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Abstract

We consider deterministic mean field games in which the agents control their accel-
eration and are constrained to remain in a domain of R™. We study relaxed equilibria
in the Lagrangian setting; they are described by a probability measure on trajecto-
ries. The main results of the paper concern the existence of relaxed equilibria under
suitable assumptions. The fact that the optimal trajectories of the related optimal
control problem solved by the agents do not form a compact set brings a difficulty
in the proof of existence. The proof also requires closed graph properties of the map
which associates to initial conditions the set of optimal trajectories.

1 Introduction

The theory of mean field games (MFGs for short) is more and more investigated since
the pioneering works [19, 20, 21] of Lasry and Lions: it aims at studying the asymptotic
behaviour of differential games (Nash equilibria) as the number of agents tends to infinity.
The dynamics of the agents can be either stochastic or deterministic. Concerning the
latter case, we refer to [14] for a detailed study of deterministic MFGs in which the
interactions between the agents are modeled by a nonlocal regularizing operator acting
on the distribution of the states of the agents. They are described by a system of PDEs
coupling a continuity equation for the density of the distribution of states (forward in
time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a representative
agent (backward in time). If the interaction cost depends locally on the density of the
distribution (hence is not regularizing), then, in the deterministic case, the available theory
mostly deals with so-called variational MFGs, see [15].

The major part of the literature on deterministic mean field games addresses situa-
tions when the dynamics of a given agent is strongly controllable: for example, in crowd
motion models, this happens if the control of a given agent is its velocity. Under the strong
controllability assumption, it is possible to study realistic models in which the agents are
constrained to remain in a given region K of the space state, i.e. state constrained de-
terministic MFGs. An important difficulty in state constrained deterministic MFGs is
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that nothing prevents the agents from concentrating on the boundary 0K of the state
space; let us call m(t) the distribution of states at time t. Even if m(0) is absolutely
continuous, there may exist some ¢ > 0, such that m(¢) has a singular part supported on
0K and the absolute continuous part of m(t) with respect to Lebesgue measure blows up
near 0K. This was first observed in some applications of MFGs to macroeconomics, see
[1, 2]. From the theoretical viewpoint, the main issue is that, as we have already said,
the distribution of states is generally not absolutely continuous with respect to Lebesgue
measure; this makes it difficult to characterize the state distribution by means of partial
differential equations. These theoretical difficulties have been addressed in [10]: following
ideas contained in [7, 8, 16], the authors of [10] introduce a weak or relaxed notion of
equilibrium, which is defined in a Lagrangian setting rather than with PDEs. Because
there may be several optimal trajectories starting from a given point in the state space,
the solutions of the relaxed MFG are probability measures defined on a set of admissible
trajectories. Once the existence of a relaxed equilibrium is ensured, it is then possible to
investigate the regularity of solutions and give a meaning to the system of PDEs and the
related boundary conditions: this was done in [11].

On the other hand, if the agents control their acceleration rather than their velocity,
the strong controllability property is lost. In [3], we have studied deterministic mean
field games in the whole space R™ with finite time horizon in which the dynamics of a
generic agent is controlled by the acceleration, see also [12]. The state variable is the pair
(x,v) € R™ x R™ where = and v respectively stand for the position and the velocity. The
system of PDEs describing the MFG is then

(1.1)

(1) —0ww—v-Dyu+ H(x,v, Dyu) — F[m(t)](z, ) = in R?" x (0,T)
(13) Oym +v - Dym — divy(D,, H(z,v, Dyu)m) = in R?" x (0,7T)
(Z”) m(x,v,O) m0($7v>7 (.%',U,T) [ ( )] ) on R*"
where v = u(x,v,t), m = m(z,v,t), (x,0) € R* t € (0,T) and the Hamiltonian

(2,0, pg,Pv) — —V - py + H(z,v,py) is neither strictly convex nor coercive with respect
to p = (px,pv). Hence the available results on the regularity of the value function u of
the associated optimal control problem ([13, 14]) and on the existence of a solution of
the MFG system ([14]) cannot be applied. In [3], the existence of a weak solution of the
MFG system is proved via a vanishing viscosity method; the distribution of states is char-
acterized as the image of the initial distribution by the flow associated with the optimal
control.

In traffic theory and also in economics, the models may require that the position of
the agents belong to a given compact subset {2 of R”, and state constrained mean field
games with control on the acceleration must be considered. In the present paper, we wish
to investigate some examples of such mean field games and address the first step of the
program followed by the authors of [10] in the strongly controllable case: we wish to prove
the existence of a relaxed mean field equilibrium in the Lagrangian setting under suitable
assumptions.

1.1 Our program

Most of the paper is devoted to the case when the running cost depends separately on the
acceleration and on the other variables, and is quadratic with respect to the acceleration.
We will assume that the acceleration can be chosen in the whole space. Thus, admissible
trajectories are pairs of functions (&,7), & € C1([0,T];Q), n € WL2([0, T];R™) and ¢ = 7.



An example of state constrained mean field games in which the acceleration takes its values
in a compact of R™, (the optimal value may therefore take the value 4o in the interior of
the z-domain), will be studied in a forthcoming work.

In view of the applications to traffic models, we will deal with the cases when
1. ©Qis a bounded domain of R"™ with a smooth boundary
2. n =1 and 2 is a bounded straight line segment

3. Q is a bounded polygonal domain of R? (that we suppose convex for simplicity).

In the one-dimensional case, the simplicity of the geometry will allow us to obtain accurate
information on the optimal trajectories, and in turn to get a more general existence result
for the mean field game, yet under an additional assumption on the running cost. On the
contrary, when dealing with the polygonal domain, we will make special assumptions in
order to obtain an existence result.

Recall that the admissible states are the pairs (z,v) € Q x R, where ) is a bounded
domain of R™. At first glance, we see that some restrictions will have to be imposed on the
initial distribution of states: indeed, for x € 02 and v pointing outward §2 at x, there is
no admissible trajectory taking the value (z,v) at ¢ = 0; hence the optimal value u(z,v,0)
takes the value +00; the definition of the mean field equilibrium would then be unclear if
the probability that the initial state takes such values (z,v) was not zero.

As in [10], the aim is to prove the existence of relaxed MFG equilibria which are
described by probability measures defined on a set of admissible trajectories. The proof
involves Kakutani’s fixed point theorem, see [17], applied to a multivalued map defined on
a suitable convex and compact set of probability measures on a suitable set of admissible
trajectories (itself endowed with the C1([0, T]; R™) x C°([0, T]; R™)-topology). Difficulties
in applying Kakutani’s fixed point theorem will arise from the fact that all the optimal
trajectories do not form a compact subset of C1([0,T];R") x C°([0,T];R") (due to the
lack of strong controllability). This explains why we shall need additional assumptions,
either on the support of the initial distribution of states, or, in some cases, on the running
cost.

Assumptions on the support of the initial distribution of states Note that if
a set of trajectories is a compact metric space, then probability measures on this set
form a compact set, as required by Kakutani’s theorem. Therefore, a natural strategy
is to identify a compact set of trajectories which contains the optimal trajectories whose
initial value belongs to the support of the initial distribution of states. In such a strategy,
we therefore need to identify a modulus of continuity common to all the velocity laws
of the optimal trajectories; since the running cost is quadratic in the acceleration, the
more natural idea is to look for a uniform bound on the W12 norms of the velocity
laws of the optimal trajectories. But, due the lack of strong controllability, if z and v
respectively belong to 9 and to the boundary of the tangent cone to Q at x (the optimal
value u(z,v,0) is finite), there exist sequences (z;,v;)ien tending to (z,v) such that the
optimal value wu(z;,v;,0) blows up when i — o0; in other words, the cost of preventing
the trajectories with initial value (x;,v;) from exiting the domain tends to +00 as i — o0.
Hence, to get uniform bounds on the W2 norms of the velocity law, the support of the
initial distribution of states must not contain such sequences (z;,v;). Sufficient conditions
on the support of the initial distribution will be given.



Furthermore, Kakutani’s fixed point theorem requires a closed graph property for
the multivalued map which maps a given point (z,v) to the set of optimal trajectories
starting from (x,v). An important part of our work is therefore devoted to proving a
closed graph property for the latter map. Note that this issue has its own interest in
optimal control theory, independently from mean field games.

Assumptions on the running cost We will see that if n = 1, we will able to get rid
of the above-mentioned restrictions on the support of the initial distribution of states, if
an additional assumption is made on the running cost, namely that it does not favor the
trajectories that exit the domain. The existence of equilibria is then proved by approxi-
mating the initial distribution mg by a sequence my j for which Kakutani’s theorem can
be applied, and by passing to the limit. To pass to the limit, accurate information on the
optimal trajectories are needed. We managed to obtain them for n = 1 only.

1.2 Organization of the paper

The paper is organized as follows: Section 2 is devoted to state constrained optimal control
problems in a bounded domain of R™ with a smooth boundary, and in particular to the
closed graph properties of the above mentioned multivalued map. Although this issue
seems to be important in several applications, we were not able to find any relevant result
in the available literature. Then, Section 3 deals with an existence result for a related mean
field equilibrium in the Lagrangian setting, under sufficient conditions on the support of
the initial distribution of states. A variant with a non quadratic cost will be investigated
as well. In Section 4, we address the case when the dynamics take place in a bounded
straight line segment, (n = 1): under a natural additional assumption on the running
cost, we are able to prove the existence of mean field equilibria without any restriction on
the initial distribution of states; the proof requires a quite careful study of the optimal
trajectories. Finally, in Section 5, we discuss the case of bounded and convex polygonal
domain of R? and put the stress on the closed graph result which requires a special care
near the corners.

2 State constrained optimal control problems in a domain
of R"

2.1 Setting and notation

Let Q be a bounded domain of R” with a boundary 02 of class C2. For z € 09, let n(x)
be the unitary vector normal to 02 pointing outward 2. We will use the signed distance
to 002, d : R™ > R,

B mingeao |2 — ), it  x¢
d(w) = { —mingesn |z — yl, if  xe.

Since 0 is C2, the function d is C? near 0S2. In particular, for all x € 02, Vd(z) = n(z).
Given a time horizon T and a pair (z,v) € Q x R™, we are interested in optimal



control problems for which the dynamics is of the form:

w o R
7(s) = afs), s€ (0,7),
2 €0) = .

n(0) = w.

The state variable is the pair (£,7) and the state space is = = 2 x R". The optimal control
problem consists of minimizing the cost

T
e aena) = [ (H66006)0) + GlaPe)) ds + g6 D),
on the dynamics given by (2.1) and staying in =.

Assumption 2.1. Here, {: = x [0,T] — R is a continuous function, bounded from below.
The terminal cost g : = — R is also assumed to be continuous and bounded from below.

Set

(2.3) M = |g-|ro@E) + -llLe@x[o,17)-

It is convenient to define the set of admissible trajectories as follows:
(2.4)

I'= { (€,m) € C1([0,T]; R x AC([0, T];R") | £.(8) = 1(s)

For any (x,v) € 2, set

(2.5) Iz, v] = {(&n) e T: £(0) =z, n(0) = v}.

Then, I'°P*[z,v] is the set of all (£,1) € T'[z,v] such that n € W2(0,T,R") and (£¢,7,7')
achieves the minimum of J in I'[z, v].

