
HAL Id: hal-03198042
https://hal.science/hal-03198042

Submitted on 14 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artistic resizing: a technique for rich scale-sensitive
vector graphics

Pierre Dragicevic, Stéphane Chatty, David Thevenin, Jean-Luc Vinot

To cite this version:
Pierre Dragicevic, Stéphane Chatty, David Thevenin, Jean-Luc Vinot. Artistic resizing: a tech-
nique for rich scale-sensitive vector graphics. UIST ’05: Proceedings of the 18th annual ACM
symposium on User interface software and technology, Oct 2005, Seattle, France. pp.201-210,
�10.1145/1095034.1095069�. �hal-03198042�

https://hal.science/hal-03198042
https://hal.archives-ouvertes.fr


Artistic Resizing: A Technique For
Rich Scale-Sensitive Vector Graphics

Pierre Dragicevic1 Stéphane Chatty1 David Thevenin1 Jean-Luc Vinot2

1IntuiLab 2Direction Générale de l’Aviation Civile
Prologue 1, La Pyrénéenne DSNA/SDER, 7 avenue Edouard Belin

31672 Labège Cedex, France 31055 Toulouse, France
{dragice,chatty,thevenin}@intuilab.com jean-luc.vinot@aviation-civile.gouv.fr

ABSTRACT
When involved in the visual design of graphical user inter-
faces, graphic designers can do more than providing static 
graphics for programmers to incorporate into applications. 
We describe a technique that allows them to provide exam-
ples of graphical objects at various key sizes using their usual 
drawing tool, then let the system interpolate their resizing 
behavior. We relate this technique to current practices of 
graphic designers, provide examples of its use and describe 
the underlying inference algorithm. We show how the math-
ematical properties of the algorithm allows the system to be 
predictable and explain how it can be combined with more 
traditional layout mechanisms.

ACM Classification: H5.2 [Information Interfaces and 
Presentation] User Interfaces — GUI; D2.2 [Software Engi-
neering] Design Tools and Techniques; D2.6 [Software En-
gineering] Programming Environments.

General terms: Design, Human Factors, Languages

Keywords: visual design, vector graphics, SVG, GUI 
tools, layout, resizing, constraints, interpolation

INTRODUCTION
Solutions are increasingly available for graphic designers to 
build the graphics of visual applications directly without hav-
ing programmers translate their work into code. For in-
stance, Macromedia Director allows designers to build sim-
ple multimedia applications. More recently IntuiKit pro-
poses a solution to merge graphics with the more traditional 
software components of larger applications [6]. However, 
many graphic designers are willing to go further and take 
more control over the programming of user interfaces. When 
used in an interactive application, their graphics are often 
adapted to reflect context changes or data variations, and con-
trolling these changes should be part of their job. In particu-
lar, they want to control the way the graphics are resized.

UIST’05, October 23-27, 2005, Seattle, Washington, USA.
Author's version.

A number of automated techniques are available to manage
the layout of visual interfaces. They range from the sim-
ple rescaling to more complex constraint solving algorithms.
However, most techniques are aimed at programmers and do
not provide a fine enough level of control for designers. They
do not take into account the fact that the eye is a subjective in-
strument and that deformations must be applied to objects in
order to create an illusion of smooth resizing (see Figure 1).
Consequently, designers have to choose between accepting a
sub-optimal resizing of objects, providing graphics for every
expected size, or ask programmers to produce of a specific
resizing function for each object.

Figure 1: Artistic resizing: the same object at several
key sizes. Details are magnified in the background.

Artistic resizing is a programming-by-example solution to
this problem, aimed at graphic designers. It consists of pro-
viding several copies of an object that should have a spe-
cific resizing law. Each copy represents the object at a key
size. The system then interpolates the variation of the object
between these key sizes, when needed. It takes advantage
of modern scalable vector graphics to provide pixel-precise
control over the resizing of objects while preserving the ap-
propriate level of generality. Furthermore, Artistic Resizing
is a purely visual technique that relies on the use of current
graphic design software. It thus empowers designers with-
out disturbing current work practices. With Artistic Resizing
added to IntuiKit, graphic designers and programmers can
work in parallel as before but more work than usual is de-
voted to designers.

After summarizing the state of the art of layout and resizing
techniques, we analyze how that activity fits in the practices
of designers. We then show through examples how Artistic
Resizing supports their needs. We then describe the inter-
nals of the system: example extraction and interpolation. We
finally describe how the system can be generalised to other
situations.



RELATED WORK
Advanced resizing behaviors in GUIs are often associated
with layout management systems. Whereas in the "fixed lay-
out" model, coordinates and sizes of elements do not evolve
according to the container’s dimensions, higher-level layout
models allow the dynamic adaptation of graphical contents.
We recall these models here, as well as the work on image
interpolation in the fields of animation, typography and com-
puter graphics.

Traditional Layout Management
The most popular approach to layout is the boxes and glue
model, coming from the field of document publishing and
widely adopted in GUI toolkits [22, 14]. Most of the power
and ease of use of box layouts comes from the fact that boxes
can be nested. But the model of containement hierarchy is
also limitative in that it cannot be applied to rich graphics.
For example, Scalable Vector Graphics (SVG) groups are
used to describe objects that are expected to move together
or that share graphical attributes, but rarely to express con-
tainment. In fact, containment is far less relevant in graphical
design than composition and superposition of elements such
as backgrounds, shadows and lights.

