
HAL Id: hal-03198025
https://hal.science/hal-03198025

Preprint submitted on 14 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic mean field games with control on the
acceleration and state constraints

Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou

To cite this version:
Yves Achdou, Paola Mannucci, Claudio Marchi, Nicoletta Tchou. Deterministic mean field games with
control on the acceleration and state constraints. 2021. �hal-03198025�

https://hal.science/hal-03198025
https://hal.archives-ouvertes.fr
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Claudio Marchi ‡, Nicoletta Tchou§

April 14, 2021

Abstract

We consider deterministic mean field games in which the agents control their accel-
eration and are constrained to remain in a domain of Rn. We study relaxed equilibria
in the Lagrangian setting; they are described by a probability measure on trajecto-
ries. The main results of the paper concern the existence of relaxed equilibria under
suitable assumptions. The fact that the optimal trajectories of the related optimal
control problem solved by the agents do not form a compact set brings a difficulty
in the proof of existence. The proof also requires closed graph properties of the map
which associates to initial conditions the set of optimal trajectories.

1 Introduction
The theory of mean field games (MFGs for short) is more and more investigated since
the pioneering works [19, 20, 21] of Lasry and Lions: it aims at studying the asymptotic
behaviour of differential games (Nash equilibria) as the number of agents tends to infinity.
The dynamics of the agents can be either stochastic or deterministic. Concerning the
latter case, we refer to [14] for a detailed study of deterministic MFGs in which the
interactions between the agents are modeled by a nonlocal regularizing operator acting
on the distribution of the states of the agents. They are described by a system of PDEs
coupling a continuity equation for the density of the distribution of states (forward in
time) and a Hamilton-Jacobi (HJ) equation for the optimal value of a representative
agent (backward in time). If the interaction cost depends locally on the density of the
distribution (hence is not regularizing), then, in the deterministic case, the available theory
mostly deals with so-called variational MFGs, see [15].

The major part of the literature on deterministic mean field games addresses situa-
tions when the dynamics of a given agent is strongly controllable: for example, in crowd
motion models, this happens if the control of a given agent is its velocity. Under the strong
controllability assumption, it is possible to study realistic models in which the agents are
constrained to remain in a given region K of the space state, i.e. state constrained de-
terministic MFGs. An important difficulty in state constrained deterministic MFGs is
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that nothing prevents the agents from concentrating on the boundary BK of the state
space; let us call mptq the distribution of states at time t. Even if mp0q is absolutely
continuous, there may exist some t ą 0, such that mptq has a singular part supported on
BK and the absolute continuous part of mptq with respect to Lebesgue measure blows up
near BK. This was first observed in some applications of MFGs to macroeconomics, see
[1, 2]. From the theoretical viewpoint, the main issue is that, as we have already said,
the distribution of states is generally not absolutely continuous with respect to Lebesgue
measure; this makes it difficult to characterize the state distribution by means of partial
differential equations. These theoretical difficulties have been addressed in [10]: following
ideas contained in [7, 8, 16], the authors of [10] introduce a weak or relaxed notion of
equilibrium, which is defined in a Lagrangian setting rather than with PDEs. Because
there may be several optimal trajectories starting from a given point in the state space,
the solutions of the relaxed MFG are probability measures defined on a set of admissible
trajectories. Once the existence of a relaxed equilibrium is ensured, it is then possible to
investigate the regularity of solutions and give a meaning to the system of PDEs and the
related boundary conditions: this was done in [11].

On the other hand, if the agents control their acceleration rather than their velocity,
the strong controllability property is lost. In [3], we have studied deterministic mean
field games in the whole space Rn with finite time horizon in which the dynamics of a
generic agent is controlled by the acceleration, see also [12]. The state variable is the pair
px, vq P Rn ˆ Rn where x and v respectively stand for the position and the velocity. The
system of PDEs describing the MFG is then
(1.1)

$

&

%

piq ´Btu´ v ¨Dxu`Hpx, v,Dvuq ´ F rmptqspx, vq “ 0 in R2n ˆ p0, T q
piiq Btm` v ¨Dxm´ divvpDpvHpx, v,Dvuqmq “ 0 in R2n ˆ p0, T q
piiiq mpx, v, 0q “ m0px, vq, upx, v, T q “ GrmpT qspx, vq , on R2n

where u “ upx, v, tq, m “ mpx, v, tq, px, vq P R2n, t P p0, T q and the Hamiltonian
px, v, px, pvq ÞÑ ´v ¨ px ` Hpx, v, pvq is neither strictly convex nor coercive with respect
to p “ ppx, pvq. Hence the available results on the regularity of the value function u of
the associated optimal control problem ([13, 14]) and on the existence of a solution of
the MFG system ([14]) cannot be applied. In [3], the existence of a weak solution of the
MFG system is proved via a vanishing viscosity method; the distribution of states is char-
acterized as the image of the initial distribution by the flow associated with the optimal
control.

In traffic theory and also in economics, the models may require that the position of
the agents belong to a given compact subset Ω of Rn, and state constrained mean field
games with control on the acceleration must be considered. In the present paper, we wish
to investigate some examples of such mean field games and address the first step of the
program followed by the authors of [10] in the strongly controllable case: we wish to prove
the existence of a relaxed mean field equilibrium in the Lagrangian setting under suitable
assumptions.

1.1 Our program

Most of the paper is devoted to the case when the running cost depends separately on the
acceleration and on the other variables, and is quadratic with respect to the acceleration.
We will assume that the acceleration can be chosen in the whole space. Thus, admissible
trajectories are pairs of functions pξ, ηq, ξ P C1pr0, T s; Ωq, η PW 1,2pr0, T s;Rnq and ξ1 “ η.
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An example of state constrained mean field games in which the acceleration takes its values
in a compact of Rn, (the optimal value may therefore take the value `8 in the interior of
the x-domain), will be studied in a forthcoming work.

In view of the applications to traffic models, we will deal with the cases when

1. Ω is a bounded domain of Rn with a smooth boundary

2. n “ 1 and Ω is a bounded straight line segment

3. Ω is a bounded polygonal domain of R2 (that we suppose convex for simplicity).

In the one-dimensional case, the simplicity of the geometry will allow us to obtain accurate
information on the optimal trajectories, and in turn to get a more general existence result
for the mean field game, yet under an additional assumption on the running cost. On the
contrary, when dealing with the polygonal domain, we will make special assumptions in
order to obtain an existence result.

Recall that the admissible states are the pairs px, vq P ΩˆRn, where Ω is a bounded
domain of Rn. At first glance, we see that some restrictions will have to be imposed on the
initial distribution of states: indeed, for x P BΩ and v pointing outward Ω at x, there is
no admissible trajectory taking the value px, vq at t “ 0; hence the optimal value upx, v, 0q
takes the value `8; the definition of the mean field equilibrium would then be unclear if
the probability that the initial state takes such values px, vq was not zero.

As in [10], the aim is to prove the existence of relaxed MFG equilibria which are
described by probability measures defined on a set of admissible trajectories. The proof
involves Kakutani’s fixed point theorem, see [17], applied to a multivalued map defined on
a suitable convex and compact set of probability measures on a suitable set of admissible
trajectories (itself endowed with the C1pr0, T s;RnqˆC0pr0, T s;Rnq-topology). Difficulties
in applying Kakutani’s fixed point theorem will arise from the fact that all the optimal
trajectories do not form a compact subset of C1pr0, T s;Rnq ˆ C0pr0, T s;Rnq (due to the
lack of strong controllability). This explains why we shall need additional assumptions,
either on the support of the initial distribution of states, or, in some cases, on the running
cost.

Assumptions on the support of the initial distribution of states Note that if
a set of trajectories is a compact metric space, then probability measures on this set
form a compact set, as required by Kakutani’s theorem. Therefore, a natural strategy
is to identify a compact set of trajectories which contains the optimal trajectories whose
initial value belongs to the support of the initial distribution of states. In such a strategy,
we therefore need to identify a modulus of continuity common to all the velocity laws
of the optimal trajectories; since the running cost is quadratic in the acceleration, the
more natural idea is to look for a uniform bound on the W 1,2 norms of the velocity
laws of the optimal trajectories. But, due the lack of strong controllability, if x and v
respectively belong to BΩ and to the boundary of the tangent cone to Ω at x (the optimal
value upx, v, 0q is finite), there exist sequences pxi, viqiPN tending to px, vq such that the
optimal value upxi, vi, 0q blows up when i Ñ 8; in other words, the cost of preventing
the trajectories with initial value pxi, viq from exiting the domain tends to `8 as iÑ8.
Hence, to get uniform bounds on the W 1,2 norms of the velocity law, the support of the
initial distribution of states must not contain such sequences pxi, viq. Sufficient conditions
on the support of the initial distribution will be given.
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Furthermore, Kakutani’s fixed point theorem requires a closed graph property for
the multivalued map which maps a given point px, vq to the set of optimal trajectories
starting from px, vq. An important part of our work is therefore devoted to proving a
closed graph property for the latter map. Note that this issue has its own interest in
optimal control theory, independently from mean field games.

Assumptions on the running cost We will see that if n “ 1, we will able to get rid
of the above-mentioned restrictions on the support of the initial distribution of states, if
an additional assumption is made on the running cost, namely that it does not favor the
trajectories that exit the domain. The existence of equilibria is then proved by approxi-
mating the initial distribution m0 by a sequence m0,k for which Kakutani’s theorem can
be applied, and by passing to the limit. To pass to the limit, accurate information on the
optimal trajectories are needed. We managed to obtain them for n “ 1 only.

1.2 Organization of the paper

The paper is organized as follows: Section 2 is devoted to state constrained optimal control
problems in a bounded domain of Rn with a smooth boundary, and in particular to the
closed graph properties of the above mentioned multivalued map. Although this issue
seems to be important in several applications, we were not able to find any relevant result
in the available literature. Then, Section 3 deals with an existence result for a related mean
field equilibrium in the Lagrangian setting, under sufficient conditions on the support of
the initial distribution of states. A variant with a non quadratic cost will be investigated
as well. In Section 4, we address the case when the dynamics take place in a bounded
straight line segment, (n “ 1): under a natural additional assumption on the running
cost, we are able to prove the existence of mean field equilibria without any restriction on
the initial distribution of states; the proof requires a quite careful study of the optimal
trajectories. Finally, in Section 5, we discuss the case of bounded and convex polygonal
domain of R2 and put the stress on the closed graph result which requires a special care
near the corners.

2 State constrained optimal control problems in a domain
of Rn

2.1 Setting and notation

Let Ω be a bounded domain of Rn with a boundary BΩ of class C2. For x P BΩ, let npxq
be the unitary vector normal to BΩ pointing outward Ω. We will use the signed distance
to BΩ, d : Rn Ñ R,

dpxq “

"

minyPBΩ |x´ y|, if x R Ω,
´minyPBΩ |x´ y|, if x P Ω.

Since BΩ is C2, the function d is C2 near BΩ. In particular, for all x P BΩ, ∇dpxq “ npxq.
Given a time horizon T and a pair px, vq P Ω ˆ Rn, we are interested in optimal
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control problems for which the dynamics is of the form:

(2.1)

$

’

’

&

’

’

%

ξ1psq “ ηpsq, s P p0, T q,
η1psq “ αpsq, s P p0, T q,
ξp0q “ x,
ηp0q “ v.

The state variable is the pair pξ, ηq and the state space is Ξ “ ΩˆRn. The optimal control
problem consists of minimizing the cost

(2.2) Jpξ, η, αq “

ż T

0

ˆ

`pξpsq, ηpsq, sq `
1
2 |α|

2psq

˙

ds` gpξpT q, ηpT qq,

on the dynamics given by (2.1) and staying in Ξ.

Assumption 2.1. Here, ` : Ξˆr0, T s Ñ R is a continuous function, bounded from below.
The terminal cost g : Ξ Ñ R is also assumed to be continuous and bounded from below.
Set

(2.3) M “ }g´}L8pΞq ` }`´}L8pΞˆr0,T sq.

It is convenient to define the set of admissible trajectories as follows:
(2.4)

Γ “
"

pξ, ηq P C1pr0, T s;Rnq ˆACpr0, T s;Rnq :
ˇ

ˇ

ˇ

ˇ

ξ1psq “ ηpsq, @s P r0, T s
pξpsq, ηpsqq P Ξ, @s P r0, T s

*

.

For any px, vq P Ξ, set

(2.5) Γrx, vs “ tpξ, ηq P Γ : ξp0q “ x, ηp0q “ vu.

Then, Γoptrx, vs is the set of all pξ, ηq P Γrx, vs such that η P W 1,2p0, T,Rnq and pξ, η, η1q
achieves the minimum of J in Γrx, vs.
Note that Γrx, vs “ H if x P BΩ and v points outward Ω. This is the reason why we
introduce Ξad as follows:

(2.6) Ξad “ tpx, vq : x P Ω, v ¨ npxq ď 0 if x P BΩu Ă Ξ.

Lemma 2.1. For all px, vq P Ξad, the optimal value

(2.7) upx, vq “ inf
pξ,ηqPΓrx,vs

Jpξ, η, η1q

is finite. The function u is lower semi-continuous on Ξad.

