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Chapter 8

Bubble physics

The density and compressibility parameters of blood cells hardly differ from
those of plasma. Therefore, blood cells are poor scatterers in the clinical
diagnostic frequency range. Since imaging blood flow and measuring organ
perfusion are desirable for diagnostic purposes, markers should be added to
the blood to differentiate between blood and other tissue types. Such markers
must be acoustically active in the medical ultrasonic frequency range.

Figure 8.1 shows the resonance frequencies of free and encapsulated gas
microbubbles as a function of their equilibrium radius. The resonance fre-
quencies of encapsulated microbubbles lie slightly higher than those of free
gas bubbles, but clearly well within the clinical diagnostic range, too. Based
on their acoustic properties, microbubbles are well suited as an ultrasound
contrast agent.

In this chapter, microbubble behaviour in an ultrasound field is explored,
with special attention to the influence of the bubble shell.

8.1 Hollow sphere

Consider a thin-shelled sphere in equilibrium. Assume ps to be the difference
between the internal pressure and the ambient pressure, generally referred to
as the surface pressure. For any cross-sectional area A through the centre of
the sphere, the following force balance must hold:

ps A = σ S, (8.1)

where S is the path around the area and σ is the surface tension. Introducing
the radius R yields

ps

(
πR2

)
= σ (2πR) , (8.2)
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Figure 8.1: Resonance frequencies of free (bold line) and lipid-
encapsulated (thin line) air microbubbles in water as a function of
equilibrium radius.

which equates to

ps =
2σ

R
. (8.3)

Hence, the smaller the bubble, the higher the difference between the internal
pressure and the ambient pressure. Since fluids are forced to flow from a
location with a higher pressure to a location with a lower pressure, a bubble
without an impenetrable solid shell cannot exist in true equilibrium.

8.2 Cavitation threshold

Now, consider a polytropic gas bubble in an infinite liquid. The following
unstable equilibrium can be formulated:

pg + pv = p0 +
2σ

R0

, (8.4)

where pg is the gas pressure, pv is the vapour pressure, p0 is the ambient
pressure, and R0 is the quasi-equilibrium radius of the bubble.

If buoyancy and gas diffusion are slow compared with a change in ambient
pressure,

pgV
γ = constant, (8.5)

where V is the bubble volume and γ is the ratio of specific heats of the gas.
For air, γ = 1.4 is a good approximation. Substituting (8.4) for the gas
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pressure gives for any situation n(
p0 − pv +

2σ

R0

)
V γ

0 = pnV
γ
n , (8.6)

where V0 is the quasi-equilibrium bubble volume. Changing the liquid pres-
sure instantaneously, so that the liquid pressure at the bubble wall is pL,
gives (

p0 − pv +
2σ

R0

)
V γ

0 =

(
pL − pv +

2σ

R

)
V γ. (8.7)

For a perfectly spherical bubble,(
p0 − pv +

2σ

R0

)(
4

3
πR3

0

)γ
=

(
pL − pv +

2σ

R

)(
4

3
πR3

)γ
, (8.8)

which can be rewritten as

pL =

(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
. (8.9)

If the sonicating frequency is much lower than the bubble resonance fre-
quency, the pressure in the liquid changes very slowly and uniformly com-
pared with the natural time scale of the microbubble. The radius of a bubble
R in response to quasistatic changes in the liquid pressure is described by
(8.9). Figure 8.2 shows the right-hand side of (8.9), for different R0.

For each curve, there exists a minimum (pcr, Rcr), where Rcr is the critical
radius and pcr is the critical quasi-isostatic pressure. The region to the right-
hand side of the critical radius represents unstable equilibrium conditions. If
the liquid pressure is lowered until it reaches a value below pcr, no equilibrium
radius exists, resulting in explosive growth of the bubble, much larger than
R0, hence the term cavitation threshold. The ambient pressure eventually
increases again, during the ultrasonic compression phase, causing the bubble
to collapse violently.

The critical radius is computed, knowing that, in (Rcr, pcr),

∂pL

∂R
= 0. (8.10)

Substituting the right-hand side of (8.9) for pL gives

−3γ

(
p0 − pv +

2σ

R0

)
R3γ

0

R3γ+1
cr

+
2σ

R2
cr

= 0, (8.11)
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Figure 8.2: Solutions of (8.9) for different equilibrium radii 0.1 ≤
R0 ≤ 2.0µm, taking p0 = 1 atm, γ = 1.4, and σ = 0.072 kg s−2.

which equates to

Rcr =

[
3γ

2σ

(
p0 − pv +

2σ

R0

)
R3γ

0

] 1
3γ−1

, (8.12)

from which the critical pressure follows:

pcr = −p0 + pv −
(6− 2γ)σ

3γRcr

, (8.13)

or, as a function of R0,

pcr = −p0 + pv −
(6− 2γ)σ

3γ

 2σ

3γ
(
p0 − pv + 2σ

R0

)
3γ−1

. (8.14)
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If the situation is isothermal and if vapour pressure can be neglected, for
bubbles of radius R0 � 2σ

p0
,

pcr ≈ −p0 − 0.77
σ

R0

. (8.15)

The critical radius, also referred to as the Blake radius, has been approxi-
mated by

Rcr ≈ 2R0 . (8.16)

During the initial part of the collapse the acceleration R̈ is negative. This
sign changes as the gas inside the bubble begins to be compressed, and the
rebound begins.