Constraints
Constraints have been a popular approach in research for ex-
pressing GUI layout [20, 10, 9]. They are more expressive
and more declarative than boxes and glue models and do
not have to rely on containement hierarchies. Constraints
are easy to use when there are a few, but have proved to
be complex to specify and maintain as their number in-
creases [13, 3].

Some constraint-based GUI toolkits include graphical fron-
tends for specifying layout. For example, an early but
ingenious system allows specifying resizing behavior for
windows by moving "attachment points" linked to object
edges [5, 9]. A related approach relies on the struts and
springs model [22]. Again, although these visual languages
allow non-programmers to easily specify layouts, they can be
difficult to use when visual elements are numerous.

Programming by Example
Most work on programming by visual examples focused on
inferring the mappings between application data and its vi-
sual representation [18, 19, 17, 8]. Some systems like Peridot
allow demonstrational layout specification by inferring sim-
ple geometrical constraints between visual elements [18].
But most PBE systems involve sophisticated inference en-
gines and rely on user mediation for solving ambiguities,
which is hardly compatible with the graphic designer’s way
of working.

An approach that successfully combines power and ease of
use is the Chimera system [13], which can infer from multi-
ple drawings geometrical invariants such as incidences, rel-
ative distances and slopes. Chimera’s specification style is
subtractive, i.e., all possible constraints are built first, then
the users incrementally removes unwanted constraints by
adding new examples. Resizing behaviors can be specified
using a bounding box as part of the scene.

Although Chimera allows to visually express a wide range
of resizing behaviors, it still shares some drawbacks with
previous approaches. It can infer overconstrained or unin-
tended rules, which require the user to draw more examples
to prune away undesired constraints. Then, extensive search
for invariants is a costly process, sensitive to combinatorial
explosion. Our work is closely related to the Chimera sys-
tem but is specifically targeted to resizing and better handles
complex graphics. The technical differences between the two
approaches will be highlighted later in this paper.

Bitmap Tiling
As far as we know, the only attempt to give graphic design-
ers some control over resizing behaviors was by Hudson and
al [11]. Designers provide bitmaps in nine parts that are re-
sized differently in the GUI. Despite its simplicity, the 9-part
tiling technique supports a resizing law commonly seen in
resizable widgets. But tiling-based approaches rely on as-
sumptions that place constraints on graphic designer’s work
processes. Moreover, they do not naturally extend to vec-
tor graphics which cannot easily be cut out into rectangular
pieces.

Image Interpolation
Altough animations can be described procedurally or using
constraints, key-frame interpolation is still considered as the
most expressive method [26, 15]. In-betweening algorithms
usually involve rigid interpolation of transformations [25].
Other schemes range from direct linear interpolation of coor-
dinates to physically-based shape blending [24].

Parametric images are a generalization of animation. If most
advanced techniques use domain-specific parametrizations
such as joint angles for controlling anthropomorphic fig-
ures [23], a more general approach involves generating fam-
ilies of images by blending several examples. Ngo and al,
for example, use piecewise linear interpolation and simpli-
cial complexes to specify valid transitions between several
images [21].

Parameterization is also supported in some font systems.
Adobe’s Multiple Masters [1] uses weighted linear interpo-
lation between sample fonts, an algorithm similar to ours, to
generate fonts variations according to "design axes" such as
optical size, weight and style.

Another corpus of work comes from the field of image mor-
phing, where bitmap images are transformed to retain geo-
metric alignement between user-specified landmarks such as
meshes or curves. Well-known algorithms are field morph-
ing [4] and scattered data interpolation [27]. Most of them
are tuned to give compelling effects on realistic photographs
rather than to preserve simple geometrical properties.

Key-image interpolation has proved successful in several
fields and our contribution shows that it can also be applied to
the problem of GUI resizing. The technical issues are how-
ever different, especially when compared to animation. We
will develop on these further in this paper and explain how
a computationnaly costless variant of direct linear interpo-
lation both solves the multivariable problem and allows de-
scribing most desired resizing behaviors.



HOW DESIGNERS PRODUCE VARIANTS
Despite being used to more stable media than interactive dis-
plays, most graphic designers are often faced with situations
similar to resizing and layout. Indeed, preparing variants of
their work is a common task for graphic designers. For in-
stance, they learn to build fonts at different sizes during their
typography courses. The same holds for layouts in layout
courses. Another example is corporate design: in this case,
they know that their work will be used by others on different
media, at different sizes, on different color backgrounds and
in different contexts. It is thus important to understand how
they work with variants of their designs.

Scale-dependent Designs
The eye is a very subjective measurement system. To suit it
and produce the desired result, resizing often has to be ap-
plied differently for different parts of a picture. In a font, two
glyphs may need to have different sizes so as to appear sim-
ilar, and the necessary adjustment will not change linearly
with scale. Among three aligned lines in a picture, the most
central has to be longer than the others to appear the same
size, and here again the adjustment will not change linearly
with size. The same holds for the space between words in a
title, or between blocks in a layout. In addition to these fac-
tors, constraints have to be applied to ensure the readability
of a picture : for instance, small parts of the picture will be
reduced more slowly than the rest so that it stays visible.

Figure 2: A logotype prepared for different sizes. De-
tails are magnified in the background and show the
differences.

As an example, in Figure 2 we have scaled up (in pink and
grey) two variants of the same logotype which are destined
for different sizes. The actual use of each logotype is shown
on top of it. What appears first is that the pink square has a
bigger relative size when the logotype is prepared for a small
scale: in order to keep the square visible, the designer had to
reduce it less than the rest. The other effect is well known
to font designers: the proportions of the Q-like glyph have to
be changed depending on the scale of the glyph.