Note that T'[z,v] = & if z € 0Q and v points outward 2. This is the reason why we
introduce Z* as follows:

(2.6) Z8d — {(z,0) 2 eQ, v-n(z) <0if €N} c E.
Lemma 2.1. For all (z,v) € =24 the optimal value

2.7 v) = inf  J(En, 1
(2.7) u(z,v) el & mn.n)

is finite. The function u is lower semi-continuous on =29,
Proof. Let us consider (z,v) € 4. We make out two cases:

1. z € Qor x e dand v-n(z) < 0: in this case, for ¢ small enough, the trajectory (&,n)
defined by

|

n(s) = (I—=%v  and  &(s)= z+(s—F)v, if 0
ns) = 0 and  (s) = z+ Lo, if t

~

is admissible and J(&,n,7n’) is finite.



2. z € 00 and v - n(z) = 0. We make a simple observation that will also be used in the
proof of Lemma 2.2 below: for all z € €2, there exists an open neighborhood V,, of x in
R™, a positive number R, and a C?-diffeomorphism ®, from V, onto B (0, R,) such that
for all y € V;, the n'? coordinate of ®,(y) is d(y), i.e. ®,,(y) = d(y). Hence, ®,|y, ~q is
a C?%-diffeomorphism from V, n Q onto B_(0, R;) = B(0, R;) n {z,, < 0}, and ®.|v, ~o0
is a C2-diffeomorphism from V,, n 02 onto B(0, R;) n {x,, = 0}. Let us also call ¥, the
inverse of ®,, which is a C?-diffeomorphism from B(0, R,) onto V,. Note that

(2.8) Vd(y) = D®L(y)e,, for all ye V,,

where e, is the n'® vector of the canonical basis. In particular, n(z) = D®L (z)e,,.

In the present case, let us set & = ®,(x) and 0 = D®,(x)v. It is easy to see that &, =0
and 0, = 0. Then, for £ small enough, the trajectory (£,n) defined by £(s) = ¥, (£(s)),
n(s) = L(s) = DV, (£(s))A(s) for all s € [0,T], with

A

A(s) = (1-2)p  and @@— B+ (s—5)0, i 0<s<Ft,
f(s) = 0 and  £(s) = &+ Lo, if t<s<T,

is admissible and J(&,n,n’) is finite.

The lower semi-continuity of u on Z2d stems from standard arguments in the calculus of
variations. O

2.2 Closed graph properties

An important feature of the optimal control problem described above is the closed graph
property:

Proposition 2.1. Consider a closed subset © of Z21.  Assume that for all sequences

(2%, v")ien such that for all i € N, (z°,v%) € O and lim;_, ;o (2%,0") = (z,v) € O, the
following holds:
if x € 082, then

(2.9) (' - Vd(z')+)’ = o (Jd(=")]) ;

then the graph of the multivalued map

ret: e - T,

(z,v) > TPz, v]

is closed, which means: for any sequence (y',w")en such that for all i € N, (y*,w') € ©
with (y',w') — (y,w) as i — o0, consider a sequence (&',1')ien such that for all i € N,
(€', 1) € TP [y",w']; if (€,1") tends to (&,m) uniformly, then (€,1) € T°P[y, w].

Remark 2.1. In Proposition 2.1, the condition (2.9) is restrictive only for sequences
(x%,v") € © which tend to (x,v) € © such that x € 0Q and v is tangent to 0 at x. We
will see that this assumption makes it possible to control the cost associated to the optimal
trajectories starting from (z°,v").



Remark 2.2. In Section 4.1 below, we will see that in dimension one ( is then a bounded
straight line), and under stronger assumptions on the running cost, the closed graph prop-
erties hold for © = =24,

Remark 2.3. In the context of mean field games, see Section 3 below, the assumptions
in Proposition 2.1 will yield sufficient conditions on the support of the initial distribution
for the existence of relaxed mean field equilibria.

The proof of Proposition 2.1 relies on Lemmas 2.2 and 2.3 below.

Lemma 2.2. Consider (x,v) € 224, (¢,n) € I'[z,v] such that n e W2(0,T;R") and a
sequence (2°,v")en such that for all i e N, (z°,v") € 24 and lim (2*,v") = (z,v).
1—00

Assume that one among the following conditions is true:
1. zeQ
2. € 0Q and v-n(z) <0 (hence v' - Vd(x') < 0 for i large enough)
3. x€dQ, v-n(x) =0 and one among the following properties is true:
(a) fori large enough, v* - Vd(x') <0
(b) fori large enough, v* - Vd(z') > 0 (hence d(x*) < 0) and

(2.10) lim (VA

()]

Then there exists a sequence (£,1%)ien such that (€%, n%) € T[a%,v'], nt € WH2(0,T;R"™),
and (&%,1°) tends to (&,n) in W22(0,T;R"™) x W12(0,T;R"™), hence uniformly in [0,T)].

Before proving Lemma 2.2, let us define a family of third order polynomials with
values in R™:

Definition 2.1. Given t > 0 and z,v,y,w € R", let Q¢ zv,yw be the unique third order
polynomial with value in R™ such that

(211) Qt,w,v,va(o) =, Q:ﬁ,x,v,y,w(o) =, Qt@:“vyaw(t) =Y Q:ﬁ,x,v,y,w(w = w.

It is given by

y—x—vt w—v y—xr—vt w—v

The first and second derivatives of Qg yw are deduced immediately from (2.12).

Proof of Lemma 2.2. We are going to see that each of the three conditions mentioned in
the statement makes it possible to explicitly construct families of admissible trajectories
fulfilling all the desired properties (in particular with a finite energy or cost). The more
tricky situations will arise when = € 0Q and v* - Vd(z*) > 0 for i large enough, in which
case the restrictive condition (2.10) will be needed. Since the construction is different in
each of the three cases mentioned in Lemma 2.2, we discuss each case separately.



1. If z € Q, then there exists ¢ € (0,7] and ¢ > 0 such that d({(s)) < —c for all s € [0,7].
We construct the sequence (£%,7")sen as follows:

i 7 51t Sui y if
gz(s) = { €(3> + Qt,5x ,0v 70,22237 1f g

2

s
s< T,

NN
NN

where §z' = 2! — z and dv* = v' — v, see Definition 2.1 for the third order polynomial
Q%521 501 00+ 1t s clear that for i large enough, £'(s) € Q for all s € [0, T, hence (£%,7°) €
['[«%, v] and n° € W12(0,T;R™). On the other hand, it can be easily checked that

2
ds = 0.

T dnz

dt

dn

2.13 li -
(2.13) im o

‘ (s) (s)
1—>+00

This achieves the proof in the first case.

2. z € 0Q and v-n(x) < 0, hence for i large enough, v* - Vd(x?) < 0. We can always assume
that the latter property holds for all 7.

Notation We use the same geometric arguments as in the proof of Lemma 2.1: for the
neighborhood V, mentioned there, there exists T, 0 < T < T such that () eVenQ
for all s € [0,7]. Consider the local chart ®, introduced in the proof of Lemma 2.1 and
call ¥, the inverse map, from B(0, R,) onto V. For t € [0,T7, let us set £(t) = ®,(£(t)),
Wt) = %(t) = DO,(E(t)%(t), 2 = ®y(x) and & = H(0) = DP,(x)v. It is clear that
Zn = 0 and that 9, < 0. We also set £' = ®,(z") and 0" = DD, (2")v".

Since 7 € W12(0,T), there exists € (0,7") such that for all s € [0,7],

1
(2.14) %@n <(s) - en < gon
(2.15) < (E(5) — ) en < S
2 2
For t; € [0,¢], we set
216 i) - | Qs el
&(s), if selt,T],

and 7'(s) = dd—ii(s) for s € [0,7]. Then, we define £ as follows:

. v, (gi(s)) . it se[0,7],
2.17 s) = .
( ) &) { £(s), if sel[T,T],

and 7' = %i. Let us first see why (&%,7°) € I'[x;,v;] for t; small enough and i large
enough. A straightforward calculation shows that for s < ¢;,

) ) 2 3 ) 2
Ei(s) — & =(3" — 2) <1—3s+2;> + 50 (1—28 +s>

t7 t; 2
(218) g ? ? 7
s N 82 53 . s 52
+(€(t:) — 2) (32 — 23> + sij(t;) <_ + 2) _
t; t; t; i

8



Let us focus on (£1(s) — 2) - e, = £¥(s) - en: from the formula above, we see that £i(s) - e,
is the sum of four terms, the first three of them being nonpositive and the last one
nonnegative for all s € [0,¢;]. Let us consider the sum of the last three terms, namely:

2 2 3 2
; . s s s s

A(s) =st"-en | 1— 22 4 = | +E&(t) en |35 =25 ) +si(ti)en | —— + 5 );
ti 12 2% i1

7 )

from (2.14) and (2.15), we see that

2 3 2 2 3 2

~ s s? S s R 1 s S 3 s s
3
2

(2

for all s € [0,#;]. On the other hand, since lim; ., ©° = 9, we see that for 4 large enough,
0 - ep, < 30 - e,/4. Hence,

3 s\?2 3s 2§ 3 s 15s* 3
As)<sten [2(1-2) =22 435 2 ) —spoen (2—32+ 22 — 2,
(8) < 50 -en (4( ti> 25, CE @) e <4 Bt t?)

K3 3

It is easy to check that the function 8 — % — 360+ %02 — 63 is positive for 6 € [0, 1], which
implies that A(s) is negative for s € [0, ¢;].

Hence, for i large enough, £'(s)-e, <0 forall 0 < s <t; <.
On the other hand, since lim;, o (|2’ —a§| + 0t —v]) =0, ¢ and # are continuous,
(2.18) implies that there exists I > 0 and t € (0,7] such that, if i > I and ¢; € (0,7), then
£i(s) € B_(0, R,) for all s € [0,t;]. Hence, for i > I and t; € (O,t), (€1, n) e T[2 ,vi].

Let us now turn to H H : straightforward calculus shows that
dn’ iy 41 20 (Li(4))A i
SL ) = DULE () (1) + (DL 0 (1)) (1),

This implies that

(2.19) \

L2(0,t;) (H L2(0,t;) +l “L4 Ot > 7

for a constant C 1ndependent of z € 0. Hereafter, C' may vary from line to line.

First, we focus on H

L2(0.4)
[,
L2(0,t;)
~ ) . . ~ . . N\ |2
ty) — 0 — & L) — 6 t;) — 0"t — 2t n(t;) —0°
:f 9 35(2) l;z £ 777(1)‘ v +£ *25(1) 1;2 <L +77(Z)‘ v ds
0 t'L tl tl tZ tz
<21 + 215,
where
~ ~ 2
ti - PN N N N N
g t;) — 0t; — t;) — 6 t;) — 0t; — t;) —
11=f o [ 3E() L B At) —0)  6s [ &) o Boat) —v)
0 t; t; t; t; t;




and

t;
Izzf
0

Standard arguments yield that

L <C

)

L2(0.t;)

H

for an absolute constant C' > 0. Therefore, given € > 0, there exists ¢ : 0 < ¢ <  such
that 217 < ¢/2 for all t; < £.
On the other hand,

A Ad2 YA, _E2 a2
L <G | & 391:|+|v 0| <C |z 3x|+\v V' ‘
te t; t: t;

K3 K3

It is possible to choose the sequence t; such that

L4 limi_,oo ti = 0,
lp—a?? | Jo—v’|?
t3 i

=0,

e lim; .o

o (&, n") e T[x%,v'] for i large enough.

