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ABSTRACT

Point cloud (PC) quality assessment is of fundamental im-
portance to enable the efficient processing, coding and trans-
mission of 3D data for virtual/augmented reality, autonomous
driving, cultural heritage, etc. The quality metrics proposed
so far aim at quantifying the distortion in the PC geome-
try and/or attributes with respect to a reference pristine point
cloud, using simple features extracted by the points. In this
work, we target instead a blind (no-reference) scenario in
which the original point cloud is not available. In addition, we
learn features from data using deep neural networks. Given
the limited availability of subjectively annotated datasets of
corrupted point clouds, and the consequent difficulty to learn
in an end-to-end fashion PC quality features, in this work we
use instead a two-step procedure. First, we extract from lo-
cal patches three relevant low-level features which have been
commonly used in other PC quality metrics, i.e., geometric
distance, local curvature and luminance values. Afterwards,
we employ a deep neural network to learn, from these low-
level features, a mapping to the PC ground truth mean opinion
score. Our results on two state-of-the-art PC quality datasets
show the potential of the proposed approach. The code is
available here : https://github.com/achetouani/
NR-CNN-3D-PC

Index Terms— Point clouds, quality assessment, deep
learning, no-reference

1. INTRODUCTION

3D point clouds (PC) are becoming and increasing popular
data format for applications such as virtual and augmented re-
ality, autonomous vehicles, cultural heritage, immersive com-
munication, etc. PCs can undergo different types of distor-
tion, due to acquisition, compression, transmission or render-
ing. Predicting and quantifying the perceptual impact of this
distortion is therefore of paramount importance for the de-
ployment of this kind of data. In the past few years, there has
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been an increasing interest in the multimedia research com-
munity towards the definition of accurate quality metrics for
point clouds. These efforts have been also partially motivated
by the concurrent standardization activities for point cloud
coding in MPEG [1], as well as due to the need of relevant loss
functions in learning-based PC compression methods [2, 3].

Different point cloud objective metrics have been pro-
posed in the literature. Point-to-point metrics were among
the first to be considered, and compute geometry distance be-
tween corresponding points in the original and distorted PC.
On the other hand, the point-to-plane metric is an extension
of the previous metric and consists in projecting the point-to-
point error vector along the local normal [4]. Starting from
these approaches, several point-based metrics have been then
developed. In [5], the authors proposed to estimate the geo-
metrical error between two PCs (i.e., reference PC and its dis-
torted version) by measuring the angular similarity between
tangent planes. In [6], the authors proposed a metric called
PC-MSDM by extending the well-known SSIM metric [7],
widely used for 2D images, to PC, by considering features
including local mean curvature as they previously did for 3D
meshes [8]. The authors proposed later a metric called PCQM
that integrates color information [9]. In [10], the authors pro-
posed a new approach that focuses more on the distribution
of the data. They introduced a new type of correspondence
from point to distribution characterized using the well-known
Mahalanobis distance. In [11], the authors proposed a color-
focused metric that integrates geometry information. In [12],
the authors adapted also the SSIM metric for point clouds us-
ing a number of features, while in [13] the authors improved
the point cloud PSNR metric. The authors of [14] propose
a different approach, by studying the effectiveness of learned
features for the prediction of PC quality, obtaining some en-
couraging results. Interesting approaches for 3D meshes have
also been proposed [15].

In this paper, we present a deep learning-based frame-
work that efficiently predicts the quality of PCs without refer-
ence. The proposed method consists first in extracting patches
around a set of points from the PC. The regions delimited
by the extracted patches are then characterized by three at-
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Fig. 1. General framework of the proposed method.

tributes: geometric distance, mean curvature and gray-level.
The resulted patches (i.e., one per attribute) are stacked and
fed as input to a Convolutional Neural Network (CNN) model
to predict their quality. The global quality index is finally
given by aggregating the predicted patch quality indexes. We
assess the performance of our method on two datasets, includ-
ing a large dataset more suited to deep models. The high cor-
relations obtained showed the potential of the approach. The
main contribution of this paper is the use of classical CNN
models to predict the quality of 3D PC through extracted fea-
tures.

The rest of this paper is structured as follows: Section 2
describes the proposed framework. Experimental results are
presented in Section 3 and the conclusion is given in Sec-
tion 4. s

2. PROPOSED METHOD

As illustrated by Fig. 1, the framework proposed for estimat-
ing the quality of 3D point clouds without reference is based
on 2 main steps: 1) feature extraction that aims to charac-
terize the PC through a set of features as patches from se-
lected points and, 2) quality prediction that aims to estimate
the quality of the distorted PC via a CNN model. Both steps
are described in details in this section.

2.1. Feature extraction as patches
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Fig. 2. Random point selection and patch extraction.

