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Bidirectional leveled enumerators

An enumerator E outputs the elements of a sequence E = e 0 , e 1 , . . ., one at a time. The sequence E may be finite (e n ) n ∈[0,c[ or infinite (e n ) n ∈N .

The Enum package is part of the TRAG system which is written in Common Lisp. The code can be found at https://idurand@bitbucket. org/idurand/trag.git and a web interface at trag.labri.fr. The first version of the Enum package was presented at ELS 2012 in Zadar (Croatia).

The first version of the package offered the possibility of creating basic enumerators (inductive or from a list) and combining them using operations like products, sequences, filters, mapping. The topic of this paper is the enumeration of the tuples of the general cartesian product T p = E 1 × E 2 . . . × E p of the sequences associated with p enumerators E 1 , . . . , E p . The first property that one would want is fairness: each one of the enumerators will regularly move forward. The fairness property was already achieved by the diagonal product enumerator of the 2012 version. In this paper we address an additional property which concerns the distance between two enumerated tuples. A 2-ordering of T p is such that the distance between two consecutive enumerated tuples is at most 2. The binary diagonal product of the 2012 version had the 2-ordering property. But recursive application of this binary product to obtain T p does not give a 2-ordering for p ≥ 3. In this paper, we define bidirectional leveled enumerators and a binary product with these enumerators such that recursive application of the binary product gives a leveled 2-ordering which is as desired a 2-ordering.

INTRODUCTION

Since the beginning of the 21st century, the topic of enumeration has become more and more widespread both in theoretical and practical computer science.

An enumerator E outputs the elements of a sequence E = e 0 , e 1 , . . ., one at a time. The E may be finite (e n ) n ∈[0,c[ or infinite (e n ) n ∈N .

In combinatorics, the problem of enumerating objects comes as a generalization of counting objects. Many recent books deal with theoretical questions raised by enumeration problems [START_REF] Miklós | A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory Fourth Edition[END_REF][START_REF] Goulden | Combinatorial Enumeration[END_REF][START_REF] Stanley | Enumerative combinatorics[END_REF].

Practically, enumerating sets of objects is essential when the sets are too large (or even infinite) to be computed in extenso. Typical examples are database queries, extraction problems for large data collections like the web, and answers to constraint satisfaction problems [START_REF] Tsang | Foundations of Constraint Satisfaction[END_REF].

Enumerators1 are also very useful for programming. In Python2, the function range(n) computes and returns the list People used to write "for i in range(n):" to perform an iteration on the elements of the list [0, ..., n -1]. The iterator of the list was provided by xrange(n). In order to avoid the computation of the list the programmer could write for i in xrange(n):

Now in Python3 (starting from 2008), xrange has become the basic operation and has been renamed range. In order to obtain the behavior of range(n) of Python2 one must write list(range(n)) Python 3.6.9 (default, Nov 7 2019, 10:44:02) >>> range(3) range(0, 3) >>> for i in range(3): ... print(i, end=' ') ... print(' ') 0 1 2 >>> list(range(3)) [0, [START_REF] Al | The Haskell Programming Language[END_REF][START_REF] Miklós | A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory Fourth Edition[END_REF] Some programming languages (Java, Lisp [START_REF]Enumeration. Enumeration Package for Common Lisp[END_REF][START_REF] Waters | Series Package for Common Lisp[END_REF]) provide libraries for enumerating simple objects such as lists, arrays, strings or hash tables, but no operation to combine these simple enumerators in order to build enumerators for more complex user defined objects. The Sage [START_REF] Stein | Sage Mathematics Software[END_REF] software is a free open-source mathematics software system licensed under the General Public License. It combines the power of many existing open-source packages into a common Python-based interface. It implements enumeration for complex objects like graphs, posets, etc. However, Sage does not handle terms and term automata which are the objects we were interested in for the framework of the TRAG [START_REF] Durand | [END_REF][START_REF] Durand | Trag-web[END_REF] system which is almost 2 entirely written in Common Lisp. Also, we would like a Lisp implementation rather than a Python one. That is why we initially started developing the Enum package.

