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Improved Deep Distributed Light Field Coding

M. Umair Mukati*, Milan Stepanov*, Giuseppe Valenzise, Søren Forchhammer, Frédéric Dufaux
Light fields enable increasing the degree of realism and immersion of visual experience by capturing a scene with a higher number

of dimensions than conventional 2D imaging. On another side, higher dimensionality entails significant storage and transmission
overhead compared to traditional video. Conventional coding schemes achieve high coding gains by employing an asymmetric codec
design, where the encoder is significantly more complex than the decoder. However, in the case of light fields, the communication
and processing among different cameras could be expensive, and the possibility of trading the complexity between the encoder and
the decoder becomes a desirable feature. We leverage the distributed source coding paradigm to effectively reduce the encoder’s
complexity at the cost of increased computation at the decoder side. Specifically, we train two deep neural networks to improve
the two most critical parts of a distributed source coding scheme: the prediction of side information and the estimation of the
uncertainty in the prediction. Experiments show considerable BD-rate gains, above 59% over HEVC-Intra and 17.45% over our
previous method DLFC-I.

Index Terms—Deep learning, distributed source coding, light field, uncertainty estimation, view synthesis

I. INTRODUCTION

IN the pursuit of more immersive visual technologies, Light
Field (LF) imaging has risen as an exciting solution to

capture rich scene information. LF imaging divides traditional
image acquisition by separating the light capturing and image
formation. More specifically, in traditional cameras, light rays
impinging the sensor are accumulated by a pixel surface
resulting in the loss of directional information of the light
rays. Conversely, LF imaging allows capturing this additional
information and consequently, it offers novel post-capture
functionalities such as refocusing and aperture adjustment.
However, LF imaging also entails a considerable amount
of information that needs to be efficiently compressed. A
typical LF image captured by LYTRO Illum camera offers
only a 0.25-megapixel resolution albeit occupying about 218
megabytes of hard disk space (i.e., 15 × 15 set of views, 10
bit, three colour channels).

Conventional video coding is designed as a hybrid block-
based scheme including prediction, transformation, quantiza-
tion and entropy coding [1]. The inclusion of the prediction
at the encoder side is the primary reason for the superior
coding performance compared to transform-based coding. This
framework fitted to a broadcast scenario is designed to provide
efficient decoding at the cost of heavy computation at the
encoder. On the contrary, there are scenarios where it is
more desirable to have a power-efficient encoder and transfer
most of the computation to the decoder side. These scenarios
typically include low-power camera systems, for example, in
wireless networks or multi-view video entertainment [2].
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Distributed Source Coding (DSC) is an alternative coding
paradigm which allows shifting the complexity from the
encoder to the decoder. The theoretical foundation of DSC
is based on the Slepian-Wolf theorem, which states that,
under some conditions, two correlated discrete sources can be
encoded independently and decoded jointly, with the same rate
as if the two sources were jointly encoded [3]. Later, Wyner-
Ziv extended this result to the case of lossy coding of two
jointly Gaussian sources, where the coding rate is replaced by
a Rate-Distortion (RD) function.

DSC has been explored extensively in the domain of video
coding, notably with the development of DISCOVER [4] and
VISNET II [5] codecs. In practical Distributed Video Coding
(DVC) [6] schemes, video frames are divided into two groups:
key frames and Wyner-Ziv (WZ) frames. Key frames are
encoded using traditional, hybrid coding schemes. Conversely,
WZ frames are initially estimated based on the decoded key
frames; this Side Information (SI), available at the decoder,
is then corrected through channel codes requested from the
encoder. Since generating parity bits (e.g., syndromes [7]) is
computationally much lighter than the temporal prediction, the
complexity cost at the encoder is reduced by decreasing the
number of key frames. This framework has been later extended
to Distributed Multi-view Video Coding (DMVC) [8]. In the
setups with a large number of cameras operating in power-
constrained environments, DMVC can effectively reduce the
complexity of the encoder (eliminating inter-camera depen-
dency and frame buffering) and shift the prediction between
neighbouring views at to the decoder side [9]. DSC has been
applied to LF as well in the preliminary works [10][11].
However, distributed coding of LF has remained little explored
till now.

In our previous work [12] DLFC-I, we propose replacing a
typical optical flow-based prediction scheme with a learning
approach to generate high-quality estimates of WZ views
while considerably reducing the complexity of the encoder.
In this work, we build upon our previous work [12] by further
leveraging deep learning approaches for better estimation of
SI in the distributed coding scenario. More precisely, we im-
prove the view synthesis performance by considering different
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arrangements of the reference view and we propose a deep
learning-based approach for the estimation of the residual
signal. Our contributions are as follows:
• Comparison of four arrangements of reference views,

more specifically Corner, Cross, Corner-In and Cross-In,
• Comparison of three loss functions for the improvement

of view synthesis performance when the reference views
are distorted due to HEVC coding,

• A deep learning architecture for the estimation of the
residual signal.

Experiments show significant gains of the proposed distributed
light field coding scheme compared to the conventional coding
tools (operating at similar complexity at the encoder side).

This paper is structured as follow. Section II describes
related work, including the coding of different visual modal-
ities using DSC, and deep learning-based view synthesis
approaches. In Section III, we explain our proposed variations
for the view synthesis network as well as the architecture
for uncertainty modelling. Section IV presents the results of
the proposed scheme and the comparison with state-of-the-art
methods and the conventional coding tools. Finally, Section V
concludes the work.

II. RELATED WORK

We divide the related work into three parts: distributed
source coding, view synthesis and uncertainty estimation.