Fig. 2 details the feature extraction process. From a given

distorted PC, we first randomly select a set of N points. The
latter are here considered as reference points from which the
quality is predicted. Then, we delimit a region around each
point N; by finding its K nearest neighbors. Next, the neigh-
bors of each point N; are characterized by three attributes:
geometric distance, mean curvature and gray-level. The ge-
ometric distance D describes the spatial distribution of the
neighbors and it is computed as follows:

D (K}, N;) =

2 2 2
(SEK;: - ZUNi) + (yK;: - yNi) + (ZK;: - ZNi) , (D

where D (K;,NZ) represents the Euclidean distance be-
tween N; and its j nearest neighbor K. {x,y, 2} and
J

{z,y,2}n, are the spatial coordinates of the ;" neighbor
and the point NV;, respectively.

The mean curvature allows to characterize the shape vari-
ations and it is computed for each point of the delimited re-
gion, including the point NV;. The latter is estimated through
a quadric fitting. The grey level gives information more re-
lated to the perceived rendering and it derived from the color
information (i.e. RGB to grey level). The features obtained
for each attribute are encapsulated into a patch and the three
resulted patches are then stacked to form a new patch S P; of
size P x P x 3 where three represents the number of attributes
considered.

2.2. Quality prediction

Fig. 2 gives a detailed overview of the steps applied to predict
the Global Quality Index (GQI) of the PC from the stacked
patches SP;.

2.2.1. CNN models and patch quality indexes

For each stacked patch S P;, we first predict its Patch Quality
Index (i.e. PQI;) through a CNN model. To do so, we com-
pared here 5 pre-trained models that were widely used for
classification tasks and some of them were successfully em-
ployed in several studies related to quality assessment as well
[16]. It is worth noting that these models were considered in



order to compare the performance of different architectures
and analyze the impact of the depth.

* AlexNet [17]: This model is one of the pioneering
models proposed by Alex Krizhevsky. It highlighted
the relevance of using CNN models for classification
tasks. The authors brought out three main points: the
use of the Relu (Rectified Linear Units) function, the
exploitation of the dropout to prevent the over-fitting
and overlap during the pooling step.

* VGG [18]: This model was developed by the Oxford
Visual Geometry Group in 2014. It is characterized by
applying a max pooling layer after a succession of con-
volution layers. Here, we used VG(G16 and VGG19
which are composed of 16 and 19 layers, respectively.

¢ ResNet [19]: This model was introduced in 2015 and it
stands out by the integration of a residual module. The
authors proposed to reformulate the output (H(x)=F(x))
of each series of Conv-ReLu-Conv by adding the in-
put x as information (H(x) = F(x)+x). ResNetl8 and
ResNet50 are used in this study.

The above-models were adapted to match their inputs and
outputs to our context. We changed the size of their input lay-
ers and replaced their FC layers with three FC layers of size
64, 64 and 1, respectively. The two first FC layers are fol-
lowed by a ReLu layer, while the last FC layer is preceded by
a a dropout layer with a probability fixed to 0.5 and aims to
predict the PQIs of the stacked patches (i.e. regression layer).
We finally fine-tuned each model to adapt their weights to
our context. It is worth noting that the target of each stacked
patch was the subjective score of the whole distorted PC as
commonly employed to estimate the quality of several mul-
timedia content for 2D images [20, 21] as well as for stereo
images [22] and 3D meshes [23].

During the training step, the stochastic gradient descent
optimization algorithm was used with the Mean Squared Er-
ror (MSE) as loss function. The batch size, learning rate and
the momentum were set to 64, 0.0001 and 0.9, respectively.
We fixed the number of epochs to 30 with a validation each
5000 iterations. At each epoch, the training data was shuffled
and the resulted model was saved. The model that provided
the best results was finally retained.

2.2.2. Global Quality Index

Figure 3 illustrates how to obtain a Global Quality Index
(GQI) that reflects the quality of the whole distorted PC by
aggregating the predicted PQIs. To do so, we aggregate the
obtained PQIs by computing the average scores as follows:

1 N
GQI =+ 2 PQI;, 2

where IN is the number of stacked patches (i.e. the number
of selected points).

It is worth noting that a plethora of handcrafted and deep-
based methods already aggregated local predicted scores to
derive a global quality index like SSIM [7], VDP [24] and the
following deep-based methods as well [20, 25]. This strategy
was also applied for 3D content as done in [6, 8].
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Fig. 3. Prediction of the Global Quality Index (GQI) from the
stacked patches SP;.

3. EXPERIMENTAL RESULTS

In this section, we evaluate the capacity of our method to pre-
dict subjective scores. For that, we first present the datasets
used and describe the protocol applied to train and test our
CNN models. After defining the performance evaluation cri-
teria used, we discuss the results obtained by each considered
CNN model and compare the best results with state-of-the-art
PC metrics.