The SERIES Lisp package by Richard C. Waters [START_REF] Inc | Thinking Machines. Common Lisp the Language[END_REF] also deals with finite or infinite sequences. However, these series are not enumerators in the sense that a series or a finite consecutive part of it is treated as a blackbox. There is no explicit cursor that moves along the elements of a series and which is accessible to the user. However, such cursors must exist in the implementation. Otherwise an operation like computing the cartesian product of two series would not be possible.

Many basic features provided by our enumeration package are essentially the same as the ones provided by the SERIES package. The essential difference is that an enumerator points to a current element of its underlying sequence. A series is a functional object while an enumerator is a state machine (a non functional object). In other words, there may be several enumerators, pointing to different elements of the same (possibly virtual) sequence while there is just one series for a given sequence.

Our package also gives an object-oriented version of these concepts while the SERIES package does not use generic functions nor standard classes. The use of CLOS gives object-oriented extensibility that we do not have with the SERIES package. We make great use of this extensibility in TRAG and in the implementation presented in this paper.

The infinite lists of Haskell [START_REF] Al | The Haskell Programming Language[END_REF] offer the same kind of possibilities as the SERIES package.

Our Enum package is part of the TRAG 3 system [START_REF] Durand | [END_REF][START_REF] Durand | Trag-web[END_REF] which is written in Common Lisp. The code can be found at https://idurand@ bitbucket.org/idurand/trag.git. The first version of this package was presented at ELS 2012 [START_REF] Durand | Object enumeration[END_REF] in Zadar (Croatia). That first version of the package offered the possibility of creating basic enumerators (inductive or from a list) and combining them using operations like products, sequences, filters, and mapping.

Our enumerators may be useful for Lisp programmers and Lisp implementors as shown by the following implementation of the map function from the Common Lisp HyperSpec. This function must deal with sequences of heterogeneous types: some are lists, some are vectors. By creating an enumerator for each sequence, we obtain an homogeneous list of enumerators which can be put in parallel to obtain the tuples to which we apply the function fun passed as second parameter. In case the result-type is not NIL, collect-enum collects the final elements of the sequence into a list which is converted to the desired result-type.

(defun map (result-type fun &rest sequences) (let ((enumerator (make-parallel-enumerator (mapcar (lambda (s) (make-sequence-enumerator s)) sequences) :fun (lambda (tuple)

(apply fun tuple))))) (if (null result-type) nil (coerce (collect-enum enumerator) result-type))))
The topic of this paper is the enumeration of the tuples of the general cartesian product T p = E 1 × E 2 . . . × E p of the sequences associated with p enumerators E 1 , . . . , E p . A 2-ordering of T p is such that the distance between two consecutive enumerated tuples is at most 2. The binary diagonal product of the 2012 version had the 2-ordering property. But recursive application of this binary product to obtains T p does not give a 2-ordering for p ≥ 3. In this paper we define bidirectional leveled enumerators and a binary product with these enumerators such that recursive application of the binary product gives a leveled 2-ordering which is as desired a 2-ordering. 3 trag.labri.fr

ENUMERATORS AND BIDIRECTIONAL ENUMERATORS

In the following, the sequence enumerated by an enumerator E will be denoted by E.

An enumerator E is a state machine which outputs the elements of a sequence E = e 0 , e 1 , . . . one at a time. The sequence may be finite (e n ) n ∈[0,c[ or infinite (e n ) n ∈N .

All function names ending with -p are are predicates.

General enumerators

In the Enum package, each enumerator E has at least the following elementary operations:

• next-element-p (E): does there exist a next element?

• next-element (E): move to the next element.

For the implementation, we also need The function collect-enum may be used on a finite enumerator E and returns the elements of the sequence E as a list.

All the upcoming code will implicitly take place inside the ENUM package.

Examples with an infinite enumerator. The function collect-n-enum may be used on any enumerator E and a natural integer n and returns the first n elements of the E as a list (or all the elements of E if n is less than the number of elements of E).