A. Distributed source coding for light fields

DSC was initially used for LF coding by [10], where WZ
views are synthesized at the decoder using a geometry-based
image rendering from the available key views. To achieve a
higher RD performance, the transform domain WZ coding
is adopted to exploit better the spatial correlation in [11]. A
DMVC approach is proposed in [13]. It generates multiple SIs
utilizing temporal and inter-view redundancies. Additionally,
a robust fusion method is employed by fusing likelihoods
estimated from each SI. The approach can be adapted for light
field structures by substituting one angular dimension in place
of temporal dimension [12]. Cong et al. [14] utilize an adaptive
strategy to skip WZ decoding process if the synthesized view
at the decoder is estimated to have a minimum quality to
avoid transmitting bits for that particular view. In order to use
existing DVC tools, in [14] the LF views are first downsampled
to QCIF resolution and then converted to a pseudo video se-
quence by utilizing a so-called Hybrid scanning order. Mukati
et al. [12] propose to use a view synthesis-based approach
to synthesize light field views at the decoder utilizing only
four key views picked from the four corners of the LF in
order to reduce the encoding complexity radically. The results
show that leveraging high-quality synthesized views provide
competitive RD performance compared to the state-of-the-art
DMVC approach [13].

B. View synthesis

The goal of view synthesis is to generate a novel view
from a given set of reference views. Recently, with the wide-
spread use of deep learning tools, emerging view synthesis

methods allowed the generation of higher-quality views from
sparser input sets. Kalantari et al. [15] present the first work
on view synthesis based on deep learning. The authors follow
the traditional scheme for view synthesis, whereas the scheme
is factorized into the disparity estimation part, which provides
disparity map estimation used to warp reference images, and
merging of the warped referenced images. They propose a net-
work which consists of two sequential networks: the disparity
network and the colour network. The disparity network takes
corner views of a light field image and the novel position of
the view to be synthesized. Then, it estimates the disparity of
the novel view with respect to the input views. The reference
views are then backwarped to obtain the estimates of the novel
view and merged by the colour network to obtain the final
estimate. Srinivasan et al. [16] tackle the problem of estimating
the entire light field image from a single image. In particular,
the authors estimate the disparity of each pixel in the image
and backward warp the input view using the estimated dis-
parity maps to generate a Lambertian light field image. Then,
they compensate for the errors due to the occlusions and non-
Lambertian effects by estimating these distortions using an
additional network. Finally, the proposed framework allows
estimating accurate disparity maps in an unsupervised manner
by imposing consistency among different maps. Although
the work yields interesting results, unsurprisingly, the quality
of synthesized views deteriorates considerably when moving
away from the centre view. More recently, Navarro et al. [17]
propose a novel view synthesis approach inspired by these two
approaches. The authors estimate a novel view from the corner
views as done in Kalantari et al. [15], but they also estimate a
disparity map of each corner view and merge warped corners
using the weights estimated by a selection network. The
approach provides superior performance compared to other
state-of-the-art approaches and has the potential to operate on
wider-baseline light fields.

C. Correlation noise modelling

Accurate SI noise modelling is another important aspect that
influences the coding performance as it indicates the reliability
of the prediction to an iterative decoder such as LDPCA. In
DSC, the correlation noise is generally modelled by a Lapla-
cian distribution. The authors in [18], explore the modelling
of the correlation noise at different granularity levels and
conclude that a higher granularity level translates to better RD
performance, suggesting that the pixel-level and coefficient-
level perform best in an offline mode for Pixel-Domain WZ
and Transform-Domain WZ, respectively. In online mode, the
modelling is done adaptively based on the local intensity
variation utilizing motion compensated residuals at different
granularity levels, e.g. frame-level, band-level and coefficient-
level. In [19], the estimated residual is divided into different
classes for each frequency band depending on the estimated
residual energy for each block and the Laplacian parameter is
found using pre-calculated values in a lookup table. In [20],
the Previously Decoded Bands (PDB) are used to improve
the noise model by classifying the subsequent residual into
two categories. Additionally, a noise residue refinement step
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updates the noise residual after each band is decoded. In [21],
the residual frame is clustered into different classes using
Fuzzy C Means based on the residual energy. Contrary to [20],
it utilizes all the decoded frequency bands for improved noise
modelling.

III. PROPOSED METHOD

In this section, we describe the proposed Distributed Light
Field Coding (DLFC) scheme. In our previous work [12],
we have utilized the view synthesis approach, proposed by
Navarro et al. [17], for the prediction of WZ views. Here, we
extend our previous work by considering an improvement of
the SI generation whose quality directly correlates with the
performance of the coding scheme. To this extent, we explore
various modifications in the view synthesis scheme to obtain
better prediction across different bitrates and propose a deep
learning scheme to estimate the uncertainty of our prediction.

First, we give an overview of the DLFC scheme. Then, we
describe a set of enhancements to view synthesis training for
improved prediction. Next, we summarize noise modelling in
DLFC and propose a learning-based scheme to estimate it.
We conclude the section with the description of the training
procedure.

A. Distributed light field compression

The proposed distributed light field coding scheme is based
on transform domain WZ coding with feedback channel [6].

The encoder is presented in Fig. 1. It takes an LF image
and extracts and divides views into two sets: key views and
WZ views. We select four reference views of an LF image
as key views according to one of the four arrangements
shown in Fig. 2 (b-e) and process them by a conventional
coding tool, while the rest of the LF are processed using a
computationally more efficient WZ encoder. First, each WZ
view is transformed block-wise using the 4×4 Discrete Cosine
Transform (DCT) [22]. Then, the coefficients are quantized
using one of eight proposed quantization matrices [4]. In the
final step, the quantized coefficients are divided into bitplanes
and independently encoded using a Low-Density Parity Check
Accumulate (LDPCA) encoder [7]. The computed syndrome
bits of each bitplane are stored in the buffer together with 8-bit
Cyclic Redundancy Check (CRC).