Proof. Let us consider px, vq P Ξad. We make out two cases:

1. x P Ω or x P BΩ and v ¨ npxq ă 0: in this case, for t small enough, the trajectory pξ, ηq
defined by

#

ηpsq “ p1´ s
t
qv and ξpsq “ x` ps´ s2

2t qv, if 0 ď s ď t,

ηpsq “ 0 and ξpsq “ x` t
2v, if t ď s ď T,

is admissible and Jpξ, η, η1q is finite.
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2. x P BΩ and v ¨ npxq “ 0. We make a simple observation that will also be used in the
proof of Lemma 2.2 below: for all x P BΩ, there exists an open neighborhood Vx of x in
Rn, a positive number Rx and a C2-diffeomorphism Φx from Vx onto Bp0, Rxq such that
for all y P Vx, the nth coordinate of Φxpyq is dpyq, i.e. Φx,npyq “ dpyq. Hence, Φx|VxXΩ is
a C2-diffeomorphism from Vx X Ω onto B´p0, Rxq “ Bp0, Rxq X txn ă 0u, and Φx|VxXBΩ
is a C2-diffeomorphism from Vx X BΩ onto Bp0, Rxq X txn “ 0u. Let us also call Ψx the
inverse of Φx, which is a C2-diffeomorphism from Bp0, Rxq onto Vx. Note that

(2.8) ∇dpyq “ DΦT
x pyqen, for all y P Vx,

where en is the nth vector of the canonical basis. In particular, npxq “ DΦT
x pxqen.

In the present case, let us set x̂ “ Φxpxq and v̂ “ DΦxpxqv. It is easy to see that x̂n “ 0
and v̂n “ 0. Then, for t small enough, the trajectory pξ, ηq defined by ξpsq “ Ψxpξ̂psqq,
ηpsq “ dξ

dspsq “ DΨxpξ̂psqqη̂psq for all s P r0, T s, with
#

η̂psq “ p1´ s
t
qv̂ and ξ̂psq “ x̂` ps´ s2

2t qv̂, if 0 ď s ď t,

η̂psq “ 0 and ξ̂psq “ x̂` t
2 v̂, if t ď s ď T,

is admissible and Jpξ, η, η1q is finite.

The lower semi-continuity of u on Ξad stems from standard arguments in the calculus of
variations. 2

2.2 Closed graph properties

An important feature of the optimal control problem described above is the closed graph
property:

Proposition 2.1. Consider a closed subset Θ of Ξad. Assume that for all sequences
pxi, viqiPN such that for all i P N, pxi, viq P Θ and limiÑ`8px

i, viq “ px, vq P Θ, the
following holds:
if x P BΩ, then

(2.9)
`

pvi ¨∇dpxiqq`
˘3
“ o

`ˇ

ˇdpxiq
ˇ

ˇ

˘

;

then the graph of the multivalued map

Γopt : Θ Ñ Γ,
px, vq ÞÑ Γoptrx, vs

is closed, which means: for any sequence pyi, wiqiPN such that for all i P N, pyi, wiq P Θ
with pyi, wiq Ñ py, wq as i Ñ 8, consider a sequence pξi, ηiqiPN such that for all i P N,
pξi, ηiq P Γoptryi, wis; if pξi, ηiq tends to pξ, ηq uniformly, then pξ, ηq P Γoptry, ws.

Remark 2.1. In Proposition 2.1, the condition (2.9) is restrictive only for sequences
pxi, viq P Θ which tend to px, vq P Θ such that x P BΩ and v is tangent to BΩ at x. We
will see that this assumption makes it possible to control the cost associated to the optimal
trajectories starting from pxi, viq.
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Remark 2.2. In Section 4.1 below, we will see that in dimension one (Ω is then a bounded
straight line), and under stronger assumptions on the running cost, the closed graph prop-
erties hold for Θ “ Ξad.

Remark 2.3. In the context of mean field games, see Section 3 below, the assumptions
in Proposition 2.1 will yield sufficient conditions on the support of the initial distribution
for the existence of relaxed mean field equilibria.

The proof of Proposition 2.1 relies on Lemmas 2.2 and 2.3 below.

Lemma 2.2. Consider px, vq P Ξad, pξ, ηq P Γrx, vs such that η P W 1,2p0, T ;Rnq and a
sequence pxi, viqiPN such that for all i P N, pxi, viq P Ξad and lim

iÑ8
pxi, viq “ px, vq.

Assume that one among the following conditions is true:

1. x P Ω

2. x P BΩ and v ¨ npxq ă 0 (hence vi ¨∇dpxiq ă 0 for i large enough)

3. x P BΩ, v ¨ npxq “ 0 and one among the following properties is true:

(a) for i large enough, vi ¨∇dpxiq ď 0
(b) for i large enough, vi ¨∇dpxiq ą 0 (hence dpxiq ă 0) and

(2.10) lim
iÑ8

pvi ¨∇dpxiqq3

|dpxiq|
“ 0.

Then there exists a sequence pξi, ηiqiPN such that pξi, ηiq P Γrxi, vis, ηi P W 1,2p0, T ;Rnq,
and pξi, ηiq tends to pξ, ηq in W 2,2p0, T ;Rnq ˆW 1,2p0, T ;Rnq, hence uniformly in r0, T s.

Before proving Lemma 2.2, let us define a family of third order polynomials with
values in Rn:

Definition 2.1. Given t ą 0 and x, v, y, w P Rn, let Qt,x,v,y,w be the unique third order
polynomial with value in Rn such that

(2.11) Qt,x,v,y,wp0q “ x, Q1t,x,v,y,wp0q “ v, Qt,x,v,y,wptq “ y, Q1t,x,v,y,wptq “ w.

It is given by

(2.12) Qt,x,v,y,wpsq “ x`vs`

ˆ

3y ´ x´ vt
t2

´
w ´ v

t

˙

s2`

ˆ

´2y ´ x´ vt
t3

`
w ´ v

t2

˙

s3.

The first and second derivatives of Qt,x,v,y,w are deduced immediately from (2.12).

Proof of Lemma 2.2. We are going to see that each of the three conditions mentioned in
the statement makes it possible to explicitly construct families of admissible trajectories
fulfilling all the desired properties (in particular with a finite energy or cost). The more
tricky situations will arise when x P BΩ and vi ¨∇dpxiq ą 0 for i large enough, in which
case the restrictive condition (2.10) will be needed. Since the construction is different in
each of the three cases mentioned in Lemma 2.2, we discuss each case separately.
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1. If x P Ω, then there exists t P p0, T s and c ą 0 such that dpξpsqq ă ´c for all s P r0, ts.
We construct the sequence pξi, ηiqiPN as follows:

ξipsq “

"

ξpsq `Qt,δxi,δvi,0,0psq, if 0 ď s ď t,

ξpsq, if t ď s ď T,

where δxi “ xi ´ x and δvi “ vi ´ v, see Definition 2.1 for the third order polynomial
Qt,δxi,δvi,0,0. It is clear that for i large enough, ξipsq P Ω for all s P r0, T s, hence pξi, ηiq P
Γrxi, vis and ηi PW 1,2p0, T ;Rnq. On the other hand, it can be easily checked that

(2.13) lim
iÑ`8

ż T

0

ˇ

ˇ

ˇ

ˇ

dηi

dt
psq ´

dη

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds “ 0.

This achieves the proof in the first case.

2. x P BΩ and v ¨ npxq ă 0, hence for i large enough, vi ¨∇dpxiq ă 0. We can always assume
that the latter property holds for all i.

Notation We use the same geometric arguments as in the proof of Lemma 2.1: for the
neighborhood Vx mentioned there, there exists T̂ , 0 ă T̂ ď T such that ξpsq P Vx X Ω
for all s P r0, T̂ s. Consider the local chart Φx introduced in the proof of Lemma 2.1 and
call Ψx the inverse map, from Bp0, Rxq onto Vx. For t P r0, T̂ s, let us set ξ̂ptq “ Φxpξptqq,
η̂ptq “ dξ̂

dt ptq “ DΦxpξptqq
dξ
dt ptq, x̂ “ Φxpxq and v̂ “ η̂p0q “ DΦxpxqv. It is clear that

x̂n “ 0 and that v̂n ă 0. We also set x̂i “ Φxpx
iq and v̂i “ DΦxpx

iqvi.

Since η PW 1,2p0, T q, there exists t P p0, T̂ q such that for all s P r0, ts,

3
2 v̂n ď η̂psq ¨ en ď

1
2 v̂n,(2.14)

3s
2 v̂n ď pξ̂psq ´ x̂q ¨ en ď

s

2 v̂n.(2.15)

For ti P r0, ts, we set

(2.16) ξ̂ipsq “

#

Qti,x̂i,v̂i,ξ̂ptiq,η̂ptiqpsq, if s P r0, tis,
ξ̂psq, if s P rti, T̂ s,

and η̂ipsq “ dξ̂i

dt psq for s P r0, T̂ s. Then, we define ξi as follows:

(2.17) ξipsq “

#

Ψx

´

ξ̂ipsq
¯

, if s P r0, T̂ s,
ξpsq, if s P rT̂ , T s,

and ηi “ dξi

dt . Let us first see why pξi, ηiq P Γrxi, vis for ti small enough and i large
enough. A straightforward calculation shows that for s ď ti,

ξ̂ipsq ´ x̂ “px̂i ´ x̂q

ˆ

1´ 3s
2

t2i
` 2s

3

t3i

˙

` sv̂i
ˆ

1´ 2 s
ti
`
s2

t2i

˙

` pξ̂ptiq ´ x̂q

ˆ

3s
2

t2i
´ 2s

3

t3i

˙

` sη̂ptiq

ˆ

´
s

ti
`
s2

t2i

˙

.

(2.18)
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Let us focus on pξ̂ipsq ´ x̂q ¨ en “ ξ̂ipsq ¨ en: from the formula above, we see that ξ̂ipsq ¨ en
is the sum of four terms, the first three of them being nonpositive and the last one
nonnegative for all s P r0, tis. Let us consider the sum of the last three terms, namely:

Apsq “ sv̂i ¨ en

ˆ

1´ 2 s
ti
`
s2

t2i

˙

` ξ̂ptiq ¨ en

ˆ

3s
2

t2i
´ 2s

3

t3i

˙

` sη̂ptiq ¨ en

ˆ

´
s

ti
`
s2

t2i

˙

;

from (2.14) and (2.15), we see that

ξ̂ptiq ¨ en

ˆ

3s
2

t2i
´ 2s

3

t3i

˙

` sη̂ptiq ¨ en

ˆ

´
s

ti
`
s2

t2i

˙

ďsv̂ ¨ en

ˆ

1
2

ˆ

3s
2

t2i
´ 2s

3

t3i

˙

`
3
2

ˆ

´
s

ti
`
s2

t2i

˙˙

“sv̂ ¨ en

ˆ

´
3
2
s

ti
` 3s

2

t2i
´
s3

t3i

˙

for all s P r0, tis. On the other hand, since limiÑ8 v̂
i “ v̂, we see that for i large enough,

v̂i ¨ en ď 3v̂ ¨ en{4. Hence,

Apsq ď sv̂ ¨ en

˜

3
4

ˆ

1´ s

ti

˙2
´

3
2
s

ti
` 3s

2

t2i
´
s3

t3i

¸

“ sv̂ ¨ en

ˆ

3
4 ´ 3 s

ti
`

15
4
s2

t2i
´
s3

t3i

˙

.

It is easy to check that the function θ ÞÑ 3
4 ´3θ` 15

4 θ
2´θ3 is positive for θ P r0, 1s, which

implies that Apsq is negative for s P r0, tis.
Hence, for i large enough, ξ̂ipsq ¨ en ď 0 for all 0 ď s ď ti ď t.
On the other hand, since limiÑ`8

`

|x̂i ´ x̂| ` |v̂i ´ v|
˘

“ 0, ξ̂ and η̂ are continuous,
(2.18) implies that there exists I ą 0 and t̃ P p0, t s such that, if i ě I and ti P p0, t̃q, then
ξ̂ipsq P B´p0, Rxq for all s P r0, tis. Hence, for i ě I and ti P p0, t̃q, pξi, ηiq P Γrxi, vis.

Let us now turn to
›

›

›

dηi

dt

›

›

›

L2p0,tiq
: straightforward calculus shows that

dηi

dt
ptq “ DΨxpξ̂

iptqq
dη̂i

dt
ptq `

´

D2Ψxpξ̂
iptqqη̂iptq

¯

η̂iptq.

This implies that

(2.19)
›

›

›

›

dηi

dt

›

›

›

›

2

L2p0,tiq
ď C

˜

›

›

›

›

dη̂i

dt

›

›

›

›

2

L2p0,tiq
`
›

›η̂i
›

›

4
L4p0,tiq

¸

,

for a constant C independent of x P BΩ. Hereafter, C may vary from line to line.
First, we focus on

›

›

›

dη̂i

dt

›

›

›

2

L2p0,tiq
:

›

›

›

›

dη̂i

dt

›

›

›

›

2

L2p0,tiq

“

ż ti

0

ˇ

ˇ

ˇ

ˇ

ˇ

2
˜

3 ξ̂ptiq ´ v̂
iti ´ x̂

i

t2i
´
η̂ptiq ´ v̂

i

ti

¸

`
6s
ti

˜

´2 ξ̂ptiq ´ v̂
iti ´ x̂

i

t2i
`
η̂ptiq ´ v̂

i

ti

¸ˇ

ˇ

ˇ

ˇ

ˇ

2

ds

ď2I1 ` 2I2,

where

I1 “

ż ti

0

ˇ

ˇ

ˇ

ˇ

ˇ

2
˜

3 ξ̂ptiq ´ v̂ti ´ x̂
t2i

´
η̂ptiq ´ v̂

ti

¸

`
6s
ti

˜

´2 ξ̂ptiq ´ v̂ti ´ x̂
t2i

`
η̂ptiq ´ v̂

ti

¸ˇ

ˇ

ˇ

ˇ

ˇ

2

ds

9



and

I2 “

ż ti

0

ˇ

ˇ

ˇ

ˇ

2
ˆ

3 x̂´ x̂
i

t2i
` 2 v̂ ´ v̂

i

ti

˙

`
6s
ti

ˆ

´2 x̂´ x̂
i

t2i
´
v̂ ´ v̂i

ti

˙ˇ

ˇ

ˇ

ˇ

2
ds.