Bidirectional enumerators

A bidirectional enumerator B is based on an underlying non bidirectional enumerator E. The bidirectional enumerator has additional code in order to move backwards as well as forwards. In addition to the operations defined for all enumerators, B has a way (+1 to move forwards, -1 to move backwards), an initial-way and the following operations to handle ways:

• initial-way (B): return initial way • way (B): return current way • invert-way (B): invert way of B together with the following operations:

• way-next-element-p (way B): does there exist a next element in this way? • way-next-element (way B):

move to the next element in this way. • latest-element (B): return latest element enumerated.

The operations next-element-p and next-element can be written in terms of way-next-element-p and way-next-element:

(defun next-element-p (B) (way-next-element-p (way B) B)) (defun next-element (B) (way-next-element (way B) B))
The implementation of a bidirectional enumerator uses a slot latest-element to store the latest enumerated element, and two slots past-elements and future-elements, the first one containing a stack of already enumerated elements that occur before the latest enumerated element and the second a stack of the elements that occur after.

• If the enumerator is moving backwards: the top element of past-element is popped and moved to latest-element while the former latest-element is pushed on future-elements.

• If the enumerator is moving forwards:

if future-elements is empty the underlying enumerator E is called and the result is pushed on future-elements; then the top of future-elements is popped and moved to the slot latest-element.

In both cases, latest-element is returned.

Creation and initialization of a bidirectional enumerator.

Given a nonempty enumerator E, enumerating e 0 , e 1 , . . ., one can obtain its bidirectional version BE with the operation: make-bidirectional-enumerator (E &key (initial-way 1))

Let BE = (make-bidirectional-enumerator E :initial-way initial-way).

In BE, one has access to E, the underlying enumerator, by (enum BE). At initialization, if initial-way is -1, we move (enum BE) forwards, so towards the first element of E, e 0 , in order to go back to this element at the next call of next-element. Consequently, the first call (next-element-p BE) will return true, the first call (next-element BE) will return the first element of (enum E) that is e 0 ; then (next-element-p BE) will return NIL as long as its way remains -1. 

Example of creation and use of a bidirectional enumerator.

ENUMERATION OF CARTESIAN PRODUCTS

Let E 1 , . . . , E p be nonempty enumerators (finite or not) such that each

E i enumerates • e i 0 , e i 1 , . . . if E i is infinite • e i 0 , e i 1 , . . . , e i c i -1 where c i = card(E i ) otherwise.
Let T p = E 1 × E 2 . . . × E p be the cartesian product of the sequences associated with the E i . It consists of all the tuples t = (e 1 j 1 , e 2 j 2 , . . . , e

p j p ) such that ∀i ∈ [1, p], e i j i ∈ E i . If every E i is finite, card(T p ) = Π p i=1 c i otherwise T p is infinite.
There are multiple ways of ordering T p so multiple possible enumerators of T p . A random ordering would be possible but we would have to store all the previously enumerated tuples in order to avoid enumerating them again. We now discuss some interesting properties which an ordering may have.

Fairness property

The necessity of a diagonal ordering arises when at least one of the components is infinite. We would like to avoid being blocked at a given value of some component while enumerating an infinite other component. We call this property fairness. For instance in the example above, when enumerating *naturals* × *abc*, we would like to avoid enumerating:

(0 A) (1 A) (2 A) (3 A) .
.. as shown in Figure 1 and never switch to the B value of the *abc* enumerator. We would rather want something like 

0 1 2 3 4 5 6 7 • • • A B C • • •
(0 A) (1 A) (0 B) (0 C) (1 B) (2 A) (3 A) (2 B) (1 C) (2 C))
where we move forwards regularly on all enumerators as shown in Figure 2.

For simplicity, because there is a bijection between the indices 0, 1, 2, . . . and the elements of a sequence e 0 , e 1 , e 2 , . . ., we will use examples where each E i is either N or some finite interval [0, c-1] ⊂ N.