At the decoder, key views are conventionally decoded and
provided to the SI generation block. The role of the SI block is
to estimate WZ view, Y , as well as its corresponding residual
signal, R̂. The SIs are then transformed using the 4× 4 DCT,
resulting in coefficients CY and CR̂ respectively. The noise

(a) Checker Views (c) Cross Views(b) Corner Views

WZ view Key view

(d) Corner-In Views (e) Cross-In Views

Fig. 2: View splitting modes.

modelling block considers Y as a noisy version of the original
WZ view and utilizes residual coefficients CR̂ for Correlation
Noise Modelling (CNM) using the Laplacian distribution. The
estimated distribution’s parameters αCNM and the prediction
coefficients CY are provided to the soft input estimation
block (and together with the information from the PDBs)
used to calculate the bit-wise conditional probabilities for each
bitplane (soft input). In order to decode bitplanes, the LDPCA
decoder needs part of the accumulated syndrome bits from
the encoder and the estimated soft input. Using the “message
passing algorithm” [23] the decoder iteratively computes the
source bits. Upon convergence or pre-defined number of
iterations, the procedure stops, and the decoder computes the
syndrome bits from the estimated source bits. If the computed
syndrome bits matches the received syndrome stream and
passes CRC checksum test, then the decoding is considered
as successful. Otherwise, the decoder requests more bits from
the encoder. After successful decoding of all bitplanes, the
quantization intervals of a WZ view are obtained. In the
final step, the WZ view is reconstructed using the maximum
likelihood approach utilizing estimated Laplacian distribution
and decoded quantization intervals [24]. The reconstructed
view is transformed back to the pixel domain using the inverse
DCT.

B. View synthesis

1) Baseline synthesis approach
For the sake of completeness, we briefly describe the view

synthesis approach used in our previous work [12]. For a more
detailed description, the reader may also consult [17].

The view synthesis approach consists of three sequential
networks: the feature extraction network, the disparity estima-
tion network and the selection network. The feature extraction
network takes corner views (of an LF image) and the angular
position of a novel view and extracts relevant information for
the following stage. The disparity estimation network takes
extracted features and the position of the novel view and
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estimates the disparity map of the novel view with respect to
each corner view. Then, the corner views are warped following
the estimated disparity maps and finally merged in the final
estimation as a weighted sum with weights obtained by the
selection network. The network is optimized using a two-parts
loss Ll1−grad which includes the L1 loss between the original
image texture I and the synthesized image texture Y and the
L1 loss of the gradients of the two textures:

Ll1−grad = ‖I − Y ‖1 +
1

2
‖∇I −∇Y ‖1. (1)

2) Choice of reference views
In the coding of LF images using traditional coding tools,

such as HEVC, much effort has been put into finding an
optimal coding order, and it has been shown that the prediction
from closer views provides better performance [25]. A typical
configuration for view synthesis tasks includes a set of Corner
views in an LF image as they capture the widest field of view.
In this paper, we consider three more arrangements of the four
reference views as shown in Fig. 2 (c-e) to utilize the one for
SI generation, which provides the best prediction quality.

3) Loss function
Furthermore, we evaluate two loss functions which could

increase the performance of view synthesis, especially with
the decrease in the quality of reference views. More precisely,
we consider a perceptual loss based on high-level feature
maps of a deep neural network VGG utilized for the image
classification task [26] and a loss which includes uncertainty
modelling of the prediction [27].

The early layers of the VGG network give a response
highlighting low-level features of the input, while the deeper
layers capture higher semantic information [28]. We assume
that the inclusion of semantic reasoning will aid the view
synthesis network to generalize better in the case of distorted
input. We use pre-trained VGG-19, which is available in the
Pytorch framework and extract the activations from five layers
as it is typically done in the literature [29][30] to compute the
loss:

Lvgg =

L∑
l

λl‖Φl(I)− Φl(Y )‖1, (2)

where Φl denotes the activations inferred from the layer l.

Kendall et al. [27] propose a loss function that considers
the uncertainty in the prediction for the depth regression
and semantic segmentation tasks. The loss function can be
considered as learned attenuation as it penalizes the samples
based on their prediction fidelity and provides a more robust
estimation. Although our task does not explicitly regress depth,
it highly depends on the estimated disparity maps at the
intermediate levels. Moreover, our view synthesis task relies
on the selection network to provide (soft) recommendations
of the final prediction at the pixel level. Therefore, the robust
estimation of the disparities should be beneficial to the final
prediction. We add a branch, which estimates uncertainty on
a pixel level, to the original network, and feed both estimates,
the prediction and the uncertainty, to a loss function defined
as a negative logarithm of the likelihood of the Laplacian
distribution. Note that it is also possible to select a Gaus-
sian distribution. However, we choose the Laplacian as it is
typically used to model the distribution of a residual signal.
The Laplacian loss-based version of view synthesis approach
is defined as follows:

Llaplacian = − 1

N

N∑
n=1

log

(
α(n)

2
exp−α(n)|I(n)−Y (n)|

)
,

(3)
where N is the total number of pixels in a batch, α(n) is

the predicted Laplacian distribution parameter, and I(n) and
Y (n) are ground truth and predicted pixel values, respectively.

C. Correlation noise modelling

In an offline design process, the residual signal is used
to model the correlation noise in the prediction of the WZ
view. Typically, the Laplacian distribution offers a reasonable
fitting to the distribution of the correlation noise, where the
distribution’s parameter αCNM should describe the reliability
of the prediction. It has been observed that the statistics of the
correlation noise vary locally [18]. Therefore, estimating the
distribution at the finer level is desirable. As reported in [18],
the noise modelling at the finest level, i.e. pixel-level in the
pixel-domain WZ or coefficient-level in the transform-domain
WZ, offer optimal RD performance.