= 0. On the other hand, the choice
L2(0,t:)

= 0, and in turn that Hﬁi“LOO(O ) is uniformly

Such a choice of t; yields that lim;_, ‘ ar

|lz—a’|
ti

made on t; also implies that lim;

bounded with respect to i; therefore, the quantity HﬁiH;(o ) tends to 0 as ¢ tends to oo;

using (2.19), we have proved that lim;_, H‘Zi

tllr2(0,t)
Therefore, it is possible to choose a sequence t; > 0 such that the trajectories (£%,7%) are
dn' d
admissible for ¢ large enough and lim /A = 0. This achieves the proof in
1—00 dt dt LQ(O T)

case 2.

3. (a) 2 €09, v-n(xr) =0 and v*- Vd(z%) < 0 at least for i large enough. We may assume
that v - Vd(2%) < 0 for all 5. Using the same notation as in case 2, we see from (2.8)
that o7 - e, = v' - D®L (x%)e, = v’ - Vd(2') <0
In the present case, the approximate trajectories will have three successive phases,
see Remarks 2.4 and 2.5 for explanations on these different phases.

Given t;1 € (0,T), we define (§°,%") as follows:

<.

Epen + el (:%1 + @iti,l) )
= Dpen + el (ﬁl) = Tel (ﬁl) )

gg <y

(2.20)

where 7.1 stands for the orthogonal projector on e# =R"! x {0}, and set

£(s) = Qu i groar(s) and 7 (s) =

( ) for 0<8<ti71.

Remark 2.4. In this first phase of the approxzimate trajectory, i.e. for s € [0,t;1],
Tel <Q2’levlyzwl(s)> = 0. The effort only lies in driving the n'"-components of
£i(s) and 7'(s) so that they match those of & and © at s = t; ;.
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As above, we first check that for t;; small enough and 7 large enough, él(s) €

B_(0,R;) for all s € [0,¢;1]: from the definition of @y, | 4i 41 g i, We see that

2
(2.21) E(s) en = (fcz “ep <1 + 2S> + 50 - ) <1 - S>
ti1 ti1

is nonpositive for s € [0,%;1]. On the other hand, we see that there exist I > 0 and
0 << T suchthatifi>Iand0 < ti1 <, then forall s € [0, 1], £'(s) € B_(0, Ry).

: straightforward calculus shows that

As in case 2., we need to focus on Hddit
2 .
L (O,tlﬂl)

<C ]:EZ 'gen|2 N ](@—@i)-en|2 _c nga:i) N |vi . Vd(xi)|2 7
L2(0,t;,1) ti,l ti1 ti,l ti1

and we see as above that there exists a sequence ¢; 1 such that

[,

o lim; ,nt;1 =0,
P | VA _

2 ti1

T,

e £i(s)e B_(0,R,) forall 0 < s < t;.

Taking the derivative of £ and arguing as in case 2., we also see that lim;_,o |7 74 (Oti1) =
d(z ) _ =0.

e lim; .o

0, because lim; o 5

Next, for t;1 <t;2 < T, we set

(2.22)
él(s) = Qti,lvfﬁﬂ?i@i,wi(s)’ if 5 < t,
Qti,2*ti,l73:’1.*-'27@2'*’5,0,0(8 - ti,l) + 5(5 - ti71), if ti1 < s <t2,
and
(223) é_l(s) = \Ijx (574(8)> ) if s < ti,??
E(s—tin), if  tipa<s<T.

As above 7i(s) = %(s) for 0 < s < t;2 and n'(s) = %(3) for0<s<T.

Remark 2.5. In the second phase of the approzimate trajectory, i.e. fors € [t;1,t;2],
the components of £(s) and £(s—t;1) parallel to e,, coincide, i.e. Q; ot 15— ii—,0,0(5—

t; 1) en = 0. The effort only consists of driving the projections of éz(s) and 7 (s) on
e such that they match those of £(s —t; 1) andN(s—t;1) at s = t;o. We will see that

is mot necessary to have t; o tend to zero, because from the choice of t; 1, the distance
between (£1(t;1), 7' (ti1)) and (2,0) tends to 0 as i — +c0.

It is possible to choose the sequence t; 2 bounded from below by a positive constant
which depends on (z,v) but not on i such that £i(s) stays in B_(0, R,) for s €
[ti1,ti2]. Hence, (¢%,7°) € T[2%, v'].

Moreover, since ¢; o is bounded away from 0 and lim;_, (|ﬂZ — &| + |0 — @|) =0, it
dn* dn

is not difficult to check that lim
j dt dt

1—00

= 0; this achieves the proof in
L2(0,T)

subcase 3.(a).
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(b) z €0, v-n(z) =0, v'-Vd(x*) > 0 for all i (or for i large enough), and (2.10) holds.
The trajectory £ is constructed as in (2.22)-(2.23), but a further restriction on t;; is
needed in order to guarantee that the trajectory is admissible. Using (2.21), we see
that the trajectory is admissible if

ot - 12
v Cn f—i——, forall 0 < s < t;1.
|2 - en| ti1 '
This happens if and only if
by < B sl

0t - ey vt - Vd(z;)’

which should be supplemented with the other two conditions as in 3.(a):

(2.24) lim ¢;,; =0,
1—00

(2.25) fi 191 [ VAEIE

' i—00 t?,l i1 ’

If (2.10) holds, then it is possible to choose such a sequence t; ;. Then, as in 3.(a),
it is possible to choose the sequence t; » bounded from below by a positive constant
independent of i such that (£%,7%) € I'[«?, v']; the last part of the proof is identical as
in subcase 3.(a).

g

Lemma 2.3. Consider (z,v) € 21 and a sequence (x*,v%);en such that for all i € N,
(z%,v") € 22 and (2%,0") — (x,v) as i — 0. Suppose that Assumption 2.1 and one
among the three conditions in Lemma 2.2 are satisfied. Let a sequence (£',1%)icn be such
that for alli e N, (¢4, n%) € TPz v?]. If (&%,n°) tends to (&,m) uniformly in [0,T], then
ne Wh2(0,T;R") and (&,n) € TPz, v].

Proof. We need to prove that for any (E, ) € I'[x,v] such that 7j € WH2(0, T; R™),
(2.26) J(& 1) < JERT).

From Lemma 2.2 applied to (5, 1), there exists a sequence (5@, 7')ien, with (5 ) e I'[z%, v
such that (£,7) — (&, ) uniformly on [0, 7] as i — o0, and

2
ds=f
0

On the other hand, the optimality of (£%,7°) yields that

diy d
(2.27) G’Zﬂ) G”ﬂﬂ).

~ ~ . dn
From the properties of (£',7"), the right hand side of (2.27) converges to J <§,77, dZ)
The left side (2.27) is thus bounded. Combining this fact with the uniform conver-

T dy’ dn
%(s)

dt( s) ds.

lim
1—0 0

, 2
gence of (£',1%) to (£,7) in [0,T], we obtain that the sequence So ‘E s)) ds is bounded.

12



—_—
: dn

This implies that Ciiit — %7 in L2(0,T;R") weakly and that lim infj d—z
0

1—>00
J

2
(s)

2
ds. We deduce that

d d
J (5,7}, d?t7> hmlan <§Z n, ch) .

Combining the information obtained above, we obtain (2.26), which achieves the proof.
O

Proof of Proposition 2.1. Consider (y, w) € © and a sequence (v, w');en such that for all
ieN, (y',w') € © and (y',w') — (y,w) as i — 0. Consider a sequence (€', 1n")sen such
that for all i € N, (¢,7%) € FOpt [y%, w'] and that (£%,7°) tends to (£,7n) uniformly. Thanks
to the assumption made in the statement of Proposition 2.1, possibly after the extraction
of a subsequence, we may suppose that one among the three conditions in Lemma 2.2
holds. Then the conclusion follows from Lemma 2.3. a

2.3 Bounds related to optimal trajectories

Definition 2.2. For a positive number C, let us set

(2.28) Ko = {(z,v)eZ: |v| <Y,

&mn)el: 757
fomer:| 4

Proposition 2.2. Given r > 0, let us define

(2.29) Te

n(t)) €e Ko, Vte[0,T],
o, e )

L2(0,T;R")

(2.30) O, =0 n K,

where K, is defined by (2.28) and © is a closed subset of 22 which satisfies the assumption
in Proposition 2.1.

Under Assumption 2.1, the value function u defined in (2.7) is continuous on ©,.

There exists a positive number C' = C(r, M) such that if (z,v) € O, then T°P*[z,v] = T'¢.

Remark 2.6. The set of trajectories I'c is a compact subset of I'. In the context of mean
field games, see Section 3, the existence of relaxed equilibria will be obtained by applying
Kakutani’s fixed point theorem to a multivalued map defined on a closed set of probability
measures on I'c.

Proof. Take (x,v) € ©, and a sequence (z%, v%);cn, (z¢,v%) € O, such that lim; (2%, v?) =
(x,v).

From Lemma 2.1 we know that u(z, v) is finite and from Assumption 2.1, that the infimum
in (2.7) is achieved by a trajectory (£,n) € T°P*[z, v].

Possibly after the extraction of a subsequence, we may assume that (2,v") satisfies one
among the three points in Lemma 2.2. Then, there exists a sequence (£%,7)en such
that for all i € N, (¢4, 7%) € T'[2%,v'], n* € WL2(0,T;R"), and (£,7°) tends to (&,7) in
W22(0,T;R™) x W2(0,T;R"), hence uniformly in [0, T]. Hence,

Jim J (fi,ni, ‘Z;) — u(w,v).

1—00
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On the other hand,

The latter two observations yield that

lim sup u(z?, v") < u(z,v).
1—0
This proves that u is upper-semi-continuous on ©,. From Lemma 2.1, u is continuous on
O,. Since O, is a compact subset of R™” x R", u is bounded on ©,..
Then from the definition of J and u and the boundedness of u on ©,., it is clear that there
exists a constant C' = C(r, M) such that T'°P*[z,v] c T'¢ for any (z,v) € O,. O

3 A mean field game with control on the acceleration and
state constraints

3.1 Setting and notation

The bounded domain € of R” and the sets = and =29 have been introduced in Section 2.1.
Let P(Z) be the set of probability measures on Z.

Let CP(Z;R) denote the space of bounded and continuous real valued functions
defined on = and let F,G : P(E) — CP(Z;R) be bounded and continuous maps (the
continuity is with respect to the narrow convergence in P(Z)). Let ¢ be a real valued,
continuous and bounded from below function defined on = x [0, T].

Let F[m] and G[m] denote the images by F and G of m € P(Z). Set

(3.1) M=maX< sup ~ L_(z,v,8)+ sup [F[m]|rx(z), sup |G[m]|L°0(E)>-
(z,v,5)€EX[0,T] meP(=2) meP(=2)

Let I' be the set of admissible trajectories given by (2.4). It is a metric space with the
distance d((&, ), (§,71)) = [§ — &l (jo,rrn)- Let P(I') be the set of probability measures
on I
For ¢t € [0,T], the evaluation map e; : I' — Z is defined by e,(¢,n) = (£(t),n(t)) for all
(&m) el
For any p € P(T'), let the Borel probability measure m*(t) on Z be defined by m*(t) = esfu.
It is possible to prove that if u € P(I'), then t — m#(t) is continuous from [0,T] to P(Z),
for the narrow convergence in P(Z). Hence, for all ({,n) € ', t — F[m*(t)](£(t),n(t)) is
continuous and bounded by the constant M in (3.1).