Figure 3 shows a diagonal-ordering of [0, 1] × [0, 1] and Figure 4 a diagonal ordering of [0, 2] × [0, 2]. This diagonal ordering was the one implemented in [START_REF] Durand | Object enumeration[END_REF]. However, this ordering lacks an interesting property that we present below. 

Bijective enumerators

To simplify the definitions of the next section, we assume that each enumerator E i is bijective (all its elements are distinct). If this is not the case, it is easy to transform a non bijective enumerator into a bijective one by making it run in parallel with a bijective one like *naturals* which enumerates N. This transformation is illustrated below. Note the :circ keyword parameter that makes *e* an infinite enumerator cycling on the elements of the list (A B C).

d-orderings

We are going to define a concept of distance between two enumerated tuples. The aim will be to minimize the maximum distance between two consecutively enumerated tuples.

Definition 1. The distance between two tuples t j = (e 1 j 1 , . . . , e p j p ) and t k = (e 1 k 1 , . . . , e p k p ) of the cartesian product T p is defined by

d(t j , t k ) = Σ p i=1 | k i -j i | .
This definition works well if every E i is bijective, that is to say that if p q then e i p e i q ; otherwise we would not have a mapping from tuple of indices to tuples of elements. If some E i is not bijective, we may transform it into a bijective one as described in Section 3.2. Definition 2. A pair of consecutive elements of an enumerator E is called a step. If there is a concept of distance between the elements (for instance E enumerates tuples), the size of a step (e j , e j+1 ) is the distance between the two elements: d(e j , e j+1 ). Definition 3. An ordering of T p is a d-ordering if d is the maximum size of a step.

Our aim is to have a 2-ordering of T p . Figure 5 shows a 1-ordering of N×N. This ordering is not feasible in our setting for arbitrary (finite or non finite) enumerators because we would need to know one step in advance whether we have reached the end of a finite enumerator to turn around before it is too late. So the ordering depends on the parity of the size of the finite enumerators as shown in Figure 6 and Figure 7. [START_REF] Courcelle | On defining linear orders by automata[END_REF] explores this idea in detail. Unfortunately, we just have the next-element-p predicate to know whether there is a next element but no way to know whether there are two upcoming elements. In [START_REF] Durand | Object enumeration[END_REF], the ordering of T 2 given by the binary diagonal product DP(E1, E2) is a 2-ordering. But recursive use of this ordering does not preserve the 2-ordering property as shown below. Figure 3 shows a diagonal ordering of [0, 1] × [0, 1] which is a 2-ordering. However using the same ordering again to obtain an ordering for [0, 1] × [0, 1] × [0, 1], we obtain the ordering shown in Figure 8 which is not a 2-ordering but a 3-ordering because of the step (e 3 , e 4 ) = ((0 0 1), (1 1 0)) which is of size 3. More generally, we can show that repeated use of this ordering gives a p-ordering of [0, 1] p . 

Leveled ordering of T p

The concept of leveled ordering is necessary to achieve our goal of a 2-ordering of T p = Π p i=1 E i . A level will be the subset of tuples having identical height. We now need the notion of height of a tuple in the cartesian product. Definition 4. The height of a tuple t = (e 1 j 1 , e 2 j 2 , . . . , e p j p ) ∈ T p , is the sum of the indices of the elements in the E i :

h(t) = Σ p i=1 j i
Note that in the case where each E i is either N or [0, c -1] ⊆ N, the height of a tuple is the sum of its elements. Definition 5. The l t h -level of T p is the set of tuples with height l.

The l t h level (finite) of T p is denoted by L l , L l = {t ∈ T p |h(t) = l }
If T p is finite, it has a finite number of levels and can be written as the partition of its levels:

T p = Σ p i =1 (c i -1) l =0 L l
If T p is infinite, it has an infinite number of levels:

T p = ∞ l =0
L l Definition 6. An ordering of T p is leveled if it satisfies the following constraints: ∀l > 0, ∀j > 0, if t j ∈ L l , we have either t j-1 ∈ L l or t j-1 ∈ L l -1 .