Working with the Eye, Explaining with Examples
Finding the design that works at a given size is a forward
searching, heuristic activity. The laws that govern the rela-
tive sizes of object parts are often not linear, and actually un-
known. Finding the appropriate proportion is a complex and
iterative process of experimentation that stops when the de-
signer’s eye is satisfied. Designers are often unable to explain
why the result works. That is why, when doing corporate de-
sign, they try as much as possible to provide samples for all
situations thay can foresee: doing so, they avoid explaining
how the result can be extrapolated. Furthermore, designers
are used to a close experimentation-evaluation loop: the eye
can evaluate quickly what the hand has attempted. Conse-
quently, it is more efficient to experiment graphically then

perform some reverse engineering on the result rather than
code directly the resizing law, even for a designer with pro-
gramming skills. Artistic Resizing builds on that understand-
ing: it uses the examples produced by designers and does the
reverse engineering for them.

Figure 3: Three resizing strategies for a vector graph-
ics button: fixed layout (a), naive scaling (b) and com-
monly expected resizing (c).

ARTISTIC RESIZING AT WORK
In this section, we introduce the main concepts behind Artis-
tic Resizing through examples.

An Introductory Example
Figure 3 shows a simple dialog window with a SVG button
inside. This dialog can have no resizing strategy at all (a) or
take advantage of the scaling capabilities of vector graphics
(b). But because naive scaling distorts the graphics, it may be
more acceptable to preserve some graphical constraints such
as text size, border width and rectangle roundings (c).

Figure 4: The SVG specification of Figure 3c, with the
three button parts and their bounding boxes.

Figure 4 shows the SVG document drawn by the graphic
designer to describe the button of Figure 3c. The way the
pictures in the different rows of the figure can be combined
to form an interactive button has been described in [6]. We
will focus here on the Artistic Resizing that occurs between
pictures of the same row. There are two different ways of
explaining what happens:



Figure 5: A possible scenario: on the top left, the graphic designer draws a graphical object and sees how it behaves
when naively scaled (1). She then decides to draw a second example to specify another way of shrinking the object (2).
The new resizing behavior can now be tested to see how it behaves between and outside the examples.

• The constraint-solving view. The first two examples spec-
ify what to do when the button is scaled down: the OK
label must stay centered and always keep the same size, as
well as the box roundings and the border width. Shadow
location has also been constrained so that the button al-
ways appear to be at the same elevation. The third example
specifies that when the button becomes so small it cannot
contain the label any more, everything is scaled down.

• The graphical design view. Buttons with different sizes
have been drawn in such a way that each of them appeared
visually acceptable to the designer. Because designers can-
not draw hundreds of them, some morphing algorithm will
smoothly infer the intermediate sizes.

Both views are valid when drawing examples for Artistic Re-
sizing. When the specification of Figure 4 is executed, con-
straints that were expected to be maintained are indeed main-
tained, even outside the specified size range. For example,
the text stays centered, but a right or top alignement could be
specified as well, as detailed later in this paper.

However, Artistic Resizing is not all about specifying invari-
ants. A large palette of continuous changes can also be spec-
ified, such as those shown in Figures 1 and 2. For instance,
the button designer can decide to slightly reduce the size of
the label and make the rectangle sharper on the middle exam-
ple. In this case, the changes would be smoothly interpolated
and key sizes would remain unnoticed. While testing the re-
sult, the designer can choose to add more examples for the
sizes she does not find appealing. In fact, Artistic Resizing
encourages incremental design, as we will see on a sample
scenario.

An Artistic Tab System
In this section, we use a scenario to shed some light on the
process, as well as how more sophisticated behaviors can be
described. Gaëlle, a graphical designer, was asked to draw
a three-tab system dedicated to a specific interactive appli-
cation. She has started to freely explore an "aqua-like" style
and wants to study different resizing behaviors for her graph-
ics. She plans to use IntuiKit’s Artistic Resizing Viewer,
a small aplication that can load any non-interactive SVG
graphics then allow to dynamically resize it with a handle.

When Gaëlle checks how her single graphical object is re-
sized by IntuiKit, she first finds that compressing text is not
visually acceptable (Figure 5 on the left). So she decides to
explore horizontal resizing as a first step.

In her drawing program, she copies and pastes her graphics
and decides to try the effect of simply compressing the tabs
without resizing them (Figure 5, right pencil). She ungroups
the graphics and moves the middle and right tab to the left so
that they partially cover each other. She then tests the tran-
sition between the specified examples, as well as the effects
of extrapolation (right part of Figure 5). She notices tabs are
separated on one side and the text is hidden on the other side.

Figure 6: Scenario, continued: examples 3, 4, 5 and
6 describe the behavior for smaller and larger widths,
whereas 7, 8 and 9 specify the vertical behavior.

The next iterations are shown on Figure 6: 3 Gaëlle does
not want the tabs to expand when enlarged, so starting from
the first example then expands the background and the bot-
tom line to the right while keeping the tabs intact. 4 Gaëlle
also wants to prevent the text from being hidden. She adds a
smaller example in which the middle tab has been shrinked
and the captions slightly compressed.

The resizing behavior is now as follows: when the tab system
is enlarged, the left part remained unchanged and the back-
ground fills the remaining space. As the tab system gets com-
pressed, the tabs begin to move behind each other at some
time. Then, the middle tab shrinks as if labels were pushing
it on both sides. The text continues to shrink but not quickly
enough and eventually extend beyond the tabs.