2
ds
0
+ G ()] (E(T), n(T))

With p € P(T'), we associate the cost

Remark 3.1. It is clear from (3.1) that given p € P(I'), the running cost (y,w,s) —
F[m*(s)](y,w) + l(y,w, s) and the final cost (y,w) — G[m*(T)](y,w) satisfy Assumption
2.1, and that the constant arising in (2.3) can be chosen uniformly with respect to p €

T
f (F[m“(S)](f(S)m(S)) HEG) (), 9) + 5| ()

32 JHEn) =
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P(T). Hence, for all p € P(T'), Propositions 2.1 and 2.2 hold for the state constrained
control problem related to J* and the constants arising in these propositions can be chosen
uniformly with respect to p € P(T).

Assumption 3.1. There exists a positive number r such that the initial distribution of
states is a probability measure mg on = supported in ©,, where ©, is a closed subset of
=2 s in (2.30).

Let C = C(r, M) be the constant appearing in Proposition 2.2 (uniform w.r.t. p),
and I'c be the compact subset of I" defined by (2.29); clearly, I'c is a Radon metric space.
From Prokhorov theorem, see [5, Theorem 5.1.3], the set P(I'¢) is compact for the narrow
convergence of measures.

Let Pryy (), (resp. Py (L)) denote the set of probability measures p on I' (resp.
I'c) such that e = my.

Hereafter, we identify P(I'¢) with a subset of P(T") by extending u € P(I'¢) by 0
outside I'c. Similarly, we may consider P,,,(I'c’) as a subset of P, ().

Note that for all 4 € P(I'¢) and for all t € [0,T], m*(t) is supported in K¢, where
K¢ is defined in (2.28).

Remark 3.2. Note that I'c (endowed with the metric of the C* x C°-convergence of (€,7))
is a Polish space (because it is compact). The multivalued map [Pt related for instance
to F =0 and G =0 maps O, to non empty and closed subsets of I'c (the closedness can
be checked by usual arguments of the calculus of variations). Since the graph of [oPt g
closed, [Pt js measurable. Therefore, there exists a measurable selection j : ©, — I'c
from Kuratowski and Ryll-Nardzewski theorem, [18]. Then jimgo belongs to Pm,(I'c). The
set Py (L) is not empty.

3.2 Existence of a mean field game equilibrium

Lemma 3.1. Let a sequence of probability measures (u;)ien, i € P(L), be narrowly
convergent to € P(T). For all t € [0,T], (m"i(t))ien s narrowly convergent to mH(t).

Proof. For all f e CP(E;R),

| f@oamt o@) = | @ m@dncn — | @m0

f(x,v)dm*(t)(x,v).

I
T —

d

An easy consequence of Lemma 3.1 is that for C' = C(r, M) as in Proposition 2.2,
Py (T'c) is a closed subset of P(I'c), and is therefore compact.

Lemma 3.2. If p € P(T'¢), the map t — m#(t) is 1/2-Hélder continuous from [0,T] to
P(Kc), (Kc is defined in (2.28) and P(K¢) is endowed with the Kantorovitch-Rubinstein
distance).
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Proof. Let ¢ be any Lipschitz function defined on K¢ with a Lipschitz constant not larger
than 1.

¢z, v) (dm* (t2)(z,v) — dm (t1)(z,v)) = L (¢(er,(€,m) — dler, (€,m))) du(€,m)

Ko

- L (D(E(t2)n(t2)) — S(E(t2). () dia(€. )
< L (IE(t) — 00| + In(ta) — () due, )

1
<O | (fto—til + lt2—ta]?) du(&m)
INe}
< é |t2 - tl|% )
for a constant C' which depends only on C and 7. O

It is useful to recall the disintegration theorem:

Theorem 3.1. Let X and Y be Radon metric spaces, m : X — Y be a Borel map, u be
a probability measure on X. Set v = whu. There exists a v-almost everywhere uniquely
defined Borel measurable family of probability measures (fy)yey on X such that

(3.3) ty(X\7 1 (y)) =0,  for v-almost all y € Y,

and for every Borel function f: X — [0, +0],

g [ i) = [ ([ @) am - | ( [ f(x)dﬂy(w)> avly).

Recall that (py)yey is a Borel family of probability measures if for any Borel subset B of
X, Y sy w— py(B) is a Borel function from'Y to [0,1].

It is possible to apply Theorem 3.1 with X =T'¢, Y = O,, m = e¢g and v = my (iden-
tifying mo and its restriction to ©,): for any u € Pp,(I'c), there exists a mg-almost ev-
erywhere uniquely defined Borel measurable family of probability measures ((3.)) (z,0)c0
on I'c such that

T

(3.5) (a0) (Fc\egl(x, v)) =0, for mp-almost all (z,v) € O,,

and for every Borel function f: T'c — [0, 4],

) = f@r ( [ C f(&n)du(x,m(&,n)) dmo(i,v)

= f (f—l( ) f(é.a n)d:u(w,v) (fa 77)) dmO(fL’, ’U).

For (z,v) € ©,, mg supported in O, and p € Pp,,(I'c) (where C = C(r, M) is the
constant appearing in Proposition 2.2), let us set

(3.6)

(&mel[z,v]

(3.7) A e {(5777) elfw,0] : JH(&n) = _min JH( 77)}-
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Standard arguments from the calculus of variations yield that for each p € Pp,,(I'c) and
(z,v) € 224, THoPt[z o] is not empty. Moreover, from Proposition 2.2, T*°Pt[z, v] < T'¢
for all (z,v) € O©,.

Proposition 3.1. Under the assumptions made on ¢, F' and G in paragraph 3.1, and
Assumption 3.1, let C = C(r, M) be chosen as in Proposition 2.2.

Let a sequence of probability measures (f;)ien, i € Pmo(Lc), be narrowly convergent to
pwePIc). Let (%, v)ien, (2%, 0?) € O, converge to (z,v). Consider a sequence (£%,10)ien
such that for all i e N, (&',n°) € THoP gzt vi]. If (€', 1)) sen tends to (€,n) uniformly, then
(€,m) € TROPx v]. In other words, the multivalued map (z,v, ) — THOP [z v] has closed
graph.

Proof. First, from Lemma 3.1, p € Py (L) and for all ¢t € [0,T], (mti(t))ien is nar-
rowly convergent to m#(t). From the continuity assumptions made on F' and G and the
dominated convergence theorem, we deduce that

T

T
| Pre@nEoaoa | Pmro)eo o)

0 0
Gm" (D)) (T),n'(T)) —  GIm*(D))E(T), n(T)).

The last part of the proof is completely similar to the proof of Proposition 2.1. It makes
use of Assumption 2.1 and Lemma 3.2. O

Definition 3.1. The probability measure p € Py (L) is a constrained mean field game
equilibrium associated with the initial distribution mq if

(3.8) supp(p) < U AP [z, v].

(z,v)esupp(mo)

Theorem 3.2. Under the assumptions made on F' and G at the beginning of paragraph 3.1
and Assumption 3.1, let C = C(r,M) be chosen as in Proposition 2.2. There exists
a constrained mean field game equilibrium p € Ppo(Lc), see Definition 3.1. Moreover,
t s e e CYV2([0,T); P(Kce)), (Ko is defined in (2.28) and P(K¢) is endowed with the
Kantorovitch-Rubinstein distance).

Proof. The proof follows that of Cannarsa and Capuani in [10]. Define the multivalued
map E from P, (I'c) to Pm,(I'c) as follows: for any p € P, (Lc),

(3.9) E(u) = {i € Pmy(Cc) : supp(fi(zp)) < [Pz, v] for mo-almost all (z,v) € E},

where (fi(3 1)) (z,0)ez 18 the mo-almost everywhere uniquely defined Borel measurable family
of probability measures which disintegrates [i, see the lines after Theorem 3.1.

Then the measure p € Pp,,(['¢) is a constrained mean field game equilibrium if and only
if € E(p). This leads us to apply Kakutani fixed point theorem to the multivalued map
E, see [4, 17]. Several steps are needed in order to check that the assumptions of Kakutani
theorem are satisfied. First of all, we recall that P,,,(I'¢) is compact.

Step 1: For any p € Py, ('), E(p) is a non empty convex set.
First, we have already seen that T*°P*[z v] & & and that the map (z,v) — T*Px, v]
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has closed graph. Therefore, from [6], (z,v) — T*°P'[x, v] has a Borel measurable selec-

tion (z,v) — (5{; v né »)- The measure /i defined by

a(B) = J St me y(B)dmo(z,v), for all Borel subset B of I'c,
e (z,v) (z,v)

belongs to F(u); indeed, the total mass of fi is one because mg is supported in ©, and
C = C(r, M) as in Proposition 2.2 so F(u) is non empty.

Second, take p!, p? in E(u) and A € [0,1]. We wish to prove that Auy + (1 —\)ug € E(u).
It is clear that Au! + (1 — A)u? belongs to P, (I'¢). On the other hand, since u! belongs
to E(u), there exist a mp-almost everywhere uniquely defined Borel measurable family
(/j’%x,v))(ﬂ@ﬂ))eer of probability measures which disintegrates p! and a subset A! of ©, such

that mg(A!) = 0 and supp(u%x ») H#oPt [z o] for all (z,v) € ©,\AL. Similarly, u? can
be disintegrated into a mg-almost everywhere uniquely defined Borel measurable family

(ﬂ%@v))(%v)eer of probability measures, and there exists a subset A? of ©, such that
mo(A2%) = 0 and SUPP(M%Q;,U)) c ITHOP [z, v] for all (z,v) € ©,\A%. Therefore, Au! + (1 —
A)p? can be disintegrated as follows: for each Borel function f defined on I'c,

) FEmd (' + (1= X) 1) (& m)]

- f@T ( I'c f(§7 n)d (Aﬂ(lwvv) + (1 - A)M%x,v)) (57 77)) dmo(q,” 1))7
supp (AM%x,v) + (1 - )\)M%xw)) < THOP g, 0], V(z,v) € ©,\(A' U A?),

and mo(A! U A%) = 0. Hence, A\u! + (1 — A\)u? € E(u), so E(p) is convex.

Step 2: The multivalued map E has closed graph.

Consider a sequence (1i')jen, f1* € Py (L) narrowly convergent to p € Ppy(T'c). Let
a sequence (/i');en, it € E(u') be narrowly convergent to ji € Pp,(I'c). We claim that
fi€ E(p).

First, there exists a mg-almost everywhere uniquely defined Borel measurable family of
probability measures (fi(z,,))(«,0) 00 I'c such that (3.5) and (3.6) hold for g and fi(, ).
In particular, there exists a subset A of ©, with mg(A) = 0 such that for (z,v) € ©,\A4,
la(:c,v) (FC\e(Tl(mv ’U)) =0. .

Take (7,v) € ©,\A and (&,1) € supp(fi(z,v))- ‘

The Kuratowski convergence theorem applied to (fi');, fi, see [9], implies that there exists

a sequence (€1, 7%);en, (€1, 7%) € supp(if), which converges to (£,7) uniformly in [0, T]. Set
(2%, v%) = (£4(0),7°(0)) € O©,. Since i’ € E(u?), there holds that (£, 4%) € TH Pt [zt v1].
From Proposition 3.1, we see that (£,7) € T*°Pt[z, v]. Since (x,v) is any point in ©,\A4,

this implies that i € E(u).