In other words a leveled ordering traverses the levels L 0 , L 1 , . . . in the increasing order of levels L 0 , L 1 , . . . (without constraint so far on the order of enumeration inside a level). Definition 7. A step giving a change of level is called major step.

A step inside a level is called a minor step.

In addition, leveled enumerators have the predicate:

• minor-step-p (E)

which returns T if the next step (next-element) does not change the level (NIL otherwise). In other words, it returns false when we are done with the enumeration of the current level.

IMPLEMENTATION OF BIDIRECTIONAL

LEVELED ENUMERATORS Definition 8. A bidirectional leveled enumerator is a leveled enumerator which, in addition, is bidirectional (it has a way and an initial-way).

When going forwards (way = +1), it enumerates the levels in increasing order: L 0 , L 1 , . . . When going backwards (way = -1), it enumerates the levels in decreasing order: L l , L l -1 , . . . while keeping the forward order inside each level.

Diagonal product of a bidirectional enumerator with a bidirectional leveled one

Let X be a bidirectional enumerator and Y be a bidirectional leveled enumerator, which when going forwards, enumerates the levels Y 0 , Y 1 , . . . Below, we define D = BL(X, Y), the leveled bidirectional product of X and Y.

When D = BL(X, Y) is created, the initial way of X is set to +1 and the initial way of Y is set to -1.

Definition 9.

A minor step on level is a step that changes the level of X in a way and the level of Y in the opposite way but not the level of D.

In addition to the usual operations, we have the following accessors:

• enumX(D) • enumY(D)
to access X and Y respectively. The other operations are shown in Figure 9.

The call (sliding-step X Y 1) corresponds to a jump-up (move to higher level) (sliding-step X Y -1) corresponds to a jump-back (move to lower level).

In the case where neither X nor Y can move in their current way and the enumeration is not finished, we are in a case called corner step which may happen only when at least one of the enumerators is finite (otherwise there is always a possible sliding step). In the corner step case, we invert the way of the enumerator which goes in the opposite direction of way (of the product enumerator) and move it to the next level according to way. If way = 1, we move to the higher level. If way = -1, we move to the lower level. The other enumerator changes way (it could not contribute to the level change because it is blocked in the direction way).

(defun corner-step (X Y way) ;; change the way of the enumerator ;; which goes in opposite direction ;; to way and move it; the other enumerator changes way (when (plusp (* way (way X))) ;; put in X the one that goes in direction -way (psetf X Y Y X)) (invert-way X) ; X will move in direction way (next-element X) ; Y will move in direction -way (invert-way Y))

Note that the diagonal ordering and the leveled ordering coincide in the binary case (p = 2).

In Figure 10, one may see a corner step (dotted line) and sliding steps (dashed line). 

Properties of BL(X, Y)

We will show that if Y defines a leveled ordering so does BL(X, Y).

Let X be a bidirectional enumerator that enumerates x 0 , x 1 , . . . and Y a bidirectional leveled enumerator that enumerates the levels Y 0 , Y 1 , . . .

Let L 0 , L 1 , . . . be the levels of D=BL(X, Y).
The distribution of an element among all tuples of a sequence is denoted by * :

1 * (0, 1), (0, 2), (1, 1) = (1, 0, 1), (1, 0, 2), (1, 1, 1) and the concatenation of lists of tuples by + We will show that

L 0 =x 0 * Y 0 L 1 =x 1 * Y 0 + x 0 * Y 1 L 2 =x 0 * Y 2 + x 1 * Y 1 + x 2 * Y 0
and more generally that for l ≥ 0:

L 2l =x 0 * Y 2l + x 1 * Y 2l -1 + . . . + x 2l * Y 0 L 2l +1 =x 2l +1 * Y 0 + x 2l * Y 1 + . . . + x 0 * Y 2l +1 ∀l ≥ 0, we note Y l = {y l ,0 , y l ,1 , . . . , y l ,k l -1 }
where k l is the number of elements in the level Y l . Lemma 10. X and Y move in opposite directions.