The final additions are (Figure 6): 5 At smaller sizes, tabs
become individual buttons with no text. This illustrates how
subparts can be slowly or instantly hidden by controlling
opacity. 6 is a "stabilizing" example. Such examples are
added at extremal sizes to avoid unexpected extrapolation ef-
fects such as overshooting. A stabilizing example can be a
copy of a previous example with a simple scale applied, or
an exact copy with a different bounding box (in which case
the object stops shrinking or growing).

7, 8 and 9 describe a simple horizontal resizing behavior: the
tab system is not growing horizontally and stays aligned with
the top (this is also specified by changing the bounding box
alone). Tabs can shrink a little but are quickly pushed outside
the bounding box. Though this behavior looks complex, we
saw that it only needed nine examples and took less time to
produce than the graphics alone1.

At this point, Gaëlle can refine the Artistic Resizing she built
or test completely new ones. She can also start realizing the
final SVG file with the alternative graphical states she will
send to Paul, the programmer, knowing that she can easily
reuse graphics as well as existing Artistic Resizing specifica-
tions she made.

Gaëlle can also decide to explore a brand new graphical style,
but in this case she will probably have to rebuild a resizing
specification from scratch. Similary, she is able to iterate on
the aqua-style graphics by reflecting changes in all examples,
but it can be a tedious task if the number of examples is large.
This is why the Artistic Resizing design process is best split
in two stages: a first stage for designing the graphics in a
given size and a second one for specifying how it will look
like at other sizes.

A SIMPLE GEOMETRY INFERENCE SYSTEM
In this section, we describe the technique we used for infer-
ring geometries by using bounding boxes as input variables.
We explain exactly what the algorithm does, what it can and
cannot infer, and why.

Extracting Affine Transformations
In the world of vector graphics, geometry is most often de-
scribed by affine transformations. Example of such trans-
formations are translation and scale, useful for coding loca-
tion and size of graphical primitives, as well as rotation and
shear. Affine transformations are most often formulated us-
ing homogeneous coordinates so that the six coefficients that
characterize the transformation can be bundled into a single
transformation matrix T :

[
x′
y′
1

]
=

⎡
⎣ a11 a12 a13

a21 a22 a23

0 0 1

⎤
⎦

︸ ︷︷ ︸
T

[
x
y
1

]

Some graphical authoring applications like Sodipodi main-
tain a transformation matrix for each primitive or group,
while others like Adobe Illustrator maintain flattened lists of

1Videos showing the examples described in this paper are available at
http://www.intuilab.com/artresize.

coordinates [12, 2]. In the last case, each isolated point can
be seen as the origin point with a specific translation matrix.
Therefore, each time a graphic designer is moving or scaling
objects in any drawing application, he is manipulating affine
transformation matrixes. More precisely, he is sequentially
manipulating fixed sets of matrix coefficients, depending on
the type of transformation chosen among available tools, in-
teractors and keyboard modifiers.

In this section we suppose that during the Artistic Resizing
design process, graphic designers are using their authoring
application as a matrix manipulation tool. Everything else,
including structure and graphical attributes, are kept constant
from one example to another one (see Figure 7). This is eas-
ily done by the exclusive use of copy and paste and a subset
of the available manipulation tools.

As a consequence, a graphical example can be viewed as
a mere set of transformations matrixes and inferring exam-
ples simply requires interpolating affine transformations. Be-
cause examples share the same structure, related transforma-
tions such T1 and T ′

1 in Figure 7 can be easily extracted,
compared with each other and if they differ, independently
interpolated to infer local varying laws.

Figure 7: Two graphical examples that only differ by
the affine transformations applied to their subparts.

Interpolating Affine Transformations
Suppose that a transformation T is a function of a scalar t
representing, e.g., time. We call t the input variable and T
the output variable. Now suppose we are given two points
(t1, T1) and (t2, T2). Interpolation techniques allow us to in-
fer the matrix T for each t between t1 and t2, the most simple
of those techniques being linear interpolation2 of the matrix
coefficients [25]. Such techniques are easily generalizable to
more than two examples, e.g., using piecewise linear inter-
polation [7].

Artistic Resizing involves two input variables: a width and
an height, and we need to infer the transformation associated
to any (width, height) pair. Most monovariate interpolation
methods cannot be used with more than two examples be-
cause there is no total order on the 2D space. As an example,
piecewise linear interpolation cannot be applied without the
help of triangulation techniques [16].

However, we make a simplifying hypothesis that brings us
back to the case of two monovariate linear interpolations.
This hypothesis is that width only impacts the three coeffi-
cients of the transformation matrix that contribute to the x-
coordinate of the transformed point (the first line of the ma-

2For other values of t, this operation is usually called extrapolation. Though
we will be talking about interpolations, the problem is the same.



trix, see previous section). Similarly, the three coefficients on
the second line are linearly interpolated along height. We call
this simple transformation interpolation technique orthogo-
nal interpolation.

The Orthogonal Interpolant
Together with a mathematical definition of orthogonal inter-
polation, we introduce here the notion of compatibility be-
tween examples in terms of orthogonal interpolation.

Definition 1. We define an example as a tuple E = (w, h, T ),
where w ∈ R, h ∈ R and T is a 2-D transformation matrix.

Definition 2. Two examples E1 = (w1, h1, T1) and E2 =
(w2, h2, T2) are said compatible in terms of orthogonal in-
terpolation iif

w1 = w2 ⇒ {a1j
1 = a1j

2 }j∈[1,3]

and h1 = h2 ⇒ {a2j
1 = a2j

2 }j∈[1,3]

where aij
1 and aij

2 are the coefficients of the matrices T1 and
T2 respectively.

