been chosen to
ensure a non-informative prior (f at distribution) and 
 denotes
the gamma function.

D. Posterior Distribution
The parameters of the proposed Bayesian model

are included in the vector θ = {
θ p, θh

}
where

θ p = {A,M,�,�} (parameters) and θh = {C, z}
(hyperparameters). This Bayesian model is summarized
in the directed acyclic graph (DAG) displayed in Fig. 2.
The joint posterior distribution of the unknown parameter/

hyperparameter vector θ can be computed from the following

hierarchical structure

f
(
θ p, θh |Y

) ∝ f
(
Y |θ p, θh

)
f
(
θ p, θh

)
(19)

where f
(
Y |θ p, θh

) = f
(
Y |θ p

)
has been define in (9)

and f
(
θ p, θh

)
is the joint prior of the unknown parameters.

Assuming prior independence between the parameters and
hyperparameters yields

f
(
θ p, θh

) = f
(
θ p|θh

)
f (θh)

= f (A|C, z) f (M) f (�) f (�) f (C|z) f (z).
(20)

The joint posterior distribution f
(
θ p, θh |Y

)
can be computed

up to a multiplicative constant after replacing (9) and (20)
in (19). Unfortunately, it is diff cult to obtain closed form
expressions for the standard Bayesian estimators associated
with (19). In this paper, we propose to use MCMC methods to
generate samples asymptotically distributed according to (19)
and to build estimators of θ from these generated samples.
Due to the large number of parameters to be sampled,
we use an HMC algorithm which improves the mixing
properties of the sampler and reduces the required number
of iterations to approximate the target distribution [28]. The
parameters are f nally estimated using the minimum mean
square error (MMSE) estimator for {A,M,�,�,C} and the
maximum a posteriori (MAP) estimator for the labels z. The
next section def nes the proposed sampling procedure based
on a hybrid Gibbs sampler including a CHMC method.

IV. HYBRID GIBBS ALGORITHM

The principle of the Gibbs sampler is to generate samples
asymptotically distributed according to the conditional
distributions of the target distribution (here the posterior (19))
[39]. When a conditional distribution cannot be sampled
directly, sampling techniques such as the Metropolis-Hastings
(MH) algorithm can be applied. In this paper, we consider
a CHMC proposal since it provides better mixing properties
than independent or random walk MH moves especially for
high-dimensional problems. The next section describes the
CHMC algorithm followed by the description of the sampling
procedure for the conditional distributions.

A. Constrained Hamiltonian Monte Carlo Method
HMC is used to sample the high dimensional parameter

vector of the proposed Bayesian model. It exploits the gra-
dient of the target distribution to improve the quality of the
generated samples. Denoting as f (q) (resp. q) the distribution
(resp. d-dimensional variable) to sample, HMC defi es the
Hamiltonian function after introducing a Gaussian momentum
variable p (that is independent on q) as follows

H (p, q) = U(q)+ K ( p) (21)

where U(q) = − log
[
f (q)
]
is the potential energy related

to the target distribution f (q) and K ( p) = 1
2 pT p is the

momentum energy which results from an independent centered
Gaussian distribution for p [11]. The evolution of the (q, p)
samples is determined using the partial derivatives of the
Hamiltonian referred to as Hamiltonian equations [28], [40].



For computer implementations, these equations should be
discretized which can be done using the leapfrog method
that ensures volume preservation and reversibility of the
chains [28], [41]. This leapfrog discretization scheme moves
the samples by an ε stepsize, i.e., from the nth state (qn, pn)
to the (n+1)th state

(
q(n+1), p(n+1)

)
using NL iteration steps

def ned by

p(i,n+1/2) = p(i,n) − ε

2
∂U
∂qT

[
q(i,n)

]
(22)

q(i,n+1) = q(i,n) + ε p(i,n+1/2) (23)

p(i,n+1) = p(i,n+1/2) − ε

2
∂U
∂qT

[
q(i,n+1)

]
. (24)