Standard arguments yield that

I1 ď C

›

›

›

›

dη̂

dt

›

›

›

›

2

L2p0,tiq
,

for an absolute constant C ą 0. Therefore, given ε ą 0, there exists t̂ : 0 ă t̂ ă t such
that 2I1 ă ε{2 for all ti ă t̂.
On the other hand,

I2 ď C1

ˆ

|x̂´ x̂i|2

t3i
`
|v̂ ´ v̂i|2

ti

˙

ď C

ˆ

|x´ xi|2

t3i
`
|v ´ vi|2

ti

˙

.

It is possible to choose the sequence ti such that

• limiÑ8 ti “ 0,
• limiÑ8

|x´xi|2

t3i
`
|v´vi|2

ti
“ 0,

• pξi, ηiq P Γrxi, vis for i large enough.

Such a choice of ti yields that limiÑ8

›

›

›

dη̂i

dt

›

›

›

2

L2p0,tiq
“ 0. On the other hand, the choice

made on ti also implies that limiÑ8
|x´xi|
ti

“ 0, and in turn that
›

›η̂i
›

›

L8p0,tiq
is uniformly

bounded with respect to i; therefore, the quantity
›

›η̂i
›

›

4
L4p0,tiq

tends to 0 as i tends to 8;

using (2.19), we have proved that limiÑ8

›

›

›

dηi

dt

›

›

›

L2p0,tiq
“ 0.

Therefore, it is possible to choose a sequence ti ą 0 such that the trajectories pξi, ηiq are

admissible for i large enough and lim
iÑ8

›

›

›

›

dηi

dt
´
dη

dt

›

›

›

›

L2p0,T q
“ 0. This achieves the proof in

case 2.

3. (a) x P BΩ, v ¨ npxq “ 0 and vi ¨∇dpxiq ď 0 at least for i large enough. We may assume
that vi ¨∇dpxiq ď 0 for all i. Using the same notation as in case 2, we see from (2.8)
that v̂i ¨ en “ vi ¨DΦT

x px
iqen “ vi ¨∇dpxiq ď 0.

In the present case, the approximate trajectories will have three successive phases,
see Remarks 2.4 and 2.5 for explanations on these different phases.
Given ti,1 P p0, T̂ q, we define pŷi, ŵiq as follows:

(2.20) ŷi “ x̂nen ` πeKn
`

x̂i ` v̂iti,1
˘

,

ŵi “ v̂nen ` πeKn
`

v̂i
˘

“ πeKn
`

v̂i
˘

,

where πeKn stands for the orthogonal projector on eKn “ Rn´1 ˆ t0u, and set

ξ̂ipsq “ Qti,1,x̂i,v̂i,ŷi,ŵipsq and η̂ipsq “
dξ̂i

ds
psq for 0 ď s ď ti,1.

Remark 2.4. In this first phase of the approximate trajectory, i.e. for s P r0, ti,1s,
πeKn

´

Q2ti,1,x̂i,v̂i,ŷi,ŵipsq
¯

“ 0. The effort only lies in driving the nth-components of
ξ̂ipsq and η̂ipsq so that they match those of x̂ and v̂ at s “ ti,1.
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As above, we first check that for ti,1 small enough and i large enough, ξ̂ipsq P
B´p0, Rxq for all s P r0, ti,1s: from the definition of Qti,1,x̂i,v̂i,ŷi,ŵi , we see that

(2.21) ξ̂ipsq ¨ en “

ˆ

x̂i ¨ en

ˆ

1` 2 s

ti,1

˙

` sv̂i ¨ en

˙ˆ

1´ s

ti,1

˙2

is nonpositive for s P r0, ti,1s. On the other hand, we see that there exist I ą 0 and
0 ă t̃ ď T̂ such that if i ě I and 0 ă ti,1 ă t̃, then for all s P r0, ti,1s, ξ̂ipsq P B´p0, Rxq.
As in case 2., we need to focus on

›

›

›

dη̂i

dt

›

›

›

L2p0,ti,1q
: straightforward calculus shows that

›

›

›

›

dη̂i

dt

›

›

›

›

2

L2p0,ti,1q
ď C

˜

|x̂i ¨ en|
2

t3i,1
`
|pv̂ ´ v̂iq ¨ en|

2

ti,1

¸

“ C

˜

d2pxiq

t3i,1
`
|vi ¨∇dpxiq|2

ti,1

¸

,

and we see as above that there exists a sequence ti,1 such that
• limiÑ8 ti,1 “ 0,
• limiÑ8

d2pxiq
t3i,1

`
|vi¨∇dpxiq|2

ti,1
“ 0,

• ξ̂ipsq P B´p0, Rxq for all 0 ď s ď ti,1.
Taking the derivative of ξ̂i and arguing as in case 2., we also see that limiÑ8 }η̂

i}L4p0,ti,1q “

0, because limiÑ8
dpxiq
ti,1

“ 0.

Next, for ti,1 ă ti,2 ă T̂ , we set
(2.22)

ξ̂ipsq “

#

Qti,1,x̂i,v̂i,ŷi,ŵipsq, if s ď ti,1,

Qti,2´ti,1,ŷi´x̂,ŵi´v̂,0,0ps´ ti,1q ` ξ̂ps´ ti,1q, if ti,1 ď s ď ti,2,

and

(2.23) ξipsq “

#

Ψx

´

ξ̂ipsq
¯

, if s ď ti,2,

ξps´ ti,1q, if ti,2 ď s ď T.

As above η̂ipsq “ dξ̂i

dt psq for 0 ď s ď ti,2 and ηipsq “ dξi

dt psq for 0 ď s ď T .
Remark 2.5. In the second phase of the approximate trajectory, i.e. for s P rti,1, ti,2s,
the components of ξ̂ipsq and ξ̂ps´ti,1q parallel to en coincide, i.e. Qti,2´ti,1,ŷi´x̂,ŵi´v̂,0,0ps´
ti,1q ¨ en “ 0. The effort only consists of driving the projections of ξ̂ipsq and η̂ipsq on
eKn such that they match those of ξ̂ps´ ti,1q and η̂ps´ ti,1q at s “ ti,2. We will see that
is not necessary to have ti,2 tend to zero, because from the choice of ti,1, the distance
between pξ̂ipti,1q, η̂ipti,1qq and px̂, v̂q tends to 0 as iÑ `8.

It is possible to choose the sequence ti,2 bounded from below by a positive constant
which depends on px, vq but not on i such that ξ̂ipsq stays in B´p0, Rxq for s P
rti,1, ti,2s. Hence, pξi, ηiq P Γrxi, vis.
Moreover, since ti,2 is bounded away from 0 and limiÑ8

`

|ŷi ´ x̂| ` |ŵi ´ v̂|
˘

“ 0, it

is not difficult to check that lim
iÑ8

›

›

›

›

dηi

dt
´
dη

dt

›

›

›

›

L2p0,T q
“ 0; this achieves the proof in

subcase 3.(a).
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(b) x P BΩ, v ¨ npxq “ 0, vi ¨∇dpxiq ą 0 for all i (or for i large enough), and (2.10) holds.
The trajectory ξi is constructed as in (2.22)-(2.23), but a further restriction on ti,1 is
needed in order to guarantee that the trajectory is admissible. Using (2.21), we see
that the trajectory is admissible if

v̂i ¨ en
|x̂i ¨ en|

ď
1
s
`

2
ti,1

, for all 0 ď s ď ti,1.

This happens if and only if

ti,1 ď
3|x̂i ¨ en|
v̂i ¨ en

“
3|dpxiq|

vi ¨∇dpxiq
,

which should be supplemented with the other two conditions as in 3.(a):

lim
iÑ8

ti,1 “ 0,(2.24)

lim
iÑ8

|dpxiq|2

t3i,1
`
|vi ¨∇dpxiq|2

ti,1
“ 0.(2.25)

If (2.10) holds, then it is possible to choose such a sequence ti,1. Then, as in 3.(a),
it is possible to choose the sequence ti,2 bounded from below by a positive constant
independent of i such that pξi, ηiq P Γrxi, vis; the last part of the proof is identical as
in subcase 3.(a).

2

Lemma 2.3. Consider px, vq P Ξad and a sequence pxi, viqiPN such that for all i P N,
pxi, viq P Ξad and pxi, viq Ñ px, vq as i Ñ 8. Suppose that Assumption 2.1 and one
among the three conditions in Lemma 2.2 are satisfied. Let a sequence pξi, ηiqiPN be such
that for all i P N, pξi, ηiq P Γoptrxi, vis. If pξi, ηiq tends to pξ, ηq uniformly in r0, T s, then
η PW 1,2p0, T ;Rnq and pξ, ηq P Γoptrx, vs.

Proof. We need to prove that for any prξ, rηq P Γrx, vs such that rη PW 1,2p0, T ;Rnq,

(2.26) Jpξ, η, η1q ď Jprξ, rη, rη1q.

From Lemma 2.2 applied to prξ, rηq, there exists a sequence prξi, rηiqiPN, with prξi, rηiq P Γrxi, vis
such that prξi, rηiq Ñ prξ, rηq uniformly on r0, T s as iÑ8, and

lim
iÑ8

ż T

0

ˇ

ˇ

ˇ

ˇ

drηi

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds “

ż T

0

ˇ

ˇ

ˇ

ˇ

drη

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds.

On the other hand, the optimality of pξi, ηiq yields that

(2.27) J

ˆ

ξi, ηi,
dηi

dt

˙

ď J

ˆ

rξi, rηi,
drηi

dt

˙

.

From the properties of prξi, rηiq, the right hand side of (2.27) converges to J
ˆ

rξ, rη,
drη

dt

˙

.

The left side (2.27) is thus bounded. Combining this fact with the uniform conver-
gence of pξi, ηiq to pξ, ηq in r0, T s, we obtain that the sequence

şT
0

ˇ

ˇ

ˇ

dηi

dt psq
ˇ

ˇ

ˇ

2
ds is bounded.
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This implies that dηi

dt á
dη
dt in L2p0, T ;Rnq weakly and that lim inf

iÑ8

ż T

0

ˇ

ˇ

ˇ

ˇ

dηi

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds ě

ż T

0

ˇ

ˇ

ˇ

ˇ

dη

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds. We deduce that

J

ˆ

ξ, η,
dη

dt

˙

ď lim inf
iÑ8

J

ˆ

ξi, ηi,
dηi

dt

˙

.

Combining the information obtained above, we obtain (2.26), which achieves the proof.
2

Proof of Proposition 2.1. Consider py, wq P Θ and a sequence pyi, wiqiPN such that for all
i P N, pyi, wiq P Θ and pyi, wiq Ñ py, wq as i Ñ 8. Consider a sequence pξi, ηiqiPN such
that for all i P N, pξi, ηiq P Γoptryi, wis and that pξi, ηiq tends to pξ, ηq uniformly. Thanks
to the assumption made in the statement of Proposition 2.1, possibly after the extraction
of a subsequence, we may suppose that one among the three conditions in Lemma 2.2
holds. Then the conclusion follows from Lemma 2.3. 2

2.3 Bounds related to optimal trajectories

Definition 2.2. For a positive number C, let us set

KC “ tpx, vq P Ξ : |v| ď Cu,(2.28)

ΓC “

#

pξ, ηq P Γ :

ˇ

ˇ

ˇ

ˇ

ˇ

pξptq, ηptqq P KC , @t P r0, T s,
›

›

›

dη
dt

›

›

›

L2p0,T ;Rnq
ď C.

+

.(2.29)

Proposition 2.2. Given r ą 0, let us define

(2.30) Θr “ ΘXKr,

where Kr is defined by (2.28) and Θ is a closed subset of Ξad which satisfies the assumption
in Proposition 2.1.
Under Assumption 2.1, the value function u defined in (2.7) is continuous on Θr.
There exists a positive number C “ Cpr,Mq such that if px, vq P Θr, then Γoptrx, vs Ă ΓC .

Remark 2.6. The set of trajectories ΓC is a compact subset of Γ. In the context of mean
field games, see Section 3, the existence of relaxed equilibria will be obtained by applying
Kakutani’s fixed point theorem to a multivalued map defined on a closed set of probability
measures on ΓC .

Proof. Take px, vq P Θr and a sequence pxi, viqiPN, pxi, viq P Θr such that limiÑ8px
i, viq “

px, vq.
From Lemma 2.1 we know that upx, vq is finite and from Assumption 2.1, that the infimum
in (2.7) is achieved by a trajectory pξ, ηq P Γoptrx, vs.
Possibly after the extraction of a subsequence, we may assume that pxi, viq satisfies one
among the three points in Lemma 2.2. Then, there exists a sequence pξi, ηiqiPN such
that for all i P N, pξi, ηiq P Γrxi, vis, ηi P W 1,2p0, T ;Rnq, and pξi, ηiq tends to pξ, ηq in
W 2,2p0, T ;Rnq ˆW 1,2p0, T ;Rnq, hence uniformly in r0, T s. Hence,

lim
iÑ8

J

ˆ

ξi, ηi,
dηi

dt

˙

“ upx, vq.

