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I. Introduction

As explained by O. Peters and A. Adamou in [START_REF] Peters | The time interpretation of expected utility theory[END_REF], ergodicity economics, EE, is a recent branch of economic theory that takes into account the difference between time averages and expectation values. EE postulates that agents behave seeking growth optimality. According to Peters and Adamou, individual agents are therefore concerned with time average growth rate of wealth.

An observable is said to be ergodic if its time average equals its expectation value, as explained by Peters in [START_REF] Peters | The ergodicity problem in economics[END_REF]. EE shows that, in general, wealth changes are not ergodic. This is proven by Peters and Gell-Mann for discrete multiplicative dynamics in [START_REF] Peters | Evaluating gambles using dynamics[END_REF] and by Peters and Klein for wealth following a geometric brownian motion in [START_REF] Peters | Ergodicity breaking in geometric brownian motion[END_REF].

In [START_REF] Peters | The time interpretation of expected utility theory[END_REF], Peters and Adamou argue that in expected utility theory, EUT, utility functions can be interpreted as a way of restoring empirical evidence to the theoretically irrelevant expectation values in order to accomodate to behavioral data. In the same paper they introduce a method to derive transformations of wealth, which if used as utility functions assure growth optimality. We will refer to this method as the EE framework, and to these transformations * Emails: carlosr@opseeker.com, pablo@opseeker.com of wealth as ergodicity transformations. The observables obtained by applying these ergodicity transformations to changes of wealth are ergodic. This implies equality between time average and expectation value.

In EE a wealth dynamic is a stochastic process which depends on the economic circumstances of the agent but not on its preferences. And since the ergodicity transformation can be interpreted as the utility function in EUT, EE framework provides a method to derive utility functions which depend only on wealth dynamics and not on subjective hypothesis made about the agent.

In additive dynamics the ergodicity transformation is linear. A linear utility function implies risk neutrality. Peters and Adamou argue in [START_REF] Peters | The time interpretation of expected utility theory[END_REF] that "an agent with labour income and no savings would be well modelled as experiencing additive changes in wealth, while for an agent with significant invested capital a multiplicative dynamic would be more realistic.". This would suggest that agents that have no capital invested and are completely dependent on their labour income are likely to show risk neutral behaviors.

In this paper we make a new contribution to the set of dynamics already studied in ergodicity economics by proposing a modified additive wealth dynamic. We argue that a pure additive dynamic might not be representative for individuals who would need to pay interest to cover for debt. As a matter of fact, when in debt, the interest owed will lead to a slower wealth growth. For a certain level of debt, the interest owed per period will be as big as the regular income of the individual. We will call this point, the perpetuity point, since the only kind of loan the individual can accept is an interest-only loan, which is itself, a perpetuity. We propose two variations of the dynamic to study what happens for bigger levels of debt, i.e. agent cannot pay back whole owed interest.

In the first variation of the dynamic the creditor accepts as the best deal the whole income of the ruined individual, without increasing the owed principal. In the second variation of the dynamic the creditor accepts as the best deal the whole income of the ruined individual, however, the principal gets increased in the amount of the unpaid interest.

We call ruin the negative levels of wealth beyond the perpetuity point. In this region, the agent, even using the whole income, cannot pay any of the principal back after each period.

After applying EE to our modelization of the first variation of the dynamic we find that the associated ergodicity transformation is a linear and exponential function, or linex, already studied in economic theory [START_REF] Bell | One-switch utility functions and a measure of risk[END_REF]. For the second variation of the dynamic we obtain a logarithmic function in a case that can be solved analytically.

Both results show a certain degree of risk aversion which, in contrast to pure additive dynamics, seems to be more aligned with the empirical evidence of risk aversion in controlled laboratory settings [START_REF] Harrison | Risk aversion in the laboratory[END_REF].

We will proceed in the following order. We first introduce the additive-ruin dynamic and argue why it might be relevant for agents with labour income and no invested savings. Second, we analyze the EE framework exposed in [START_REF] Peters | The time interpretation of expected utility theory[END_REF]. Third, we introduce our models for the additive-ruin wealth dynamic and derive the associated utility functions. Fourth, we show the results of a simulation in which agents be-have according to one of the previous utility functions. We end this paper with a brief discussion of the results.