3.1. Datasets and experimental setup

The proposed method is evaluated using two recent 3D point
cloud datasets: sjtu [26] and ICIP20 [27].

* sjtu is composed of 9 point clouds from which 378 de-
graded versions were derived (i.e. 42 distorted PC per
reference PC) through 6 degradation types (OT: Octree-
based compression, CN: Color Noise, DS: Downscal-
ing, D+C: Downscaling and Color noise, D+G: Down-
scaling and Geometry Gaussian noise, GGN: Geometry
Gaussian noise and, C+G: Color noise and Geometry
Gaussian noise).

* ICIP20 is composed of 6 commonly used point clouds
from which 90 degraded versions were derived (i.e. 15
distorted PC per reference PC) through 3 types of com-
pression: V-PCC, G-PCC with triangle soup coding and
G-PCC with octree coding. Each reference point cloud
was compressed using five different levels.

Our method is evaluated by decomposing each dataset
into F’ folds. At each fold, one reference PC and its distorted
versions are used to test the model, while the rest are used to
train the model. The number of folds is here equal to 7 for
sjtu and and 6 for ICIP20.

In this study, the number of selected points (V) was set to
1000, while the number of neighbors (K) and the size of the



patch (P) were fixed to 1023 and 32232, respectively. The
patch size was set following studies where its impact on the
performance was analyzed [20, 25].

3.2. Performance evaluation

Two evaluation criteria commonly used to evaluate the perfor-
mance of quality metrics are adopted here: 1) Pearson Corre-
lation Coefficient (PCC) and 2) Spearman Rank-Order Coef-
ficient Correlation (SROCC). Both vary between 0 and 1 in
absolute value, with 1 being the best performance. These cor-
relations are computed for each dataset over each fold and
the mean correlations are then reported as results. It is worth
noting that the same procedure was applied to the compared
state-of-the-art metrics.

3.3. Model comparison

Model PCC SROCC

AlexNet 0.894 £0.055 0.874 &+ 0.083
VGG16 0.923 £0.031  0.907 £ 0.045
VGG19 0.925 + 0.035 0.912 £ 0.042
ResNet18 0.886 +0.091 0.856 +0.113
ResNet50 0.885+0.086  0.855 +0.109

Table 1. Model comparison on sjtu dataset. The two best
results are highlighted in bold.

Table 1 shows the mean correlations obtained for each
considered model. The two best results are highlighted in
bold. From these results, several observations can be made:

* First of all, the performance differs from a model to
another with a high gap between them (from 0.875 to
0.925 in terms of mean PCC and from 0.855 to 0.912
in terms of mean SROCC). The stability of the re-
sults over the folds differs as well. ResNet-based mod-
els obtain the higher standard deviations outperformed
by AlexNet, while VGG-based models are more stable
with the lower standard-deviations.

* ResNet50 achieves the worst performance, lower even
than the simpler and shallower model used (.e.
AlexNet). However, it is competitive to the full ref-
erence metric PCQM and outperforms all the other full
reference compared metrics on sjtu (see Table 2).

¢ For VGG-based and ResNet-based models, we can see
that the depth doesn’t highly impact the performance
since the differences are statistically not significant (p-
value > 0.05).

* The architecture seems to have an impact since VGG-
based models give the best correlations with an im-
provement mean PCC gain around 5%. Moreover,
unlike for classification tasks the integration of resid-
ual modules doesn’t improve the performance. The
p-values between the VGG-based and ResNet-based
models are smaller than 0.05, indicating a statistically
significant difference between the two.

Based on these results, it seems that the architecture of the
considered models has more impact on the performance than
the depth.

3.4. Comparison with state-of-the-art metrics

Our method is here compared with state-of-the-art metrics.
More precisely, we consider po2point-based and po2plane-
based metrics pooled with MSE, PSNR and Hausdorff. We
also considered recent metrics po2dist [10] (i.e. point to dis-
tribution) pooled with MSE and PSNR as well as PCQM
which is based on both geometry and color features [9]. Re-
sults on sjtu and ICIP20 datasets are shown in Tables 2 and 3,
respectively with the top-2 results highlighted in bold.