8.3 Fundamental equation of bubble dynam-

ics

Consider an empty cavity with initial radius R0 that expands or contracts to
R, owing to a difference between the pressure in the liquid at the bubble wall
and the pressure in the liquid at infinity pL − p∞0 . Here, we take p∞0 = p0.
In time ∆t, the liquid mass flowing across a surface outside the bubble with
radius r must equal the mass displaced by the expanding or contracting
bubbles surface, i.e.,

4πr2 ρ ṙ∆t = 4πR2 ρ Ṙ∆t. (8.17)

Hence, the particle velocity in the liquid can be expressed in terms of r, R,
and Ṙ:

ṙ =
R2Ṙ

r2
. (8.18)

The work done by an expanding or contracting bubble must equal the kinetic
energy of the surrounding liquid:

R∫
R0

(pL − p0) 4πR2 dR =
1

2

∞∫
R

ṙ2ρ 4πr2 dr. (8.19)

Substituting (8.18) for ṙ simplifies the kinetic energy of the liquid to

Ek = 2ρ

∞∫
R

R4Ṙ2

r2
dr = 2π ρR3Ṙ2. (8.20)
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Now the following equality should be noted:

∂

∂R

(
Ṙ2
)

=
1

Ṙ

∂Ṙ2

∂t
= 2R̈, (8.21)

so that (8.19) can be differentiated to R. This results in the fundamental
equation of bubble dynamics:

pL − p0

ρ
= RR̈ +

3

2
Ṙ2. (8.22)

If a bubble is subjected to a driving function P (t), (8.22) changes to

pL − p0 − P (t)

ρ
= RR̈ +

3

2
Ṙ2. (8.23)

For a polytropic gas bubble, (8.9) is substituted for pL:

RR̈+
3

2
Ṙ2 =

1

ρ

[(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
− p0 − P (t)

]
. (8.24)

8.4 Pressure radiated by a bubble

To compute the acoustic pressure radiated by a bubble at any point in the
liquid, consider the equation of motion (4.7):

1

ρ

∂p

∂r
= −∂ṙ

∂t
− ṙ ∂ṙ

∂r
. (8.25)

Integrating over r gives

∞∫
r

1

ρ

∂p

∂r
dr = −

∞∫
r

∂ṙ

∂t
dr −

∞∫
r

ṙ
∂ṙ

∂r
dr, (8.26)

which can be solved by substituting (8.18) for ṙ:

p(r, t)− p0

ρ
= − ∂

∂t

(
R2Ṙ

r

)
− 1

2

R4Ṙ2

r4
. (8.27)

This is actually a representation of Bernoulli’s theorem,

p(r, t)− p∞0
ρ

= −∂Φ

∂t
− 1

2
v2, (8.28)
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where v is the particle velocity and Φ is the velocity potential

Φ = −
∞∫
r

ṙ dr. (8.29)

The equation of motion in the liquid (8.27) can be further simplified to

p(r, t)− p0

ρ
= −2RṘ2 +R2R̈

r
− 1

2

R4Ṙ2

r4
. (8.30)

In the far field, at distances r � R,

p(r, t)− p0

ρ
= −2RṘ2 +R2R̈

r
. (8.31)

8.5 Viscous fluids

The viscosity η of a Newtonian viscous fluid is by definition the ratio of stress
and rate of strain ε̇. In viscous fluids, the relations (2.61) and (2.74) do not
apply. It should be noted that the principal stresses have been defined as
positive for expanding media, as opposed to the definitions in fluid physics
and acoustics. If we take a hydrostatic stress p, for an incompressible liquid,

pL = −p− 2ηε̇r, (8.32)

where ε̇r is the radial rate of strain. Using (8.18), the radial rate of strain
can be expressed in terms of r and R:

ε̇r =
∂ṙ

∂r
=

∂

∂r

(
R2Ṙ

r2

)
= −2R2Ṙ

r3
, (8.33)

which at the bubble surface (r = R) becomes

ε̇r = −2Ṙ

R
, (8.34)

Combining (8.22), (8.32), and (8.34) results in

1

ρ

(
pL − p0 −

4ηṘ

R

)
= RR̈ +

3

2
Ṙ2. (8.35)
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Introducing a driving function P (t) gives an equation similar to (8.24) for a
polytropic gas bubble:

RR̈ +
3

2
Ṙ2 =

1

ρ

[(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
− 4ηṘ

R
− p0 − P (t)

]
.

(8.36)
This is the Rayleigh–Plesset equation. Note that the Rayleigh–Plesset equa-
tion can only be applied if the liquid is incompressible and if the gas is
polytropic.

Figure 8.3 shows radius–time curves of two microbubbles subjected to
continuous sine pressure waves with low, moderate, and high amplitudes.
Both bubbles oscillate linearly at MI = 0.01. With increasing driving ampli-
tude, asymmetries in radial excursion and expansion time rise, especially for
the bigger bubble, which is closer to the resonance size. At MI = 0.8, both
bubbles expand to a factor of the initial size, followed by a rapid collapse for
the smaller bubble. The bigger bubble demonstrates collapses at MI = 0.18
and higher.

8.6 Oscillations

The Rayleigh–Plesset equation describes highly nonlinear radially symmetric
bubble oscillations, but at low acoustic driving amplitudes, the behaviour is
linear. At such low amplitudes, a bubble behaves like a mass–spring–dashpot
system and (8.36) is just another way of writing (3.38), where the replacive
mass

m = 4πR3
0ρ, (8.37)

the linear angular resonance frequency

ω0 =

(
1

R0
√
ρ

)√
3γ

(
p0 − pv +

2σ

R0

)
+ pv −

2σ

R0

− 4η2

ρR2
0

, (8.38)

and the (viscous) damping

2ζ =
16πηR0

mω0

=
4η

ρω0R2
0

. (8.39)

The damping of a bubble pulsation is determined by the acoustic radiation,
the heat conduction, and the liquid viscosity. For microbubbles under soni-
cation at typical medical frequencies > 1 MHz, viscous damping is dominant,
as is evident from (4.147). For an encapsulated microbubble, the presence of
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Figure 8.3: Simulated radius–time curves (radius R normalised by
equilibrium radius R0, time t normalised by period T ) of ultrasound
contrast microbubbles with 0.55µm (left column) and 2.3µm (right
column) equilibrium radii. The modelled ultrasound field was a con-
tinuous sine wave with a frequency of 0.5 MHz and acoustic am-
plitudes corresponding to (top–bottom) MI = 0.01, 0.10, 0.18, 0.35,
and 0.80. Reprinted with permission from Postema M, Gilja OH.
Ultrasound-directed drug delivery. Curr Pharm Biotechnol 2007
8:355–361.

a shell has to be taken into account, by adding an extra damping parameter
ζs. From (3.63) we know that the excursion of a forced damped harmonic
oscillator has a phase angle difference φ with the driving field. Figure 8.4
shows three curves of the phase angle differences (φ+ π) between a damped
radially oscillating bubble and an incident 2-MHz sound field, as a function
of R0. The curves have been computed for a free microbubble, a SonoVueTM

contrast microbubble, and an Albunex R© contrast microbubble. With in-
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creasing shell stiffness, the bubble resonance size increases. At resonance,
the bubble oscillates 3