All the assumptions of Kakutani theorem are satisfied: hence, there exists p € Py, (F¢)
such that p € E(u). This achieves the proof. O

Definition 3.2. A pair (u,m), where u is a measurable function defined on Z x [0,T]
and m € C°([0,T); P(Z)), is called a mild solution of the mean field game, if there exists
a constrained mean fied game equilibrium p for mq (see Definition 3.1) such that:

i) m(t) = eddtp;
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i) V(x,v) € 224, u(x,v,t) is given by

T 1
[ (Frmee). ) + e n(6).5) + la)R ) ds
+ GIm(T)(E(T).0(D))

where Tz, v,t] is the set of admissible trajectories starting from (z,v) at s = t.

u(z,v,t) = inf
(&n,0)elz,v,t]

A corollary of Theorem 3.2 is:

Corollary 3.1. Under the assumptions of Theorem 3.2, there ezists a mild solution (u, m).
Moreover, m € C%([O,T];P(Kc)).

Remark 3.3. Under classical monotonicity assumptions for F' and G, see e.g. [10], the
mild solution is unique.

3.3 Non quadratic running costs

It is possible to generalize the results of Sections 2 and 3 to costs of the form
T

1
310 aena) = [ (H6(6)0) 4 1laPe)) ds +g(eT) D),
where 1 < p, for dynamics given by (2.1) and staying in =.
For brevity, we restrict ourselves to the closed graph result, whose proof is completely

similar to that of Proposition 2.1. The generalization of Theorem 3.2 is then possible.

Proposition 3.2. Consider a closed subset © of 224, Assume that all sequence (x°,v%);en
such that for all i € N, (z°,v") € © and lim;_, 1 (2%, v") = (z,v) € O, the following holds:
if x € 082, then

(31) (0" V() = o (|da)P ) s

then the graph of the multivalued map T°P* : © — T, (z,v) — T°P'[z, v] is closed in the
sense given in Proposition 2.1.

4 One dimensional problems: more accurate results

In dimension one and for a running cost quadratic in «, it is possible to obtain more
accurate results under a slightly stronger assumption on the running cost, namely that
it does not favor the trajectories which exit the domain. In particular, the closed graph
property can be proved to hold on the whole set Z24, and concerning mean field games,
no assumptions are needed on the support of mg by contrast with Theorem 3.2.

4.1 Optimal control problem in an interval: a closed graph property

In this paragraph, we set 2 = (—1,0) and Z = [—1,0] x R. The optimal control problem
consists of minimizing J(&,n,n’) given by (2.2) on the dynamics given by (2.1) and staying
in 2.

The definition of Z2¢ is then modified as follows:

(4.1) zad _ :\({0} % (0, +0) U {—1} x (—oo,())).

We make the following assumptions:

19



Assumption 4.1. The running cost £ : £ x [0,T] — R is a continuous function, bounded
from below. The terminal cost g : = — R is also assumed continuous and bounded from
below. Set M = |g—| =) + [~ Lo Ex[0,7)-

Assumption 4.2. For allt € [0,T] and v > 0,
(4.2) 2(0,v,t) = £(0,0,t), and (=1, —v,t) = 4(—1,0,¢).

An interpretation of Assumption 4.2 is that the running cost ¢ penalizes (or at least
does not favor) the trajectories that exit Z*d. In that respect, Assumption 4.2 is rather
natural.

For (x,v) € 2, let T', I'[z,v] and T°P*[z, v] be defined as follows:

F—{ (&) e CY([0,T);R) x AC([0,T];R) : §ls)=mn(s),  Vsel :ﬂ }

Theorem 4.1. Under Assumptions 4.1 and 4.2, the graph of the multivalued map TP :

Zad T, (z,v) — T°PYx,v], is closed, in the following sense: consider a sequence

(2, v )ien, (2%, 0%) € 224 such that lim (2%, 0") = (2,v) e 22
1—0

(€', n")ien such that for all i e N, (€%, n%) e TP 2!, v?].

If (€8,n%) tends to (&,n) uniformly, then (&,n) € TPz, v].

Consider a sequence

Remark 4.1. Note that, by contrast with Proposition 2.1, Theorem 4.1 holds for T°Pt
and not only its restriction to a subset © of Z2 satisfying suitable conditions. Hence,
Theorem 4.1 is more accurate. On the other hand, it requires an additional assumption,
namely Assumption 4.2.

Note also that the result stated in Theorem 4.1, namely the closed graph property of the
multivalued map T°Pt, is obtained despite the fact that the value function of the optimal
control problem is not continuous and not locally bounded on Z24. This may seem surpris-
ing at first glance. Besides, the fact that the value function is singular at some points of
=24 will be an important difficulty in the proofs.

The proof of Theorem 4.1 relies on several lemmas.

Lemma 4.1. Consider (z,v) € =24, (¢&,n) € T[z,v] such that n € WH2(0,T;R) and a
sequence (x°,v") ey such that for alli e N, (2%,v") € 224 and (2%, v%) — (x,v) as i — 0.
If one among the following assumptions is satisfied,

.xeq

. x =0, v<0 and for all integer i, v* <0

i\3
. (z,v) = (0,0), v* > 0 for all integer i and 1ir% (|U Z)| =0
11— o
. x=—1,v>0 and for all integer i, v* =0
i3
. (z,v) = (=1,0), v* <0 for all integer i and Z11_13% |gc|lv—i|— 1 =
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then there exists a sequence (£',1m')ien such that for all i € N, (¢, 7n%) € T[z°,0], ' €
W2(0,T;R), and (¢',1%) tends to (&,n) in W2(0,T;R) x WH2(0,T;R), hence uniformly
in [0,T7].

Proof. Lemma 4.1 is the counterpart of Lemma 2.2 . The proof is quite similar, so we skip
it for brevity. |

Corollary 4.1. Consider (z,v) € 22 and a sequence (x',v%);ey such that for all i € N,
(z%,v") € 22 and (2%,v') — (x,v) as i — 0. Suppose that Assumption 4.1 and one
among the five conditions in Lemma 4.1 are satisfied. Let a sequence (£°,m%);en be such
that for alli e N, (¢4, n%) € TPz v?]. If (&%, n) tends to (&,m) uniformly in [0,T], then
ne Wh2(0,T;R) and (&,n) € [Pz, v].

Proof. Corollary 4.1 is the counterpart of Lemma 2.3. The proof is identical. O

Consider (z,v) € 224 and a sequence (¢, v?);ey such that for all i € N, (2, v%) e Z2d
and (2%,v") — (x,v) as i — o00. Because it is always possible to extract subsequences,
we can say that the only cases that have not yet been addressed in Lemma 4.1 are the
following:

(4.3) { (z,v) = (0,0), v°>0,

and there exists a constant C' > 0 s. t. for all i € N, (%3 = C,

or

z,v) = (—1,0), o' <0,
(4.4) {( )= (=1,0), v < P o

and there exists a constant C' > 0s. t. for all i € N, wirq = C

Since the two cases are symmetrical, we may concentrate on (4.3).
It is clear that (4.3) implies that |z'|/v" — 0 as i — +o0, because v* — 0. In the case
when (4.3) is satisfied, we need two technical lemmas which provide a lower bound for the

T 7
cost So dn

2 o
H(S)’ ds of the admissible trajectories starting at (z*,v"):

Lemma 4.2. Consider (z,v) € =24 such that x < 0, v > 0, 3|z|/v < T, and 0 € (0,T).
Given a real number w € [0, |x|/T], set

n(0) = v, n(0) = w,
>
(4 5) K@,w _ ne Wl’Q(O,Q;R) . 77(5) /ewv Vs € [079]7
x + J n(s)ds <0
0
The quantity
) 1 (? dn 2
(4.6) 1(0,w) = nel%f,w QJO E(s) ds
is achieved by a function 1 = ng,, and is given by
1 (w—v)? . T
A
z? (v +w v? 4+ vw + w? . x z
4.7 I1(0,w) = 60—3+6 ( 72 )+2 7 if 96[5%751'2“7
2 (v—w)® , 32|
9 Ja — wd’ ¢ 0e[5.7).
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Remark 4.2. The partition of the interval [0,T] in (4.7) is justified by the assumptions
of Lemma 4.2. Indeed

o 3|z|/v < T and w = 0 imply that 3|z|/(v + 2w) < T

o 2)z|/(v+w) < 3|z|/(v+ 2w) because 0 < w < |x|/T < v/3.
Note also that if |x|/v — 0, then 3|z|/(v + 2w) ~ 3|z|/v < T.

Proof. Problem (4.6) is the minimization of a strictly convex and continuous functional
under linear and continuous constraints, and the set Ky, is non empty, as we shall see
below, convex and closed. Hence there exists a unique minimizer, named 7 again. The
Euler-Lagrange necessary conditions read as follows: there exists a real number p > 0 such
that n is a weak solution of the linear complementarity problem (variational inequality)

_77” =~ in (070)7
n > w,  in(0.0)
(=" +wmn-—w) = 0  in(0,0),
0
:U—&-J n(s)ds < 0,
0
(4.8) 4 P
6
u($+J n(s)ds) = 0,
0
n(0) = v,
\ n@) = w.

The solution of (4.8) can be written explicitly. Skipping the details, it has the following
form:

1. If 0 = 3|z|/(v + 2w), then

= v-— -t <t<
(4.9) n(t) v /u't+2t, 0<t<r,
n(t) = w, T<t<#,
with
x + wl 2(v —w)3
4.10 =-3 d =
(4.10) ’ v— ane A 9(x + wb)?
0
Note that —3%“;}9 < 60 because 0 > v?jrlglu Note also that x +f n(s)ds = 0. We see
0
2 T 2.3 9 o 3
that I(0,w) = Hzfo (—7 4+ t)%dt = ,u67' =3 |(;| _u;))e; we have obtained the third line
in (4.7).
2. If 2|z| /(v + w) < 0 < 3|z|/(v + 2w), then for all ¢ € [0, 6],
(4.11) n(t) = v + kt + th,
with
6x + (4v + 2w)0 2z + (v+ w)b
(4.12) k= — - and =T

0
Note that x —l—f n(s)ds = 0. Easy algebra leads to I(6,w) = 6% + 6%21%) 4 2”2”5"*“’2;

7 7
we have obtained the second line in (4.7).
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3. If 0 < 2|z|/(v + w), then for all ¢ € [0, 6],

t
(4.13) nt)=v—(v— w)é
Then, I(0,w) = %%; we have obtained the first line in (4.7). Note that if 6 < JHL,
0
then x + f n(s)ds < 0.
0
O

Lemma 4.3. Consider a sequence (2%, v%)ien such that ' < 0, v* > 0 for all i € N, and
vt — 0, |zt| /vt — 0 as i — +o0. Call I'(6,w) the quantity given by (4.6) for v = v,
z=a' and w e [0,2°/T]|. Then

(4.14) inf {I'(0,w), 0 € (0,T)} =

where o(1) is a quantity that tends to 0 as i tends to infinity (which is in fact of the order
of (v")? or smaller).

Proof. Recall that I'(§,w) is given by (4.7). It is easy to see that § — I*(0,w) is decreas-
ing on (0,2[z"[/(v" + w)] and increasing on [3|:1cz|/(vZ +2w),T).
In [2[2'|/(v" + w), 3|z"|/(v" + 2w)], I'(,w) = P(1/0), where P is the third order polyno-
mial:
P(z) = 6(2")?2% + 62° (v* + w)2? + 2((v")? + v'w + w?)z.