II. Additive-ruin wealth dynamic

As an attempt to better describe the wealth dynamic of agents with labour income and no invested savings we introduce the additiveruin wealth dynamic. The intuition behind this proposal is that a dynamic that aims to reflect the reality of these agents must take into account the fact that they cannot borrow money for free. The owed interests will burden the subsequent evolution of wealth.

The proposed dynamic looks like an additive dynamic for positive values of wealth. However, it differs for negative levels, in which it is assumed that the agent needs to borrow money at a certain interest rate to cover for the debt.

We can define this dynamic using the following values:

• The drift coefficient of the positive wealth region: p. It can be interpreted as the recurring income the agent receives. • The interest rate r that the agent would need to pay if wealth is negative to cover the debt

Using these two values we can define an important point in the negative wealth region: the perpetuity point. This is the point in which the individual is able to pay back the full interest but no principal. An agent that reaches this level of debt would not be able to recover in a finite amount of time since the principal would never be paid back. This point is defined by -p/r. For bigger debts, the agent is not able to pay even for interest. We call this state ruin.

Denoting wealth by x, the general outline of this dynamic would therefore present three regions:

• Positive wealth x > 0: additive dynamics with growth factor p • Transition region -p r < x ≤ 0: wealth increases each period less than p due to the reimboursement of interest rx • Ruin region x ≤ -p r : agent is not able to pay back any of the principal, or even the full interest

In this paper we present two different versions of this dynamic. Both versions have in common the previously described additive-ruin behaviour but differ from each other in terms of how the ruin region is treated.

We call the first version of the dynamic: Dynamic I. In this dynamic, when the individual cannot pay back the totality of the owed interest per period, the creditor accepts as the best deal the whole income of the individual, without increasing the owed principal.

It could be argued that Dynamic I is not realistic because no one would forgive owed interest for free. However, this could be understood as a banrkuptcy deal, in which creditors reach an agreement for the existing assets.

x a x = p a x (x) In the second version of the dynamic, Dynamic II, when the individual cannot pay back the totality of the owed interest per period, the creditor accepts as the best deal the whole income.

x = 0 x = -p/r
The principal gets increased in the amount of the unpaid interest.

x a x (x) In the yellow region a loan is paid back at interest rate r. In the red region the agent cannot afford interest and creditor accepts p as best deal, with debt increasing due to unpaid interest. Source: elaborated by the authors.

a x = p x = 0 x = -p/r

III. Methodology

Peters and Adamou show in [START_REF] Peters | The time interpretation of expected utility theory[END_REF] that for expected utility theory to be equivalent to optimisation over time, utility must follow a Lévy process. In the case that only continuous paths are considered, it is shown that utility u must follow a Brownian motion with drift:

du = a u dt + b u dW (1) 
Where dW represents the infinitesimal increment of the Wiener process and a u , b u are constants. Note that we try to keep the same notation as in [START_REF] Peters | The time interpretation of expected utility theory[END_REF].

Only dynamics that can be expressed as an autonomous Itô process are considered:

dx = a x (x)dt + b x (x)dW (2) 
Note that, unlike a u and b u , a x (x) and b x (x) are in general functions of wealth x. The question is: what needs to satisfy a dynamic defined by a x (x), b x (x) so that it can be mapped to a utility process which is a Brownian motion with drift (i.e a u and b u are constants)?

To answer this question, Peters and Adamou, apply Itô's lemma to (2) with u = u(x). For this to be possible u(x) needs to be twice differentiable.

du = a x (x) du(x) dx + 1 2 b x (x) 2 d 2 u(x) dx 2 dt +b x (x) du(x) dx dW (3) 
Note that we use a total derivative notation and not partial because the utility function depends only directly on wealth and not explicitly on time.