2
π rad out of phase with the sound field. For bub-

ble greater than resonance, the phase angle difference approaches 2π rad, so
that the bubble oscillates in phase with the sound field. Below resonance
size, the phase difference is still greater than π, and approaches 3

2
π for R0

much smaller than resonance size. Since the damping due to the liquid vis-
cosity ζv ∝ R−2, the phase difference approaches 3

2
π for a free bubble radius

R0 � 1µm. The approach to 3
2
π below the minimum value of the phase

difference is stronger with the contrast bubbles, because ζs ∝ R−3. As the
damping becomes greater, the phase transition around resonance becomes
less abrupt, as Figure 8.4 demonstrates.1
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Figure 8.4: Phase angle difference (φ+π) between a damped radially
oscillating bubble and an incident 2-MHz sound field, as a function
of equilibrium radius R0. The thin line represents a free bubble,
the medium line a SonoVueTM microbubble, and the thickest line an
Albunex R© microbubble.

The spherically symmetric oscillating behaviour of ultrasound contrast
agent microbubbles has been described with models based on the Rayleigh–

1Postema M, Schmitz G. Ultrasonic bubbles in medicine: influence of the shell. Ultrason
Sonochem 2007 14:438–444.
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Plesset equation, modified for the presence of an encapsulating shell. Gener-
ally, the presence of blood has a relatively small effect on bubble dynamics.
To give an indication of the vast amount of existing models: Qin et al. de-
fined 16 separate dynamic bubble model classes.2 The reason for the high
number of existing models is the fact that most physical properties of encap-
sulated microbubbles cannot actually be measured, so that pseudo-material
properties have to be chosen when predicting ultrasound contrast agent mi-
crobubble behaviour. Examples of such pseudo-material properties are shell
elasticity parameters and shell friction parameters.

If the ultrasonic driving pressure is sufficiently high, the nonlinear mi-
crobubble response results in harmonic dispersion, which not only produces
harmonics with frequencies that are integer multiples of ω (superharmonics)
but also subharmonics with frequencies less than ω of the form mω/n, where
{m,n} ∈ N.

8.7 Disruption

At low acoustic amplitudes (mechanical index MI< 0.1), microbubbles pul-
sate linearly. At high amplitudes (MI> 0.6), their elongated expansion phase
is followed by a violent collapse. During the collapse phase, when the kinetic
energy of the bubble surpasses its surface energy, a bubble may fragment into
a number of smaller bubbles. Fragmentation has been exclusively observed
with contrast agents with thin, elastic shells. Fragmentation is the dominant
disruption mechanism for these bubbles.

During the initial part of the collapse, the acceleration R̈ is negative.
This sign changes as the gas inside the bubble begins to be compressed,
and the rebound begins. Provided that surface instabilities have grown big
enough to allow for break-up, microbubble fragmentation has been expected
and observed close to this moment, when R̈ = 0. This has been confirmed
by means of high-speed photography. The occurrence of fragmentation has
been associated with inertial cavitation.

The number of fragments, N , into which a microbubble breaks up, is
related to the dominant spherical harmonic oscillation mode n by3

N ≈ n3 . (8.40)

2Qin S, Caskey CF, Ferrara KW. Ultrasound contrast agent microbubbles in imaging
and therapy: physical principles and engineering. Phys Med Biol 2009 54:R27–R57.

3Brennen CE. Fission of collapsing cavitation bubbles. J Fluid Mech 2002 472:153–
166.
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Mode 2 oscillations have been observed with lipid-encapsulated microbub-
bles, leading to fragmentation into 8 newly formed microbubbles.

Let us consider a single spherically symmetric microbubble with an inner
radius Ri and an outer radius R, a shell density ρs, negligible translation, in
an infinite fluid with density ρ. The kinetic energy of such a microbubble
can be approximated by

Ek ≈ 2π ρR3 Ṙ2 + 2π ρs R
3
i Ṙ

2
i

(
1− Ri

R

)
. (8.41)

Knowing that, for microbubbles with monolayer lipid shells,
Ri

R
< 0.01 and

ρs = 1.15× 103 kg m−3, and for blood, ρ = 1.05× 103 kg m−3, (8.41) can be
reduced to (8.20).

The surface free energy Es of a single encapsulated bubble is given by

Es = 4π R2
i σ1 + 4π R2 σ2 , (8.42)

where σ1 and σ2 denote the surface tension coefficient for the inner and outer
interface, respectively. For our microbubbles with monolayer lipid shells, we
consider a single interface model, using the effective surface tension σ:

σ = σ1 + σ2 . (8.43)

After fragmentation, the resulting microbubble fragments contain more sur-
face free energy

∑
iEf,i than the single bubble prior to fragmentation:

N∑
i=1

Ef,i ≈ 4
3
π R2

f,m σ N ≈ 4
3
π R2 σ N

1
3 = N

1
3 Es , (8.44)

where Rf,m is the mean fragment radius. Neglecting the elastic energy of
the shell and the internal energy of the gas core, it can be assumed that
fragmentation will only occur if:

Ek >
N∑
i=1

Ef,i − Es. (8.45)

Although asymmetric shape bubble oscillations have been observed, within
the size range of ultrasound contrast agent bubbles, spherical harmonic modes
higher than 2 can be neglected.

For microbubbles of radiusR0 with a thick, stiff shell, such as QuantisonTM,
max(R(t))� R0. Thick-shelled bubbles have demonstrated gas release dur-
ing a high-amplitude ultrasonic cycle. The increased pressure difference be-
tween the inside and outside of the bubble during the expansion phase of the
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wave causes the shell to be stretched across the critical deformation, resulting
in its mechanical cracking. The released bubble has an oscillation amplitude
much higher than an encapsulated bubble of the same size.

Figure 8.5 shows the ultrasound-induced release of gas from an albumin-
encapsulated microbubble, driving the bubble at 0.5 MHz with a peak-negative
acoustic pressure of 0.8 MPa.4 The frames cover one full ultrasonic cycle
(2µs). This acoustic pressure is well within the clinical diagnostic range.
Gas is seen to escape from the thick-shelled microbubble with a 4.3µm di-
ameter in the third frame, in the beginning of the rarefaction phase of the
ultrasound. The shell itself is too rigid to expand. The released gas expands
to a diameter of 12.3µm in the eighth frame, after which it contracts. In
the eleventh frame, the free gas microbubble, which has been subjected to
motion blur, appears to be detached from the encapsulated microbubble. In
the twelfth frame, the gas is hardly visible, owing to the compression phase
of the ultrasound.