The resulting samples are accepted with probability ρ given
by

ρ = min
{
1, exp

[
H
(
qn, pn

)− H
(

q(n+1), p(n+1)
)]}

. (25)

This procedure ensures the resulting samples to be asymptot-
ically distributed according to the target distribution.
In the presence of inequality constraints (q(i,nε) ∈ [ql, qu]),

we adopt the procedure presented in [11] and [28, Ch. 5]. This
procedure replaces a sample that violates the constraints at
each leapfrog iteration by its symmetric to the bound (see [11]
for more details). For example, the candidate q(i,n) = qu + h
with 0 < h < (qu−ql) will be replaced by q(i,n) = qu−h (and
similarly q(i,n) = ql − h will be replaced by q(i,n) = ql + h)
when a constraint is not satisf ed.

B. Sampling the Parameters/Hyperparameters

Sampling according to the joint posterior (19) is achieved
by considering a Gibbs sampler that iteratively generates
samples distributed according to the conditional distributions.
The obtained hybrid Gibbs sampler consists of six steps that
are summarized in Algo. 1, where the conditional distributions
associated with the parameters/hyperparameters are derived
in [32, Appendix B]. Note that Algo. 1 generates NMC
samples for each parameter of interest. However, the MMSE
or MAP estimators are computed after removing the fir t Nbi
samples belonging to the so-called burn-in period (the length
of the burn-in period has been determined using appropriate
convergence diagnoses [42]). To accelerate the convergence,
the abundances A(0) and endmember means M (0) have
been initialized using the results of FCLS and VCA,
respectively. The initial labels have been generated uniformly
in the set {1, · · · , K }. The other parameters have been ini-
tialized as follows σ 2r� = 10−3, ψn = 10−6, crk = 1,
∀r,∀�,∀n and ∀k. Note f nally that the MCMC approach is
robust to local minima and that the results do not depend in
the considered initialization.4 The interested reader is invited
to consult [28], [39], [42] for more details about Gibbs sampler
and HMC algorithm, including convergence proofs.

4Similar results have been obtained by replacing the prior mean m̃r and
the initial endmembers by the results of the N-FINDR algorithm as shown
in [32].

Algorithm 1 Hybrid Gibbs Sampler

V. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed
algorithm with synthetic data. It is divided into four parts
whose objectives are: 1) introducing the criteria used
for the evaluation of the unmixing quality, 2) presenting
the different parameters that are estimated in the proposed
unmixing approach, 3) analyzing the behavior of the proposed
algorithm as a function of the number of endmembers and
the size of the image, 4) comparing the proposed strategy
with other state-of-the-art algorithms from the literature.

A. Evaluation Criteria
Abundances and endmembers are known for synthetic

images. In this case, the quality of the unmixing strategy can
be measured by comparing the estimated and actual abun-
dances by using the average root mean square error (aRMSE)
def ned by

aRMSE (A) =
√√√√ 1
N R

N∑

n=1

∥∥an − ân
∥∥2 (26)

where || · || denotes the standard l2 norm such that
||x||2 = xT x. The mean of the r th estimated endmember can
be compared with the actual one by using RMSE(mr ) or the
spectral angle mapper SAM (mr ) define as follows

RMSE (mr ) = 1√
L

∥∥m̂r − mr
∥∥

SAM (mr ) = arccos

(
m̂T
r mr

‖mr‖
∥∥m̂r
∥∥

)
(27)

where arccos(·) is the inverse cosine operator. Moreover,
the global endmember error is evaluated by the averaged



Fig. 3. Actual endmember variances (dashed line) and estimated variances
by the proposed UsGNCM (continuous line) for the considered R = 3
endmembers.