We can identify the coefficients of dt and dW in (3) with the constant coefficients of (1):

a u = a x (x) du(x) dx + 1 2 b x (x) 2 d 2 u(x) dx 2 (4) b u = b x (x) du(x) dx (5) 
Differentiating ( 5):

0 = db x (x) dx du(x) dx + b x (x) d 2 u(x) dx 2 (6) 
Solving for d 2 u dx 2 :

d 2 u(x) dx 2 = - 1 b x (x) db x (x) dx du(x) dx (7) 
Substituting this result in (4) using (5):

a x (x) = a u b u b x (x) + 1 2 b x (x) db x (x) dx (8) 
This is a consistency condition that a x (x) and b x (x) need to satisfy in order for u(x) to be a Brownian motion with drift.

If a given dynamic a x (x), b x (x) satisfies ( 8), then, the utility function can be calculated with (5):

du(x) dx = b u b x (x) (9) u(x) = C + b u b x (x) dx (10) 
Summarizing: if a wealth dynamic dx is an autonomous Itô process defined by a x (x), b x (x) which satisfies condition [START_REF] Michel | When ross meets bell: The linex utility function[END_REF], then it is possible to obtain the associated ergodicity transformation using [START_REF] Bell | Strong one-switch utility[END_REF].

IV. EE solutions for additive-ruin wealth dynamics

As already discussed in section II, we propose two dynamics that differ from each other in the ruin region. In Dynamic I, the lender accepts p as best deal, and principal of the debt is frozen.

In Dynamic II, the lender accepts p as best deal, and the unpaid interest increases principal.

To integrate EE equations for Dynamic I we use a logistic function. We apply the EE framework and obtain the associated ergodicity transformation which is a linear and exponential function, or linex, already studied in economic theory [START_REF] Bell | One-switch utility functions and a measure of risk[END_REF]. This function implies the presence of risk aversion in agents. Furthermore it predicts one switch preferences: a decision maker might refuse a positive expected value lottery for a given level of wealth, but accept it after a certain value of wealth has been exceeded.

For Dynamic II we use an inverted ramp exponential function. We can only integrate analytically for a trivial case, however, numerical integration can be used for other cases. The obtained ergodicity transformation is a logarithmic function which implies risk aversion as in the previous case and has a vertical asymptote at the perpetuity point.

Note that in both cases, ruin is a state in which is hard to escape from. As a matter of fact, with the given parameters, the only way to escape would be thanks to volatility. Some models in ruin theory take into account the time spent with negative reserves to validate the ruin condition. One example is the parisian ruin model [START_REF] Dassios | Parisian ruin with exponential claims[END_REF]. In our models, ruin is sticky, and a time condition can be easily studied.

i. Solution for Dynamic I Sigmoid functions are good candidates to model this dynamic since they can be considered a smooth representation of curve shown in Figure 1. For the purpose of this paper we decide to use the logistic function. The three states can be easily modeled: ruin corresponds with big negative values, in which volatility tends to zero. Additive state corresponds with big positive values, in which volatily tends to a constant value. Between them, there is a smooth transition. The fact that the width and position of the step can be parametrized and that this function can be easily differentiated makes the logistic function a suitable candidate. Other sigmoids could as well be used. We apply the same process in Appendix I to an algebraic sigmoid function reaching similar results.

We would like that either a x (x) and b x (x) have logistic geometries. A logistic function can be defined as:

h x r ,x a (x) = 1 1 + e -x-xr xa (11) 
In this equation x r defines the center of the smooth step and x a defines its size. Without worrying about the scales, we would like our logistic function to match in the best way possible the geometry of the curve shown in Figure 1, which can be defined by pieces as:

     I)x ≤ p/r : y = 0 I I)p/r < x ≤ 0 : y = p + rx I I I)0 < x : y = p (12) 
The piece II corresponds to the transition. Its center is located at x = -p/2r. We therefore set the center of the smooth transition to match this point x r = -p/2r. We can as well conclude that, since x a is related to the width of the smooth transition, it would be wise to think that it needs to be proportional to the width of piece II, which is p/r, and therefore set x a = θ p/r. We set θ = 1/4 because in this case, the smooth transition is tangent to piece II exactly at x r .