The roots of the second order polynomial P’(z) = 18(2%)%2% + 122! (v +w)z+2((v*)2 +viw+
vt w E Volw 2|’| 32|

3] vi+w’vi+w+\/W]

and increasing in [

w?) are . Hence, 0 — I'(f,w) is decreasing in {
3] 32| ]

Vi 4w + Vviw V2w |

Therefore, the minimizer of 6 +— I*(,w) on [0,T) is § = — 321 and the minimal value
. vitw+Volw
is
(v +w+Voiw )
3|z
2(v)3 [w  w\® 2(v%)3 v ow\’ 2(v%)3 wow
9|x?| ( T vz> 3|t AT B 3|zt TG T
+0 (02
2(v?)3 o W
= —+ 0| (v)— ).
e 0 (6

g

The next lemma is the counterpart of Lemma 4.1 when (4.3) holds. By contrast
with the situations considered so far, Assumption 4.2 is used.

Lemma 4.4. Under Assumptions 4.1 and 4.2, consider a sequence (x%,v")en which tends
to (z,v) = (0,0) as i — o0, and which satisfies (4.3). Let a sequence (£',1")en be such
that for all i € N, (¢4, n%) € TPz vf]. If (¢%,n) tends to (&,m) uniformly in [0,T], then
ne WH2(0,T;R) and (&,n) € TP, v].
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1

Proof. The proof is more difficult than that of Lemma 4.1 because we will see that
in general, the sequence u(z’,v") does not converge to u(0,0) as ¢ — o0, and that

T dn? 2
J (77(5)> ds may tend to +o0.
o \ dt

Step 1 : We start by building a particular competitor for the optimal control problem
at (z*,v%). It will be used in Steps 2 and 3 below. Let us set £; = 3|2*|/v* (observe that
lim; o £; = 0 since v* — 0 and (v*)3/|z;] = C > 0). As in the proof of Lemma 4.2 with
w = 0, we construct a pair of continuous functions (51,77’) defined on [0,#;] such that

—1<§<0and%€i=?]i,and

(€1(0),7(0)) = (", 0)

2. (&) =0

1l a2 (v)?

(we have also used Lemma 4.3 with w = 0 and Remark 4.2). Observe that z* < €i(t) <0,
hence lim;_, o, £(£;) = 0. Then, using the same arguments as in Lemma 2.2, it is possible
to extend continuously (£%,7°) to [0,T] in such a way that

1. (&,7) e T[a?, v']

2.

2
ds = 0, where « is an optimal control law for trajectories

T dﬁz -
E(s) —afs —t;)

with initial values (0, 0).

lim
1—00 i
k3

Combining all the information above, we obtain that

(4.15) J (gﬁ ‘Z) _ 3?;3, +u(0,0) + o(1).

Step 2 : Since (&,7) € T°P![z? 7], we know that for all ¢t € [0,T], &(t) = z' +
t

J n'(s)ds < 0. We claim that there exists ¢; € (0, T] such that 7°(t;) < —z'/T. Indeed, if
0

it was not the case, then ¢(T") would be larger than ! — T'(x%/T) = 0, which is not true.
Since 7 is continuous, we may define §; as the minimal time ¢ such that n'(t) < —z%/T,
and we see that n'(6;) = —2%/T.

Step 2 consists of proving that

(4.16) lim 6; = 0.

i—00

Suppose by contradiction that there exists 6 > 0 such that 8; = §. We may apply Lemma
4.2 with w = |2!|/T. Since v* — 0 and (v*)3/|2?| = C > 0, we see that |z*|/v’ — 0, then

that lim;_, % = 0. Hence, for i large enough, 6; > § > %, and the third
line of (4.7) yields
1 (T (dn, o7 (% +0) 2T (v)?
4.17 - — ds > r = / 1),
w3 f(F0) > sy~ gy e W
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where o(1) is a quantity that tends to zero as i — o0, (in fact like (v")?).
Note that n° > —z/T > 0 in [0, 6;] yields that ¢ > 2% in [0, 6;]. Therefore

(4.18) lim 1€ 22 0,0,) = O-

~.

Let us construct an admissible trajectory (&', ) starting from (x,v) = (0,0) as follows:

1. For s € [0,6;], £i(s) = Q0,001 (0:).mi (05 (5) and 7'(s) = Qlﬁi,O,O,Ei(Gi),ni(ﬂi)(8)’ see Defini-
tion 2.1

2. (€1(s), 7 (s)) = (€(s),7'(s)) for s € [0;,T).

It is easy to check that, if s < 6;, then

(4.19) §(s) = (' (6) = 26'(6)) 75 — (0’ (6) = 36'(6)) 75,
(4.20) 7'(s) = 3(0in'(6;) —2€'(6))) ng =2 (0im' (6:) — 3€'(6:)) 9%
dp’ . . . :
(21 G = 60~ 2600) gy~ 2 (0 (6) ~3600)
Since 7'(6;) = —a"/T > 0 and £(6;) < 0, we see that (6;n'(6;) —2£°(6;)) = 0 and that
- 3 2

(Gm( i) — 340 ))20. Hence for s € [0,0;], £(s) = ( ( )—25’ )(;3—22)—1-
€46, 92 < 0 as the sum of two nonpositive terms. Therefore (fZ ') € I'[0,0]. On the

other hand using (4.18) and the fact that 6;7°(6;) = 6;|x%|/T, then (4.19) and (4.20), we
see that

(4.22) dim (1820000 + 1) 2000) = 0

Moreover, since #; = d > 0, it is easy to check that

6; i 2

i (d
(4.23) lim <”(s)> ds = 0.
o \dt

1—+00

Since (€, 7') € I'[0, 0],

Il
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N
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Therefore

(4.24) o,
(@i ') > u(o,e(j)+;fo <CZ(S)) di | o
+ [ (€@ 00 - 1@ @0 ) as - 5 [ () as

Let us address the terms in the right hand side of (4.24) separately.
Thanks to the continuity of ¢, (4.18), (4.22) and Assumption 4.2, we see that

lim inf (€ (s),n"(s),s) — L(E(s),n'(s), s) ) ds
(4.25) mint | (466,75 5) = 0E (). 7(5).))

0; ‘
_ Jiminf f (600,17 (s), 5) — £(0,0, 5)) ds > 0.
1—00 0
Combining (4.25), (4.23) and (4.17), we obtain that
o 2T (v9)3
4.2 iy = Y : 1),
(4.26) u(z',v") 5T —9) [0 +u(0,0) + o(1)

where o(1) is quantity that tends to 0 as i — co.
But for (£%,7) constructed in Step 1, J (E@, i, dg) > u(x®,v'). This fact and (4.15) lead
to a contradiction with (4.26). We have proved (4.16).

Step 3 : Since lim; . 0; = 0 and (£%,7°) converges uniformly to (£,7), we see that

0; . )
f (€ (s),7(s), 5)ds = ofL).

0
Hence
o o odn
ot =T i 0
u(z',v') <€,n,dt>
1 (% (dn 2
4.2 —= =L
(127) 3| () o
T . 1 (T (dy 2 . .
+ [ e as s 5 [ (G s o€ @a @) 4o
On the other hand, we have seen above that (4.15) implies that
o ) 1\3
(4.28) u(at, vl < 9(‘7;2| +u(0,0) + o(1).

From Lemma 4.3, we know that

(4.29) ;f <CZ7;(3)>2ds > 3“?3 —o(1).

0 ||

Combining (4.27), (4.28) and (4.29) yields that

T T i 2 . .
(4.30) L 0(E4(s),n'(s), s)ds + ;L (CZ(S)> ds + g(&(T),n"(T)) < u(0,0) + o(1).
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Since (£%,7°) converges uniformly to (£,7), (4.30) implies that <ﬂ(9i’T)d7T)ieN is a bounded
sequence in L*(0,T). Hence there exists ¢ € L*(0,T) such that, after the extraction of
subsequence, ]l(gi,T)% — ¢ in L?(0,T) weak. By testing with compactly supported
functions in (0,7"), it is clear that ¢ = Z—Z Hence, the whole sequence (]l(e“T)ddeLeN

converges in L?(0,7T) weak to d" e L%(0,T). Moreover, the weak convergence in L?(0,T)

implies that
T T ' 2
d d
L <d7t7(s)> ds < llu_I)ngloffO (]l(ghT) dz (5)> ds.

This and (4.30) imply that

T T 2
asy [ e g [ (G10) i alemam) < 0.0

0 0

Hence, (£,n) € T°P'[0,0] and the above inequality is in fact an identity. The proof is
achieved. a

Proof of Theorem 4.1. Consider (z,v) € Z2% and a sequence (2!, v%);cy such that for all
ieN, (2%,v") € 224 and (2%,v%) — (2,v) as i — o0. Consider a sequence (£%,7);ey such
that for all i € N, (&%, %) € T°P![x%, '] and that (£%, 1) tends to (£,7) uniformly. Possibly
after the extraction of a subsequence, we can always assume that either one among the five
conditions in Lemma 4.1 or one among the two symmetrical conditions (4.3)-(4.4) holds.
Then the conclusion follows from Corollary 4.1 in the former case or from Lemma 4.4 in
the latter case. O

Remark 4.3. For costs of the form
T 1
wm) aena) = [ (H66006).0 + 1laP(e)) ds-+ g6 D),
with 1 < p £ 2, it is not possible to reproduce the explicit calculations of Lemmas 4.2 and
4.8, which are crucial steps for Lemma 4.4 and finally for Theorem 4.1.
4.2 Bounds related to optimal trajectories

Proposition 4.1. For positive numbers r and C, let us set

(4.33) 0, = {(z,v)eZ:—r(z+1)<v®<rz|},
(4.34) Ko = {(z,v)e=: |v| <C’}
(€),n(t)) e Ko, Vtel0,T],
(4.35) e = {(n)el: HdﬁH <C. .
at | L2(0,1;R)

Under Assumption 4.1, for all r > 0, there exists a positive number C' = C(r, M) (M is
defined in Assumption 4.1) such that if (x,v) € O, then T°P*[x,v] = T'c. Moreover, as
r—+w, C(r, M) = O(/r).

Proof. A possible proof consists of building a suitable map j from ©, to I'. We make out
different cases:
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Case 1: 0 <v < —3z/T: let j(z,v) = (E, 1) € I'[x,v] be defined by

nt) = v( f%) and g(t): x+v<t7%>, if O<t<¥,
At =0 and  £(t) = z+4, if ZL<t<T.

It is easy to check that there exists a constant C=C (r, M) such that

N N iy
(4.36) e o < O ]

<C.
dt ¢

L2(0,T;R)

Case 2: —3z/T <v < r\x| : in this case, we choose j(z,v) = (,7) € I'[z, v] where & = 7
and 7 is the solution of the linear complementarity problem (4.8) with 6 = T'. Here again
(€, 7) satisfies (4.36) for some constant C' = C(r,M). From Lemma 4.2, we see that as
r— 40, C = O(/r).

Case 3: —3(1 + z)/T < v < 0: the situation is symmetric to Case 1, and j(z,v) is given
by the same formula.

Case 4: —r(z + 1)% < v < —=3(1+x)/T: the situation is symmetric to Case 2, and j(x, v)
is constructed in the symmetric way as in Case 2.