Proof. Initially, X moves forwards and ready to enumerate x 0 and Y moves backwards ready to enumerate y 0,0 . In the code, we see that X and Y change direction simultaneously. □ Lemma 11.

(1) X moves forwards when enumerating level 0 and backwards when enumerating level 1. ( 2)

L 0 =x 0 * Y 0 (a) L 1 =x 1 * Y 0 + x 0 * Y 1 (b)
Proof. Initially, X moves forwards ready to enumerate x 0 and Y moves backwards ready to enumerate y 0,0 . So 1., and 2. hold.

At the first call to next-element(D), we have (and next-x next-y) and we do a minor step on level with (next-element X) and (next-element Y); the enumerators remain in the their current way. The enumerated element is (x 0 , y 0,0 ) and X moves forwards.

The next calls will do minor steps on Y in which only Y moves forwards: (x 0 , y 0,1 ), (x 0 , y 0,2 ) . . . (x 0 , y 0,k 0 ). After k 0 calls, we will have enumerated x 0 * Y 0 . So 2.(a) holds. Point 1. remains true.

At the next call (next-element D), the call (minor-step-p Y) will return NIL because we have finished level 0 on Y . We will do a sliding_step.

As (next-element Y) returns NIL, X will be the one that moves forwards (moves to level 1 because X is moving forwards) and both change direction so X will move backwards and Y forwards. The enumerated element is (x 1 ) + y 0,0 (1. holds). Then we will have minor steps on Y until the end of level 0 of Y, (x 1 ) + y 0,1 , . . . , (x 1 ) + y 0,k 1 . So we have done x 1 * Y 0 .

The next step will be a minor step on level (X and Y change directions but not D); we enumerate (x 0 ) + y 1,0 and X goes forwards (1. holds). Then minor steps on Y: (x 0 ) + . . . (x 0 ) + y 1,k 1 which gives x 0 * Y 1 (1. still holds); so we have done

x 1 * Y 0 + x 0 * Y 1 (2.(b) hold).
After 2k 0 + k 1 steps, we will have enumerated

x 0 * Y 0 + x 1 * Y 0 + x 0 * Y 1 . □ Proposition 12.
(1) X moves forwards when enumerating an even level.

(2) D is a bidirectional leveled enumerator whose levels L 0 , L 1 , . . . , are such that for l > 0,

L 2l =x 0 * Y 2l + x 1 * Y 2l -1 + . . . + x 2l * Y 0 L 2l +1 =x 2l +1 * Y 0 + x 2l * Y 1 + . . . + x 0 * Y 2l +1
(3) In the negative way, D enumerates L l , L l -1 , . . . ,.

Proof. By induction on l. Base case l = 0: solved by lemma 11 Induction l + 1: Induction hypothesis yields for l:

(1) X moves backwards when enumerating 2l + 1.

(2)

L 2l =x 0 * Y 2l + x 1 * Y 2l -1 + . . . + x i * Y 0 L 2l +1 =x 2l +1 * Y 0 + x 2l * Y 1 + . . . + x 0 * Y 2l +1
After enumeration of the last element of level L 2l +1 , X is going backwards.

The next step yields a sliding step which triggers a major step in Y then a change of direction of both enumerators which gives x 0 * y 2(l +1),0 the first element of level 2(l + 1) with X going forwards (1. hold) and Y going backwards. Then we will have minor steps of level 2(l + 1) on Y which will give:

x 0 * Y 2(l +1) .
Then a minor step on level, where X moves forwards and Y moves to the beginning of the lower level (x 1 ) +y 2l +1,0 , X remains positive.

Then minor steps on Y yielding (x 1 ) + Y 2l +1 . □

DIAGONAL ENUMERATION OF A CARTESIAN PRODUCT

Definition 13. Let Null be the bidirectional leveled enumerator corresponding to the empty product enumerating the singleton set containing a single tuple of length 0.

Null = {()}
This enumerator has only one level L 0 = {()}.