13



On the other hand,

J

ˆ

ξi, ηi,
dηi

dt

˙

ě upxi, viq.

The latter two observations yield that

lim sup
iÑ8

upxi, viq ď upx, vq.

This proves that u is upper-semi-continuous on Θr. From Lemma 2.1, u is continuous on
Θr. Since Θr is a compact subset of Rn ˆ Rn, u is bounded on Θr.
Then from the definition of J and u and the boundedness of u on Θr, it is clear that there
exists a constant C “ Cpr,Mq such that Γoptrx, vs Ă ΓC for any px, vq P Θr. 2

3 A mean field game with control on the acceleration and
state constraints

3.1 Setting and notation

The bounded domain Ω of Rn and the sets Ξ and Ξad have been introduced in Section 2.1.
Let PpΞq be the set of probability measures on Ξ.

Let C0
b pΞ;Rq denote the space of bounded and continuous real valued functions

defined on Ξ and let F,G : PpΞq Ñ C0
b pΞ;Rq be bounded and continuous maps (the

continuity is with respect to the narrow convergence in PpΞq). Let ` be a real valued,
continuous and bounded from below function defined on Ξˆ r0, T s.

Let F rms and Grms denote the images by F and G of m P PpΞq. Set

(3.1) M “ max
˜

sup
px,v,sqPΞˆr0,T s

`´px, v, sq ` sup
mPPpΞq

}F rms}L8pΞq, sup
mPPpΞq

}Grms}L8pΞq

¸

.

Let Γ be the set of admissible trajectories given by (2.4). It is a metric space with the
distance dppξ, ηq, pξ̃, η̃qq “ }ξ ´ ξ̃}C1pr0,T s;Rnq. Let PpΓq be the set of probability measures
on Γ.
For t P r0, T s, the evaluation map et : Γ Ñ Ξ is defined by etpξ, ηq “ pξptq, ηptqq for all
pξ, ηq P Γ.
For any µ P PpΓq, let the Borel probability measuremµptq on Ξ be defined bymµptq “ et7µ.
It is possible to prove that if µ P PpΓq, then t ÞÑ mµptq is continuous from r0, T s to PpΞq,
for the narrow convergence in PpΞq. Hence, for all pξ, ηq P Γ, t ÞÑ F rmµptqspξptq, ηptqq is
continuous and bounded by the constant M in (3.1).
With µ P PpΓq, we associate the cost

(3.2) Jµpξ, ηq “

¨

˚

˝

ż T

0

˜

F rmµpsqspξpsq, ηpsqq ` `pξpsq, ηpsq, sq `
1
2

ˇ

ˇ

ˇ

ˇ

dη

dt
psq

ˇ

ˇ

ˇ

ˇ

2
¸

ds

`GrmµpT qspξpT q, ηpT qq

˛

‹

‚

.

Remark 3.1. It is clear from (3.1) that given µ P PpΓq, the running cost py, w, sq ÞÑ
F rmµpsqspy, wq` `py, w, sq and the final cost py, wq ÞÑ GrmµpT qspy, wq satisfy Assumption
2.1, and that the constant arising in (2.3) can be chosen uniformly with respect to µ P
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PpΓq. Hence, for all µ P PpΓq, Propositions 2.1 and 2.2 hold for the state constrained
control problem related to Jµ and the constants arising in these propositions can be chosen
uniformly with respect to µ P PpΓq.

Assumption 3.1. There exists a positive number r such that the initial distribution of
states is a probability measure m0 on Ξ supported in Θr, where Θr is a closed subset of
Ξad as in (2.30).

Let C “ Cpr,Mq be the constant appearing in Proposition 2.2 (uniform w.r.t. µ),
and ΓC be the compact subset of Γ defined by (2.29); clearly, ΓC is a Radon metric space.
From Prokhorov theorem, see [5, Theorem 5.1.3], the set PpΓCq is compact for the narrow
convergence of measures.

Let Pm0pΓq, (resp. Pm0pΓCq) denote the set of probability measures µ on Γ (resp.
ΓC) such that e07µ “ m0.

Hereafter, we identify PpΓCq with a subset of PpΓq by extending µ P PpΓCq by 0
outside ΓC . Similarly, we may consider Pm0pΓCq as a subset of Pm0pΓq.

Note that for all µ P PpΓCq and for all t P r0, T s, mµptq is supported in KC , where
KC is defined in (2.28).

Remark 3.2. Note that ΓC (endowed with the metric of the C1ˆC0-convergence of pξ, ηq)
is a Polish space (because it is compact). The multivalued map rΓopt related for instance
to F ” 0 and G ” 0 maps Θr to non empty and closed subsets of ΓC (the closedness can
be checked by usual arguments of the calculus of variations). Since the graph of rΓopt is
closed, rΓopt is measurable. Therefore, there exists a measurable selection j : Θr Ñ ΓC
from Kuratowski and Ryll-Nardzewski theorem, [18]. Then j7m0 belongs to Pm0pΓCq. The
set Pm0pΓCq is not empty.

3.2 Existence of a mean field game equilibrium

Lemma 3.1. Let a sequence of probability measures pµiqiPN, µi P PpΓq, be narrowly
convergent to µ P PpΓq. For all t P r0, T s, pmµiptqqiPN is narrowly convergent to mµptq.

Proof. For all f P C0
b pΞ;Rq,

ż

Ξ
fpx, vqdmµiptqpx, vq “

ż

Γ
fpξptq, ηptqqdµipξ, ηq Ñ

ż

Γ
fpξptq, ηptqqdµpξ, ηq

“

ż

Ξ
fpx, vqdmµptqpx, vq.

2

An easy consequence of Lemma 3.1 is that for C “ Cpr,Mq as in Proposition 2.2,
Pm0pΓCq is a closed subset of PpΓCq, and is therefore compact.

Lemma 3.2. If µ P PpΓCq, the map t ÞÑ mµptq is 1{2-Hölder continuous from r0, T s to
PpKCq, (KC is defined in (2.28) and PpKCq is endowed with the Kantorovitch-Rubinstein
distance).
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Proof. Let φ be any Lipschitz function defined on KC with a Lipschitz constant not larger
than 1.
ż

KC

φpx, vq pdmµpt2qpx, vq ´ dm
µpt1qpx, vqq “

ż

ΓC
pφpet2pξ, ηqq ´ φpet1pξ, ηqqq dµpξ, ηq

“

ż

ΓC
pφpξpt2q, ηpt2qq ´ φpξpt1q, ηpt1qqq dµpξ, ηq

ď

ż

ΓC
p|ξpt2q ´ ξpt1q| ` |ηpt2q ´ ηpt1q|q dµpξ, ηq

ď C

ż

ΓC

´

|t2 ´ t1| ` |t2 ´ t1|
1
2

¯

dµpξ, ηq

ď C̃ |t2 ´ t1|
1
2 ,

for a constant C̃ which depends only on C and T . 2

It is useful to recall the disintegration theorem:

Theorem 3.1. Let X and Y be Radon metric spaces, π : X Ñ Y be a Borel map, µ be
a probability measure on X. Set ν “ π7µ. There exists a ν-almost everywhere uniquely
defined Borel measurable family of probability measures pµyqyPY on X such that

(3.3) µypXzπ
´1pyqq “ 0, for ν-almost all y P Y,

and for every Borel function f : X Ñ r0,`8s,

(3.4)
ż

X
fpxqdµpxq “

ż

Y

ˆ
ż

X
fpxqdµypxq

˙

dνpyq “

ż

Y

˜

ż

π´1pyq
fpxqdµypxq

¸

dνpyq.

Recall that pµyqyPY is a Borel family of probability measures if for any Borel subset B of
X, Y Q y ÞÑ µypBq is a Borel function from Y to r0, 1s.

It is possible to apply Theorem 3.1 with X “ ΓC , Y “ Θr, π “ e0 and ν “ m0 (iden-
tifying m0 and its restriction to Θr): for any µ P Pm0pΓCq, there exists a m0-almost ev-
erywhere uniquely defined Borel measurable family of probability measures pµpx,vqqpx,vqPΘr
on ΓC such that

(3.5) µpx,vqpΓCze´1
0 px, vqq “ 0, for m0-almost all px, vq P Θr,

and for every Borel function f : ΓC Ñ r0,`8s,
ż

ΓC
fpξ, ηqdµpξ, ηq “

ż

Θr

ˆ
ż

ΓC
fpξ, ηqdµpx,vqpξ, ηq

˙

dm0px, vq

“

ż

Θr

˜

ż

e´1
0 px,vq

fpξ, ηqdµpx,vqpξ, ηq

¸

dm0px, vq.

(3.6)

For px, vq P Θr, m0 supported in Θr and µ P Pm0pΓCq (where C “ Cpr,Mq is the
constant appearing in Proposition 2.2), let us set

(3.7) Γµ,optrx, vs “

#

pξ, ηq P Γrx, vs : Jµpξ, ηq “ min
prξ,rηqPΓrx,vs

Jµprξ, rηq

+

.
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Standard arguments from the calculus of variations yield that for each µ P Pm0pΓCq and
px, vq P Ξad, Γµ,optrx, vs is not empty. Moreover, from Proposition 2.2, Γµ,optrx, vs Ă ΓC
for all px, vq P Θr.

Proposition 3.1. Under the assumptions made on `, F and G in paragraph 3.1, and
Assumption 3.1, let C “ Cpr,Mq be chosen as in Proposition 2.2.
Let a sequence of probability measures pµiqiPN, µi P Pm0pΓCq, be narrowly convergent to
µ P PpΓCq. Let pxi, viqiPN, pxi, viq P Θr, converge to px, vq. Consider a sequence pξi, ηiqiPN
such that for all i P N, pξi, ηiq P Γµi,optrxi, vis. If pξi, ηiqiPN tends to pξ, ηq uniformly, then
pξ, ηq P Γµ,optrx, vs. In other words, the multivalued map px, v, µq ÞÑ Γµ,optrx, vs has closed
graph.

Proof. First, from Lemma 3.1, µ P Pm0pΓCq and for all t P r0, T s, pmµiptqqiPN is nar-
rowly convergent to mµptq. From the continuity assumptions made on F and G and the
dominated convergence theorem, we deduce that

ż T

0
F rmµiptqspξiptq, ηiptqqdt Ñ

ż T

0
F rmµptqspξptq, ηptqqdt,

GrmµipT qspξipT q, ηipT qq Ñ GrmµpT qspξpT q, ηpT qq.

The last part of the proof is completely similar to the proof of Proposition 2.1. It makes
use of Assumption 2.1 and Lemma 3.2. 2

Definition 3.1. The probability measure µ P Pm0pΓq is a constrained mean field game
equilibrium associated with the initial distribution m0 if

(3.8) supppµq Ă
ď

px,vqPsupppm0q

Γµ,optrx, vs.

Theorem 3.2. Under the assumptions made on F and G at the beginning of paragraph 3.1
and Assumption 3.1, let C “ Cpr,Mq be chosen as in Proposition 2.2. There exists
a constrained mean field game equilibrium µ P Pm0pΓCq, see Definition 3.1. Moreover,
t ÞÑ et7µ P C

1{2pr0, T s;PpKCqq, (KC is defined in (2.28) and PpKCq is endowed with the
Kantorovitch-Rubinstein distance).

Proof. The proof follows that of Cannarsa and Capuani in [10]. Define the multivalued
map E from Pm0pΓCq to Pm0pΓCq as follows: for any µ P Pm0pΓCq,

(3.9) Epµq “
 

µ̂ P Pm0pΓCq : supppµ̂px,vqq Ă Γµ,optrx, vs for m0-almost all px, vq P Ξ
(

,

where pµ̂px,vqqpx,vqPΞ is them0-almost everywhere uniquely defined Borel measurable family
of probability measures which disintegrates µ̂, see the lines after Theorem 3.1.
Then the measure µ P Pm0pΓCq is a constrained mean field game equilibrium if and only
if µ P Epµq. This leads us to apply Kakutani fixed point theorem to the multivalued map
E, see [4, 17]. Several steps are needed in order to check that the assumptions of Kakutani
theorem are satisfied. First of all, we recall that Pm0pΓCq is compact.

Step 1: For any µ P Pm0pΓCq, Epµq is a non empty convex set.
First, we have already seen that Γµ,optrx, vs ­“ H and that the map px, vq ÞÑ Γµ,optrx, vs
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has closed graph. Therefore, from [6], px, vq ÞÑ Γµ,optrx, vs has a Borel measurable selec-
tion px, vq ÞÑ pξµ

px,vq, η
µ
px,vqq. The measure µ̂ defined by

µ̂pBq “

ż

Θr
δpξµ

px,vq
,ηµ
px,vq

qpBqdm0px, vq, for all Borel subset B of ΓC ,

belongs to Epµq; indeed, the total mass of µ̂ is one because m0 is supported in Θr and
C “ Cpr,Mq as in Proposition 2.2 so Epµq is non empty.
Second, take µ1, µ2 in Epµq and λ P r0, 1s. We wish to prove that λµ1`p1´λqµ2 P Epµq.
It is clear that λµ1`p1´λqµ2 belongs to Pm0pΓCq. On the other hand, since µ1 belongs
to Epµq, there exist a m0-almost everywhere uniquely defined Borel measurable family
pµ̂1
px,vqqpx,vqPΘr of probability measures which disintegrates µ1 and a subset A1 of Θr such

that m0pA
1q “ 0 and supppµ1

px,vqq Ă Γµ,optrx, vs for all px, vq P ΘrzA
1. Similarly, µ2 can

be disintegrated into a m0-almost everywhere uniquely defined Borel measurable family
pµ̂2
px,vqqpx,vqPΘr of probability measures, and there exists a subset A2 of Θr such that

m0pA
2q “ 0 and supppµ2

px,vqq Ă Γµ,optrx, vs for all px, vq P ΘrzA
2. Therefore, λµ1 ` p1´

λqµ2 can be disintegrated as follows: for each Borel function f defined on ΓC ,
ż

ΓC
fpξ, ηqd

`

λµ1 ` p1´ λ
˘

µ2qpξ, ηqs

“

ż

Θr

ˆ
ż

ΓC
fpξ, ηqd

´

λµ1
px,vq ` p1´ λqµ

2
px,vq

¯

pξ, ηq

˙

dm0px, vq,

supp
´

λµ1
px,vq ` p1´ λqµ

2
px,vq

¯

Ă Γµ,optrx, vs, @px, vq P ΘrzpA
1 YA2q,

and m0pA
1 YA2q “ 0. Hence, λµ1 ` p1´ λqµ2 P Epµq, so Epµq is convex.