RMSE (aRMSE) and averaged SAM (aSAM) given by

aRMSE (M) =
√√√√ 1
R

R∑

r=1
[RMSE (mr )]2

aSAM (M) = 1
R

R∑

r=1
SAM(mr ). (28)

Note that the RE and SAM criteria can also be evaluated
for the #nth measured and estimated pixel spectra yn , ŷn as
follows

RE =
√√√√ 1
N L

N∑

n=1
‖ ŷn − yn‖2

SAM = 1
N

N∑

n=1
arccos

(
ŷTn yn

‖yn‖ ‖ ŷn‖

)
. (29)

Finally, the Earth movers distance (EMD) criterion (based
on the Euclidean distance) has also been considered to
simultaneously evaluate the estimated endmembers and
abundances [43]. For synthetic data, this criterion compares
the estimated parameters to the true ones, while it provides
a mutual comparison of the different algorithms for real data
(see [43] for more details about EMD).

B. Performance of the Proposed Algorithm
This section considers a 50× 50 synthetic image generated

according to (5) with R = 3 physical elements (construction
concrete, green grass and micaceous loam) corresponding to
spectral signatures available in the ENVI software library [44].
For each pixel, we generated R = 3 endmembers whose
means are these ENVI spectral signatures and whose variances
are band-dependent and represented in Fig. 3 (dashed lines).
This image was partitioned into K = 3 classes whose
label maps were generated using the Potts model (11) with
β = 1.5 (see Fig. 4). The abundances corresponding to
the pixels belonging to a common class share the same
Dirichlet parameters (that are reported in Table II) leading
to the observed pixels displayed in Fig. 5. Note that the
generated abundances were truncated (ar < 0.9,∀r ) to avoid

Fig. 4. Actual (left) and estimated (right) classif cation maps of a synthetic
image.

TABLE II
ACTUAL AND ESTIMATED DIRICHLET PARAMETERS

IN EACH SPATIAL CLASS

Fig. 5. Classif ed projected pixels (colored crosses), actual endmembers
(red stars), endmembers estimated by VCA (black diamonds), endmembers
estimated by UsLMM (cyan circle) and endmembers estimated by UsGNCM
(blue triangles).

the presence of pure pixels in the image, which allows us to
consider a diff cult unmixing problem often encountered in
real scenarii [11], [45], [46]. Finally, we considered a noise
variance equal to 10−7 for all pixels (note that the noise
variance has to be smaller than the endmember variances).
The proposed unsupervised GNCM-based algorithm, denoted
by UsGNCM, was run using Nbi = 11000 burn-in iterations
and NMC = 12000 iterations.5 Fig. 4 (right) displays the
estimated classif cation map obtained with the proposed
algorithm. This map is very close to the ground truth shown
in Fig. 4 (left). Note that the Dirichlet parameters used in

5NMC represents the total number of samples that have been generated. The
MMSE or MAP estimators are computed after removing the f rst Nbi burn-in
iterations. The length of the burn-in period has been determined using
appropriate convergence diagnoses [42].



TABLE III
USGNCM PERFORMANCE FOR DIFFERENT NUMBER OF ENDMEMBERS (TRUNCATED SIMPLEX)

Fig. 6. Actual endmembers (crosses) and endmember means estimated
by UsGNCM (continuous lines). The estimated endmember distributions are
represented in (a), (b), (c) by colored areas. The bottom-right figur (d) shows
the endmembers estimated by UsGNCM ±3σ (dashed lines).

this simulation correspond to three distinguishable classes
that are well separated using the proposed algorithm. The
obtained classificatio results can also be observed with the
data projected in the plane associated with the two most
discriminant principal components as shown in Fig. 5. The
proposed algorithm also allows the Dirichlet parameters to be
estimated accurately as shown in Table II.
A signif cant advantage of the proposed algorithm is its

ability to estimate the endmember means and variances.
Fig. 5 shows the estimated endmembers obtained using the
VCA algorithm (diamonds) [7], the Bayesian unsupervised
LMM-based unmixing algorithm (UsLMM, circles) [6] and the
proposed UsGNCM approach (triangles). Contrary to the VCA
algorithm that provides bad endmember estimates because
of the absence of pure pixels in the image, both UsLMM
and UsGNCM strategies yield good endmember estimations.
As explained before, the good performance of the UsGNCM
algorithm can be explained by the fact that it is able to mitigate
the endmember variability. Fig. 6 displays the endmember
means (continuous lines), the endmember distributions
(colored areas in Figs. 6(a), (b) and (c)) and the associated
variability intervals defi ed by mean ±3σ (Fig. 6 (d)). Fig. 3
displays the actual and estimated endmember variances for
the three endmembers that are clearly in good agreement.
These results show the good performance of the proposed
approach that fully exploits the spatial (segmentation map,