On the contrary, microbubbles with a thin, highly elastic monolayer lipid
shell, like SonoVueTM, have been observed to expand to more than ten-fold
their initial surface areas during rarefaction. The shell behaves like an elastic
membrane that ruptures under relatively small strain. By the time of maxi-
mal expansion, therefore, the shell has ruptured, leaving newly formed clean
free interfaces.

8.8 Diffusion

In a steady fluid, gas diffusion is given by Fick’s law:

∂C

∂t
= D

(
∂2C

∂r2
+

2

r

∂C

∂r

)
, (8.46)

where C is the mass concentration of the dissolved gas and D is the dissolu-
tion constant. We introduce

u(r, t) = r (C − Cs) (8.47)

and the boundary condition

u(r, 0) = r (Ci − Cs) , (8.48)

4Postema M, Bouakaz A, Versluis M, de Jong N. Ultrasound-induced gas release
from contrast agent microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 2005
52:1035–1041.
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Figure 8.5: Gas release from the upper left of a QuantsionTM mi-
crobubble during a single ultrasonic cycle (a), and a schematic rep-
resentation thereof (b). During the rarefaction phase (starting frame
2), gas escapes until it reaches a maximum (frame 8). During the
subsequent contraction, the free gas bubble is seen detached from the
shell (frames 11 and 12). Each frame corresponds to a 19× 19 (µm)2

area. Inter-frame times are 0.1µs. Reprinted with permission from
Postema M, van Wamel A, ten Cate FJ, de Jong N. High-speed pho-
tography during ultrasound illustrates potential therapeutic applica-
tions of microbubbles. Med Phys 2005 32:3707–3711.

where Ci is the initial mass concentration of the dissolved gas and Cs is the
saturation concentration in the liquid at the bubble wall. Then,

∂u

∂t
= D

∂2u

∂r2
. (8.49)

The solution of this ordinary differential equation is

u(r, t) = u(r, 0) erf(z), (8.50)

where
z =

r

2
√
Dt

. (8.51)
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The error function erf(z ) is defined by

erf(z) =
2√
π

z∫
0

e−ξ
2

dξ (8.52)

and can be written as an asymptotic series

erf(z) = 1− e
−z2

√
π

∞∑
n=0

(−1)n(2n− 1)!!

2n
z−(2n+1) = 1− e

−z2

√
π

(
z−1 − z−3

3
+ · · ·

)
.

(8.53)
Substituting for u(r, 0), (8.50) now becomes

u(r, t) =
2r (Ci − Cs)√

π

r

2
√
Dt∫

0

e−ξ
2

dξ. (8.54)

Using the asymptotic series for erf(z) and the Taylor series for ez, it follows
that, at r = R, (

∂u

∂r

)
R

= (Ci − Cs)

(
1 +

R√
πDt

)
(8.55)

and, consequently, (
∂C

∂r

)
R

= (Ci − Cs)

(
1

R
+

1√
πDt

)
. (8.56)

At the bubble wall, the mass flow through the surface equals the diffusion:

D

(
∂C

∂r

)
R

=
1

4πR2

dm

dt
=

1

4πR2

d

dt

(
4

3
πR3ρg

)
(8.57)

or

4πR2Ṙρg = 4πR2D

(
∂C

∂r

)
R

(8.58)

where ρg is the density of the gas. Substituting (8.56) yields the bubble wall
velocity during dissolution:

Ṙ =
D (Ci − Cs)

ρg

(
1

R
+

1√
πDt

)
. (8.59)

In this equation, ρg is a function of R. Combining (4.22) and (8.4) rephrases
the ideal gas law for a gas bubble:

p0 +
2σ

R
=
ρgRT
M

, (8.60)
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so that ρg is expressed in terms of known parameters:

ρg(R) =
M

RT
(p0 − pv) +

2Mσ

RT
1

R
= ρg(∞) +

2Mσ

RT
1

R
, (8.61)

where ρg(∞) is the density of the gas under the same conditions of pressure
and temperature with a gas–liquid interface of zero curvature.5 Substituting
(8.61) into (8.57) and computing the mass diffusion rephrases (8.59) as

Ṙ =
D (Ci − Cs)

ρg(∞) + 4
3
Mσ
RT

1
R

(
1

R
+

1√
πDt

)
(8.62)

or

Ṙ =
DRT (Ci − Cs)

M

1

p0 − pv + 4
3
σ
R

(
1

R
+

1√
πDt

)
. (8.63)

The concentration of gas at the bubble wall Cs is related to the internal gas
pressure by

Cs = k−1
g pg = k−1

g

(
p0 − pv +

2σ

R

)
, (8.64)

where kg is Henry’s constant defined in terms of the mass concentration of
the gas. The saturation concentration of the gas is, by definition,6

C0 = k−1
g p0. (8.65)

Hence, the concentration of gas at the bubble wall is related to the saturation
concentration in the liquid by

Cs = C0

(
1− pv

p0

+
2σ

p0R

)
. (8.66)

Equation (8.63) now reduces to

Ṙ =
DRT C0

Mp0

(
Ci

C0
− 1 + pv

p0
− 2σ

Rp0

1− pv
p0

+ 4
3

σ
Rp0

)(
1

R
+

1√
πDt

)
, (8.67)

which can be simplified to

Ṙ = DL

(
Ci

C0
− 1 + pv

p0
− 2σ

Rp0

1− pv
p0

+ 4
3

σ
Rp0

)(
1

R
+

1√
πDt

)
, (8.68)

5Epstein PS, Plesset MS. On the stability of gas bubbles in liquid–gas solutions. J
Chem Phys 1950 18:1505–1509.