Step 2: The multivalued map E has closed graph.
Consider a sequence pµiqiPN, µi P Pm0pΓCq narrowly convergent to µ P Pm0pΓCq. Let
a sequence pµ̂iqiPN, µ̂i P Epµiq be narrowly convergent to µ̂ P Pm0pΓCq. We claim that
µ̂ P Epµq.
First, there exists a m0-almost everywhere uniquely defined Borel measurable family of
probability measures pµ̂px,vqqpx,vq on ΓC such that (3.5) and (3.6) hold for µ̂ and µ̂px,vq.
In particular, there exists a subset A of Θr with m0pAq “ 0 such that for px, vq P ΘrzA,
µ̂px,vqpΓCze´1

0 px, vqq “ 0.
Take px, vq P ΘrzA and pξ̂, η̂q P supppµ̂px,vqq.
The Kuratowski convergence theorem applied to pµ̂iqi, µ̂, see [9], implies that there exists
a sequence pξ̂i, η̂iqiPN, pξ̂i, η̂iq P supppµ̂iq, which converges to pξ̂, η̂q uniformly in r0, T s. Set
pxi, viq “ pξ̂ip0q, η̂ip0qq P Θr. Since µ̂i P Epµiq, there holds that pξ̂i, η̂iq P Γµi,optrxi, vis.
From Proposition 3.1, we see that pξ̂, η̂q P Γµ,optrx, vs. Since px, vq is any point in ΘrzA,
this implies that µ̂ P Epµq.

All the assumptions of Kakutani theorem are satisfied: hence, there exists µ P Pm0pΓCq
such that µ P Epµq. This achieves the proof. 2

Definition 3.2. A pair pu,mq, where u is a measurable function defined on Ξ ˆ r0, T s
and m P C0pr0, T s;PpΞqq, is called a mild solution of the mean field game, if there exists
a constrained mean fied game equilibrium µ for m0 (see Definition 3.1) such that:

i) mptq “ et7µ;
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ii) @px, vq P Ξad, upx, v, tq is given by

upx, v, tq “ inf
pξ,η,αqPΓrx,v,ts

¨

˚

˝

ż T

t

ˆ

F rmpsqspξpsq, ηpsqq ` `pξpsq, ηpsq, sq `
1
2 |αpsq|

2
˙

ds

`GrmpT qspξpT q, ηpT qq

˛

‹

‚

.

where Γrx, v, ts is the set of admissible trajectories starting from px, vq at s “ t.

A corollary of Theorem 3.2 is:

Corollary 3.1. Under the assumptions of Theorem 3.2, there exists a mild solution pu,mq.
Moreover, m P C

1
2 pr0, T s;PpKCqq.

Remark 3.3. Under classical monotonicity assumptions for F and G, see e.g. [10], the
mild solution is unique.

3.3 Non quadratic running costs

It is possible to generalize the results of Sections 2 and 3 to costs of the form

(3.10) Jpξ, η, αq “

ż T

0

ˆ

`pξpsq, ηpsq, sq `
1
p
|α|ppsq

˙

ds` gpξpT q, ηpT qq,

where 1 ă p, for dynamics given by (2.1) and staying in Ξ.
For brevity, we restrict ourselves to the closed graph result, whose proof is completely
similar to that of Proposition 2.1. The generalization of Theorem 3.2 is then possible.

Proposition 3.2. Consider a closed subset Θ of Ξad. Assume that all sequence pxi, viqiPN
such that for all i P N, pxi, viq P Θ and limiÑ`8px

i, viq “ px, vq P Θ, the following holds:
if x P BΩ, then

(3.11) ppvi ¨∇dpxiqq`q2p´1 “ o
´

ˇ

ˇdpxiq
ˇ

ˇ

p´1
¯

;

then the graph of the multivalued map Γopt : Θ Ñ Γ, px, vq ÞÑ Γoptrx, vs is closed in the
sense given in Proposition 2.1.

4 One dimensional problems: more accurate results
In dimension one and for a running cost quadratic in α, it is possible to obtain more
accurate results under a slightly stronger assumption on the running cost, namely that
it does not favor the trajectories which exit the domain. In particular, the closed graph
property can be proved to hold on the whole set Ξad, and concerning mean field games,
no assumptions are needed on the support of m0 by contrast with Theorem 3.2.

4.1 Optimal control problem in an interval: a closed graph property

In this paragraph, we set Ω “ p´1, 0q and Ξ “ r´1, 0s ˆ R. The optimal control problem
consists of minimizing Jpξ, η, η1q given by (2.2) on the dynamics given by (2.1) and staying
in Ξ.
The definition of Ξad is then modified as follows:

(4.1) Ξad “ Ξz
´

t0u ˆ p0,`8q Y t´1u ˆ p´8, 0q
¯

.

We make the following assumptions:
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Assumption 4.1. The running cost ` : Ξˆ r0, T s Ñ R is a continuous function, bounded
from below. The terminal cost g : Ξ Ñ R is also assumed continuous and bounded from
below. Set M “ }g´}L8pΞq ` }`´}L8pΞˆr0,T sq.

Assumption 4.2. For all t P r0, T s and v ą 0,

(4.2) `p0, v, tq ě `p0, 0, tq, and `p´1,´v, tq ě `p´1, 0, tq.

An interpretation of Assumption 4.2 is that the running cost ` penalizes (or at least
does not favor) the trajectories that exit Ξad. In that respect, Assumption 4.2 is rather
natural.

For px, vq P Ξ, let Γ, Γrx, vs and Γoptrx, vs be defined as follows:

Γ “
"

pξ, ηq P C1pr0, T s;Rq ˆACpr0, T s;Rq :
ˇ

ˇ

ˇ

ˇ

ξ1psq “ ηpsq, @s P r0, T s,
pξpsq, ηpsqq P Ξ, @s P r0, T s

*

,

Γrx, vs “ tpξ, ηq P Γ : ξp0q “ x, ηp0q “ vu,

Γoptrx, vs “ argminpξ,ηqPΓrx,vsJpξ, η, η1q.

Theorem 4.1. Under Assumptions 4.1 and 4.2, the graph of the multivalued map Γopt :
Ξad Ñ Γ, px, vq ÞÑ Γoptrx, vs, is closed, in the following sense: consider a sequence
pxi, viqiPN, pxi, viq P Ξad, such that lim

iÑ8
pxi, viq “ px, vq P Ξad. Consider a sequence

pξi, ηiqiPN such that for all i P N, pξi, ηiq P Γoptrxi, vis.
If pξi, ηiq tends to pξ, ηq uniformly, then pξ, ηq P Γoptrx, vs.

Remark 4.1. Note that, by contrast with Proposition 2.1, Theorem 4.1 holds for Γopt

and not only its restriction to a subset Θ of Ξad satisfying suitable conditions. Hence,
Theorem 4.1 is more accurate. On the other hand, it requires an additional assumption,
namely Assumption 4.2.
Note also that the result stated in Theorem 4.1, namely the closed graph property of the
multivalued map Γopt, is obtained despite the fact that the value function of the optimal
control problem is not continuous and not locally bounded on Ξad. This may seem surpris-
ing at first glance. Besides, the fact that the value function is singular at some points of
Ξad will be an important difficulty in the proofs.

The proof of Theorem 4.1 relies on several lemmas.

Lemma 4.1. Consider px, vq P Ξad, pξ, ηq P Γrx, vs such that η P W 1,2p0, T ;Rq and a
sequence pxi, viqiPN such that for all i P N, pxi, viq P Ξad and pxi, viq Ñ px, vq as iÑ8.
If one among the following assumptions is satisfied,

1. x P Ω

2. x “ 0, v ď 0 and for all integer i, vi ď 0

3. px, vq “ p0, 0q, vi ą 0 for all integer i and lim
iÑ0

pviq3

|xi|
“ 0

4. x “ ´1, v ě 0 and for all integer i, vi ě 0

5. px, vq “ p´1, 0q, vi ă 0 for all integer i and lim
iÑ0

|vi|3

|xi ` 1| “ 0
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then there exists a sequence pξi, ηiqiPN such that for all i P N, pξi, ηiq P Γrxi, vis, ηi P
W 1,2p0, T ;Rq, and pξi, ηiq tends to pξ, ηq in W 2,2p0, T ;RqˆW 1,2p0, T ;Rq, hence uniformly
in r0, T s.

Proof. Lemma 4.1 is the counterpart of Lemma 2.2 . The proof is quite similar, so we skip
it for brevity. 2

Corollary 4.1. Consider px, vq P Ξad and a sequence pxi, viqiPN such that for all i P N,
pxi, viq P Ξad and pxi, viq Ñ px, vq as i Ñ 8. Suppose that Assumption 4.1 and one
among the five conditions in Lemma 4.1 are satisfied. Let a sequence pξi, ηiqiPN be such
that for all i P N, pξi, ηiq P Γoptrxi, vis. If pξi, ηiq tends to pξ, ηq uniformly in r0, T s, then
η PW 1,2p0, T ;Rq and pξ, ηq P Γoptrx, vs.

Proof. Corollary 4.1 is the counterpart of Lemma 2.3. The proof is identical. 2

Consider px, vq P Ξad and a sequence pxi, viqiPN such that for all i P N, pxi, viq P Ξad

and pxi, viq Ñ px, vq as i Ñ 8. Because it is always possible to extract subsequences,
we can say that the only cases that have not yet been addressed in Lemma 4.1 are the
following:

(4.3)
#

px, vq “ p0, 0q, vi ą 0,
and there exists a constant C ą 0 s. t. for all i P N, pv

iq3

|xi|
ě C,

or

(4.4)
#

px, vq “ p´1, 0q, vi ă 0,
and there exists a constant C ą 0 s. t. for all i P N, |vi|3

|xi`1| ě C.

Since the two cases are symmetrical, we may concentrate on (4.3).
It is clear that (4.3) implies that |xi|{vi Ñ 0 as i Ñ `8, because vi Ñ 0. In the case
when (4.3) is satisfied, we need two technical lemmas which provide a lower bound for the
cost

şT
0

ˇ

ˇ

ˇ

dηi

dt psq
ˇ

ˇ

ˇ

2
ds of the admissible trajectories starting at pxi, viq:

Lemma 4.2. Consider px, vq P Ξad such that x ă 0, v ą 0, 3|x|{v ă T , and θ P p0, T q.
Given a real number w P r0, |x|{T s, set

(4.5) Kθ,w “

$

’

’

&

’

’

%

η PW 1,2p0, θ;Rq :

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ηp0q “ v, ηpθq “ w,
ηpsq ě w, @s P r0, θs,

x`

ż θ

0
ηpsqds ď 0

,

/

/

.

/

/

-

.

The quantity

(4.6) Ipθ, wq “ inf
ηPKθ,w

1
2

ż θ

0

ˇ

ˇ

ˇ

ˇ

dη

dt
psq

ˇ

ˇ

ˇ

ˇ

2
ds

is achieved by a function η “ ηθ,w and is given by

(4.7) Ipθ, wq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1
2
pw ´ vq2

θ
, if θ P

”

0, 2|x|
v`w

ı

,

6x
2

θ3 ` 6xpv ` wq
θ2 ` 2v

2 ` vw ` w2

θ
if θ P

”

2|x|
v`w ,

3|x|
v`2w

ı

,

2
9
pv ´ wq3

|x| ´ wθ
, if θ P

”

3|x|
v`2w , T

¯

.
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Remark 4.2. The partition of the interval r0, T s in (4.7) is justified by the assumptions
of Lemma 4.2. Indeed
• 3|x|{v ă T and w ě 0 imply that 3|x|{pv ` 2wq ă T

• 2|x|{pv ` wq ă 3|x|{pv ` 2wq because 0 ď w ď |x|{T ă v{3.
Note also that if |x|{v Ñ 0, then 3|x|{pv ` 2wq „ 3|x|{v ! T .
Proof. Problem (4.6) is the minimization of a strictly convex and continuous functional
under linear and continuous constraints, and the set Kθ,w is non empty, as we shall see
below, convex and closed. Hence there exists a unique minimizer, named η again. The
Euler-Lagrange necessary conditions read as follows: there exists a real number µ ě 0 such
that η is a weak solution of the linear complementarity problem (variational inequality)

(4.8)

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´η2 ě ´µ, in p0, θq,
η ě w, in p0, θq,

p´η2 ` µqpη ´ wq “ 0 in p0, θq,

x`

ż θ

0
ηpsqds ď 0,

µ ě 0,

µ

ˆ

x`

ż θ

0
ηpsqds

˙

“ 0,

ηp0q “ v,
ηpθq “ w.