Fig. 7. UsGNCM performance for different numbers of pixels.

abundances and noise variances) and spectral (endmember
means and variances) correlations. The next section studies
the robustness of the proposed approach with respect to the
number of endmembers and pixels (i.e., image size).

C. Performance as a Function of the Number of
Endmembers and the Image Size
The UsGNCM algorithm estimates many parameters

which might require a lot of observations in order to obtain
acceptable performance. The f rst part of this section deals
with this problem by analyzing the proposed algorithm when
varying the number of observed pixels. The considered image
was generated using the three endmember means and vari-
ances considered in Section V-B, the same noise variance,
K = 1 spatial class and abundances uniformly distributed
in the truncated simplex S (i.e., the abundance are truncated
with ai < 0.9, ∀i ∈ 1, · · · , R and the Dirichlet parameters
are crk = 1,∀r,∀k). Fig. 7 shows the obtained aRMSE(A),
RE and SAM when varying the size of the observed image.
As expected, the unmixing performance improves by increas-
ing the number of observations. This f gure also shows that
aRMSE(A) converges to a constant value for

√
N > 50

while RE and SAM continue to improve when increasing N .
Note, however, that the obtained results are quite good
for N ≥ 100.
The second part of this section analyzes the

behavior of UsGNCM with respect to the number of
endmembers. Table III shows the obtained aRMSE(A),
aRMSE(M), aSAM(M), aRMSE(�), aSAM(�) and EMD
criteria for R = {3, 4, 5, 6}. The considered endmember
means are construction concrete, green grass, micaceous
loam, olive green paint, bare red brick, and galvanized steel
metal. These spectra have been extracted from the spectral



TABLE IV
RESULTS ON SYNTHETIC DATA

libraries provided with the ENVI software [44]. As previously,
the images associated with R = {3, 4, 5, 6} were generated
with K = 1 spatial class and abundances uniformly distributed
in the truncated simplex S with ar < 0.9,∀r . The endmember
variances of the f rst three physical elements are represented in
Fig. 3 and we have considered

(
σ 2
4, σ

2
5, σ

2
6
) = (σ 2

1, σ
2
2, σ

2
3
)

in this experiment. As expected, increasing the number
of endmembers (i.e., increasing R) reduces the estimation
performance. However, the obtained results are still acceptable
conf rming the robustness of UsGNCM with respect to the
number of endmembers R. Note f nally that more simulations,
when considering the presence of pure pixels, have also been
conducted and showed the good performance of UsGNCM
(these results are not presented here for brevity but are
reported in the technical report [32] available online).

D. Comparison With State-of-the-Art Algorithms

This section evaluates the performance of the proposed
UsGNCM algorithm for different images. All images were
constructed using R = 3 endmembers with truncated abun-
dances (with ai < 0.9, ∀i ∈ 1, · · · , R) to avoid the presence of
pure pixels, which allows us to consider a diffic lt unmixing
problem often encountered in real scenarii [11], [45], [46].
The remaining parameters have been def ned as follows

• the image I1 has been generated according to the GNCM
model with K = 1 class and abundances uniformly
distributed in the simplex S. The endmember variances
were adjusted as in Fig. 3. The noise variance is ψ2

n =
10−7.

• the image I2 is the GNCM image used in Section V-B.
• the image I3 was generated according to the LMM model
with K = 3 classes. The labels were generated using the
Potts model with β = 1.5 (the same labels as I2) and
the Dirichlet parameters of Table II. The noise variances

vary linearly with respect to the spectral bands with

ψ2
l = 10−4

(
4

L − 1
l + L + 3

L − 1

)
, for l ∈ [1, · · · , L].