For example, the model parameter αCNM of each coeffi-
cient (u, v) is defined inversely proportional to the absolute
coefficients of residual signal CR(u, v) [18]:

αCNM (u, v) =

√
2

|CR (u, v)| . (4)

Due to the unavailability of the original WZ view at the
decoder, the actual correlation noise cannot be used to model
the distribution. Instead, the modelling is usually done by
substituting the actual residual signal with the difference in
the two predictions of the WZ view, as the agreement in the
two predictions represents the likelihood of the accuracy in
the prediction. This approach can model well the correlation
noise in prediction at the coarsest level. As we move towards
the finer level, the noise modelling becomes unreliable due
to an insufficient number of samples required for accurate
modelling as well as the uncertainty in the residual estimation
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itself. Therefore, several methods have been proposed in the
literature for robust correlation noise modelling, e.g. [18], [20].

In our prior work [12], we have used the approach described
in [20] for the noise modelling using the estimated residual
signal. As for estimating the residual signal, we have used
a weighted average of the estimated intermediate residuals
corresponding to the four corner views used at the input of
the view synthesis method. The intermediate residuals R̂i are
calculated as follows:

R̂i(x, y) = Y (x, y)−Wi(x, y), (5)

where Y is the predicted view, and Wi is the warped view
corresponding to the reference corner view i. The weight of
each intermediate residual signal at the pixel level is assigned
with a higher value when its corresponding residual is lower.

We have noted that the RD performance still lacks in
performance compared to the case when the original residual
is used for noise modelling in the offline process. We propose
to leverage a learning-based approach to optimally estimate
the residual signal using the predicted WZ view and the
warped residuals. In [18], for the robust noise modelling, based
on the local variation in the neighbourhood, the variances
estimated from coarse-to-fine levels are assigned at the pixel-
level. The correlation between models across different bands
is also exploited for improved modelling in [31]. We consider
both these approaches to design a network that can robustly
estimate the residual signal.

1) Proposed network to model the residual signal
As our scheme is based on transform domain WZ, the

residual is initially transformed to calculate αCNM . The DCT
transformation requires a signed residual as an input. As the
absolute value of the transformed residual |CR| is utilized in
(4), we directly estimate |CR| using the network. In this way,
we can calculate the absolute value of the transformed residual
signal directly and simplify our prediction.

The proposed network consists of two parts that estimate
the absolute coefficients of the residual signal in two steps.
These two parts are detailed in Tables I and II, respectively.
The first network extracts multi-scale spatial features from
the synthesized view and the estimated residual signals. The
statistics of the residual signal remains mostly constant across
all the frequency bands. Utilizing them will help the network
to generalize well across different datasets and frequency
bands. Therefore, the first set of blocks of the network
FINT ,FMS ,FG are trained to learn common features across
all the bands through weight sharing by utilizing 3D kernels
with depth size of 1. It is also important to consider the
difference in the properties of the residual signals of different
frequency bands. Therefore, we utilize another set of layers in
the block FbS that is uniquely trained to process each frequency
band b.

The block FINT extracts some intermediate features Fint
in the following way:

Fint = FINT
(
CY , CR̂1

, CR̂2
, CR̂3

, CR̂4
, P,Q

)
, (6)

where CY is the transformed coefficients of the predicted WZ
view and CR̂i

is the transform of the estimated residual corre-
sponding to the cross-view i calculated using (5). Additionally,

TABLE I: The network architecture of initial residual esti-
mation. k denotes the size of convolution kernel, In and Out
denote the number of input and output channels and Act. f.
denotes the name of activation.

Name k In Out Depth Act. f.

F I
N
T

Input 7
conv0 3× 3× 1 7 16 16 ELU
conv1 3× 3× 1 16 32 16 ELU
conv2 3× 3× 1 32 32 16 ELU
conv3 3× 3× 1 32 32 16 ELU
conv4 3× 3× 1 32 32 16 ELU
Output: Fint 32 16

F M
S

Input: Fint 32 16
conv0 3× 3× 1 32 32 16 ELU
conv1 3× 3× 1 32 32 16 ELU
conv2 3× 3× 1 32 16 16 ELU
conv3 3× 3× 1 16 4 16 ELU
Output: F3 4 16
Input: Fint 32 16
conv0 5× 5× 1 32 32 16 ELU
conv1 5× 5× 1 32 32 16 ELU
conv2 5× 5× 1 32 16 16 ELU
conv3 5× 5× 1 16 4 16 ELU
Output: F5 4 16
Input: Fint 32 16
conv0 7× 7× 1 32 32 16 ELU
conv1 7× 7× 1 32 32 16 ELU
conv2 7× 7× 1 32 16 16 ELU
conv3 7× 7× 1 16 4 16 ELU
Output: F7 4 16

F G

Input: Concatenate [F3,F5,F7]
conv0 3× 3× 1 12 32 16 ELU
conv1 3× 3× 1 32 32 16 ELU
conv2 3× 3× 1 32 32 16 ELU
Output: Fg 32 16

F
b S

Input: Fg (b) 32 -
conv0 3× 3 32 32 - ELU
conv1 3× 3 32 16 - ELU
conv2 3× 3 16 4 - ELU
conv3 3× 3 4 1 -
Output: Fs (b) 1 -

the tensors P and Q consisting of the current view index p
and q, respectively, are passed to this layer for the network
to learn the view-position dependent features. This results in
a 3D input volume with 7 channels. The output Fint is then
passed to three parallel sets of convolutional layers, FMS , that
learn to filter the intermediate features at multiple levels, i.e.
with kernels of different receptive fields. These outputs are
then concatenated and processed by FG. Finally, the features
specific to each frequency band b are learned by FbS :

Fs (b) = FbS (FG (F3, F5, F7)) . (7)

It should be noted that this network tries to learn the features
without exploiting inter-band correlation. It is shown in [20],
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[21] that there exists some correlation in the residual signals
for different frequency bands. Hence, exploiting the correlation
utilizing PDBs will improve the residual estimation process.