The solution of (4.8) can be written explicitly. Skipping the details, it has the following
form:

1. If θ ě 3|x|{pv ` 2wq, then

(4.9)
#

ηptq “ v ´ µτt`
µ

2 t
2, 0 ď t ď τ,

ηptq “ w, τ ă t ď θ,

with

(4.10) τ “ ´3x` wθ
v ´ w

and µ “
2pv ´ wq3

9px` wθq2 .

Note that ´3x`wθv´w ď θ because θ ě 3|x|
v`2w . Note also that x `

ż θ

0
ηpsqds “ 0. We see

that Ipθ, wq “ µ2

2

ż τ

0
p´τ ` tq2dt “

µ2τ3

6 “
2
9
pv ´ wq3

|x| ´ wθ
; we have obtained the third line

in (4.7).

2. If 2|x|{pv ` wq ď θ ď 3|x|{pv ` 2wq, then for all t P r0, θs,

(4.11) ηptq “ v ` kt`
µ

2 t
2,

with

(4.12) k “ ´
6x` p4v ` 2wqθ

θ2 , and µ “ 62x` pv ` wqθ
θ3 .

Note that x`
ż θ

0
ηpsqds “ 0. Easy algebra leads to Ipθ, wq “ 6x2

θ3 `6xpv`wq
θ2 `2v2`vw`w2

θ ;

we have obtained the second line in (4.7).

22



3. If θ ď 2|x|{pv ` wq, then for all t P r0, θs,

(4.13) ηptq “ v ´ pv ´ wq
t

θ
.

Then, Ipθ, wq “ 1
2
pw´vq2

θ ; we have obtained the first line in (4.7). Note that if θ ă 2|x|
v`w ,

then x`
ż θ

0
ηpsqds ă 0.

2

Lemma 4.3. Consider a sequence pxi, viqiPN such that xi ă 0, vi ą 0 for all i P N, and
vi Ñ 0, |xi|{vi Ñ 0 as i Ñ `8. Call Iipθ, wq the quantity given by (4.6) for v “ vi,
x “ xi and w P

“

0, xi{T
‰

. Then

(4.14) inf
 

Iipθ, wq, θ P p0, T q
(

“
2
9
pviq3

|xi|
` op1q,

where op1q is a quantity that tends to 0 as i tends to infinity (which is in fact of the order
of pviq2 or smaller).

Proof. Recall that Iipθ, wq is given by (4.7). It is easy to see that θ ÞÑ Iipθ, wq is decreas-
ing on

`

0, 2|xi|{pvi ` wq
‰

and increasing on
“

3|xi|{pvi ` 2wq, T
‰

.
In

“

2|xi|{pvi ` wq, 3|xi|{pvi ` 2wq
‰

, Iipθ, wq “ P p1{θq, where P is the third order polyno-
mial:

P pzq “ 6pxiq2z3 ` 6xipvi ` wqz2 ` 2ppviq2 ` viw ` w2qz.

The roots of the second order polynomial P 1pzq “ 18pxiq2z2`12xipvi`wqz`2ppviq2`viw`

w2q are vi ` w ˘
?
viw

3|xi| . Hence, θ ÞÑ Iipθ, wq is decreasing in
„

2|xi|
vi ` w

,
3|xi|

vi ` w `
?
viw



and increasing in
„

3|xi|
vi ` w `

?
viw

,
3|xi|

vi ` 2w



.

Therefore, the minimizer of θ ÞÑ Iipθ, wq on r0, T q is θ “ 3|xi|
vi`w`

?
viw

and the minimal value
is

P
´

vi`w`
?
viw

3|xi|

¯

“
2pviq3

9|xi|

ˆ

1`
c

w

vi
`
w

vi

˙3
´

2pviq3

3|xi|

ˆ

1`
c

w

vi
`
w

vi

˙2
`

2pviq3

3|xi|

ˆ

1`
c

w

vi
`
w

vi

˙

`O
´

pviq2 w
|xi|

¯

“
2pviq3

9|xi| `O
ˆ

pviq2
w

|xi|

˙

.

2

The next lemma is the counterpart of Lemma 4.1 when (4.3) holds. By contrast
with the situations considered so far, Assumption 4.2 is used.

Lemma 4.4. Under Assumptions 4.1 and 4.2, consider a sequence pxi, viqiPN which tends
to px, vq “ p0, 0q as i Ñ 8, and which satisfies (4.3). Let a sequence pξi, ηiqiPN be such
that for all i P N, pξi, ηiq P Γoptrxi, vis. If pξi, ηiq tends to pξ, ηq uniformly in r0, T s, then
η PW 1,2p0, T ;Rq and pξ, ηq P Γoptrx, vs.
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Proof. The proof is more difficult than that of Lemma 4.1 because we will see that
in general, the sequence upxi, viq does not converge to up0, 0q as i Ñ 8, and that
ż T

0

ˆ

dηi

dt
psq

˙2
ds may tend to `8.

Step 1 : We start by building a particular competitor for the optimal control problem
at pxi, viq. It will be used in Steps 2 and 3 below. Let us set rti “ 3|xi|{vi (observe that
limiÑ8 rti “ 0 since vi Ñ 0 and pviq3{|xi| ě C ą 0). As in the proof of Lemma 4.2 with
w “ 0, we construct a pair of continuous functions prξi, rηiq defined on r0,rtis such that
´1 ď rξi ď 0 and drξi

dt “ rηi, and

1. prξip0q, rηip0qq “ pxi, viq

2. rηiprtiq “ 0

3. 1
2

ż

rti

0

ˆ

drηi

dt
psq

˙2
ds „

2
9
pviq3

|xi|
,

(we have also used Lemma 4.3 with w “ 0 and Remark 4.2). Observe that xi ď rξiprtiq ď 0,
hence limiÑ`8

rξiprtiq “ 0. Then, using the same arguments as in Lemma 2.2, it is possible
to extend continuously prξi, rηiq to r0, T s in such a way that

1. prξi, rηiq P Γrxi, vis

2. lim
iÑ8

ż T

rti

ˇ

ˇ

ˇ

ˇ

drηi

dt
psq ´ αps´ rtiq

ˇ

ˇ

ˇ

ˇ

2
ds “ 0, where α is an optimal control law for trajectories

with initial values p0, 0q.

Combining all the information above, we obtain that

(4.15) J

ˆ

rξi, rηi,
drηi

dt

˙

“
2
9
pviq3

|xi|
` up0, 0q ` op1q.

Step 2 : Since pξi, ηiq P Γoptrxi, vis, we know that for all t P r0, T s, ξiptq “ xi `
ż t

0
ηipsqds ď 0. We claim that there exists ti P p0, T s such that ηiptiq ď ´xi{T . Indeed, if

it was not the case, then ξipT q would be larger than xi ´ T pxi{T q “ 0, which is not true.
Since ηi is continuous, we may define θi as the minimal time t such that ηiptq ď ´xi{T ,
and we see that ηipθiq “ ´xi{T .

Step 2 consists of proving that

(4.16) lim
iÑ8

θi “ 0.

Suppose by contradiction that there exists δ ą 0 such that θi ě δ. We may apply Lemma
4.2 with w “ |xi|{T . Since vi Ñ 0 and pviq3{|xi| ě C ą 0, we see that |xi|{vi Ñ 0, then
that limiÑ8

3|xi|
vi`2|xi|{T “ 0. Hence, for i large enough, θi ě δ ą 3|xi|

vi`2|xi|{T , and the third
line of (4.7) yields

(4.17) 1
2

ż T

0

ˆ

dηi

dt
psq

˙2
ds ě

2T
9pT ´ δq

px
i

T ` v
iq3

|xi|
“

2T
9pT ´ δq

pviq3

|xi|
` op1q,
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where op1q is a quantity that tends to zero as iÑ8, (in fact like pviq2).
Note that ηi ě ´xi{T ě 0 in r0, θis yields that ξi ě xi in r0, θis. Therefore

(4.18) lim
iÑ8

}ξi}L8p0,θiq “ 0.

Let us construct an admissible trajectory ppξi, pηiq starting from px, vq “ p0, 0q as follows:

1. For s P r0, θis, pξipsq “ Qθi,0,0,ξipθiq,ηipθiqpsq and pηipsq “ Q1θi,0,0,ξipθiq,ηipθiqpsq, see Defini-
tion 2.1

2. ppξipsq, pηipsqq “ pξipsq, ηipsqq for s P rθi, T s.

It is easy to check that, if s ď θi, then

pξipsq “
`

θiη
ipθiq ´ 2ξipθiq

˘ s3

θ3
i

´
`

θiη
ipθiq ´ 3ξipθiq

˘ s2

θ2
i

,(4.19)

pηipsq “ 3
`

θiη
ipθiq ´ 2ξipθiq

˘ s2

θ3
i

´ 2
`

θiη
ipθiq ´ 3ξipθiq

˘ s

θ2
i

,(4.20)

dpηi

dt
psq “ 6

`

θiη
ipθiq ´ 2ξipθiq

˘ s

θ3
i

´ 2
`

θiη
ipθiq ´ 3ξipθiq

˘ 1
θ2
i

.(4.21)

Since ηipθiq “ ´xi{T ą 0 and ξipθiq ď 0, we see that
`

θiη
ipθiq ´ 2ξipθiq

˘

ě 0 and that
`

θiη
ipθiq ´ 3ξipθiq

˘

ě 0. Hence for s P r0, θis, pξipsq “
`

θiη
ipθiq ´ 2ξipθiq

˘

ˆ

s3

θ3
i

´
s2

θ2
i

˙

`

ξipθiq
s2

θ2
i

ď 0 as the sum of two nonpositive terms. Therefore ppξi, pηiq P Γr0, 0s. On the

other hand, using (4.18) and the fact that θiηipθiq “ θi|x
i|{T , then (4.19) and (4.20), we

see that

(4.22) lim
iÑ`8

´

}pξi}L8p0,θiq ` }pη
iq}L8p0,θiq

¯

“ 0.

Moreover, since θi ě δ ą 0, it is easy to check that

(4.23) lim
iÑ`8

ż θi

0

ˆ

dpηi

dt
psq

˙2
ds “ 0.

Since ppξi, pηiq P Γr0, 0s,

up0, 0q ď Jppξi, pηi, 0q

“

ż T

0

˜

`ppξipsq, pηipsq, sq `
1
2

ˆ

dpηi

dt
psq

˙2¸

ds` gppξipT q, pηipT qq

“

ż θi

0

˜

`ppξipsq, pηipsq, sq `
1
2

ˆ

dpηi

dt
psq

˙2¸

ds

`

ż T

θi

˜

`pξipsq, ηipsq, sq `
1
2

ˆ

dηi

dt
psq

˙2¸

ds` gpξipT q, ηipT qq

“ upxi, viq `

ż θi

0

˜

`ppξipsq, pηipsq, sq `
1
2

ˆ

dpηi

dt
psq

˙2¸

ds

´

ż θi

0

˜

`pξipsq, ηipsq, sq `
1
2

ˆ

dηi

dt
psq

˙2¸

ds.
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Therefore
(4.24)

upxi, viq ě up0, 0q ` 1
2

ż θi

0

ˆ

dηi

dt
psq

˙2
ds

`

ż θi

0

´

`pξipsq, ηipsq, sq ´ `ppξipsq, pηipsq, sq
¯

ds´
1
2

ż θi

0

ˆ

dpηi

dt
psq

˙2
ds.

Let us address the terms in the right hand side of (4.24) separately.
Thanks to the continuity of `, (4.18), (4.22) and Assumption 4.2, we see that

(4.25)
lim inf
iÑ8

ż θi

0

´

`pξipsq, ηipsq, sq ´ `ppξipsq, pηipsq, sq
¯

ds

“ lim inf
iÑ8

ż θi

0

`

`p0, ηipsq, sq ´ `p0, 0, sq
˘

ds ě 0.

Combining (4.25), (4.23) and (4.17), we obtain that

(4.26) upxi, viq ě
2T

9pT ´ δq
pviq3

|xi|
` up0, 0q ` op1q,

where op1q is quantity that tends to 0 as iÑ8.
But for prξi, rηiq constructed in Step 1, J

´

rξi, rηi, drη
i

dt

¯

ě upxi, viq. This fact and (4.15) lead
to a contradiction with (4.26). We have proved (4.16).

Step 3 : Since limiÑ8 θi “ 0 and pξi, ηiq converges uniformly to pξ, ηq, we see that
ż θi

0
`pξipsq, ηipsq, sqds “ op1q.

Hence

upxi, viq “J

ˆ

ξi, ηi,
dηi

dt

˙

“
1
2

ż θi

0

ˆ

dηi

dt
psq

˙2
ds

`

ż T

θi

`pξipsq, ηipsq, sqds`
1
2

ż T

θi

ˆ

dηi

dt
psq

˙2
ds` gpξipT q, ηipT qq ` op1q.

(4.27)

On the other hand, we have seen above that (4.15) implies that

(4.28) upxi, viq ď
2
9
pviq3

|xi|
` up0, 0q ` op1q.

From Lemma 4.3, we know that

(4.29) 1
2

ż θi

0

ˆ

dηi

dt
psq

˙2
ds ě

2
9
pviq3

|xi|
´ op1q.