These images were processed using different unmixing
strategies that were compared to the proposed UsGNCM
algorithm. More precisely, we considered the following
unmixing algorithms

• VCA+FCLS: the endmembers are extracted from the
whole image using VCA and the abundances are
estimated using the FCLS algorithm [2].

• UsLMM: the unsupervised Bayesian algorithm of [6] is
used to jointly estimate the endmembers and abundances.

• AEB: this is the automated endmember bundles algorithm
proposed in [17]. We consider a 10% image subset and
the VCA algorithm to extract the endmembers. For each
pixel, the 3 endmembers that provide the smallest RE are
selected.

• UsNCM: the proposed unmixing strategy with ψn = 0
(i.e., the additive noise en of (5) is removed).
Note that the resulting model reduces to the NCM
and the corresponding unmixing algorithm can be
considered as an unsupervised counterpart of the method
introduced in [18].

• UsGNCM�: the proposed unmixing strategy with
band-dependent noise variances (i.e., ψ�,∀�). This is a
variant of the proposed algorithm that considers a pixel-
independent noise variance in (2). Note that the equations
that depend on ψ2 and the sampling procedure have been
modifie accordingly. Note also that this algorithm does
not provide mismodeling maps contrary to UsGNCM.

The f rst two algorithms provide one estimate for each
endmember while the other algorithms estimate endmember
variability. Note that the UsNCM and UsGNCM� are
introduced to study the effect of the additive noise.
Table IV reports the quality of the estimated abundances



and endmembers by unmixing the three images with the
different algorithms. This table shows bad performance for
VCA+FCLS and AEB algorithms which is mainly due to
the absence of pure pixels in the considered images and to
the variation of the endmember/noise variances with respect
to the spectral band. The UsLMM provides good results
for the three images. However, it appears to be sensitive
to the variation of endmember/noise variances with respect
to the spectral band and to the spatial correlations between
adjacent pixels. Indeed, the UsLMM did not consider spatial
correlation which leads to a performance reduction when
processing the images I2 and I3. Note also that the UsLMM
algorithm provides one estimate for each endmember and does
not take into account the spatial variability of endmembers
in the processed images. The best performance is generally
obtained by the proposed UsNCM, UsGNCM� and UsGNCM
strategies that provide almost similar results. However,
the UsGNCM algorithm is more robust than UsNCM and
UsGNCM� when processing the LMM image I3. Note that
when processing I3, both UsNCM and UsGNCM consider
the effect of the colored noise in the LMM to be due to
endmember variability. In fact, this effect was expected since
the noise variance in (5) does not depend on spectral bands
while the endmember variances do. However, this effect does
not affect the performance of UsGNCM that provides the best
results in terms of abundance and endmember estimation as
highlighted by the criteria aRMSE, aSAM and EMD. All these
results conf rm the superiority of the proposed approach in
presence of endmember variability, spatial correlation between
pixels and in absence of pure pixels in the observed scene.

VI. SIMULATION RESULTS ON REAL DATA

A. Description of the Hyperspectral Data
This section illustrates the performance of the proposed

UsGNCM algorithm when applied to a real hyperspectral
data set. The real image used in this section was acquired
in 2010 by the Hyspex hyperspectral scanner over Villelongue,
France (00 03’W and 4257’N). The dataset contains L = 160
spectral bands recorded from the visible to near infrared
(400− 1000nm) with a spatial resolution of 0.5m [47]. It has
already been studied in [11] and [47] and is mainly composed
of forested and urban areas. The proposed unmixing algorithm
has been applied to two subimages: scene #1 of size 100×100
which is composed of R = 4 components: tree, grass, soil
and shadow (see Fig. 8 (right)), and scene #2 of size 31× 31
which is composed of R = 3 components: grass, road and
ditch (see Fig. 8 (left)). In addition to the previous studied
algorithms, the UsGNCM has been also compared to the
supervised spectral/spatial BCM based algorithms proposed
in [21] and that are denoted by BCM-MH and BCM-QP when
considering Metropolis-Hastings (MH) sampler and quadratic
programming (QP), respectively. For both BCM algorithms,
we have selected the pure pixels manually resulting in a set
of spectra for each endmember, as suggested in [21].