Lemma 14. Let X be a bidirectional enumerator enumerating x 0 , x 1 , . . . BL(X, Null) is a bidirectional leveled enumerator enumerating (x 0 ), (x 1 ) . . . whose levels are L i = {(x i )} and having only major steps of size 1. 

EXAMPLES

In the examples, we will use only integers so that the level of a tuple is the sum of its elements.

(setq *e2* (make-list-enumerator '(0 1))) (setq *e3* (make-list-enumerator '(0 1 2))) (collect-enum *e2*) => (0 1) (collect-enum *e3*) => (0 1 2) (collect-enum (make-product-enumerator *e3* *e3*)) => ((0 0) (1 0) (0 1) (0 2) (1 1) (2 0) (2 1) (1 2) (2 2)) (collect-enum (make-product-enumerator (list *e3* *e3* *e3*))) => ((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1) (2 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1) (1 1 2) (2 0 2) (2 1 1) (2 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2)) (collect-n-enum (make-product-enumerator (list *naturals* *e3* *e3*)) 45) => ((0 0 0) (1 0 0) (0 1 0) (0 0 1) (0 0 2) (0 1 1) (0 2 0) (1 1 0) (1 0 1) (2 0 0) (3 0 0) (2 1 0) (2 0 1) (1 0 2) (1 1 1) (1 2 0) (0 2 1) (0 1 2) (0 2 2) (1 2 1) (1 1 2) (2 0 2) (2 1 1) (2 2 0) (3 1 0) (3 0 1) (4 0 0) (5 0 0) (4 1 0) (4 0 1) (3 0 2) (3 1 1) (3 2 0) (2 2 1) (2 1 2) (1 2 2) (2 2 2) (3 2 1) (3 1 2) (4 0 2) (4 1 1) (4 2 0) (5 1 0) (5 0 1) (6 0 1))

The latest example is illustrated by Figure 11. The leveled ordering that we have used is not the only possible one. Figure 12 shows another possibility. The code will be almost the same but instead of just inverting the way of Y (which changes the order or enumeration of the levels) we recursively invert the ways of the underlying enumerators of Y which reverses the order of enumeration of Y.

CONCLUSION AND FUTURE WORK

We have defined bidirectional leveled enumerators in order to obtain a 2-ordering of a cartesian product of enumerators. The code exists and is available. An iterative implementation that does not use the recursive calls to the binary bidirectional leveled enumerator BL(X, Y ) exists but was not discussed in this paper. Although it is in TRAG, the Enum package is self-contained. In the near future we plan to make the Enum package available as an independent system.

[0, 1 ,

 1 ..., n -1].

  (setq *naturals* (make-inductive-enumerator 0 #'1+)) => #<INDUCTIVE-ENUMERATOR {100AEA9653}> (next-element *naturals*) => 0 (next-element *naturals*) => 1 (next-element *naturals*) => 2 (init-enumerator *naturals*) (next-element *naturals*) => 0 (next-element *naturals*) => 1 (next-element-p *naturals*) => T ; always true ;; collect the first 9 values (collect-n-enum *naturals* 9) => (0 1 2 3 4 5 6 7 8) (collect-n-enum *abc* 9) => (A B C)

(

  setq *B-NATURALS* (make-bidirectional-enumerator *naturals*)) => #<BIDIRECTIONAL-ENUMERATOR {100B59FEB3}> (next-element *B-NATURALS*) => 0 (next-element *B-NATURALS*) => 1 (next-element *B-NATURALS*) => 2 (way *B-NATURALS*) => 1 (invert-way *B-NATURALS*) => -1 (way *B-NATURALS*) => -1 (next-element *B-NATURALS*) => 1 (describe *b-naturals*) => #<BIDIRECTIONAL-ENUMERATOR {100B61AF13}> [standard-object] Slots with :INSTANCE allocation: (next-element *B-NATURALS*) => 0 (next-element-p *B-NATURALS*) => NIL (invert-way *B-NATURALS*) => 1 (next-element-p *B-NATURALS*) => T (next-element *B-NATURALS*) => 1 (next-element *B-NATURALS*) => 2 (latest-element *B-NATURALS*) => 2 (way-next-element -1 *B-NATURALS*) => 1