Combining (4.27), (4.28) and (4.29) yields that
ż T

θi

`pξipsq, ηipsq, sqds`
1
2

ż T

θi

ˆ

dηi

dt
psq

˙2
ds` gpξipT q, ηipT qq ď up0, 0q ` op1q.(4.30)
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Since pξi, ηiq converges uniformly to pξ, ηq, (4.30) implies that
´

1pθi,T q
dηi

dt

¯

iPN
is a bounded

sequence in L2p0, T q. Hence there exists φ P L2p0, T q such that, after the extraction of
subsequence, 1pθi,T q

dηi

dt á φ in L2p0, T q weak. By testing with compactly supported
functions in p0, T q, it is clear that φ “ dη

dt . Hence, the whole sequence
´

1pθi,T q
dηi

dt

¯

iPN
converges in L2p0, T q weak to dη

dt P L
2p0, T q. Moreover, the weak convergence in L2p0, T q

implies that
ż T

0

ˆ

dη

dt
psq

˙2
ds ď lim inf

iÑ`8

ż T

0

ˆ

1pθi,T q
dηi

dt
psq

˙2
ds.

This and (4.30) imply that

(4.31)
ż T

0
`pξpsq, ηpsq, sqds`

1
2

ż T

0

ˆ

dη

dt
psq

˙2
ds` gpξpT q, ηpT qq ď up0, 0q.

Hence, pξ, ηq P Γoptr0, 0s and the above inequality is in fact an identity. The proof is
achieved. 2

Proof of Theorem 4.1. Consider px, vq P Ξad and a sequence pxi, viqiPN such that for all
i P N, pxi, viq P Ξad and pxi, viq Ñ px, vq as i Ñ 8. Consider a sequence pξi, ηiqiPN such
that for all i P N, pξi, ηiq P Γoptrxi, vis and that pξi, ηiq tends to pξ, ηq uniformly. Possibly
after the extraction of a subsequence, we can always assume that either one among the five
conditions in Lemma 4.1 or one among the two symmetrical conditions (4.3)-(4.4) holds.
Then the conclusion follows from Corollary 4.1 in the former case or from Lemma 4.4 in
the latter case. 2

Remark 4.3. For costs of the form

(4.32) Jpξ, η, αq “

ż T

0

ˆ

`pξpsq, ηpsq, sq `
1
p
|α|ppsq

˙

ds` gpξpT q, ηpT qq,

with 1 ă p ­“ 2, it is not possible to reproduce the explicit calculations of Lemmas 4.2 and
4.3, which are crucial steps for Lemma 4.4 and finally for Theorem 4.1.

4.2 Bounds related to optimal trajectories

Proposition 4.1. For positive numbers r and C, let us set

Θr “
 

px, vq P Ξ : ´rpx` 1q ď v3 ď r|x|
(

,(4.33)
KC “ tpx, vq P Ξ : |v| ď Cu,(4.34)

ΓC “

#

pξ, ηq P Γ :

ˇ

ˇ

ˇ

ˇ

ˇ

pξptq, ηptqq P KC , @t P r0, T s,
›

›

›

dη
dt

›

›

›

L2p0,T ;Rq
ď C.

+

.(4.35)

Under Assumption 4.1, for all r ą 0, there exists a positive number C “ Cpr,Mq (M is
defined in Assumption 4.1) such that if px, vq P Θr, then Γoptrx, vs Ă ΓC . Moreover, as
r Ñ `8, Cpr,Mq “ Op

?
rq.

Proof. A possible proof consists of building a suitable map j from Θr to Γ. We make out
different cases:
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Case 1: 0 ď v ď ´3x{T : let jpx, vq “ prξ, rηq P Γrx, vs be defined by
#

rηptq “ v
`

1´ 3t
2T

˘

and rξptq “ x` v
´

t´ 3t2
4T

¯

, if 0 ď t ď 2T
3 ,

rηptq “ 0 and rξptq “ x` vT
3 , if 2T

3 ď t ď T.

It is easy to check that there exists a constant rC “ rCpr,Mq such that

(4.36) }rη}L8p0,T ;Rq ď rC;
›

›

›

›

drη

dt

›

›

›

›

L2p0,T ;Rq
ď rC.

Case 2: ´3x{T ă v ď r|x|
1
3 : in this case, we choose jpx, vq “ prξ, rηq P Γrx, vs where rξ1 “ rη

and rη is the solution of the linear complementarity problem (4.8) with θ “ T . Here again
prξ, rηq satisfies (4.36) for some constant rC “ rCpr,Mq. From Lemma 4.2, we see that as
r Ñ `8, rC “ Op

?
rq.

Case 3: ´3p1` xq{T ď v ď 0: the situation is symmetric to Case 1, and jpx, vq is given
by the same formula.

Case 4: ´rpx` 1q
1
3 ď v ă ´3p1` xq{T : the situation is symmetric to Case 2, and jpx, vq

is constructed in the symmetric way as in Case 2.

Then, using jpx, vq as a competitor for the optimal control problem leads to the desired
result with a constant C that depends only on r and M and that can always be taken
larger than rC.
Note that j is piecewise continuous from Θr to Γ. Note also that the construction of j is
independent of ` and g. 2

Remark 4.4. Note that the sets Θr form an increasing family of compact subsets of Ξad

and that

(4.37)
ď

rě0
Θr “ Ξad.

4.3 Mean field games with state constraints

In the example considered here, we take Ξ “ r´1, 0sˆR. Let PpΞq be the set of probability
measures on Ξ.
Let F,G : PpΞq Ñ C0

b pΞ;Rq be bounded and continuous maps (the continuity is with
respect to the narrow convergence in PpΞq) and ` be a continuous and bounded from
below function defined on Ξˆ r0, T s. Set

(4.38) M “ max
˜

sup
px,v,tqPΞˆr0,T s

`´px, v, tq ` sup
mPPpΞq

}F rms}L8pΞq, sup
mPPpΞq

}Grms}L8pΞq

¸

.

Assumption 4.3. We assume that for all t P r0, T s, m P PpΞq and v ě 0, `p0, v, tq `
F rmsp0, vq ě `p0, 0, tq`F rmsp0, 0q and `p´1,´v, tq`F rmsp´1,´vq ě `p´1, 0, tq`F rmsp´1, 0q.

Using similar notations as in paragraph 3.1, we consider the cost given by (3.2).
With M in (3.1), note that Proposition 4.1 can be applied to Jµ defined in (3.2) with
constants Cpr,Mq uniform in µ.
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Lemma 4.5. Let r be a positive number. Under the assumptions made above on `, F
and G (including Assumption 4.3), let C “ Cpr,Mq be the constant appearing in Propo-
sition 4.1. For any probability measure m0 on Ξ supported in Θr defined in (4.33), there
exists a constrained mean field game equilibrium associated with the initial distribution
m0, i.e. a probability measure µ P Pm0pΓCq such that (3.8) holds.

Proof. The proof is similar to that of Theorem 3.2. We skip it. 2

Remark 4.5. Compared to Theorem 3.2, the restrictions made on the support of m0 are
weaker in Lemma 4.5, but the latter requires the additional Assumption 4.3.
In Theorem 4.2 below, we get rid of the assumptions on the support of m0.

Theorem 4.2. Let m0 be a probability measure on Ξ such that

(4.39) m0pΞzΞadq “ 0.

Under the assumptions made above on `, F and G (including Assumption 4.3), there exists
a constrained mean field game equilibrium associated with the initial distribution m0, i.e.
a probability measure µ P Pm0pΓq such that (3.8) holds.

Proof. From (4.37) and (4.39), there exists n0 ą 0 such that m0pΘnq ą 0 for n ą n0.
For n ą n0, we set m0,n “

1
m0pΘnqm0|Θn . With a slight abuse of notation, let m0,n also

denotes the probability on Ξ obtained by extending m0,n by 0 outside Θn, i.e. m0,npBq “
1

m0pΘnqm0pB X Θnq, for any measurable subset B of Ξ. Let µn P Pm0,n

`

ΓCpn,Mq
˘

be a
constrained mean field game equilibrium associated with the initial distribution m0,n, the
existence of which comes from Lemma 4.5. With a similar abuse of notations as above,
let µn also denote the probability on Γ obtained by extending µ by 0 outside ΓCpn,Mq.

We claim that tµn, n ą n0u is tight in PpΓq, i.e. that for each ε ą 0, there exists a
compact Kε Ă Γ such that

(4.40) µnpΓzKεq ă ε, for each n ą n0.

From the increasing character of the sequence Θn, (4.37) and (4.39), we observe that for
each ε ą 0, there exists n1 ą 0 such that m0pΘn1q ą 1 ´ ε. Let us prove (4.40) with
Kε “ ΓCpn1,Mq.
Since for all n ą n0, µn P Pm0,npΓq is a MFG equilibrium, we see that for all measurable
B Ă Ξ,

m0,npBq “ µn tpξ, ηq P supppµnq : pξp0q, ηp0qq P Bu ď µn

¨

˝

ď

px,vqPB

Γopt,µnrx, vs

˛

‚.

Taking B “ Θn1 and using Proposition 4.1, we see that

m0,n pΘn1q ď µn

¨

˝

ď

px,vqPΘn1

Γopt,µnrx, vs

˛

‚ď µn
`

ΓCpn1,Mq

˘

,

(note that the constant Cpn1,Mq does not depend on µn).
On the other hand,

m0,n pΘn1q ě m0pΘn1q ą 1´ ε, if n ą n1,
m0,n pΘn1q “ 1, if n0 ă n ď n1.
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In both cases, µn
`

ΓCpn1,Mq

˘

ě 1´ ε and therefore µn
`

ΓzΓCpn1,Mq

˘

ě 1´ ε, and the claim
is proved.

Thanks to Prokhorov theorem, possibly after the extraction of subsequence that we
still name µn, we deduce that there exists µ P PpΓq such that µn converges narrowly to µ.

We claim that µ is a MFG equilibrium related to m0. We already know that µ P
PpΓq. There remains to prove that

• µ P Pm0pΓq, i.e. that e07µ “ m0

• µ satisfies (3.8).

The fact that e07µ “ m0 stems from Lemma 3.1 and from the fact thatm0,n narrowly
converges to m0.

In order to prove (3.8), we recall that from Kuratowski’s theorem, see [5],

supppµq Ă lim inf
nÑ8

supppµnq,

which means that for all pξ, ηq P supppµq, there exists a sequence pξn, ηnq P supppµnq
such that pξn, ηnq Ñ pξ, ηq uniformly. As a consequence, setting pxn, vnq “ pξnp0q, ηnp0qq
and px, vq “ pξp0q, ηp0qq, limnÑ8pxn, vnq “ px, vq and pξn, ηnq P Γopt,µnrxn, vns. Applying
Proposition 4.2 below, which is a generalization of Theorem 4.1, we may pass to the limit
and conclude that pξ, ηq P Γopt,µrx, vs, which achieves the proof. 2

Proposition 4.2. Under the assumptions made above on `, F and G (including Assump-
tion 4.3), consider a sequence pµiqiPN, µi P PpΓq, such that µi converges narrowly to
µ P PpΓq. Consider a sequence pξi, ηiqiPN, pξi, ηiq P Γ, such that

1. pξi, ηiq P Γopt,µirxi, vis, where pxi, viq “ pξip0q, ηip0qq

2. pξi, ηiq tends to pξ, ηq P Γrx, vs uniformly, where px, vq “ limiÑ8px
i, viq.

Then pξ, ηq P Γopt,µrx, vs.

Proof. We skip the proof, because it follows the same lines as that of Theorem 4.1, (see
paragraph 4.1). In particular, it includes an adaptation of Lemma 4.4. The necessary
modifications are obvious. 2

5 State constrained optimal control problems and mean field
games in a convex polygonal domain of R2

Let Ω be a bounded and convex domain of R2 with a polygonal boundary BΩ. For x P Ω,
the tangent cone to Ω at x is defined by

TΩpxq “
 

v P R2 : x` tv P Ω, for t ą 0 small enough
(

.

Note that TΩpxq “ R2 if x P Ω. A vector v P R2 points outward Ω at x P BΩ if v R TΩpxq.
Let pνiq0ďiăN be the vertices of BΩ, labeled in such a way that BΩ “

ŤN´1
i“0 γi, where

γi “ rνi, νi`1s and νN “ ν0. We may assume that three successive vertices are not aligned.
We are going to use the notation pνi, νi`1q for the open straight line segment between
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νi and νi`1. For i P t0, . . . , N ´ 1u, let ni be the unitary normal vector to γi pointing
outward Ω. It is easy to see that TΩpνiq “ tx P R2 : ni ¨ x ď 0 and ni´1 ¨ x ď 0u, setting
n´1 “ nN´1. Since Ω is convex, Ω coincides locally near νi with νi ` TΩpνiq.

The optimal control problem is set exactly as in Section 2: it consists of minimizing
Jpξ, η, η1q given by (2.2) on the dynamics given by (2.1) and staying in Ξ “ Ωˆ R2. The
set Ξad is defined by (2.6).