B. Endmember and Variability Estimation
The proposed UsGNCM algorithm can estimate both

the endmember means and variances. Fig. 9 compares the

Fig. 8. Real Madonna image and the considered subimages shown in
true colors. (Right) scene 1, (left) scene 2.

Fig. 9. The R = 4 endmembers estimated by VCA (continuous red lines),
UsLMM (continuous black lines), AEB (continuous green lines), UsGNCM
(continuous blue lines) and the estimated endmember distribution (blue level
areas) for scene #1 of the Madonna image.

Fig. 10. The R = 3 endmembers estimated by VCA (continuous red lines),
UsLMM (continuous black lines), AEB (continuous green lines), UsGNCM
(continuous blue lines) and the estimated endmember distribution (blue level
areas) for scene #2 of the Madonna image.

endmember estimates of this algorithm with those obtained
with VCA, UsLMM and AEB when considering scene #1.
The estimated endmembers are globally in good agreement



Fig. 11. Abundance maps estimated by FCLS (fir t row), UsLMM (second row), AEB (third row), BCM-QP (fourth row), BCM-MH (fift row) and the
proposed UsGNCM (sixth row) for the Madonna image.

especially for UsGNCM and UsLMM. Note that VCA
(resp. AEB) provides a different shadow endmember
because this endmember was extracted as the purest pixel
in the image (resp. each sub-image) while UsLMM and
UsGNCM estimate both the abundances and endmembers
resulting in a better shadow estimate (in the sense that it
is less correlated with the other spectra as shown in the
technical report [32]). Moreover, the proposed algorithm
provides endmember distributions (blue level areas in Fig. 9)
which measure the endmember variability in the considered
image. The difference between the estimated UsGNCM
interval and the AEB spectra is mainly due to the fact
that AEB selects the spectral signatures from the image
pixels while the UsGNCM is not limited by this constraint.
It can be seen from Fig. 9 that the higher relative variation
is obtained for the shadow spectrum because of its low
amplitude. Moreover, the variation is more pronounced for
high spectral bands (l > 80) which is in agreement with
the results presented in [11]. Fig. 10 shows the obtained
endmembers when considering scene #2. This f gure presents
similar results for UsGNCM and UsLMM, especially for
capturing spectral components with low amplitudes as for
ditch. Note that UsGNCM� and Us-GNCM provided similar
visual results (UsGNCM� results are not displayed for brevity).

C. Abundance Estimation and Image Classifica ion
The fraction maps of scene #1 estimated by the studied

methods are shown in Fig. 11. Note that a white (black)
pixel indicates a large (small) proportion of the corresponding
materials. These maps lead to the following conclusions

• UsLMM and UsGNCM present similar abundance
estimates with a smoother behavior for the second algo-
rithm (because of spatial correlation)

Fig. 12. Estimated maps with the UsGNCM algorithm for the scene #1 of
Madonna image. (a) Classificatio map and (b) noise variances.

• AEB (resp. BCM-MH) is sensitive to the similarity
between tree and grass spectra (resp. soil and grass
spectra) leading to bad grass maps.

Regarding scene #2, the compared algorithms provide
similar abundance maps with lower abundances for UsLMM
and UsGNCM. These results are not presented here for brevity
(see [32]). The ground truth is not available for these real
image, thus, we adopted the procedure of [13] and [21] to
quantitatively compare the abundance results (this procedure
can be seen as a comparison tool that detects the similar-
ity between the algorithm results). The abundance RMSEs
are evaluated after considering the median abundance of
all algorithms as a reference. Table V shows the obtained
results for the two images that are similar for UsLMM,
UsGNCM� and UsGNCM which quantitatively conf rm the
previous conclusions.6 In addition to unmixing, UsGNCM also
provides a spatial segmentation of the considered scenes as
shown in Fig. 12(a) for scene #1 and Fig. 13(a) for scene

6The comparison of the different algorithms using EMD have led to the
same conclusions. The interested reader is invited to consult [32] for more
details about these results.