6Eller A, Flynn AG. Rectified diffusion during nonlinear pulsations of cavitation bub-
bles. J Acoust Soc Am 1965 37:493–503.
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where L is Ostwald’s solubility coefficient.7 If a hydrostatic overpressure ∆p
is introduced, the dissolution can be readily derived in a similar fashion:

Ṙ = DL

(
Ci

C0
− 1 + pv

p0
− ∆p

p0
− 2σ

Rp0

1− pv
p0

+ ∆p
p0

+ 4
3

σ
Rp0

)(
1

R
+

1√
πDt

)
. (8.69)

Figure 8.6 shows diameter–time curves of free dissolving nitric oxide gas
microbubbles at two different ambient pressures. The dissolution process of
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Figure 8.6: Diameter–time curves of dissolving nitric oxide gas bub-
bles at atmospheric pressure (bold lines) and 100 mmHg overpressure
(thin lines), respectively. Reprinted with permission from Postema
M, Bouakaz A, ten Cate FJ, Schmitz G, de Jong N, van Wamel A.
Nitric oxide delivery by ultrasonic cracking: some limitations. Ultra-
sonics 2006 44:e109–e113.

a 2-µm microbubble takes less than 2.5 ms. Increasing the ambient pressure
slightly decreases the dissolution times.

7Bouakaz A, Frinking PJA, de Jong N, Bom N. Noninvasive measurement of the hydro-
static pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized
free gas bubbles. Ultrasound Med Biol 1999 25:1407–1415.
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8.9 Radiation forces

8.9.1 Travelling sound wave

Consider a pressure gradient ∇p across a bubble of volume V . The force
acting on the bubble must be

F = −V∇p. (8.70)

In an acoustic field, the pressure gradient constantly changes. Hence, we
consider the average force acting on the bubble, following the analysis by
Leighton:8

〈F 〉 = −〈V∇p〉 . (8.71)

Now, consider a plane single-frequency (monotonous) progressive wave in the
x-direction, for which the pressure deviation from the ambient constant value
is described by (4.35):

p = PA cos(ωt− kx) (8.72)

and
∇p = −kPA sin (ωt− kx) , (8.73)

where PA is the acoustic pressure amplitude, k is the wave number, and ω
is the angular driving frequency. At small acoustic amplitudes, a bubble
oscillates linearly:

R(t) = R0 − ξ cos(ωt− kx− φ), (8.74)

where ξ is the bubble oscillation amplitude and φ is the phase difference
between the sound field and the bubble. The volumetric change is then
approximated by

V (t) = 4
3
π [R0 − ξ cos(ωt− kx− φ)]3

= 4
3
π [R3

0 − 3R2
0ξ cos(ωt− kx− φ) +3R0ξ

2 cos2(ωt− kx− φ)

− ξ3 cos3(ωt− kx− φ)]

≈ V0

[
1− 3ξ

R0
cos(ωt− kx− φ)

]
.

(8.75)
Hence, the average force acting on the bubble is

〈F 〉 = −
〈
V0kPA

[
1− 3ξ

R0

cos(ωt− kx− φ)

]
sin(ωt− kx)

〉
. (8.76)

8Leighton TG. The Acoustic Bubbles. London: Academic Press 1994.
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Making use of sinA cos(A+B) = 1
2

sin 2A cosB − sin2A sinB, this becomes

〈F 〉 = −V0kPA (〈sin(ωt− kx)〉 + 3ξ
R0

〈
sin2(ωt− kx) sinφ

〉
+ 〈sin(ωt− kx) cos(ωt− kx) cosφ〉) .

(8.77)
The uneven terms are averaged out, whereas

〈
sin2A

〉
= 1

2
, so that

〈F 〉 =
3V0kPA

2

ξ

R0

sinφ. (8.78)

Substituting (3.63) for φ and taking into account that sin arctanx = x√
1+x2

gives:

〈F 〉 =
3V0kPA

2

ξ

R0

2ζ ω
ω0√(

1−
(
ω
ω0

)2
)2

+
(

2ζ ω
ω0

)2

. (8.79)

This force, acting in the direction of the sound field, is called the primary
radiation force.

8.9.2 Standing sound wave

Consider a bubble in a standing sound wave

p = 2PA cosωt cos kx (8.80)

and
∇p = −kPA sin (ωt− kx) . (8.81)

At small acoustic amplitudes, the radius is then given by

R(t) = R0 − ξ cos kx cos(ωt− φ). (8.82)

Analogous to (8.75), the volumetric change is approximated by

V (t) ≈ V0

[
1− 3ξ

R0

cos kx cos(ωt− φ)

]
. (8.83)

Consequently, the average force acting on the bubble is

〈F 〉 = −
〈

2V0kPA

[
1− 3ξ

R0

cos kx cos(ωt− φ)

]
sin kx cosωt

〉
. (8.84)

Again, the uneven terms are averaged out, so that

〈F 〉 =
3V0kPA

2

ξ

R0

sin 2kx cosφ. (8.85)
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Substituting (3.63) for φ and taking into account that cos arctanx = 1√
1+x2

gives

〈F 〉 =
3V0kPA sin 2kx

2

ξ

R0

1−
(
ω
ω0

)2

√(
1−

(
ω
ω0

)2
)2

+
(

2ζ ω
ω0

)2

. (8.86)

This force, acting in the direction of the nodes and anti-nodes of the sound
field, is called the primary Bjerknes force.

8.9.3 Radiation forces between bubbles

Consider an object in a sound field that causes a fluid acceleration v̇ at the
position of a bubble of interest. Defining u̇ as the acceleration of the bubble,
the net acceleration of the bubble relative to the fluid is u̇− v̇. This relative
acceleration causes a drag force on the bubble −1

2
ρV (u̇− v̇), where 1

2
ρV is

the apparent mass of a moving bubble. Following Leighton’s derivation, the
net force on the bubble is

F = ρV v̇ − 1

2
ρV (u̇− v̇) = ρg(t)V u̇, (8.87)

from which an expression for u̇ immediately follows:

u̇ =
3V v̇

V + 2V ρg
ρ

. (8.88)

If the mass of the gas inside the bubble is constant,

ρgV = ρ0,gV0, (8.89)

where ρ0,g is the density of the gas bubble in quasi-equilibrium. We assume
the bubble oscillates linearly according to

V (t) = V0 −∆V cosωt, (8.90)

where ∆V = 4πR2ξ. We substitute this for V and the density ratio f for ρ0,g
ρ

in (8.88):

u̇

v̇
=

3(V0 −∆V cosωt)

(1 + 2f)V0 −∆V cosωt
. (8.91)
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Using 1
1−x = 1 + x+ x2 + x3 + ..., this can be simplified to

u̇

v̇
=

3

1 + 2f

(
1− ∆V cosωt

V0

)(
1 +

∆V cosωt

(1 + 2f)V0

)
≈ 3

1 + 2f

(
1− 2f

1 + 2f

∆V

V0

cosωt

)
.