Definition 3. Let E1 = (w1, h1, T1) and E2 = (w2, h2, T2)
be two compatible examples. The orthogonal interpolant of
E1 and E2 is the function:

Iorth
E1,E2

: (w, h) �→ T =

⎡
⎢⎣

Ilin

(w1,a11
1 ),(w2 ,a11

2 )
(w) Ilin

(w1,a12
1 ),(w2,a12

2 )
(w) Ilin

(w1,a13
1 ),(w2,a13

2 )
(w)

Ilin

(h1 ,a21
1 ),(h2,a21

2 )
(h) Ilin

(h1 ,a22
1 ),(h2 ,a22

2 )
(h) Ilin

(h1,a23
1 ),(h2 ,a23

2 )
(h)

0 0 1

⎤
⎥⎦

where:

• I lin
(x1,y1),(x2,y2)

is the linear interpolant of (x1, y1) and

(x2, y2), i.e., the function (x, y) �→ (x2−x)y1+(x−x1)y2
x2−x1

if
x1 �= x2 and (x, y) �→ y1 otherwise.

• aij
1 and aij

2 are the coefficients of the matrices T1 and T2

respectively.

The definition can be immediately generalized to more than
two examples (i.e., extended to I orth

E1,...,En
) by replacing I lin

by the piecewise linear interpolant.

Geometrical Interpretation
Whereas orthogonal interpolation operates on affine transfor-
mations, it is useful to reintroduce concrete geometrical ob-
jects (i.e., points, lines, shapes) for understanding its effects
on graphics. In this section, we give a geometrical interpre-
tation of the previous definition.

Let T1 and T2 be two affine transformation matrices and
IT1,T2 = Iorth

(w1,h1,T1),(w2,h2,T2)
one orthogonal interpolant

that generates a family of intermediate transformations (there
are as many interpolants as values of w1, h1, w2, h2).

If P1, P2 and P are the points obtained by transforming the
same point of the plane through T1, T2 and the intermediate
transformation IT1,T2(w, h) respectively, then P (x, y) can be

directly built from P1(x1, y1) and P2(x2, y2) using the fol-
lowing formula:

P

(
x
y

)
=

⎛
⎝ I lin

(w1,x1),(w2,x2)
(w)

I lin
(h1,y1),(h2,y2)

(h)

⎞
⎠

That is, P simply results from a double linear interpolation
of P1 and P2 along the x-axis and the y-axis separately, as
illustrated on Figure 8.

Figure 8: Geometrical interpretation of orthogo-
nal interpolation. Here, an intermediate transfor-
mation T is applied to a point O, with T =
Iorth
((0,0),T1),((1,1),T2)

(0.75, 0.25).

This stands true when intermediate transformations are ap-
plied to shapes or tuples of points: computing an interpolated
transformation IT1,T2 before applying it to a tuple of points
is the same as applying the two example transformations T1

and T2 then interpolating each point as previously described.

Graphics with Multiple Transformations
What is the result of orthogonal interpolation when applied
on graphics made of several shapes, each having its own
transformation? Let us model shapes as tuples of points and
consider two tuples of shapes (S1

1 ,...,Sn
1 ) and (S1

2 ,...,Sn
2 ) ob-

tained after applying (T 1
1 ,...,T n

1 ) and (T 1
2 ,...,T n

2 ) to the origi-
nal tuple of shapes.

Figure 9: A spline morphing with three key images,
using a transformation on each control point. Interpo-
lating control points is the same as interpolating the
curve.

Orthogonal interpolation is easily generalized to tuples of
transformations by interpolating each pair (T i

1, T
i
2) sepa-

rately. Again, intermediate composite objects can be built
by direct interpolation of each pair of points (P i

1 , P
i
2), with

(P 1
1 ,...,Pm

1 ) and (P 1
2 ,...,Pm

2 ) being all the points obtained by
flattening (S1

1 ,...,Sn
1 ) and (S1

2 ,...,Sn
2 ).



One important consequence of this is that orthogonal inter-
polation is independent from the way the points (or transfor-
mations) are partitioned into shapes. Interpolating graphics
from Illustrator or Sodipodi would give the same visual ef-
fects. This is illustrated in Figure 9: orthogonal interpola-
tion between 1 and 2 involves multiple transformations but
would give the same results if a single transformation were
associated to the set of control points (or even to the whole
curve, due to the property of affine invariance of spline con-
trol points). However, one transformation is not enough for
the interpolation between 2 and 3.

Note, however, that there is no more equivalence when or-
thogonal interpolation is further generalized to compositions
of transformations. Moreover, the resulting interpolants may
not be linear any more: for example, if an object is scaled by
1/2 then 2 on the first example and scaled by 2 then 1/2 on
the second one, the actual scale on both examples is 1 while
being 3/2 × 3/2 inbetween. This is not acceptable because
such behavior is unlikely to be expected and most interesting
properties are lost. Fortunately, this problem can always be
addressed by pre-multiplying all the varying matrices down
the transformation trees before interpolating them. Provided
that scene graphs are normalized in this way, interpolation re-
sults are fully independent from the way the graphical object
has been structured into groups, shapes, or coordinate lists.

Useful Properties of Orthogonal Interpolation
What if a graphic designer draws a square centered into an-
other square as a first example and keeps it centered in the
second example ? Will the square remain centered on all in-
terpolated images, as he may expect ?