The second network is composed of two parts. The first
part D processes the PDBs to exploit inter-band correlation.
Instead of passing decoded bands to the network, the target
residual CqR (the difference between the quantized coefficients
of the WZ view and the coefficients of the prediction CY ) of
these bands are computed and then provided to the block D:

Fd (b) = Db (CqR ·M(b), b) , (8)

where M(b) masks out the non-decoded bands in CqR. The
features Fd (b) and Fs (b) are passed to the second part of this
networkR which makes the final prediction β(b). The network
is trained such that β(b) represents the absolute coefficients of
the residual which can be used to calculate αCNM (b) for each
band b in the following way:

αCNM (b) =

√
2

β(b)
(9)

The LDPCA decoder can only decode the coefficient of
a WZ view up to some quantization level; therefore it is
intuitive to train a network for the quantized target residual
CqR. In addition, the estimated residual plays a vital role in
the reconstruction part as it is used along with the synthesized
view and the decoded bands to find a maximum likelihood
solution. We have observed that in this case, the true residual
signal CR, i.e. the difference between unquantized coefficients
of the WZ view and the coefficient of the prediction CY ,
results in the optimal reconstruction performance. Hence, two
networks are trained for each residual signal.

The second network in the proposed scheme utilizes the
quantized decoded bands. The statistics of decoded bands vary
from one quantization index to another. To achieve the best
performance, the networks are trained for each quantization
index M independently. Each layer in the residual estimation
network is followed by batch normalization.

D. Training details

For training, we use the Flowers dataset [16] which consists
of 3343 images of plants. We select one hundred images for
validation and the rest of the dataset for training. At each
training iteration, we randomly crop training samples to the
spatial size 192×192, randomly select the position of the novel
view, excluding the positions of the corner views, and augment
processed samples by applying gamma correction with the
gamma value randomly selected from the range [0.4, 1.0]. We
observe the convergence of the model on the validation set
wherein we use the full spatial size, select centre views only,
and randomly select the gamma value from the range [0.4, 0.5].
We use ADAM optimizer with default parameters and set the
batch size to 10.

For training the network for residual estimation, we need to
provide the data in the transformed domain. A trained model
for the view synthesis network is used, which provides the
prediction of the WZ view of spatial size 192 × 192, which,
after transformation, results in 48 × 48 spatial resolution.

TABLE II: The network architecture of refined residual es-
timation (aided by decoded bands). k denotes the size of
convolution kernel, In and Out denote the number of input and
output channels and Act. f. denotes the name of activation. In
this network each layer is followed by batch normalization.

Name k In Out Depth Act. f.

D
b

Input 17
conv0 3× 3 17 32 - ELU
conv1 3× 3 32 64 - ELU
conv2 3× 3 64 64 - ELU
conv3 3× 3 64 32 - ELU
conv4 3× 3 32 32 - ELU
conv5 3× 3 32 1 - ELU
Output: Fd (b) 1 -

R
b

Input: Concatenate [Fs (b) , Fd (b)]
conv0 3× 3 2 32 - ELU
conv1 3× 3 32 32 - ELU
conv2 3× 3 32 16 - ELU
conv3 3× 3 16 4 - ELU
conv4 3× 3 4 1 -
Output: β (b) 1 -

Therefore, the network is trained with batches having 48× 48
block size for all the inputs. Considering the nature of the
residual signal, we have used the Laplacian distribution as
the loss function to train the residual estimation networks for
coding and reconstruction using LC and LR, respectively.

LC =
∑
b

log βC (b) +
|CR (b)|
βC (b)

, (10)

LR =
∑
b

log βR (b) +
|CqR (b)|
βR (b)

, (11)

where β is the variance of the Laplacian distribution estimated
at the coefficient-level. The loss functions LC and LC reach
their optimal minima when βC = |CqR| and βR = |CR|,
respectively.

The networks are trained in Python using PyTorch frame-
work. Each view synthesis network is trained for 300 epochs
which takes around 15 hours on GeForce RTX 2080 Ti GPU.
Whereas, each residual estimation network is trained for 750
epochs which takes around 37 hours on Tesla V100 GPU.

IV. RESULTS

In this section, we describe the testing conditions and report
the performance of the proposed scheme in comparison to
relevant state-of-the-art schemes.

A. Test conditions

In our previous work [12], we prepared the test set EPFL-
DAN following the recommendations given by JPEG Pleno
[32]. We note that the light fields in the Flowers dataset
used for training the networks are decoded using the Lytro
Power Tool (LPT) [33] and have different characteristics than
the light fields in EPFL-DAN decoded using the Dansereau’s
Toolbox [34]. Therefore, our model is likely to perform better
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on LPT decoded datasets. Thus, we create a new test set EPFL-
LPT by decoding the lenslets in the EPFL dataset [35] using
LPT.

For experiments, we use three different datasets, out of
which two are decoded using LPT [33] (California and EPFL-
LPT datasets) and one decoded using Dansereau’s toolbox [34]
(EPFL-DAN dataset). The EPFL-LPT dataset is composed of
8 LF images, as shown in Fig. 4, while the California dataset
is composed of 30 test LF images used in [15]. The decoded
LF images have 14×14 set of views of 376×541 pixels. The
dataset EPFL-DAN utilizes the same set of 8 LF images as in
EPFL-LPT but is decoded using [34]. The resulting LF image
provides a 15 × 15 set of views of 434 × 625 pixels. In our
experiments, we crop each LF to central 7 × 7 set of views
due to noticeable artefacts at peripheral views, which would
degrade the view synthesis performance.

B. View synthesis

In this section, we sequentially analyze the performance of
the view synthesis approach based on the variations proposed
in Section III-B and utilize the approach that generally per-
forms best in terms of objective quality for the SI generation
in the proposed DLFC scheme.