Method PCC SROCC

Baseline methods (full reference)
po2pointMSE 0.686  0.801
PSNRpo2pointMSE 0.799  0.844
po2pointHausdorff 0.517  0.686
PSNRpo2pointHausdorff 0.638  0.682
po2planeMSE 0.642  0.717
PSNRpo2planeMSE 0.744 0.722
po2planeHausdorff 0.539  0.682
PSNRpo2planeHausdorff 0.755 0.825
po2distMSE (mmd) 0.710  0.603
PSNRpo2distMSE (mmd) 0.621 0.603
po2distMSE (msmd) 0.706  0.603
PSNRpo2distMSE (msmd) 0.642  0.715
PCQM 0.879  0.888

Our method (no reference)
GQI-VGG16 0.923  0.907
GQI-VGG19 0925  0.912

Table 2. Comparison with state-of-the-art methods on sjtu
dataset. The two best results are highlighted in bold.

On sjtu (see Table 2), the results obtained by our
method with both models (i.e. VGG16 and VGGI19)
surpass all the compared state-of-the-art metrics with a



gain in terms of mean PCC that varies between 5% and
70%. PCQM achieves the third best performance with
0.879 and 0.888 as mean PCC and SROCC, respectively.
The worst result is obtained by po2pointHausdorff, closely
followed by po2planeHausdorff. PSNRpo2pointMSE,
PSNRpo2planeHausdorff and po2distMSE obtain the best re-
sults among the po2point-based, po2plane-based and po2dist-
based metrics, respectively. Whereas po2pointHausdorff,
po2planeHausdorff and PSNRpo2distMSE achieve the worst
results among the po2point-based, po2plane-based and
po2dist-based metrics, respectively. Unlike the po2dist-
based metrics, po2point-based and po2plane-based metrics
pooled with MSE obtain higher correlations than those pooled
with PSNR. Globally, the compared metrics, except PCQM,
achieve low correlations since they focus more geometric in-
formation, failing to catch other distortions.

Method PCC SROCC

Baseline methods (full reference)
po2pointMSE 0.945 0.950
PSNRpo2pointMSE 0.880  0.934
po2pointHausdorff 0.717  0.690
PSNRpo2pointHausdorff 0.597  0.763
po2planeMSE 0.945 0.959
PSNRpo2planeMSE 0916  0.953
po2planeHausdorff 0.753 0.763
PSNRpo2planeHausdorff 0939  0.970
po2distMSE (mmd) 0.965  0.963
PSNRpo2distMSE (mmd) 0.865  0.965
po2distMSE (msmd) 0.967 0.965
PSNRpo2distMSE (msmd) 0.902 0.972
PCQM 0.796  0.832

Our method (no reference)
GQI-VGG16 0956  0.966
GQI-VGG19 0952  0.966

Table 3. Comparison with state-of-the-art methods on ICIP20
dataset. The two best results are highlighted in bold.

On ICIP20 (see Table 3), po2distMSE (msmd) ob-
tains the best mean PCC (0.967), closely followed by
po2distMSE (mmd) (0.965). Whereas the two best mean
SROCC is reached by PSNRpo2distMSE (0.972) and
PSNRpo2planeHausdorft (0.970), respectively. Our metric
achieves the third mean PCC (0.956 for VGG16 and 0.952
for VGG19) and the fourth mean SROCC (0.966 for both
models) without accessing the pristine PC (i.e. NR ap-

proach). PCQM is outperformed by most of the compared
metrics, except po2point-based metrics pooled with Haus-
dorff (i.e. po2pointHausdorft and PSNRpo2pointHausdorff)
and po2planeHausdorff. Similarly to the results obtained on
sjtu, po2point-based and po2plane-based metrics pooled with
MSE obtain higher correlations than those pooled with PSNR,
while the po2dist-based metrics pooled with PSNR give better
results than those pooled with MSE.

Globally, the correlations reached on ICIP20 are higher
than those obtained on sjtu, except for PCQM. These results
can be justified by the fact that ICIP20 is composed only
of compressed PCs with joint distortion of geometry and at-
tributes, while sjtu contains a more wide set of distortions
including color noise. We also evaluated the generalization
capacity of the proposed method. However, the correlations
are not as expected.

4. CONCLUSION

In this paper, we proposed a deep learning-based method that
efficiently predicts the quality of distorted PCs without ref-
erence. After randomly selecting a set of points from the
PC, we defined a region around each of them by finding the
nearest neighbors. The delimited regions are then character-
ized through three attributes (geometric-distance, mean cur-
vature and gray-level) and the obtained values are stacked
into patches of size 32 x 32 x 3 to predict their quality in-
dexes (i.e. patch quality indexes) through a CNN model. The
global quality index is finally given by aggregating the pre-
dicted patch quality indexes. We compared the performance
of five pre-trained CNN models and the best results were com-
pared with state-of-the-art methods. The results obtained on
two datasets show the potential of the proposed approach.

Despite the effectiveness of our method, some points
should be deeper analyzed, including the use of more effi-
cient deep learning models, the impact on the performance of
the number of selected points as well as the patch size. Other
point selection strategies will also be considered.
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