A conservative property for orthogonal interpolation is a ge-
ometrical property that, if verified on two tuples of shapes
obtained after applying (T 1

1 ,...,T n
1 ) and (T 1

2 ,...,T n
2 ), is still

verified after applying any of the intermediate tuples of trans-
formations built from (T 1

1 ,...,T n
1 ) and (T 1

2 ,...,T n
2 ). Interesting

conservative properties can be deduced from the "partition
independence" property and the fact that orthogonal interpo-
lation preserves affine combinations of points. Some of those
properties are (see Figure 10):

• a. Preservation of projected algebraic measures. If once
projected on a given axis, a vector has the same algebraic
measure on the two examples, then this value will remain
constant. As a result, "horizontal" and "vertical distances"
are preserved, provided that the points are kept on the same
side from each other. This allows specification of borders
and margins.

• b. Preservation of relative ratios. If three points are
aligned by the same distance ratio on the two examples,
then they will remain aligned and the distance ratio will
remain the same. As a consequence, midpoints are pre-
served. This property is useful as constant ratios are likely
to be used by graphic designers.

• c. Preservation of coincident vertices. If two points co-
incide on the two examples, then they will always coin-
cide. As a consequence, two shapes which meet through
the same pair of points on each example will remain in
contact. This allows specifying incidence relationships be-
tween different graphical primitives.

• d. Preservation of parallelism. If two lines are parallel on
the two examples, then they will always be parallel. De-
signers may particularly expect this invariant for horizon-
tal and vertical lines, even if it stands true for any orienta-
tion. Parallelograms are also preserved, as well as rectan-
gles parallel to the main axes.

• e. Preservation of affine combinations. This general prop-
erty is unlikely to be exploited as such by the graphic de-
signer but has been added to Figure for illustrative pur-
poses. Please note that alignment is a conservative prop-
erty only if affine combination is respected.

Figure 10: Conservative properties illustrated: a.
preservation of projected algebraic measures, b.
preservation of ratios, c. preservation of coincident
vertices, d. preservation of parallelism, e. preserva-
tion of affine combinations.

Limitations of Orthogonal Interpolation
The main limitations of orthogonal interpolation in terms of
conservative properties and expressive power are:

• a. Composition. As seen before, orthogonal interpo-
lation poorly handles composite transformations. Non-
linearity arises if the transformation law of an object is



spread among its different ancestors, which typically hap-
pens when examples are individually grouped, ungrouped
and manipulated several times. This limitation is easily
overcome by pre-multiplying transformations in the scene
graph, but it can be an issue if local transformations need
to be kept in the GUI for some reason.

• b. Axis Dependency. Orthogonal interpolation is depen-
dent from the coordinates system: some properties, such
as preservation of right angles, are only true in a given ori-
entation. As a consequence, some geometrical invariants
may disappear if graphics are rotated.

• c. Singularities. Intermediate matrices can (at least the-
oretically) become singular: if two examples contain an
object and its reflection, the object exactly halfway inbe-
tween will be infinitely thin. It might be a problem when
inverting matrices for object picking, for instance.

• d. Rotations. Orthogonal interpolation poorly handles ro-
tations: an object cannot be told to simply rotate from one
angle to another one. Instead, the two shear components
are interpolated separatedly which causes the object to be
deformed.

• e. Cross-Axis constraints. Orthogonal interpolation cannot
infer constraints involving both axis. For example, it is not
possible to specify constant ratios such as squares and cir-
cles, or oblique lines with a constant direction. Similarly,
an object cannot be told to expand in the orthogonal direc-
tion when compressed, which may be needed for certain
squeezing effects.

• f. Non-linear constraints. Orthogonal interpolation is not
able to infer behaviors allowed by non-linear layout mod-
els such as flow layout. For example, it is not possible to
tell an object to "carriage return".

Limitations b, c and particularly d have been pointed out pre-
viously by [25], which compared a monovariate technique
close from orthogonal interpolation with a technique involv-
ing separate interpolation of rotation. However, this study
has been done in the context of animation (cartoons and 3D
animation, not GUIs), which involves quite different issues:

• Animation is monovariate (time) whereas resizing is bi-
variate (width and height).

• GUI objects have strong horizontal and vertical compo-
nents, they are "box-like". Bounding boxes used in re-
sizing interactions are themselves a strong reference sys-
tem with a fixed orientation. Among other consequences,
graphic components rarely rotate (at least in a continuous
way) when the object is resized.

• In cartoons and 3D animation, emphasis is put on rigidity,
that is why rotation is preferred to shear. In GUIs, objects
have a "elastic" feel, they are expected to be deformable.
Shear may be desirable to preserve common vertices, a
property polar interpolation lacks.

• Animations can be precomputed, whereas in most cases
we want resizing to update interactively. Separate interpo-
lation of rotation involves polar decomposition, which is
more costly than orthogonal interpolation.

Finally, we argue that limitations e and f (lack of expressive
power) are the price to pay for simplicicy. The Chimera [13]
system we already mentioned has a more sophisticated infer-
ence system and is able to infer cross-axis and rotational con-

straints, but it needs more examples for solving ambiguities.
In constrast, orthogonal interpolation needs only two or three
examples for inferring resizing behaviors most commonly
seen in GUI widgets today. Moreover, several examples
can be used in Artistic Resizing for describing non-linear
(piecewise linear) resizing behaviors whereas all examples
in Chimera are used to infer a single set of constraints. In
fact, when compared to by-example systems our technical
approach is quite new: instead of explicitly searching for in-
variants, we use a simple interpolation technique that pre-
serves invariants as a natural consequence of its mathemati-
cal properties. One of the advantages is that both inference
and resizing computations are very fast, even with extremely
complex vector graphics.