We can now say that we would like a x (x) and b x (x) to have a geometry proportional to:

h p,r (x) = 1 1 + e -2( 2r p x+1) (13) 
We see that actually the geometry depends only on the ratio r/p. By defining the parameter γ = 2r p we can rewrite equation 13 as:

h γ (x) = 1 1 + e -2(γx+1) (14) 
We can therefore define the volatility function b x (x) as:

b x;β,γ (x) = βh γ (x) ( 15 
)
Where β is a constant which defines the intensity of the volatility.

Using the consistency condition ( 8) we can derive the associated drift term:

a x (x) = a u b u βh γ (x)(1 + ε(x)) ( 16 
)
Where ε(x) is:

ε(x) = b u a u γβ e -2(γx+1) (1 + e -2(γx+1) ) 2 (17)
ε(x) can be interpreted as a term that, if small enough, can make a x (x) have the same logistic geometry as h γ (x). This would imply that it is consistent with our Dynamic I drift term.

It is easy to prove that the term ε(x) has only one maximum at x = -1 γ = -p 2r which is the center of the smooth transition. And that when x → ±∞ then: ε(x) → 0. Therefore, ε(x) is bounded by ε(-1 γ ):

ε max = b u a u γβ 4 ( 18 
)
By taking the limit when x tends to infinity in 16 we obtain:

lim x→+∞ a x (x) = a u b u β (19)
In order to match the dynamic, the drift term in this limit needs to be equal to p, and therefore we conclude:

a u b u = p β ( 20 
)
In order to make ε max << 1, and using equations 18 and 20, we conclude that if the following condition is met, a x (x) and b x (x) have logistic geometries:

β << p 2 r ( 21 
)
Note that this imposes a limit on how much volatility this model can handle regarding p and r.

The closed form of the dynamic is:

dx = h γ (x) {p(1 + ε(x))dt + βdW} ( 22 
)
In Figure 3 we observe several paths issued from integrating the dynamic defined in (22). Agents beginning with positive wealth see their wealth evolve in a linear manner (additive dynamics). However, those affected by ruin (x 0 < 0) are either frozen or take more time to begin the additive growth.

x a x (x) We have shown that b x (x) and a x (x) are consistent according to [START_REF] Michel | When ross meets bell: The linex utility function[END_REF]. We can therefore use [START_REF] Bell | Strong one-switch utility[END_REF] to derive the utility function.

x r = -p/2r = -1 γ p x = 0 x = -p/r
u(x) = b u β x - 1 2γ e -2(γx+1) + C (23) 
Setting arbitrarily the integration constant C so that u(0) = 0, we can obtain a dimensionless utility function dividing by b u βγ , in terms of a dimensionless wealth x = γx:

u( x) = x + 1 2e 2 (1 -e -2 x ) (24) 
x u( x) This utility function is known in the literature as linex function [5] [8]. It has the one-switch property. This means that an agent might switch preferences for a risky gamble depending on the level of wealth at most once. In particular, an agent might refuse a risky gamble even if expected value is positive for low levels of wealth, but accept it after a certain wealth level in which risk aversion is smaller.

Moreover, due to the shape of the linex function, given a certain level of wealth, the same agent could reject a bet of a certain magnitude that could potentially bring him closer to ruin but accept another bet of a smaller magnitude that would not bring him as close.

Note that for big values of wealth, this utility function behaves as a linear one, retrieving the result of pure additive dynamics.

We highlight the fact, that in contrast to the solution that we obtain for Dynamic II in the next section, this utility function does not present a vertical asymptote. This is because the logistic function used to model volatility and drift equals zero only when x tends to minus infinity. And therefore, utility does not reach minus infinity for any finite amount of debt.

Risk aversion can be studied using the Pratt measure [START_REF] Pratt | Risk aversion in the small and in the large[END_REF], defined as:

A(x) = -u u . A( x, γ) = 2γ 1 + e 2( x+1) (25) 
Note that A( x) is a logistic function with the transition centered in x = -1 what implies x = -1 γ = -p 2r . This means that the center of the transition of the risk aversion function coincides with the center of the drift term in our dynamic.

On top of that, we see that the risk aversion is proportional to γ. This implies that the harder it is to pay back the debt, the higher the risk aversion is. Higher interest rates, or lower income would imply higher risk aversion. Note that x = -2 corresponds with x = -p/r which is the perpetuity point and beginning of the ruin region. Source: elaborated by the authors.