(8.92)

Now, consider that the object causing the fluid acceleration v̇ is a bubble “1”
at distance r from the bubble of interest “2”. If V1 is the volume of bubble
1 at quasi-equilibrium, V2 is the volume of bubble 2 at quasi-equilibrium,
∆V1 is the volumetric expansion amplitude of bubble 1, and ∆V2 is the
volumetric expansion amplitude of bubble 2, then, assuming small oscillation
amplitudes, the instantaneous volume of bubble 1 is V1−cos(ωt+φ) and the
instantaneous volume of bubble of 2 is V2 − cosωt, where φ is the difference
in oscillation phase. We define ρ1 and ρ2 as the gas density at equilibrium of
bubble 1 and 2, respectively. Similar to (8.87), the average force experienced
by bubble 2 is

〈F 〉 = 〈ρV u̇〉 = ρ2V2 〈u̇〉 =
3

1 + 2f

〈
v̇ρ2V2 −

6f

(1 + f)2
v̇ρ2∆V2 cosωt

〉
.

(8.93)
Considering that V1 = 4

3
πR3

1 and that V̇1 = 4πR2
1Ṙ1, (8.18) can be rewritten

in terms of V1:

v =
R2

1Ṙ1

r2
=

V̇1

4πr2
=
ω∆V1 sin(ωt+ φ)

4πr2
, (8.94)

so that

v̇ =
ω2∆V1 cos(ωt+ φ)

4πr2
. (8.95)

Inserting this in (8.93) results in

〈F 〉 =
3

1 + 2f

ρ2ω
2∆V1V2

4πr2
〈cos(ωt+ φ)〉

− 6f

(1 + f)2

ρ2ω
2∆V1∆V2

4πr2
〈cosωt cos(ωt+ φ)〉

= − 3f

(1 + 2f)2

ρ2ω
2∆V1∆V2

4πr2
cosφ.

(8.96)

This force is called the secondary radiation or secondary Bjerknes force. From
(8.96), it immediately follows that bubbles that oscillate in phase (φ = 0)
attract each other and that bubbles that oscillate out of phase (φ = π) repel
each other.
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8.10 Coalescence

To understand microbubble coalescence, one needs to comprehend the drainage
of the liquid separating the bubble surfaces. Reynolds noted that the vis-
cosity of a liquid can be determined by pressing two flat plates together,
squeezing the liquid out, and measuring the drainage velocity.9 Thus, he
formulated an equation for the drainage velocity of a fluid between rigid sur-
faces. General theories on the coalescence of colliding bubbles and droplets
have been based on liquid film drainage.10,11 Droplet coalescence finds ap-
plications in fuel ignition research and aerosol studies, whereas the research
on bubble coalescence focuses on thin film physics and foam stability. This
Section explores ultrasound-induced coalescence of microbubbles. Controlled
coalescence has potential applications in the clinical field.12

Theories on bubble coalescence are generally based on the collision of
unencapsulated bubbles or droplets, approaching each other at constant ve-
locity. During expansion, microbubbles may also come into contact with
each other, resulting in coalescence or bounce. We discriminate the follow-
ing stages in the coalescence mechanism, optically observed in Figure 8.7
and schematically represented in Figure 8.8. Initially, two bubbles approach
collision while expanding (Figure 8.8(a)). Prior to contact, there may be a
flattening of the adjacent bubble surfaces, trapping liquid in between (Fig-
ure 8.7(a), Figure 8.8(b)). This trapped liquid drains (Figure 8.7(b), Fig-
ure 8.8(c)) until the separation reaches a critical thickness. An instability
mechanism results in rupture of the separation (Figure 8.8(d)) and the for-
mation of a merged bubble (Figure 8.7(c)). After coalescence the resulting
bubble will have an ellipsoidal shape (Figure 8.7(d), Figure 8.8(e)). Owing
to surface tension, it will relax to a spherical shape. When the contact time
is less than the time needed for film drainage, the bubbles bounce off each
other.13 We define bubble coalescence as the fusing of two or more bubbles

9Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp
Tower’s experiments, including an experimental determination of the viscosity of olive oil.
Philos Trans Roy Soc A 1886 177:157–234.

10Kralchevsky PA, Danov KD, Ivanov IB. Thin liquid film physics. In: Prud’homme R,
Khan S, eds., Foams, Theory, Measurements and Applications. New York: Marcel Dekker
1996 1–98.

11Narsimhan G, Ruckenstein E. Structure, drainage, and coalescence of foams and
concentrated emulsions. In: Prud’homme R, Khan S, eds., Foams, Theory, Measurements
and Applications. New York: Marcel Dekker 1996 99–187.

12Postema M, Marmottant, Lancée CT, Hilgenfeldt S, de Jong N. Ultrasound-induced
microbubble coalescence. Ultrasound Med Biol 2004 30:1337–1344.

13Chaudhari RV, Hofmann H. Coalescence of gas bubbles in liquids. Rev Chem Eng
1994 10:131–190.
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a b c d
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Figure 8.7: Optical images of stages of ultrasound-induced microbub-
ble coalescence: (a) flattening of contact surfaces, (b) liquid film
drainage, (c) forming of a merged bubble, (d) turning into an ellip-
soidal bubble. Each frame in event (i) corresponds to a 21×21 (µm)2

area. Each frame in events (ii)–(iv) corresponds to a 30 × 30 (µm)2

area. Inter-frame times are 0.33µs. Reprinted with permission from
Postema M, Marmottant P, Lancée CT, Hilgenfeldt S, de Jong N.
Ultrasound-induced microbubble coalescence. Ultrasound Med Biol
2004 30:1337–1344.

into a single bubble. The process begins with the flattening of the bubble
surfaces and is considered finished when the resulting bubble has a spherical
shape.