GENERALIZATION AND FUTURE WORK
Though Artistic Resizing has not been designed to express all
layout management mechanisms, we describe in this section
how it can be combined with more classical layout manage-
ment systems. We also consider possible approaches for in-
terpolating vector graphics more extensively, by taking other
graphical attributes into account. Finally, we describe other
future work.

Combination with Other Layout Models
As a proof of concept, we extended Artistic Resizing so as
to support containement hierarchies and collaborate with a
layout manager that distributes available space among chil-
dren. In Artistic Resizable containers, the area allowed for
children is depicted by a rectangle whose variation law is
specified visually as any other graphical subpart. Changes in
this rectangle are propagated to a layout manager which in
turn updates the sizes of its Artistic Resizing children.

Figure 11: Nested Artistic Resizing.

Figure 11 shows an example of nested panels and buttons.
The panel has been graphically designed so that the title bar
slides behind the panel below a given height. Borders also
shrink at very small sizes to give full room to children. All
behaviors smoothly blend with each other to form a whole
object with sophisticated resizing. Figure 12 illustrates an-
other example of cooperation between Artistic Resizing and
an AquaDock-like layout manager: every time the mouse
pointer moves on the dock, the layout updates the size of
each icon.

For now, Artistic Resizing only supports top-down (or
outside-in) layout propagation. One example of bottom-up
(or inside-out) layout strategy is when a button expands hor-
izontally when its label is too wide [9]. We are currently in-



Figure 12: An "Artistic Dock".

vestigating the integration of such mechanism, together with
bidirectional layout propagation involving negociation [22].

Extensive Interpolation of Scalable Vector Graphics
In the previous section we described the main inference
mechanism in Artistic Resizing, i.e., interpolation of affine
transformations. We applied this technique to SVG files
by interpolating all the SVG attributes associated to the X
and Y axes (widths, heights, coordinates of curve control
points). We additionnaly identified the following attributes
that would need to be managed so as to be able to fully inter-
polate arbitrary SVG pictures:

• Other size-related features: some features such as circle
radii or stroke widths are spatial dimensions but are not re-
lated to the X and Y axes. Consequently, the hypotheses
that underly orthogonal interpolation do not apply. A sim-
ple approach to handle that would be to combine the width
and height into a single variable that reflects the size of the
bounding box, so as to use it as input for piecewise linear
interpolation. For example, Artistic Resizing currently in-
terpolates stroke widths using the bounding box area as the
input variable.

• Non-spatial features: the only non-spatial feature handled
by Artistic Resizing is opacity, which can be interpreted as
related to size (the smaller the object, the more transparent
it is, for instance). Other features such as colors or text
content have no spatial semantics, so orthogonal interpola-
tion does not apply either. Possible solutions are discussed
later in this section.

• Structural features: for now Artistic Resizing does not in-
terpolate SVG structures: subparts cannot be suppressed
from or added to individual examples. A simple extension
would be to allow alternative graphical representations by
separately interpolating examples with different structures.
Another more sophisticated approach would be to perform
pattern matching on SVG subtrees.

In the search for a more general solution, generic multivari-
ate interpolation methods may appear interesting, particu-
larly for interpolating features that are not directly related
to X or Y axes. But they also have drawbacks.

Bilinear interpolation, for example, would require that all
(width, height) pairs fill a regular grid. For arbitrary dis-
tributions of sample points, the most popular methods are
Delaunay triangulation with linear interpolation and Natural
Neighbor interpolation [16]. They are efficient for smooth-
ing big data sets (e.g., a hundred of points) but lack stability
and predictability when the number of examples is very small
(e.g., between two and ten). As a consequence, they may be
difficult to predict and to manipulate by graphic designers.

Polynomial and spline-based interpolants also deserve to be
explored for enhancing smoothness in general, but when ap-
plied to orthogonal interpolation most conservative proper-
ties are lost because of non-linearity.

Other Future Work
So far, we have mainly applied the Artistic Resizing ap-
proach on dedicated, static user interface objects. For in-
stance, the programmer cannot change the captions nor add
more tabs on the object of the sample scenario. Future work
includes extensive support for parametrization in order to
provide a set of reusable Artistic Resizable widgets.

Artistic Resizing is still young and experimental and needs
to be tested extensively with graphic designers. We are first
planning to reduce the experimentation-evaluation loop by
allowing designers to operate directly on the interpolated ex-
amples. This can be done by extending an authoring appli-
cation with a plug-in for Artistic Resizing. In this paper, we
mainly focused on traditional resizing behaviors relying on
visual invariants and explained how the technique supports
them. We nonetheless suspect that as a new creativity tool,
Artistic Resizing can lead to much more original interfaces
once put in the hands of graphic designers.

CONCLUSION
We have described artistic resizing, a visual programming-
by-example technique that allows graphic designers to de-
scribe the pixel-precise, non linear resizing of visual objects
by using their familiar drawing tool. Their work is inter-
preted and transformed into an executable form by an infer-
ence and interpolation algorithm. The inference and inter-
polation algorithm is simple and predictable and preserves a
number of useful properties of the provided examples. In-
corporated in the model-driven approach proposed by the In-
tuiKit environment, artistic resizing gives designers greater
control over the graphical part of applications. It further in-
creases their role as “programmers” in multidisciplinary soft-
ware engineering groups.