Then, using j(x,v) as a competitor for the optimal control problem leads to the desired
result with a constant C' that depends only on r and M and that can always be taken
larger than C.

Note that j is piecewise continuous from ©, to I'. Note also that the construction of j is
independent of £ and g. |

Remark 4.4. Note that the sets ©, form an increasing family of compact subsets of =24
and that

(4.37) e, =2

r=0

4.3 Mean field games with state constraints

In the example considered here, we take = = [—1,0] xR. Let P(Z) be the set of probability
measures on =.

Let F,G : P(Z) —» CY(Z;R) be bounded and continuous maps (the continuity is with
respect to the narrow convergence in P(Z)) and ¢ be a continuous and bounded from
below function defined on = x [0,7"]. Set

(4.38) M=max< sup L (z,v,t)+ sup [|[F[m]|r=(z), sup G[m]|L°°(E)>-
(z,v,t)eEX[0,T] meP(=2) meP(=)

Assumption 4.3. We assume that for all t € [0,T], m € P(ZE) and v = 0, £(0,v,t) +
F[m](0,v) = £(0,0,t)+F[m](0,0) and £(—1, —v,t)+F[m](—1, —v) = (-1, O ,t)+F[m](—1,0).

Using similar notations as in paragraph 3.1, we consider the cost given by (3.2).
With M in (3.1), note that Proposition 4.1 can be applied to J* defined in (3.2) with
constants C(r, M) uniform in p.
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Lemma 4.5. Let r be a positive number. Under the assumptions made above on £, F
and G (including Assumption 4.3), let C = C(r, M) be the constant appearing in Propo-
sition 4.1. For any probability measure mgy on Z supported in O, defined in (4.33), there
exists a constrained mean field game equilibrium associated with the initial distribution
mo, i.e. a probability measure p € Py (T'c) such that (3.8) holds.

Proof. The proof is similar to that of Theorem 3.2. We skip it. O

Remark 4.5. Compared to Theorem 3.2, the restrictions made on the support of mqg are
weaker in Lemma 4.5, but the latter requires the additional Assumption 4.3.
In Theorem 4.2 below, we get rid of the assumptions on the support of my.

Theorem 4.2. Let mgy be a probability measure on = such that
(4.39) mo(E\E*) = 0.

Under the assumptions made above on ¢, F' and G (including Assumption 4.3), there exists
a constrained mean field game equilibrium associated with the initial distribution my, i.e.
a probability measure p € Pryy(T') such that (3.8) holds.

Proof. From (4.37) and (4.39), there exists ng > 0 such that my(©,) > 0 for n > ny.
For n > ng, we set mg,, = Wm(ﬂ@". With a slight abuse of notation, let mq, also
denotes the probability on Z obtained by extending mg , by 0 outside ©,,, i.e. mg,(B) =
mmo(B N Oy), for any measurable subset B of Z. Let j, € Py, (FC(n,M)) be a
constrained mean field game equilibrium associated with the initial distribution my, the
existence of which comes from Lemma 4.5. With a similar abuse of notations as above,

let py also denote the probability on I' obtained by extending u by 0 outside I'c(;, ar)-

We claim that {un,n > ng} is tight in P(I'), i.e. that for each € > 0, there exists a
compact K. < I' such that

(4.40) pn(T\K¢) < e, for each n > ny.

From the increasing character of the sequence ©,, (4.37) and (4.39), we observe that for
each ¢ > 0, there exists n; > 0 such that mo(©,,) > 1 —e. Let us prove (4.40) with

K. = PC(nl,M)'
Since for all n > ng, fin € Py, (I') is a MFG equilibrium, we see that for all measurable
Bc =,

Mo (B) =t {(€,1) € supp(pan) = (£(0),n(0)) € BY < pn | | TP [, 0]

(z,v)eB

Taking B = ©,, and using Proposition 4.1, we see that

mon (@m) < fn U [OPtHn [Z’, ?}] S M (FC(TLhM)) )
(2,0)€On,

(note that the constant C'(ny, M) does not depend on ).
On the other hand,

mo,n (@nl)
mon (@nl)

mo(On,) > 1 —F¢, if n > ny,
1, if ng <n < ny.

IV

29



In both cases, uy, (Fc(n17M)) > 1 — € and therefore i, (F\I‘C(nhM)) > 1 —¢, and the claim
is proved.

Thanks to Prokhorov theorem, possibly after the extraction of subsequence that we
still name p,,, we deduce that there exists p € P(I') such that u, converges narrowly to p.

We claim that i is a MFG equilibrium related to mg. We already know that u €
P(T'). There remains to prove that
o (1€ Ppy(l), ie. that epfiy = mg
o 1 satisfies (3.8).

The fact that epfr = mg stems from Lemma 3.1 and from the fact that mq, narrowly
converges to my.
In order to prove (3.8), we recall that from Kuratowski’s theorem, see [5],

supp(u) < lim inf supp (pin),

which means that for all ({,7) € supp(u), there exists a sequence (&,,7,) € supp(tn)
such that (&,,n,) — (£,71) uniformly. As a consequence, setting (2, v,) = (£,(0),7,(0))
and (z,v) = (£(0),7(0)), limy,— o0 (zp, vy) = (z,v) and (&, n,) € TOPYHn [z, v, ]. Applying
Proposition 4.2 below, which is a generalization of Theorem 4.1, we may pass to the limit
and conclude that (£,n) € T°P%*[z, v], which achieves the proof. O

Proposition 4.2. Under the assumptions made above on £, F and G (including Assump-
tion 4.3), consider a sequence (u')ien, p' € P(I), such that u' converges narrowly to
pe P(T). Consider a sequence (£',1)ien, (€%, 1%) € T, such that

L (') € TP [af, o], where (o, %) = (6'(0),7'(0))
2. (&,n) tends to (&,n) € T'[z,v] uniformly, where (z,v) = lim; (2%, v%).
Then (&,m) € TOPYH [z, v].

Proof. We skip the proof, because it follows the same lines as that of Theorem 4.1, (see
paragraph 4.1). In particular, it includes an adaptation of Lemma 4.4. The necessary
modifications are obvious. O

5 State constrained optimal control problems and mean field
games in a convex polygonal domain of R?

Let © be a bounded and convex domain of R? with a polygonal boundary 9. For z € Q,
the tangent cone to 2 at z is defined by

To(z) = {veR*: z+tveQ, for t > 0 small enough} .

Note that Tq(z) = R? if 2 € Q. A vector v € R? points outward Q at x € 0Q if v ¢ To(x).
Let (v;)o<i<n be the vertices of 0f2, labeled in such a way that 02 = Ui]\ial i, wWhere
vi = [vi, vit+1] and vy = 1. We may assume that three successive vertices are not aligned.

We are going to use the notation (v;,1;11) for the open straight line segment between
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v; and vjpq. For i € {0,...,N — 1}, let n; be the unitary normal vector to 7; pointing
outward Q. It is easy to see that To(v;) = {x € R? : n; -2 <0 and n;_1 - x < 0}, setting
n_1 =npy_1. Since Q is convex, Q coincides locally near v; with v; + T (v;).

The optimal control problem is set exactly as in Section 2: it consists of minimizing
J(&,m,7") given by (2.2) on the dynamics given by (2.1) and staying in Z = Q x R2. The
set 224 is defined by (2.6).

5.1 Closed graph properties

The closed graph result given in Proposition 5.1 below is similar to that contained in
Proposition 2.1, but special conditions are needed near the vertices of 0€):

Proposition 5.1. Consider a closed subset © of 224, Assume that all sequence (x°,v%);en
such that for alli e N, (z%,v%) € © and lim;_, ;o (z¢,0v") = (x,v) € O, the following holds:

1. If v € (vj,vj41) for some j € {0,...,N — 1} (recall that vy = 1p), then
(5.1) (v*- n])‘}r = 0((1: —zl)- nj);
2. if v = v; for some j€{0,...,N —1} and v + 0, then

(52) (vlnk)i :0<(x—.’lfl)nk>, fOT’k:j—l,j,
recalling that n_1 = ny_1;
3. If x = vj for some je€{0,...,N =1} and v = 0, then
(5:3) @ ) (Jo—a'lS + 102) =o((@—a) ), Jork=j—1,j;
then the graph of the multivalued map T°P* : © — T, (z,v) — TPz, v], is closed in the

sense given in Proposition 2.1.

Remark 5.1. [t is easy to find sets © which fulfill the assumption of Proposition 5.1, for
example:

1. a compact subset © of R? x R? contained in  x R? ;
2. forj=0,---,N —1, let D; be the straight line containing v; and vji1; for p > 1, set
S; = {(m,v) eQxR*:v-nj < dist(m,Dj)g}.
If © is a closed subset R? x R? contained in (Ead N ﬂ;vz_ol Sj) \ (U;-V:_Ol{uj} X RQ), then
O fulfills the assumption of Proposition 5.1.

3. For brevity, we do not supply examples of sets © which intersect U;y:_ol{yj} x R?, although
it is possible to do so.

The proof of Proposition 5.1 relies on the counterpart of Lemma 2.3 whose proof is
exactly the same, and on Lemma 5.1 below which is the counterpart of Lemma 2.2:
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o

1.

2.

Lemma 5.1. Consider (z,v) € 224, (¢, ) € I'[x,v] such that n € W1’2(O,T;R2) and a
sequence (x°,v") ey such that for alli e N, (x%,v") € 224 and lim (2°,0") = (z,v).
1—00

Assume that one among the following seven conditions is true:

.2 e

z € (Vj,vjt1), v-n; <0 (hence v -n; <0 for i large enough)
x € (Vj,Vj4+1), v-n; = 0 and one among the following properties is true:

(a) v n; < 0 for i large enough

(b) for i large enough, v*-n; >0 (hence (x — %) -n; > 0) and

(5.4) TN CAE.7) L

imw (z —xt) - n;

.x=vj,v-nj<0andv-nj_1 <0 (settingn_1 =ny_1)

x=vj,v-nj=0andv-n;j_1 <0 and one among the two following properties holds

(a) v'-n; <0 fori large enough
(b) v'-nj >0 and (5.4) holds for i large enough.

x=vj,v-nj_1=0andv-n; <0 and one among the two following properties holds

(a) v'-nj_1 <0 fori large enough

(b) v'-nj_1 >0 and (5.4) holds (replacing j by j — 1) for i large enough

z=vj,v=0 and
Z’ . . .
(5.5) lim max M <|£L’ — m’|§ + |U’\2) =0,
i—o0 ke{j—1,4} [(2? — ) - Ny
with the convention that % =0 if (v' ng)+ = 0.

Then there exists a sequence (€',1")ien such that (€',1) € T[z,v], n € W12(0,T;R?),
and (&4,1°) tends to (&,n) in W22(0, T;R?) x WL2(0,T;R?), hence uniformly in [0, T].

Proof of Lemma 5.1. Since many arguments are almost identical to those contained in the
proof of Lemma 2.2, we just sketch the proof and put the stress on cases 4-7 which have no
counterparts in Lemma 2.2. As for Lemma 2.2, each of the seven conditions mentioned in
the statement makes it possible to explicitly construct families of admissible trajectories
fulfilling all the desired properties. Since the construction is different in each of the seven
cases, we discuss each case separately:

If x € Q, then the construction is exactly the same as in the first case in the proof of
Lemma 2.2. We do not repeat the argument.

x € (vj,vj4+1) and v - nj < 0, hence for ¢ large enough, vl n; < 0. We can always assume
that the latter property holds for all i. Since € W12(0,T), there exists £ € (0,T) such
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that for all s € [0,%], 2v-n; <n(s) n; < 3v-n; and Fv-n; < (E(s) —2) -nj < Sv-n;.