8.10.1 Flattening of the interface

Flattening of the opposing bubble surfaces occurs because the liquid inertia
overcomes the capillary pressure, as described in earlier work on colliding
bubbles with constant volumes. For colliding bubbles, flattening happens if
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Figure 8.8: Schematic representation of stages of expanding bubble
coalescence: (a) bubble collision, (b) flattening of contact surfaces,
(c) liquid film drainage until a critical thickness (d), (e) film rupture,
and (f) formation of an ellipsoidal bubble.

the bubble system has a Weber number We ' 0.5.14 The Weber number
for two colliding bubbles with radii R1 and R2, respectively, is given by the
inertial force relative to the surface tension force:

We =
ρu2

σ
Rm

, (8.97)

where u is the relative approach velocity of the bubble walls, ρ is the fluid
density, σ is the surface tension, and Rm is the mean bubble radius, which is
defined by

2

Rm

=
1

R1

+
1

R2

. (8.98)

Consider the Weber number criterium for approaching walls of expanding
bubbles. Then, for bubbles with a constant centre-to-centre distance, u =
Ṙ1 + Ṙ2 . If the Weber number is low, bubble coalescence will always occur,
without flattening of the adjacent surfaces prior to contact. In the high Weber
number regime, coalescence is determined by a second step, after flattening:
film drainage.

14Duineveld PC. Bouncing and coalescence phenomena of two bubbles in water. In:
Blake JR, Boulton-Stone JM, Thomas NH, eds., Bubble Dynamics and Interface Phenom-
ena. Volume 23 of Fluid mechanics and its applications. Dordrecht: Kluwer Academic
Publishers 1994 447–456.



27

R1 R2

h

Rf

pf
p1 p2

p0

Figure 8.9: Schematic overview of variables used.

8.10.2 Film drainage

Consider two bubbles with radii R1 and R2, and internal pressures p1 and p2,
respectively, assumed spherical everywhere with the exception of a flattened
interface that separates them through a liquid film of thickness h (cf. Fig-
ure 8.9). The drainage rate of the liquid film depends on the difference (p+Π)
between the film pressure pf and the liquid ambient pressure p0. Here, p is
the difference in hydrodynamic pressure and Π is the disjoining pressure in
the film. We estimate the pressure in the film by the mean of pressures p1 and
p2, since the parallel film surfaces lead to equal pressure differences towards
both bubbles:

p+ Π = pf − p0 =
1

2
(p1 + p2)− p0 = σ

(
1

R1

+
1

R2

)
≡ pLY, (8.99)

where pLY is the Laplace–Young film pressure. The disjoining pressure be-
gins to slow down film thinning when h drops below 0.1µm, and becomes the
dominant pressure term (usually owing to Van der Waals forces) when h thins
to about 10 nm.15 The eventual coalescence of ultrasound contrast agent mi-
crobubbles is very fast compared with the film drainage time scales considered
later. Therefore, we may neglect Π and take p equal to the Laplace–Young
pressure for the films observed. As such, the pressure gradient determining
the drainage velocity is independent of the ambient pressure.

15Marrucci G. A theory of coalescence. Chem Eng Sci 1969 24:975–985.
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a b

Figure 8.10: Schematic flow profiles between no-slip interfaces (a)
and of free interfaces (b).

We choose an r–z coordinate system such that the film is symmetric
around the plane z = 0 and the line r = 0, and that its boundaries are
located at z = ±1

2
h and r = Rf . The Laplace–Young pressure gradient

drives liquid out of the film. The radial velocity of the liquid is described
by a combination of a plug flow (present without any resistance to flow)
and a laminar flow profile (in z) of Poiseuille type induced by resistance at
the film interfaces.16 The drainage of the liquid film can be parameterised by
functions of these two contributions. Below, the two limiting cases of bubbles
with no-slip interfaces and bubbles with free interfaces are analysed.

8.10.3 No-slip interfaces

In the presence of surfactant at sufficient surface concentration, the interfaces
can be considered immobile (no-slip). In the case of no-slip interfaces, the
interfacial tangential velocity is zero, so the plug flow contribution is zero, as
shown in frame (a) of Figure 8.10.

16Klaseboer E, Chevaillier JP, Gourdon C, Masbernat O. Film drainage between collid-
ing drops at constant approach velocity: experiments and modeling. J Colloid Interf Sci
2000 229:274–285.
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The film drainage velocity for rigid radial surfaces (disks) is given by the
Reynolds equation:17

−∂h
∂t

=
2 p h3

3 η R2
f

. (8.100)

The drainage time, τd, between the initial film thickness hi and the critical
film thickness hc can be determined by integration of (8.100):

hc∫
hi

−dh

h3
=

τd∫
0

2 p

3 η R2
f

dt . (8.101)

Flattening takes place when

Ṙ1 + Ṙ2 �
∂h

∂t
, (8.102)

whereas the flat film drainage happens in the next stage, when

Ṙ1 ≈ Ṙ2 ≈ 0. (8.103)

Thus, during drainage, we may take p and Rf constant over time. Then we
obtain

τd =
3 η R2

f

4 p h2
c

(
1− h2

c

h2
i

)
. (8.104)

If h2
c�h2

i the drainage time can be approximated by

τd ≈
3 η R2

f

4 p h2
c

. (8.105)

8.10.4 Free interfaces

In the case of free interfaces, the Poiseuille contribution to the drainage flow
becomes negligible, and the drainage is inertial, as shown in frame (b) of
Figure 8.10. The film drainage velocity for free radial surfaces is given by
the equation18

−∂h
∂t

=

√
8 p

ρ

h

Rf

. (8.106)

17Sheludko A. Thin liquid films. Advan Colloid Interf Sci 1967 1:391–464.
18Kirkpatrick RD, Lockett MJ. The influence of approach velocity on bubble coalescence.

Chem Eng Sci 1974 29:2363–2373.
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Note that the viscous term is absent. Similarly to the no-slip case, making
the same quasi-static assumptions with regards to p and Rf , the drainage
time can be approximated by

τd ≈ Rf

√
ρ

8 p
log

(
hi

hc

)
. (8.107)

These drainage times are much smaller than those for the no-slip situation,
and depend only logarithmically on both the initial and the critical film
thickness.

8.10.5 Film rupture

The disjoining pressure induces rupture by amplifying surface perturbations.
These are initialised by either thermal fluctuations or by capillary waves.19

For thermal perturbations of a gas bubble in the micrometre range, the initial

perturbation will be on the order of
√

kT
σ

, where k is Boltzmann’s constant

and T is the absolute temperature, in our situation approximately 300 K.
Hence, the initial thermal perturbation is lower than 1 nm.