ACKNOWLEDGEMENTS
This article was helped by discussions with Yves Rinato (In-
tactile Design), as well as work with Stéphane Sire, Pham
Nguyen Khang and Bruno Merlin. Many thanks to Michel
Beaudouin-Lafon, Stéphane Conversy, Sandra Basnyat and
Frédéric Jourdan for their comments on this paper and to Cé-
line Schlienger and Alexandre Lemort for helping in the pro-
duction of the examples.

REFERENCES
1. I. Adobe Systems. Designing multiple master type-

faces. http://www.adobe.com/.

2. I. Adobe Systems. Adobe Illustrator CS scripting guide.
http://partners.adobe.com/public/developer/en/illustra-
tor/sdk/IllustratorScriptingGuide.pdf, 2003.

3. G. J. Badros, J. J. Tirtowidjojo, K. Marriott, B. Meyer,
W. Portnoy, and A. Borning. A constraint extension to
scalable vector graphics. In World Wide Web’10, pages
489–498, May 2001.



4. T. Beier and S. Neely. Feature-based image metamor-
phosis. In SIGGRAPH ’92: Proceedings of the 19th an-
nual conference on Computer graphics and interactive
techniques, pages 35–42, New York, NY, USA, 1992.
ACM Press.

5. L. Cardelli. Building user interfaces by direct ma-
nipulation. In UIST ’88: Proceedings of the 1st an-
nual ACM SIGGRAPH symposium on User Interface
Software, pages 152–166, New York, NY, USA, 1988.
ACM Press.

6. S. Chatty, S. Sire, J. Vinot, P. Lecoanet, C. Mertz,
and A. Lemort. Revisiting visual interface program-
ming: Creating GUI tools for designers and program-
mers. In Proceedings of the ACM UIST, pages xxx–yyy.
Addison-Wesley, Oct. 2004.

7. J. W. Harris and H. Stocker. The Handbook of Math-
ematics and Computational Science. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1997.

8. S. E. Hudson and C.-N. Hsi. A synergistic approach to
specifying simple number independent layouts by ex-
ample. In CHI ’93: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, pages
285–292, New York, NY, USA, 1993. ACM Press.

9. S. E. Hudson and S. P. Mohamed. Interactive specifica-
tion of flexible user interface displays. ACM Transac-
tions on Information Systems, 8(3):269–288, 1990.

10. S. E. Hudson and I. Smith. Ultra-lightweight con-
straints. In Proceedings of the ACM UIST, pages 147–
155, New York, NY, USA, 1996. ACM Press.

11. S. E. Hudson and K. Tanaka. Providing visually rich
resizable images for user interface components. In Pro-
ceedings of the ACM UIST, pages 227–235, 2000.

12. L. Kaplinski, F. Felfe, M. Oka, and M. Yamato.
Sodipodi. http://www.sodipodi.com/, 2005.

13. D. Kurlander and S. Feiner. Inferring constraints from
multiple snapshots. ACM Transactions on Graphics,
12(4):277–304, 1993.

14. M. A. Linton, J. M. Vlissides, and P. R. Calder. Com-
posing user interfaces with InterViews. IEEE Com-
puter, pages 8–22, Feb. 1989.

15. MacroMedia Press. MacroMedia Director 6 and lingo
authorized. Addison-Wesley, 1997.

16. E. Meijering. A chronology of interpolation: From an-
cient astronomy to modern signal and image process-
ing. Proceedings of the IEEE, 90(3):319–342, March
2002.

17. K. Miyashita, S. Matsuoka, S. Takahashi, A. Yonezawa,
and T. Kamada. Declarative programming of graphical
interfaces by visual examples. In Proceedings of the
ACM UIST, pages 107–116. ACM Press, 1992.

18. B. A. Myers. Creating user interfaces using pro-
gramming by example, visual programming, and con-
straints. ACM Trans. Program. Lang. Syst., 12(2):143–
177, 1990.

19. B. A. Myers, J. Goldstein, and M. A. Goldberg. Creat-
ing charts by demonstration. In CHI ’94: Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, pages 106–111, New York, NY, USA,
1994. ACM Press.

20. B. A. Myers, R. G. McDaniel, R. C. Miller, A. S.
Ferrency, A. Faulring, B. D. Kyle, A. Mickish,
A. Klimovitski, and P. Doane. The Amulet environ-
ment: New models for effective user interface software
development. IEEE Transaction on Software Engineer-
ing, 23(6):347–365, June 1997.

21. T. Ngo, D. Cutrell, J. Dana, B. Donald, L. Loeb, and
S. Zhu. Accessible animation and customizable graph-
ics via simplicial configuration modeling. In SIG-
GRAPH ’00: Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques,
pages 403–410, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

22. D. R. Olsen. Developing User Interfaces. Morgan
Kaufmann Publishers, 1998.

23. C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and
adverbs: Multidimensional motion interpolation. IEEE
Comput. Graph. Appl., 18(5):32–40, 1998.

24. T. W. Sederberg and E. Greenwood. A physically based
approach to 2d shape blending. In SIGGRAPH ’92:
Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, pages 25–
34, New York, NY, USA, 1992. ACM Press.

25. K. Shoemake and T. Duff. Matrix animation and polar
decomposition. In Proceedings of the conference on
Graphics interface ’92, pages 258–264, San Francisco,
CA, USA, 1992. Morgan Kaufmann Publishers Inc.

26. R. Williams. The Animator’s Survival Kit: A Manual of
Methods, Principles, and Formulas for Classical, Com-
puter, Games, Stop Motion, and Internet Animators.
Faber & Faber, 2002.

27. G. Wolberg. Image morphing: a survey. The Visual
Computer, 14(8/9):360–372, 1998.