In the first experiment, we compare the performance con-
cerning the arrangements of the four reference views. For
each of the four arrangements shown in Fig. 2 (b-e), the view
synthesis network is independently trained. Table III provides
the quantitative analysis for the performance of the view
synthesis network for each of the reference views arrangement
utilizing the three datasets described earlier. Overall, it can be
observed that the cross arrangements performed better across
all the datasets. Moreover, since the view synthesis network
is trained on LPT datasets, the Cross arrangement performs
better on the EPFL-LPT and California datasets. Based on
the superiority of Cross-In arrangement on the EPFL-DAN
dataset, it can be deduced that this arrangement generalizes the
light field structure better. Generally, it can be observed for the
datasets decoded using LPT that significantly higher quality is
achieved across different reference view arrangements than the
dataset decoded using Dansereau’s toolbox, i.e. EPFL-DAN.
This comparison suggests that the trained models generalize
well across different datasets but not across different LF
decoding schemes. For the rest of the evaluation, we consider
the Cross arrangement as the default arrangement for the
proposed approach due to its superiority on the LPT decoded
datasets. From Table III, it can also be observed that even
though the inward variant of Corner arrangement improves
performance compared to the original variant, this trend does
not repeat in the case of Cross view arrangements. We explain
this behaviour by considering the similarity between reference
views and the rest of the light field. Namely, by reducing the
distance between the reference views, the prediction quality
of the in-between views should increase as they become more
correlated. Conversely, the quality of the extrapolated views
degrade with increase in their distances from the reference
views. Therefore, it would be beneficial to find an optimal
set of reference views for which the quality of synthesized

in-between views increases while the quality of extrapolated
views does not degrade considerably. Based on the results
presented in Table III it can be noted that a “sweet spot”
lies around Cross reference arrangement for datasets decoded
using LPT and Cross-In reference arrangement for EPFL-DAN
dataset.
TABLE III: Performance evaluation of four arrangements for
view synthesis task across three datasets in terms of PSNR
(dB).

Dataset Corner Corner-In Cross Cross-In

California 38.20 38.64 39.07 38.90
EPFL-LPT 39.50 40.62 40.98 40.77
EPFL-DAN 30.65 32.48 32.17 32.65

Next, we explore two loss functions as proposed in Section
III-B. From Table IV, it can be observed that Lvgg and
Llaplacian versions underperform compare to the original
version Ll1−grad on LPT decoded datasets. On the other hand,
the evaluation of the EPFL-DAN dataset suggests that some
loss functions generalize better than others across different
decoding schemes, e.g. Lvgg and Llaplacian. This result moti-
vates to further explore these variants for the distorted inputs,
which will be provided to the view synthesis network at the
decoder of the proposed DLFC scheme.

TABLE IV: Performance evaluation of three loss functions for
view synthesis task on Cross arrangement across three datasets
in terms of PSNR (dB).

Dataset Ll1−grad Lvgg Llaplacian
California 39.07 38.46 38.12
EPFL-LPT 39.98 39.44 38.96
EPFL-DAN 32.17 32.43 32.49

Table V provides a quantitative evaluation in the case of
distorted input views. We also compare three loss functions
in the Cross arrangement. Comparing Tables IV and V, we
observe in the case of undistorted inputs that the original loss
function Ll1−grad performs better compared to both Lvgg and
Llaplacian losses. In the case of distorted input views, we
note the same behaviour with a small exception in the case
of the loss Llaplacian which seems to degrade relative quality
between different quality levels less, compared to the two other
loss functions.
TABLE V: Quantitative evaluation of view synthesis approach
given distorted Cross arrangement reference views from the
EPFL-LPT dataset in terms of PSNR (dB).

QP Ll1−grad Lvgg Llaplacian
27 37.96 37.71 36.95
32 35.78 35.56 35.12
38 32.61 32.41 32.30
45 28.78 28.63 28.74

Although we can observe better generalization of Lvgg and
Llaplacian version across different datasets, these trends do
not repeat on the distorted datasets. Therefore, we adopt the
version of the network trained using the original loss function
Ll1−grad in subsequent experiments.
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C. Distributed light field coding

To analyze the RD performance, we utilize the EPFL-LPT
dataset. Firstly, the effective resolution of each view is set to
376×544 by zero-padding (governed by 4×4 DCT operation
in the transform-domain WZ codec, which demands that the
resolution of a view be a multiple of four) as the original
resolution is 376 × 541 pixels. After transformation, each
frequency band has an effective resolution of 94× 136 pixels.
Since the bitplanes for each frequency band are encoded one
at a time by the LDPCA encoder, this results in a source code
of length 12784 bits. We design LDPCA codes for this length
following the procedure described in [7]. Only the luminance
channel is used to report the performance.

The four key views are decoded using HEVC Intra decoder
(HM reference software, v.16.22, with Range Extension (RExt)
mode and Main profile). The RD performance of distributed
coding schemes is evaluated at four different RD profiles by
selecting quantization matrices from [4] at quantization indices
M = [1, 4, 7, 8]. To have the same quality key views and WZ
views after the reconstruction, the QP parameter in HEVC is
selected to match the quality of the reconstructed WZ view
for each LF and quantization index, as specified in Table VI.

TABLE VI: Quantization parameters of the key views corre-
sponding to four quantization indices M = [1, 4, 7, 8] from the
set in [4] to have consistent quality of reconstructed views.

Sequence Q1 Q4 Q7 Q8

Bikes 41 29 25 22
Danger 41 30 25 22
Desktop 42 29 25 22
Flowers 40 30 25 22
Fountain 42 32 27 23
Friends 40 27 23 20
Stone 38 28 23 21
Vespa 41 28 24 21

In this section, we will utilize a naming convention for
clarity and designate our proposed approach as Cross-Net in
addition to DLFC since Cross arrangement of views is utilized
and the residual signal is estimated using the network-based
approach. To assess the proposed method’s RD performance,
we conduct ablation studies on variations of the distributed
coding scheme. These variations are obtained using different
arrangements of the reference key views and different methods
to estimate residual signals.