We can check, as predicted by Bell in [START_REF] Bell | One-switch utility functions and a measure of risk[END_REF], that the utility function that we have derived verifies the condition of decreasing risk aversion : u u < u u [START_REF] Pratt | Risk aversion in the small and in the large[END_REF]. In [START_REF] Bell | Strong one-switch utility[END_REF], Bell refers to this fact as "reasonable". With EE we conclude that for an agent in Dynamic I, this behavior maximises the average growth rate of wealth.

ii. Solution for Dynamic II

We obtain the solution for this dynamic in an equivalent way. We define our volatility function to match the geometry of the model. We then define the consistent drift function and verify that it satisfies the required geometry. We end up by integrating in the same manner as before to obtain the utility function.

To model this dynamic we use the following smooth ramp function for the volatility function:

b x (x) = β 0 x 1 + e kx + β 1 ( 26 
)
This ramp function can match the geometry of the curve shown in Figure 2. This curve can be defined by pieces as:

I)x <= 0 : y = p + rx I I)0 < x : y = p (27) 
x a x (x) Using the consistency equation 4 we obtain:

p x = 0
a x (x) = b x (x) a u b u (1 + ε(x)) (28) ε(x) = b u β 0 2a u ( 1 1 + e kx - kxe kx (1 + e kx ) 2 ) ( 29 
)
It can be shown that ε(x) is bounded and tends to zero for big positive values of x and to a positive constant for big negative values. This means that the drift function defined in equation 28 will still have a smooth ramp function geometry, and thus, it can represent the additive-ruin Dynamic II.

lim x→+∞ a x (x) = a u b u β 1 = p (30)
Parameter k can be set to a value according to the precision desired to match the transition between pieces I and II. The bigger, the sharper the transition is.

On top of these conditions, one more condition can be imposed so that drift is zero at the perpetuity point:

a x (-p/r) = 0 (31)
Analizing equation 28 it can be concluded, that equation 31 is equivalent to:

b x (-p/r) = 0 (32)
And therefore:

β 1 β 0 = p r 1 + e -k p r (33) 
Utility functions can be multiplied and divided by constants. By knowing

β 0 β 1
in terms of p and r as defined in 33, the utility function can be obtained by integrating:

u(x) = dx β 0 β 1 x 1+e kx + 1 (34)
We have only found an analytic solution for the case in which

β 0 = β 1 = k = 1.
After dividing and rearranging constants we get:

u(x) = ln| 1 + x + e x 2 | (35) 
Note that this utility function has a vertical asymptote at the x which verifies 1 + x + e x = 0. This is the point in which volatility equals zero, which is the perpetuity point. This means that in the modelization of Dynamic II, utility decreases much faster than in the modelization of Dynamic I. This is not necessarily suprising since in Dynamic II the wealth of the agent decreases once she is not able to pay back interest, whereas in Dynamic I the wealth of the agent remains constant.

It can be shown that along the same asymptote, as expected, risk aversion grows to infinity.

Note as well that for big values of x this utility behaves as a linear utility, retrieving the result of pure additive dynamics.

x u(x)

x + e x = -1 For other values of β 0 , β 1 , or what is equivalent, for other values of p and r, utility functions can be found applying numerical methods to integrate equation 34.

V. Simulation

One way to make visible the superiority of the utility function derived via the ergodicity framework regarding the growth rate of wealth is simulation. We ran a simulation for two sets of individuals evolving in our modelization of the Dynamic I presented in this paper.

For this simulation we define two sets of individuals. The first set contains 1000 individuals who make decisions using a linear utility function, like the one predicted by pure additive dynamics. Hereinafter for the sake of brevity we will call these individuals linear agents. The second set contains the same number of individuals, but that make decisions using the linex We ran the simulation for three different scenarios. The three scenarios have the same probability of winning or losing the bet (50% -50%) and differ from each other in the size of the proposed bets. For each scenario, the bet is always the same and has positive expected value. Their magnitude can be seen in the Table 1 Linear agents would accept the bet whenever it is proposed to them, while linex agents may or may not accept each bet depending on the potential of the bet to bring their wealth closer to the ruin region. The difference in the results between the two sets will be more pronounced the larger the magnitude of the proposed bets (holding all other parameters constant).