5.1 Closed graph properties

The closed graph result given in Proposition 5.1 below is similar to that contained in
Proposition 2.1, but special conditions are needed near the vertices of BΩ:

Proposition 5.1. Consider a closed subset Θ of Ξad. Assume that all sequence pxi, viqiPN
such that for all i P N, pxi, viq P Θ and limiÑ`8px

i, viq “ px, vq P Θ, the following holds:

1. If x P pνj , νj`1q for some j P t0, . . . , N ´ 1u (recall that νN “ ν0), then

(5.1) pvi ¨ njq
3
` “ o

´

px´ xiq ¨ nj

¯

;

2. if x “ νj for some j P t0, . . . , N ´ 1u and v ­“ 0, then

(5.2) pvi ¨ nkq
3
` “ o

´

px´ xiq ¨ nk

¯

, for k “ j ´ 1, j,

recalling that n´1 “ nN´1;

3. If x “ νj for some j P t0, . . . , N ´ 1u and v “ 0, then

(5.3) pvi ¨ nkq`

´

|x´ xi|
2
3 ` |vi|2

¯

“ o
´

px´ xiq ¨ nk

¯

, for k “ j ´ 1, j;

then the graph of the multivalued map Γopt : Θ Ñ Γ, px, vq ÞÑ Γoptrx, vs, is closed in the
sense given in Proposition 2.1.

Remark 5.1. It is easy to find sets Θ which fulfill the assumption of Proposition 5.1, for
example:

1. a compact subset Θ of R2 ˆ R2 contained in Ωˆ R2 ;

2. for j “ 0, ¨ ¨ ¨ , N ´ 1, let Dj be the straight line containing νj and νj`1; for ρ ą 1, set

Sj “
!

px, vq P Ωˆ R2 : v ¨ nj ď distpx,Djq
ρ
3

)

.

If Θ is a closed subset R2 ˆ R2 contained in
´

Ξad X
ŞN´1
j“0 Sj

¯

z

´

ŤN´1
j“0 tνju ˆ R2

¯

, then
Θ fulfills the assumption of Proposition 5.1.

3. For brevity, we do not supply examples of sets Θ which intersect
ŤN´1
j“0 tνjuˆR2, although

it is possible to do so.

The proof of Proposition 5.1 relies on the counterpart of Lemma 2.3 whose proof is
exactly the same, and on Lemma 5.1 below which is the counterpart of Lemma 2.2:
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Lemma 5.1. Consider px, vq P Ξad, pξ, ηq P Γrx, vs such that η P W 1,2p0, T ;R2q and a
sequence pxi, viqiPN such that for all i P N, pxi, viq P Ξad and lim

iÑ8
pxi, viq “ px, vq.

Assume that one among the following seven conditions is true:

1. x P Ω

2. x P pνj , νj`1q, v ¨ nj ă 0 (hence vi ¨ nj ă 0 for i large enough)

3. x P pνj , νj`1q, v ¨ nj “ 0 and one among the following properties is true:

(a) vi ¨ nj ď 0 for i large enough
(b) for i large enough, vi ¨ nj ą 0 (hence px´ xiq ¨ nj ą 0) and

(5.4) lim
iÑ8

pvi ¨ njq
3

px´ xiq ¨ nj
“ 0

4. x “ νj, v ¨ nj ă 0 and v ¨ nj´1 ă 0 (setting n´1 “ nN´1)

5. x “ νj, v ¨ nj “ 0 and v ¨ nj´1 ă 0 and one among the two following properties holds

(a) vi ¨ nj ď 0 for i large enough
(b) vi ¨ nj ą 0 and (5.4) holds for i large enough.

6. x “ νj, v ¨ nj´1 “ 0 and v ¨ nj ă 0 and one among the two following properties holds

(a) vi ¨ nj´1 ď 0 for i large enough
(b) vi ¨ nj´1 ą 0 and (5.4) holds (replacing j by j ´ 1) for i large enough

7. x “ νj, v “ 0 and

(5.5) lim
iÑ8

max
kPtj´1,ju

pvi ¨ nkq`
|pxi ´ xq ¨ nk|

´

|x´ xi|
2
3 ` |vi|2

¯

“ 0,

with the convention that pvi¨nkq`
|pxi´xq¨nk|

“ 0 if pvi ¨ nkq` “ 0.

Then there exists a sequence pξi, ηiqiPN such that pξi, ηiq P Γrxi, vis, ηi P W 1,2p0, T ;R2q,
and pξi, ηiq tends to pξ, ηq in W 2,2p0, T ;R2q ˆW 1,2p0, T ;R2q, hence uniformly in r0, T s.

Proof of Lemma 5.1. Since many arguments are almost identical to those contained in the
proof of Lemma 2.2, we just sketch the proof and put the stress on cases 4-7 which have no
counterparts in Lemma 2.2. As for Lemma 2.2, each of the seven conditions mentioned in
the statement makes it possible to explicitly construct families of admissible trajectories
fulfilling all the desired properties. Since the construction is different in each of the seven
cases, we discuss each case separately:

1. If x P Ω, then the construction is exactly the same as in the first case in the proof of
Lemma 2.2. We do not repeat the argument.

2. x P pνj , νj`1q and v ¨ nj ă 0, hence for i large enough, vi ¨ nj ă 0. We can always assume
that the latter property holds for all i. Since η P W 1,2p0, T q, there exists t P p0, T q such
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that for all s P r0, ts, 3
2v ¨ nj ď ηpsq ¨ nj ď

1
2v ¨ nj and

3s
2 v ¨ nj ď pξpsq ´ xq ¨ nj ď

s
2v ¨ nj .

For ti P r0, ts, we set

(5.6) ξipsq “

"

Qti,xi,vi,ξptiq,ηptiqpsq, if s P r0, tis,
ξpsq, if s P rti, T s,

and the remaining arguments are very close to those in case 2. in the proof of Lemma 2.2.
We skip the details.

3. (a) x P pνj , νj`1q, v ¨ nj “ 0 and vi ¨ nj ď 0 at least for i large enough. We may assume
that vi ¨ nj ď 0 for all i. Given ti,1 P p0, T q, we define pyi, wiq as follows:

(5.7) yi “ px ¨ njqnj ` ppx
i ` viti,1q ¨ n

K
j qn

K
j ,

wi “ pv ¨ njqnj ` pv
i ¨ nKj qn

K
j “ pv

i ¨ nKj qn
K
j ,

and, for ti,1 ď ti,2 ă T , set

(5.8) ξipsq “

$

&

%

Qti,1,xi,vi,yi,wipsq, if s ď ti,1,

Qti,2´ti,1,yi´x,wi´v,0,0ps´ ti,1q ` ξps´ ti,1q, if ti,1 ď s ď ti,2,

ξps´ ti,1q, if ti,2 ď s ď T.

We argue as in case 3.(a) in the proof of Lemma 2.2. An important observation is
that

(5.9) pξipsq ´ xq ¨ nj “

ˆ

pxi ´ xq ¨ nj

ˆ

1` 2 s

ti,1

˙

` svi ¨ nj

˙ˆ

1´ s

ti,1

˙2

is non positive for s P r0, ti,1s. We skip the other details.
(b) x P pνj , νj`1q, v ¨ nj “ 0, vi ¨ nj ą 0 for all i (or for i large enough), and (5.4) holds.

This case is the counterpart of case 3.(b) in the proof of Lemma 2.2. The trajectory
ξi is constructed as in (5.8), but a further restriction on ti,1 is needed in order to
guarantee that the trajectory is admissible, namely that

ti,1 ď
3|pxi ´ xq ¨ nj |

vi ¨ nj
.

This condition should be supplemented with the other two conditions as in 3.(a),
namely that

lim
iÑ8

ti,1 “ 0,(5.10)

lim
iÑ8

|px´ xiq ¨ nj |
2

t3i,1
`
|pv ´ viq ¨ nj |

2

ti,1
“ 0.(5.11)

If (5.4) holds, then it is possible to choose such a sequence ti,1. The remaining part
of the proof is as in case 3.(a).

4. x “ νj , v ¨ nj ă 0 and v ¨ nj´1 ă 0. Since η PW 1,2p0, T q, there exists t P p0, T q such that
for all s P r0, ts, 3

2v ¨ nk ď ηpsq ¨ nk ď
1
2v ¨ nk and 3s

2 v ¨ nk ď pξpsq ´ xq ¨ nk ď
s
2v ¨ nk, for

k “ j ´ 1, j. For ti P r0, ts, we choose ξi as in (5.6) and the desired result is obtained as
in case 2.
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5. x “ νj , v ¨ nj “ 0 and v ¨ nj´1 ă 0. We make out two subcases:

(a) vi ¨ nj ď 0 at least for i large enough: the trajectory is constructed as in (5.8), with
three different stages corresponding respectively to s P r0, ti,1s, s P rti,1, ti,2s and
s ě ti,2. As in point 3, it is always possible to choose the sequence ti,1 such that
(5.10) and (5.11) hold in order to ensure the L2 convergence of the accelerations.
We need to prove that the trajectory is admissible for well chosen ti,1 and ti,2.
Let us first check that ξipsq remains in Ω for s P r0, ti,1s. Since (5.9) holds, we see
that pξipsq ´ xq ¨ nj ď 0. On the other hand, after some algebra, we get that

ηipsq ¨ nj´1 “
dξi

ds
psq ¨ nj´1 “v

i ¨ nj´1 ´
s

ti,1

ˆ

4´ 3s
ti,1

˙

vi ¨ nj nj ¨ nj´1

´ 6 s

t2i,1

ˆ

1´ s

ti,1

˙

pxi ´ xq ¨ nj nj ¨ nj´1.

Since limiÑ8 v
i ¨ nj “ 0 and limiÑ8 v

i ¨ nj´1 “ v ¨ nj´1 ă 0, we see that for i large
enough,

lim
iÑ8

ˆ

vi ¨ nj´1 ´
s

ti,1

ˆ

4´ 3s
ti,1

˙

vi ¨ nj nj ¨ nj´1

˙

“ v ¨ nj´1 ă 0,

uniformly with respect to s P r0, ti,1s. On the other hand, the conditions (5.10) and
(5.11) imply that limiÑ8

pxi´xq¨nj
ti

“ 0. Combining the latter two observations yields
that

lim
iÑ8

max
sPr0,ti,1s

ˇ

ˇpηipsq ´ vq ¨ nj´1
ˇ

ˇ “ 0.

Hence, for i large enough, ηipsq ¨ nj´1 ă 0 for all s P ti,1. This implies that
pξipsq ´ xq ¨ nj´1 ď 0 for all s P r0, ti,1s.
Combining the information above and arguing essentially as in case 3.(a), we see
that it is possible to choose ti,1 satisfying (5.10) and (5.11), ti,2 bounded away
from 0 uniformly w.r.t. i, such that pξi, ηiq P Γrxi, vis for i large enough and

lim
iÑ8

›

›

›

›

dηi

ds
´
dη

ds

›

›

›

›

L2p0,T q
“ 0.

(b) vi ¨ nj ą 0 at least for i large enough and (5.4) holds: again, the trajectory is con-
structed as in (5.8) with ti,1 satisfying (5.10)-(5.11). As in 3.(b), a further restriction
is needed on ti,1 such that the trajectory is admissible.
For 0 ď s ď ti,1, pξipsq ´ xq ¨ nj is given by (5.9) and is non positive if

(5.12) ti,1 ď
3|pxi ´ xq ¨ nj |

vi ¨ nj
.

On the other hand, the proof that pξipsq ´ xq ¨ nj´1 ď 0 for i large enough and
all s P r0, ti,1s is the same as in subcase 5.(a). Hence if the sequence pti,1q satisfies
(5.10)-(5.11) and (5.12), then for i large enough, ξipsq P Ω for for all s P r0, ti,1s.
Constructing such a sequence pti,1q is possible thanks to (5.4).
Then, using the fact that v ¨nj´1 ă 0 and arguing as in case 3., it is possible to choose
the sequence ti,2 bounded from below by a positive constant independent of i such
that pξi, ηiq P Γrxi, vis and limiÑ8

›

›

›

dηi

dt ´
dη
dt

›

›

›

L2p0,T q
“ 0.
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6. Same arguments as for case 5., exchanging the roles of j and j ´ 1.

7. The trajectory ξi is constructed as follows:

(5.13) ξipsq “

"

Qti,xi,vi,x,0psq, if s ď ti,
ξps´ tiq, if ti ď t ď T,

We see that, for k “ j ´ 1, j and s P r0, tis,

pξipsq ´ xq ¨ nk “

ˆ

1´ s

ti

˙2 ˆˆ

1` 2 s
ti

˙

pxi ´ xq ¨ nk ` sv
i ¨ nk

˙

.

Hence, a sufficient condition for ξipsq to stay in Ω for all s P r0, tis is that ti ď 3 minkPtj´1,ju
px´xiq¨nk
pvi¨nkq`

,

with the convention that px´xiq¨nk
pvi¨nkq`

“ `8 if pvi ¨ nkq` “ 0. Then, we also need that

limiÑ8 ti “ 0 and that limiÑ8
|x´xi|2

t3i
`
|vi|2

ti
“ 0 in order to obtain that limiÑ8

›

›

›

dηi

dt

›

›

›

L2p0,tiq
“

0. From (5.5), it is possible to construct a sequence ptiqi fulfilling all the desired proper-
ties.

2

Proposition 5.2 below is the counterpart of Proposition 2.2:

Proposition 5.2. Given r ą 0, let us define Θr by (2.30) where Kr is defined by (2.28)
and Θ is a closed subset of Ξad which satisfies the assumption in Proposition 5.1.
Under Assumption 2.1, the value function u given by (2.7) is continuous on Θr.
There exists a positive number C “ Cpr,Mq such that if px, vq P Θr, then Γoptrx, vs Ă ΓC ,
where ΓC is defined in (2.29).

5.2 Mean field games with state constraints

All the results obtained in Section 3 can be generalized to the case when Ω is a bounded and
convex polygonal domain of R2, provided the initial distribution of states m0 is supported
in Θr defined as in Proposition 5.2.
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