For t; € [0, 1], we set

iy _ | Quiaiwi gt () (9 if  se(0,t],
(5:6) §s) = { t o tg(s), if selt,T],

and the remaining arguments are very close to those in case 2. in the proof of Lemma 2.2.
We skip the details.

3. (a) z € (vj,vj41), v-nj =0 and v" - nj < 0 at least for i large enough. We may assume
that v’ - n; < 0 for all i. Given ;1 € (0,T), we define (y°,w") as follows:

6.7 v = oy (@) g,
w' = (v-ng)n;+ (V' -ny)ng = (V' nj)ng,
and, for t;1 <t;2 <T, set
A thJz"vi’z,,z"u,z'(8)7 if s < t@l,
(5.8) fl(s) = Qti,g—ti,l,y"—x,wi—v,0,0(s — ti71) + 6(8 — ti,l), if ti1 < s<to,
§(s —ti1), if tio<s<T
We argue as in case 3.(a) in the proof of Lemma 2.2. An important observation is
that
. s)—x) -n;=|(x —x) Ny +2— | +sv -y - —
5.9 & y ! jl1+2 Yeny ) (1
ti1 ti1

is non positive for s € [0,¢;1]. We skip the other details.

(b) =€ (vj,vj41), v-n; =0, v"-n; >0 for all i (or for i large enough), and (5.4) holds.
This case is the counterpart of case 3.(b) in the proof of Lemma 2.2. The trajectory
€' is constructed as in (5.8), but a further restriction on t;; is needed in order to
guarantee that the trajectory is admissible, namely that

3(zf — ) - ns
o Bl =)y
’ vt n;

This condition should be supplemented with the other two conditions as in 3.(a),

namely that

(5.10) lim ti71 = 0,
1—00
N (Gl R e (et R0
5.11 \ = 0.
(5.11) i t2) " ti1

If (5.4) holds, then it is possible to choose such a sequence t; 1. The remaining part
of the proof is as in case 3.(a).

4. z=vj,v-n; <0and v-n;j_; <0. Since n € W12(0,T), there exists € (0,7) such that
for all s € [0,7], 3v-ny, < n(s) - ng < %v -ny and v - ny, < (E(s) — 2) - g < Sv - ny, for
k=j—1,7. For t; € [0,¢], we choose &' as in (5.6) and the desired result is obtained as
in case 2.
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5. x =vj,v-n; =0and v-n;j_1 <0. We make out two subcases:

(a)

vt nj < 0 at least for i large enough: the trajectory is constructed as in (5.8), with
three different stages corresponding respectively to s € [0,t;1], s € [ti1,ti2] and
s = tjo. As in point 3, it is always possible to choose the sequence ¢;; such that
(5.10) and (5.11) hold in order to ensure the L? convergence of the accelerations.
We need to prove that the trajectory is admissible for well chosen ¢; 1 and ¢; 2.

Let us first check that £!(s) remains in Q for s € [0,¢;1]. Since (5.9) holds, we see
that (£'(s) — z) - nj < 0. On the other hand, after some algebra, we get that

) dgt : s 3s :
‘(s) - nj_1 = —(s) nj_1 =v'nj_1—— |4—— ) v'-n; n;-nj_
77() j—1 ds() j—1 j—1 ti,1< ti,1> g Thg tTey—1
s s :
65 1—— | ("—2) n; n;-ni_1.
t?,1< tm)( )y gy

Since lim;_,o v - n; = 0 and lim; 4 v nj_1 = v-nj_1 <0, we see that for ¢ large
enough,

. ; s 3s ;
lim <’UZ "Nj—1 — <4 — ) v ng nj- nj_1> =0V-Nj-1 < 0,

i—00 i1 i1

uniformly with respect to s € [0,%;1]. On the other hand, the conditions (5.10) and
(5.11) imply that lim; o % = 0. Combining the latter two observations yields
that

li “(s) —w)-nj_1| = 0.

lim s![%iflﬂ(” (s) = v) - nj-1
Hence, for i large enough, 7'(s) - nj—1 < 0 for all s € t;;. This implies that
(€(s) —x) -mj—1 < 0 for all s € [0,t1].
Combining the information above and arguing essentially as in case 3.(a), we see
that it is possible to choose t¢;; satisfying (5.10) and (5.11), ¢;2 bounded away
from 0 uniformly w.r.t. i, such that (¢°,n%) € I'[2% 0] for i large enough and

dnt d

lim |2 — 1 — 0.
i—wo || ds ds LQ(O T)

vt -n; > 0 at least for i large enough and (5.4) holds: again, the trajectory is con-
structed as in (5.8) with ¢; 1 satisfying (5.10)-(5.11). As in 3.(b), a further restriction
is needed on ¢; 1 such that the trajectory is admissible.

For 0 < s < t;1, (€'(s) — z) - n; is given by (5.9) and is non positive if

(5.12) ti1 < M
V"N

On the other hand, the proof that (£(s) — x) - nj—1 < 0 for i large enough and
all s € [0,%;1] is the same as in subcase 5.(a). Hence if the sequence (t;) satisfies
(5.10)-(5.11) and (5.12), then for i large enough, &'(s) € Q for for all s € [0,¢;1].
Constructing such a sequence (t;1) is possible thanks to (5.4).

Then, using the fact that v-n;_; < 0 and arguing as in case 3., it is possible to choose
the sequence t; 2 bounded from below by a positive constant independent of ¢ such

that (¢,n') € T[z%,v"] and lim;_,« Hdd—f — %

L2(0,T)
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6. Same arguments as for case 5., exchanging the roles of j and j — 1.

7. The trajectory &' is constructed as follows:

; . ml oyt 'f
(5.13) S(s):{Qt“xé”(jfg: .

We see that, for k = j — 1, j and s € [0, ;],

(€'(s) —x) - my, = (1— 2)2 <(1 +2Z> (' — x) - ng +svi~nk> .

Stiv
t<T,

VAN

Hence, a sufficient condition for £¢(s) to stay in  for all s € [0, ;] is that t; < 3 MiNge(;_1,5) %,
with the convention that % = +oo if (v* - ng)y = 0. Then, we also need that
T a2 P2 i
lim; , o t; = 0 and that lim; ., %4—% = 0 in order to obtain that lim;_, 4 H % L08) =
i g Wt

0. From (5.5), it is possible to construct a sequence (¢;); fulfilling all the desired proper-
ties.

Proposition 5.2 below is the counterpart of Proposition 2.2:

Proposition 5.2. Given r > 0, let us define ©, by (2.30) where K, is defined by (2.28)
and © is a closed subset of 224 which satisfies the assumption in Proposition 5.1.

Under Assumption 2.1, the value function u given by (2.7) is continuous on ©,.

There exists a positive number C = C(r, M) such that if (z,v) € ©,, then T°P'[z,v] < T¢,
where U'¢ is defined in (2.29).

5.2 Mean field games with state constraints

All the results obtained in Section 3 can be generalized to the case when €2 is a bounded and
convex polygonal domain of R?, provided the initial distribution of states my is supported
in ©, defined as in Proposition 5.2.

Acknowledgments. We would like to thank P. Cardaliaguet for an enlightening discus-
sion concerning the argument in Paragraph 4.3. YA and NT were partially supported by
the ANR (Agence Nationale de la Recherche) through MFG project ANR-16-CE40-0015-
01. PM and CM were partially supported by GNAMPA-INdAM and by the Fondazione
CaRiPaRo Project “Nonlinear Partial Differential Equations: Asymptotic Problems and
Mean-Field Games”.

References

[1] Y. Achdou, F.J. Buera, J-M. Lasry, P-L. Lions, and B. Moll. Partial differential equation
models in macroeconomics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
372(2028):20130397, 19, 2014.

[2] Y. Achdou, J. Han, J-M. Lasry, P-L. Lions, and B. Moll. Income and wealth distribution in
macroeconomics: A continuous-time approach. The review of economic studies, 2021.

35



[3]

[17]
[18]
[19]
[20]

[21]

Y. Achdou, P. Mannucci, C. Marchi, and N. Tchou. Deterministic mean field games with
control on the acceleration. NoDEA Nonlinear Differential Equations Appl., 27(3):Paper No.
33, 2020.

C. D. Aliprantis and K. C. Border. Infinite dimensional analysis. A hitchhiker’s guide.
Springer, Berlin, third edition, 2006.

L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Ziirich. Birkh&user Verlag, Basel, 2005.

J-P. Aubin and H. Frankowska. Set-valued analysis, volume 2 of Systems & Control: Foun-
dations & Applications. Birkhduser Boston, Inc., Boston, MA, 1990.

J.-D. Benamou and Y. Brenier. A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393, 2000.

J.-D. Benamou and G. Carlier. Augmented Lagrangian methods for transport optimization,
mean field games and degenerate elliptic equations. Journal of Optimization Theory and
Applications, 167(1):1-26, 2015.

P. Billingsley. Conwvergence of probability measures. John Wiley & Sons, Inc., New York-
London-Sydney, 1968.

P. Cannarsa and R. Capuani. Existence and uniqueness for mean field games with state
constraints. In PDE models for multi-agent phenomena, volume 28 of Springer INdAM Ser.,
pages 49-71. Springer, Cham, 2018.

P. Cannarsa, R. Capuani, and P. Cardaliaguet. Mean field games with state constraints: from
mild to pointwise solutions of the pde system, 2018. https://arxiv.org/abs/1812.11374.

P. Cannarsa and C. Mendico. Mild and weak solutions of mean field game problems for linear
control systems. Minimaz Theory Appl., 5(2):221-250, 2020.

P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and opti-
mal control, volume 58 of Progress in Nonlinear Differential Equations and their Applications.
Birkhéuser Boston, Inc., Boston, MA, 2004.

P. Cardaliaguet. Notes on mean field games. preprint, 2011.

P. Cardaliaguet, J. Graber, A. Porretta, and D. Tonon. Second order mean field games
with degenerate diffusion and local coupling. NoDEA Nonlinear Differential Equations Appl.,
22(5):1287-1317, 2015.

P. Cardaliaguet, A. R. Mészaros, and F. Santambrogio. First order mean field games with
density constraints: pressure equals price. STAM J. Control Optim., 54(5):2672-2709, 2016.

I. L. Glicksberg. A further generalization of the Kakutani fixed theorem, with application to
Nash equilibrium points. Proc. Amer. Math. Soc., 3:170-174, 1952.

K. Kuratowski and C. Ryll-Nardzewski. A general theorem on selectors. Bull. Acad. Polon.
Sci. Sér. Sci. Math. Astronom. Phys., 13:397-403, 1965.

J-M. Lasry and P-L. Lions. Jeux a champ moyen. I. Le cas stationnaire. C. R. Math. Acad.
Sci. Paris, 343(9):619-625, 2006.

J-M. Lasry and P-L. Lions. Jeux a champ moyen. II. Horizon fini et contrdle optimal. C. R.
Math. Acad. Sci. Paris, 343(10):679-684, 2006.

J-M. Lasry and P-L. Lions. Mean field games. Jpn. J. Math., 2(1):229-260, 2007.

36