We use the same parameters as in Figure 3: p = 2, β = 1.5 and r = 0.03. These parameters position the perpetuity point at -66.66 units of wealth. On the other hand, the threshold at which linex agents start to take bets depends on the magnitude of the bet and is located in a different position for each scenario: 63.54 units of wealth in the severe scenario, 45.80 units of wealth in the moderate scenario and 23.51 units of wealth in the soft scenario. All individuals start the simulation with zero wealth, starting subsequent repetitions with their wealth resulting from the previous repetitions.

The decision making comes with the individuals having to decide if they take the bet or not. The condition of wealth ≥ 0 was added to give more realism to the game. It is equivalent to saying that individuals must have paid off their previous debts before they can take on a new bet.

The results for the three scenarios can be seen in graphical form in Figure 9 and in a more detailed fashion in Table 2. In the soft scenario, with relatively small bets, the distribution of the final wealth of both groups of individuals is fairly similar. None of the individuals in this scenario has gone into the ruin region. This happens due to the concurrence of two reasons: individuals cannot take new bets if their wealth is negative and the magnitude of the loss they can incur by losing a bet is not enough to position them below the perpetuity point. However, it is possible to see a difference in the number of individuals who, at the end of the simulation, are in the transition zone (with negative wealth but above the perpetuity point), with 15 linex agents compared to 63 linear agents.

Regarding the moderate scenario, there are not ruined individuals either for any of the utility functions. This is due to the same reason presented in the soft scenario: the magnitude of the loss due to a bet is not sufficient to position an individual's wealth below the perpetuity point. However, in this scenario it is possible to see a more pronounced difference in the number of individuals that end the simulation in the transition zone, being 41 linex agents as opposed to 290 linear agents.

Finally, the severe is the most aggressive scenario. It allows for the possibility of getting ruined by losing a bet that brings a given individual's wealth below the perpetuity point. In this case, the differences between the two groups of individuals are remarkable with 588 linear agents compared to 0 linex agents getting ruined. In this case it is possible to see a higher number of linex agents in the transition region with 74 compared to 31 for the linear agents. Finally, the highest number of linex agents is located in the additive region with 926 individuals as opposed to 381 for the linear utility function.

It is also possible to see notable differences in the behaviour of the two groups of individuals by studying the number of proposed, accepted and rejected bets. The aggregate numbers for each set of individuals and scenario are shown in Table 2.

For each set of 1000 individuals who behave according to a particular utility function the maximum number of bets that can be offered to them is 11000 (an initial one plus one at the end of each repetition for each individual).

Each bet may be accepted or rejected at the time it is proposed. Whether it is accepted or rejected is determined by the utility function describing the behaviour of the individual to whom the gamble is proposed as well as the wealth available to him at that time.

Linear agents will accept any positive expected value bet that is proposed to them due to their risk neutrality. However, we can see how the number of bets proposed to this type of individuals decreases as the severity of the scenario increases. This is due to the increasing number of linear agents whose wealth becomes negative at any point.

Linex agents would accept or reject a proposed bet depending on how close losing this bet might bring their wealth to the perpetuity point. This behaviour translates into a higher number of proposed bets since the number of individuals following this utility function whose wealth becomes negative is lower. In none of the three scenarios the number of proposed bets goes below 10,000.

The difference in behaviour for linex agents between the three scenarios could be observed in the number of bets accepted or rejected. Ranging from 8620 bets accepted against 2358 bets rejected in the soft scenario, compared to 5172 bets accepted against 5105 bets rejected in the severe scenario. It can be seen from these values that the higher magnitude of the bets included in the severe scenario forces linex agents to be more cautious in accepting bets.

It was discussed how empirical evidence suggests that individuals show risk aversion to some degree as explained in [START_REF] Harrison | Risk aversion in the laboratory[END_REF]. This simulation makes visible how this risk aversion can be understood as a means of optimizing growth rate of wealth by avoiding ruin.