A film gradually thins to a critical thickness at which it either ruptures
due to a local instability or at which it attains an equilibrium thickness.
These critical thicknesses dependent of surfactant concentration and film
radius. They lie in the range 20 nm< hc < 40 nm for film radii 60µm<
Rf < 160µm.20

For ultrasound contrast agent film radii (Rf < 10µm), we may assume
critical thicknesses around 10 nm, knowing that below 10 nm Van der Waals
forces become very strong and rapid rupture of the film (and thus coalescence)
ensues. Because of the weak dependence on film thickness, predictions from
(8.107) for coalescence time scales can be quite accurate even without precise
knowledge of hi and hc.

19Sharma A, Ruckenstein E. Critical thickness and lifetimes of foams and emulsions:
role of surface wave-induced thinning. J Colloid Interf Sci 1987 119:14–29.

20Angarska JK, Dimitrova BS, Danov KD, Kralchevsky PA, Ananthapadmanabhan KP,
Lips A. Detection of the hydrophobic surface force in foam films by measurements of the
critical thickness of film rupture. Langmuir 2004 20:1799–1806.
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8.11 Jetting

The jetting phenomenon for cavitation bubbles can be described as follows.21

Consider an oscillation bubble. Let’s define an infinite boundary to the
right-hand side of the bubble. During sonication, at the moment of maximal
expansion (cf. Figure 8.11b1), the pressure inside the bubble is much lower
than the ambient pressure, causing the bubble to collapse. The radial water
flow is retarded by the boundary. Therefore, the pressure at the right bubble
wall is less than the pressure at the right wall during the whole collapse
phase and the bubble becomes elongated perpendicular to the boundary. The
pressure gradient leads to different accelerations of the left and right bubble
walls and therefore to a movement of the centre of the bubble towards the
boundary during collapse. As the bubble collapses, the fluid volume to the
left of the bubble is accelerated and focussed, leading to the formation of
a liquid jet directed towards the boundary. This jet hits the right-hand-
side bubble wall, causing a funnel-shaped protrusion (cf. Figure 8.11b2) and
finally impacts the boundary.

Empirical relations exist between bubble radius, jet length, and pressure
at the tip of jets. The radius of the jet Rj is related to the radius of the
bubble on the verge of collapsing Rc by22

Rj

Rc

≈ 0.1. (8.108)

The length of the jet, lj, defined as the full travel path of the protruded
liquid, is related to Rc by23

lj
Rc

≈ 3. (8.109)

From these two ratios, the amount of liquid within the jet, Vj, can be esti-
mated:24

Vj ≈ 0.1R3
c . (8.110)

21Postema M, van Wamel A, ten Cate FJ, de Jong N. High-speed photography during
ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys 2005
32:3707–3711.

22Kodama T, Takayama K. Dynamic behavior of bubbles during extracorporeal shock-
wave lithotripsy. Ultrasound Med Biol 1998 24:723–738.

23Ohl CD, Ikink R. Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett
2003 90:214 502.

24Ohl CD, Ory E. Aspherical bubble collapse — comparison with simulations. In
Lauterborn W, Kurz T, eds., Nonlinear Acoustics at the Turn of the Millennium. New
York: American Institute of Physics 2000 393–396.
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a b
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3

Figure 8.11: Two high-speed photographic frames (a1,2) and an over-
laid image thereof (a3) of microjetting — a microbubble acting as a
microsyringe — and a schematic representation of this phenomenon
(b). On the verge of microjetting (1, thin line), the microbubble has a
diameter of 17µm. During microjetting (2), liquid protrudes through
the right side of the microbubble, over a length of lj = 26µm. The jet
is represented by the bold curve. The time between the two frames is
0.33µs. Reprinted with permission from Postema M, van Wamel A,
ten Cate FJ, de Jong N. High-speed photography during ultrasound
illustrates potential therapeutic applications of microbubbles. Med
Phys 2005 32:3707–3711.

The impact of a jet on a surface generates a high pressure region. The pres-
sure in this region has been referred to as water-hammer.25 For a perfectly
plastic impact, the water-hammer pressure of a cavitation jet is approxi-

25Cook SS. Erosion by water-hammer. Proc Roy Soc London A 1928 119:481–488.
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mately26

pwh ≈
1

2
ρ c vj, (8.111)

where pwh is the water-hammer pressure and vj is the jet velocity.
When administering microbubbles in the bloodstream, vessel walls are

the boundaries to which ultrasound-induced jets are to be targeted. From
high-speed optical observations of microjetting through ultrasound contrast
agent microbubbles, it has been computed that the pressure at the tip of
the jet is high enough to penetrate any human cell.27 Therefore, it has been
speculated whether liquid jets might act as microsyringes, delivering a drug
to a region of interest.

Of influence on the occurrence of all the above-mentioned phenomena are
(a) the ultrasonic parameters: transmit frequency, acoustic amplitude, pulse
length, pulse repetition rate and transmit phase; (b) the ultrasound contrast
agent composition: the composition of the shell, the bubble sizes, the size
distribution and the gas; (c) the physical properties of the medium: viscosity,
surface tension, saturation. Table 8.1 gives an overview of the nonlinear phe-
nomena that have been observed with ultrasound contrast agents, the type
of ultrasound contrast agent in which they have occurred, and the minimum
acoustic regime required.

26de Haller P. Untersuchungen über die durch Kavitation hergerufenen Korrosionen.
Schweiz Bauzeit 1933 101:243–246.

27Postema M, van Wamel A, Lancée CT, de Jong N. Ultrasound-induced encapsulated
microbubble phenomena. Ultrasound Med Biol 2004 30:827–840.
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Phenomenon Schematic representation Shell class1 Regime2

Translation I, II, III, IV L, M, H

Fragmentation I, II L, M, H

Coalescence I, II L, M, H

Jetting I, II H

Clustering II, III L, M, H

Cracking II, III, IV L, M, H

aMicrobubble shell classes: (I) free or released gas; (II) thin shells < 10 nm; (III) thick
shells < 500 nm; (IV) very thick shells > 500 nm.

bAcoustic regimes: low (L) for MI< 0.3; medium (M) for 0.3 <MI< 0.7; high (H) for
MI> 0.7.

Table 8.1: Nonlinear phenomena and their occurrence regimes.