First, we consider different arrangements of the reference
key views as shown in Fig. 2 (b-e). Although the superior-
ity of the Cross arrangement of reference views is already
proven in the previous section, an RD performance comparison
can further establish its supremacy when used alongside the
proposed residual estimation network. Fig. 5 plots the RD
performance utilizing different reference views arrangements.
With the exception of the Flowers light field, it can be
observed that Cross-Net generally outperforms methods with
different reference views arrangement and achieves higher
performance at all quantization index values.

Next, we study the effect of utilizing different methods for
estimating residual signals in the overall RD performance. The
first variation, in this case, can be adopted from our previous

work [12], which utilizes weights, calculated based on the four
independent residual estimates obtained from each reference
view, to estimate the final residual signal. We denote this
approach as Cross-Weighted when used alongside the Cross
arrangement of the reference views. As another variation, we
introduce Cross-Ideal, which utilizes the ideal residual signal
to set the upper bound of the achievable performance. Fig. 6
acknowledges the improvement achieved using the network-
based approach Cross-Net to estimate the residual signal over
Cross-Weighted. However, it can be inferred by looking at
Cross-Ideal curves that even with accurate residual estimation,
the performance can not surpass the upper bound set by it.
Given this situation, we can say that considerable improvement
is achieved over Cross-Weighted using Cross-Net.

1) Comparison with anchors
To evaluate the performance of the proposed DLFC scheme,

we compare our performance with two distributed light field
coding schemes. Additionally, we provide comparisons with
conventional (non-distributed) coding schemes for light field
coding.

First, we compare the proposed scheme with our previous
work [12], referred to as DLFC-I. This scheme is different
from the proposed approach in multiple ways. Primarily, the
Corner arrangement of the reference views is used. Addi-
tionally, the residual signal is estimated through mathematical
manipulation of the individual residual signals obtained by
subtracting warped corner views from the synthesized view.
It further incorporates a strategy to classify the residual
signal based on the previously decoded bands to model the
Laplacian distribution adaptively. As in [12], we also compare
to the DMVC method [13] (referred here as Checker-MultiSI),
which presents the state-of-the-art approach in this domain
adapted for light field scenario. Here, the views are split
in a checkerboard pattern, as shown in Fig. 2, to utilize
horizontal and vertical adjacent neighbours of a WZ view
for its prediction. Contrary to DMVC, an additional angular
dimension is substituted in place of the temporal dimension.
Other than the higher encoding complexity, the approach is
expected to have a competitive performance as it generates
high-quality prediction due to the narrower baseline among
the available neighbouring views than the Cross arrangement
of reference views.

For comparison with conventional coding schemes, we
select HEVC-Intra as the first anchor to compress all the views
independently. The same HEVC configuration is utilized for
the key-views coding. Inspired by the comparison provided in
[37], we compare our approach with HEVC-NoMotion, which
is superior to the former approach because it exploits temporal
redundancy like HEVC-Inter, but the motion search range is
set to zero. The configuration provided in [37] has been used
to configure the HEVC encoder for HEVC-NoMotion. The
encoder is provided with the 1-D sequence of LF views as a
pseudo video sequence, generated by following a serpentine
scanning order. A relevant anchor to compare is the standard
light field coding scheme provided by JPEG-Pleno [36]. We
compare only to MuLE, i.e. transform-based mode of the
reference software, as it has been shown that it is superior
compared to the prediction-based mode, i.e. WaSP, on lenslet
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data [38]. MuLE utilizes a 4D-DCT transform to concentrate
the energy of the light field image to a smaller region. This
study provides a discussion and comparison of the two coding
paradigms, i.e. distributed coding and conventional coding.

Fig. 7 plots the RD performance of the above-described
schemes and the proposed method, utilizing PSNR as a dis-
tortion metric. Table VII quantifies the performance of the dis-
tributed coding schemes in comparison to HEVC-Intra using
Bjøntegaard measure [39]. It can be observed that the proposed
scheme outperforms both distributed coding architectures. The
higher RD performance of the proposed approach compared
to the DLFC-I can be attributed to the quality gains in the
view synthesis approach and the improvement in residual
signal estimation using the network-based scheme. In the
case of Checker-MultiSI, we would expect higher performance
due to the availability of closer reference views for view
synthesis. However, it requires half of the views to be encoded
using HEVC-Intra, thus reducing the overall RD performance.
Quantitatively, our approach achieves 0.96 dB and 4.02 dB
gains in BD-PSNR, and 17.45% and 46.66% reduction in
BD-Rate, in comparison to DLFC-I and Checker-MultiSI on
average, respectively.

From Fig. 7, it can be observed that all the variations of
distributed coding significantly outperforms HEVC-Intra due
to the high quality of the synthesized views. This is evident
by observing that the difference in performance reduces as the
distortion increases. With a higher distortion, the compression
artefacts become significant in the key views, due to which
view synthesis can no longer exploit the common feature
points in all the key views. Overall, it can be observed from
Table VII that the distributed coding schemes achieve roughly
50%−65% improvement in BD-Rate and 4.5 dB - 6.2 dB gains
in BD-PSNR. It may be noticed in our previous work [12] that
HEVC-Intra performed comparably to the distributed coding
schemes. After emphasizing that the inter-view correlation is
exploited in the distributed coding scheme at the decoder, we
highlight that the dataset EPFL-DAN, used in the previous
version, has inherent uncertainties in its structure due to the
utilized decoding scheme. Hence it is challenging to predict
and can be attributed to the lower performance of distributed

schemes in the previous work.
Comparing with HEVC-NoMotion and MuLE, we can ob-

serve the clear downside of using distributed coding schemes.
Quantitatively, HEVC-NoMotion and MuLE achieve 4.18 dB
and 3.52 dB gain in BD-PSNR, and 66.09% and 57.34%
reduction in BD-Rate, respectively, in comparison to our
approach. On the other hand, these schemes involve com-
putationally extensive operations and may only be suited for
broadcasting applications.