VI. Discussion

In this article we have derived the utility functions predicted by ergodicity economics corresponding to two dynamics that we called additive-ruin wealth dynamics. The difference between the two lied in how debt is treated once the individual cannot pay back the totality of the owed interest.

Dynamic I, consists in an agreement between the agent and the creditor, in which the creditor will accept the full income of the agent without increasing the debt principal. We have modelled this dynamic using the logistic function. The obtained utility is a linex function.

It implies that an agent, evolving in this dynamic, optimises the time average growth rate of wealth, by being more risk averse the closer to the ruin state.

Dynamic II consists in adding the unpaid interest to the owed principal. We have modelled this dynamic using an inverted smooth ramp function. The obtained utility is logarithmic. Utility decreases much faster for negative values than in the modelization of Dynamic I. It contains a vertical asymptote at the perpetuity point.

These results give an explanation to why people might refuse lotteries of the kind: $110 with 50% chance or -$100 with 50%. Note that before EE, the majority of the explanations given to this problem were circular. A behavior is observed, and a utility function is constructed accordingly. However, the utility function is used as well as the justification for the behavior. There are exceptions like the one of Kelly [START_REF] Kelly | A new interpretation of information rate[END_REF]. With EE we start from a principle, agents optimise the time average growth rate of wealth. Then, applying the equations to a certain wealth dynamic, an associated utility function is found. It is noted that hypothesis need to be made about the dynamic in which the agent evolves in. However, there is no circularity in the resolution.

This paper provides EE with another example of dynamic in which risk aversion is present.

For a lottery such as the one defined in the previous paragraph ergodicity is broken when ruined players cannot continue playing the game. Expected value of one round will not capture what happens in the long run. Decision makers need to avoid ruin in order to assure long term growth. This is the reason why risk aversion is advisable in the vicinity of ruin. Yechiam argues in [START_REF] Yechiam | Acceptable losses: the debatable origins of loss aversion[END_REF] that agents overweight big losses but not small ones. This could be explained with an increasing risk aversion in the vicinity of ruin as in our results. This conclusion under EE needs no subjective or psychological considerations, only mechanistic assumptions about the wealth dynamic.

A. Appendix I: Algebraic sigmoid function as an alternative to the logistic function for Dynamic I As discussed previously, the choice of the logistic function to represent the additive-ruin Dynamic I is not unique. Other sigmoid functions can model the three states of ruin, transition and additive wealth. As an example, we show the derivation of the utility function for an algebraic sigmoid volatility function:

b x ( x) = β x + √ 1 + x 2 2 √ 1 + x 2 (36) 
Where:

x = x x a (37)

x is a dimensionless measure of wealth, with x a an arbitrary wealth amount used to remove the dimension. Note that for simplicity matters we have not added any extra parameters to control the transition center and width. However, it can be easily seen that the transition is centered at 0. As with the logistic function, we check that using the consistency condition [START_REF] Michel | When ross meets bell: The linex utility function[END_REF] we obtain a realistic drift term (i.e. featuring the three states as well):

a x ( x) = b x ( x) a u b u {1 + ε( x)} (38) ε( x) = b u β 4x a a u (1 + x 2 ) 3 2 (39) 
It is the case since ε( x) is bounded by a maximum located at x = 0. It tends to zero when wealth tends to plus and minus infinity. We can therefore calculate the utility function:

u( x) = b u x a b x ( x) d x (40) u( x) = 2b u x a β x + x 3 3 - 1 3 (1 + x 2 ) 3 2
+ C (41) We can arbitrarily choose the integration constant so that: u(0) = 0 (42)

x u( x) Additionnaly, we can divide by 2b u x a β and obtain the following dimensionless utility function:

u(x) = 1 3 {1 + 3 x + x 3 -(1 + x 2 ) 3 2 } (43)
An inspection of this utility function shows that for big values of wealth, utility behaves as a linear function. This is the same result already obtained for the logistic function. For wealth values below the ruin threshold utility decreases much faster (order of x 3 ). This behavior is present as well in the logistic case. However, in that case, utility decreased at an exponential rate for negative values.