TABLE V
PERFORMANCE ON REAL IMAGE

Fig. 13. Estimated maps with the UsGNCM algorithm for the scene #2 of
Madonna image. (a) Classificatio map and (b) noise variances.

TABLE VI
ESTIMATED DIRICHLET PARAMETERS FOR THE

MADONNA IMAGE (SCENE 1)

#2. These classification clearly highlight the area of each
physical element in the scene. Indeed, for scene #1 we have 5
classes that represent tree, soil, shadow, and grass zones while
for scene #2 we have 3 classes representing road, ditch and
grass areas. Table VI finall reports the estimated Dirichlet
parameters and the number of pixels for each spatial class
when considering scene #1. These parameters suggest a highly
non uniform distribution over the simplex which promote the
use of the proposed approach.

D. Reconstruction Errors
This section compares the proposed UsGNCM strategy to

state-of-the-art algorithms in terms of signal reconstruction.
Table V shows the obtained RE and SAM for the studied
strategies.7 As expected, the AEB algorithm, whose objective
is to minimize the RE criteria, shows better results when
compared to the other approaches for scene #1. However,
UsLMM, UsGNCM� and UsGNCM present good results

7The estimated endmember mean is considered for UsGNCM. The
endmember mean of each set is considered for the BCM approaches.

especially for scene #2 where they outperform AEB. Indeed,
UsLMM and UsGNCM are statistical algorithms estimating
endmembers that are not necessarily pixels of the image,
which makes them more fl xible than VCA, AEB and BCM
(that require the presence of pure pixels in the image).

E. Residual Components
The proposed UsGNCM algorithm also provides a measure

of the noise variance for each observed pixel. This parameter
brings an information about pixels that are inaccurately
described by a linear formulation, i.e., allows modeling
errors to be quantif ed. Fig. 12(b) shows the obtained noise
variances for the scene #1. This f gure shows a higher error
in the shadow area and around trees, i.e., for regions where
possible interactions between physical components might
occur (e.g., tree/soil) resulting in a more complex model than
the proposed linear one. The noise variances associated with
the scene #2 are shown in Fig. 13(b). This f gure shows a
higher error near the ditch area which might be due to the
presence of nonlinearities as explained in [11]. Note f nally
that both Fig. 12(b) and Fig. 13(b) highlight the presence
of regular vertical patterns that have also been observed
in [48] and were associated with a sensor defect or other
miscalibration problems.

VII. CONCLUSIONS

This paper introduced a Bayesian model for unsupervised
unmixing of hyperspectral images accounting for spectral
variability. The proposed algorithm was based on a
generalization of the normal compositional model and
includes an additive Gaussian noise for modeling errors.
This algorithm estimated the endmembers of the scene, their
variabilities provided by their variances and the corresponding
abundances. The observed image was also spatially segmented
into regions sharing homogeneous abundance characteristics.
The physical constraints of the abundances were ensured by
choosing a Dirichlet distribution for each spatial class of the
image. Due to the complexity of the resulting joint posterior
distribution, a Markov chain Monte Carlo procedure based on
a Gibbs algorithm was used to sample the posterior of interest
and to approximate the Bayesian estimators of the unknown
parameters using the generated samples. The sampling was
achieved using an Hamiltonian Monte Carlo method which is
well suited for problems with a large number of parameters.



The proposed algorithm showed good performance when
processing data presenting endmember variability, spatial
correlation between pixels and in absence of pure pixels in
the observed scene. The proposed algorithm fully exploits
both the spatial dimension (segmentation, abundance and
noise estimation) and the spectral dimension (estimation of
endmember means and variances). Future work includes the
study of endmember variability for nonlinear mixing models.
Considering spectral correlation jointly with endmember vari-
ability is also an interesting issue which would deserve to be
investigated.
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