Although the compression performance of the distributed
coding paradigm lacks behind the best conventional coding
schemes, we emphasize that the application areas and goals are
different and we focus on the encoding complexity. Therefore,
we discuss the performance of the proposed scheme in com-
parison to the conventional coding schemes in terms of encod-
ing time. HEVC-Intra does have a complex encoding scheme,
even though it does not exploit inter-view redundancy between
the views. On the other hand, the other two schemes, HEVC-
NoMotion and MuLE, require inter-view communication to
exploit the redundancy at the encoder, which also results
in additional overhead in the encoding time and increases
complexity of the encoding architecture. For example, our
measurements show that, on average, encoding the light field
with the proposed method is 8 to 10 times faster compared to
HEVC-Intra depending on the quantization index, whereas it
is 12 to 18 times faster than HEVC-NoMotion. In comparison
to MuLE, our scheme is 20 to 30 times faster.

It is well-known that distributed coding schemes offer high
efficiency encoding by compromising on the simplicity of the
decoder [6]. The major contributor in the decoding complexity
in our implementation is the iterative LDPCA decoder. Al-
though the iterative LDPCA decoder provides near optimal
performance, due to its iterative nature it requires further
work on speeding up the iterative decoding for real-time
decoding applications. For instance, in the proposed scheme,
decoding of a WZ view can be 300 to 1300 times slower than
encoding it, depending on the quantization index. Neglecting
the fact that the implemented solution for decoding is not
optimized, in comparison to HEVC decoder, we have noted
that the implementation of the proposed decoding scheme can

Bikes Danger Desktop Flowers

Fountain Friends Stone Vespa

Fig. 4: Thumbnails of light fields from the EPFL dataset [35].
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Fig. 5: RD performance comparison between four different variations of the proposed DLFC scheme based on the arrangements
of the reference views shown in Fig. 2 (b-e), at quantization indices M = [1, 4, 7, 8], using PSNR as distortion metric.
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Fig. 6: RD performance comparison between different variations of the proposed DLFC scheme utilizing three different residual
estimation methods, at quantization indices M = [1, 4, 7, 8], using PSNR as distortion metric.

be approximately 3 orders of magnitude slower.
2) Visual analysis
Fig. 8 illustrates the outputs of the stages in the proposed

decoding scheme. In the second column, we can note that
the synthesized view provides accurate information about the

WZ view in most of the regions. Still, higher errors can be
observed in challenging areas such as non-Lambertian surfaces
and occluded regions. At the same time, the errors in these
areas in the reconstructed views are corrected as observed by
the limited error magnitude, which is an outcome of utilizing
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Fig. 7: RD performance comparison of distributed source coding and conventional coding schemes using PSNR as distortion
metric at quantization indices M = [1, 4, 7, 8], whereas, the quantization parameters specified in Table VII are used for both
HEVC plots.

TABLE VII: Average coding performance in terms of BD-PSNR and BD-Rate compared to HEVC-Intra.

Proposed DLFC-I [12] Checker-MultiSI [13] HEVC-NoMotion MuLE [36]

BD-PSNR BD-Rate BD-PSNR BD-Rate BD-PSNR BD-Rate BD-PSNR BD-Rate BD-PSNR BD-Rate
Sequence [dB] (%) [dB] (%) [dB] (%) [dB] (%) [dB] (%)

Bikes 6.27 −64.8 5.67 −57.8 1.67 −25.7 9.46 −84.2 8.30 −82.9
Danger 5.43 −59.4 4.64 −53.1 1.86 −27.2 8.78 −78.9 9.48 −85.3
Desktop 3.78 −43.9 3.04 −32.4 0.58 −7.3 8.81 −84.8 7.83 −83.4
Flowers 7.21 −71.0 7.24 −67.7 2.35 −32.3 10.98 −86.0 9.69 −86.2
Fountain 5.40 −54.6 3.52 −39.1 1.59 −22.2 10.33 −82.8 8.06 −79.8
Friends 5.34 −62.2 4.75 −54.6 1.19 −21.4 9.91 −90.5 9.52 −90.6
Stone 4.46 −61.4 4.08 −58.3 1.45 −26.9 8.89 −88.1 8.66 −89.2
Vespa 4.56 −55.2 2.85 −37.4 1.42 −23.9 9.01 −85.8 7.03 −81.0

Average 5.31 −59.1 4.47 −50.1 1.51 −23.4 9.52 −85.1 8.57 −84.8

successfully decoded WZ views for the final reconstruction.

V. CONCLUSION AND FUTURE WORK

We proposed and evaluated deep learning models for dis-
tributed light field coding, focusing on the two most critical
aspects of side information generation: the prediction and
the residual estimation. The proposed models significantly
outperform state-of-the-art distributed coding schemes and
HEVC-Intra. We have shown that the Cross arrangement
of reference key views provides higher quality prediction,
which improved the overall RD performance compared to the
previous approach. Additionally, we propose a deep learning
architecture that estimates the residual signal at the coefficient
level. We have shown that combining common and specialized
filters employed jointly with PDBs allows further performance
gains.

We have studied the challenge of distributed coding systems
to provide similar performance as offered by the conventional
encoding tools while maintaining the low encoding complex-
ity. In future, we aim to further minimize the performance
gap between the two coding paradigms by leveraging the
latest techniques to model the correlation noise. We further
aim to explore light fields with wider baselines, e.g., from
large camera arrays, where the constraint on the encoding
complexity is more relevant. Additionally, we plan to eliminate
the feedback channel requirement by accurately estimating the
required number of syndrome bits at the encoder.
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