Calculating the dimensionless Pratt measure for absolute risk aversion we find:

A( x) = -x a u u = x 2 √ 1+ x 2 + √ 1 + x 2 -2 x 1 + x 2 -x √ 1 + x 2 (44) 
x A( x) Note that this risk aversion function is similar to the one obtained with the logistic function in that it captures an increment in risk aversion when close to ruin. However, it is different because for big negative values of wealth risk aversion tends to zero.

Figure 1 :

 1 Figure 1:Wealth drift for Dynamic I. In the green region agent experiences an additive dynamic. In the yellow region a loan is paid back at interest rate r. In the red region the agent cannot afford interest and creditor accepts p as best deal with the principal frozen. Source: elaborated by the authors.

Figure 2 :

 2 Figure 2: Wealth drift for Dynamic II. In the green region agent experiences an additive dynamic.In the yellow region a loan is paid back at interest rate r. In the red region the agent cannot afford interest and creditor accepts p as best deal, with debt increasing due to unpaid interest. Source: elaborated by the authors.

Figure 4 :

 4 Figure 4: Dynamic I drift term compared to logistic drift term. Source: elaborated by the authors.

Figure 3 :

 3 Figure 3: Sample paths for dynamic defined in (22) for different values of initial wealth, in terms of p/r. Note that x = -p/r is the perpetuity point. Note how for big negative values of initial wealth, wealth is frozen, and for less extreme negative values, additive dynamics takes time to appear. The simulations were made with p = 2, r = 0.03 and β = 1.5. Source: elaborated by the authors.

Figure 5 :

 5 Figure 5: Dimensionless utility function obtained in (24) compared to linear utility function (green). Source: elaborated by the authors.

1 Figure 6 :

 16 Figure 6: Absolute risk aversion for the case γ = 0.5.Note that x = -2 corresponds with x = -p/r which is the perpetuity point and beginning of the ruin region. Source: elaborated by the authors.

Figure 7 :

 7 Figure 7: Drift function for the modelization of Dynamic II: the red area corresponds to the ruin state, the yellow area to the transition state and the green area to the additive region. Source: elaborated by the authors.

Figure 8 :

 8 Figure 8: Utility function for Dynamic II with β 0 = β 1 = k = 1 setting integration constant so that u(0) = 0. Source: elaborated by the authors.

Figure 9 :

 9 Figure 9: Kernel density estimation of the final wealth results from the simulation of the three scenarios. The plot was made using the gaussian kernel . The black line represents the 0-wealth threshold, the red line represents the perpetuity point and the blue line represents the wealth threshold at which individuals who behave according to a linex utility begin to accept bets. Source: elaborated by the authors.

Figure 10 :

 10 Figure 10: Dimensionless utility function (blue) obtained in 43 compared to linear utility function (green). Source: elaborated by the authors.

Figure 11 :

 11 Figure 11: Dimensionless absolute risk aversion for the algebraic volatily case. Source: elaborated by the authors.

Table 1 :

 1 Magnitude of the bets proposed for each scenario. Values in wealth units. Source: elaborated by the authors.

	Scenario	Win (50% probability)	Lose (50% probability)
	Soft	45	40
	Moderate	65	60
	Severe	120	100
	function predicted by EE for Dynamic I. Here-
	inafter, linex agents.	
	The simulation consisted on the same experi-
	ence for each individual: one initial bet fol-
	lowed by 10 repetitions made up of 12 periods
	according to the additive-ruin dynamic, plus
	one potential bet at the end of each repetition.

Each individual will be proposed a maximum of 11 bets. Bets are only proposed if the individual's current wealth is positive or zero.

Table 2 :

 2 Results of the different scenarios of the simulation. The total number of individuals per u(x) and simulation is 1000. The total number of bets per u(x) and simulation is 11000. Source: elaborated by the authors.

	Scenario	u(x)	Region (number of individuals) Ruin Transition Additive	Bets (number of bets) Proposed bets Accepted bets Rejected bets
	soft	linex linear	0 0	15 63	985 937	10978 9254	8620 9254	2358 0
	moderate	linex linear	0 0	41 290	959 210	10994 7042	6911 7042	4083 0
	severe	linex linear	0 588	74 31	926 381	10277 5292	5172 5292	5105 0