Figure 1 :Figure 2 :

 12 Figure 1: Unfair ordering *naturals* × *abc*

Figure 3 :Figure 4 :

 34 Figure 3: Diagonal-ordering of [0, 1] × [0, 1]

(

  setq *e* (make-list-enumerator '(a b c) :circ t)) => #<LIST-ENUMERATOR {101680B8F3}> (collect-n-enum *e* 10) => (A B C A B C A B C A) (defparameter *bijective* (make-parallel-enumerator (list *naturals* *e*))) => #<PARALLEL-ENUMERATOR {101680C4E3}> (collect-n-enum *bijective* 8) => ((0 A) (1 B) (2 C) (3 A) (4 B) (5 C) (6 A) (7 B))

Figure 5 :Figure 6 : A 1 -

 561 Figure 5: A 1-ordering of N × N

Figure 7 : A 1 -

 71 Figure 7: A 1-ordering of [0, 7] × [0, 5]

Figure 8 :

 8 Figure 8: The diagonal ordering of [0, 1] 3

(

  defun latest-element (D) (cons (latest-element(enum-x D) (latest-element (enum-y D))))) (defun minor-step-p (D) ; precondition (next-element-p D) (and (next-element-p (enum-y D)) (or (next-element-p (enum-x D)) (minor-step-p (enum-y D))))) (defun way-next-element-p (way D) (or (way-next-element-p (way D) (enum-x D)) (way-next-element-p (way(D) (enum-y D))))) (defun way-next-element (way D) (let* ((enum-x (enum-x enum)) (enum-y (enum-y enum)) (next-x (next-element-p enum-x)) (next-y (next-element-p enum-y))) (cond ((and next-y (minor-step-p enum-y)) ;; lower-level minor step (next-element enum-y)) ((and next-y next-x) ; minor-step on level ;; each one makes a major in its way (next-element enum-x) (next-element enum-y)) ;; major step ((not (or next-x next-y)) (corner-step enum-x enum-y way)) (t (sliding-step enum-x enum-y way)))) (latest-element enum)) (defun sliding-step (X Y way) ;; precondition: X or Y can move in its way (if (next-element-p Y) (way-next-element way Y) (way-next-element way X)) (invert-way X) (invert-way Y))

Figure 9 :

 9 Figure 9: Code for D = BL(X,Y)

Figure 10 :

 10 Figure 10: Diagonal (also leveled) ordering of [0, 2] × [0, 1]

Figure 11 :

 11 Figure 11: The leveled 2-ordering of N × [0, 3] × [0, 3]

Figure 12 :

 12 Figure 12: Another leveled 2-ordering of [0, 3] 3

  Let E 1 , E 2 , . . . , E p be bidirectional enumerators. The enumerator BL(E 1 , BL(E 2 , BL(..., BL(E p , Null)))) is a bidirectional leveled enumerator and a leveled ordering of T p = Π , BL(E 3 , BL(..., BL(E p , Null))))yields the leveled 2-ordering of E 2 × . . . × E p . Induction step Let X = E 1 and Y = BL(E 2 , BL(E 3 , BL(..., BL(E p , Null)))) (corner step or sliding step) either X or Y makes a major step. This step has size 1 by hypothesis for X and by Lemma 16 for X. (of size 2 by hypothesis) or it consists of one major step on X and one major step on Y. The major step on X has size 1 by Lemma 16 and the major step on Y has size 1 by Lemma 17. The total size will again be 2. □ Lemma 19. Let E 1 , E 2 , . . . , E p be bidirectional enumerators. The enumerator BL(E 1 , BL(E 2 , BL(..., BL(E p , Null)))) is a bidirectional leveled enumerator and a d2-ordering of T p = Π Proposition 20. Let E 1 , E 2 , . . . , E p be bidirectional enumerators. The enumerator BL(E 1 , BL(E 2 , BL(..., BL(E p , Null)))) is a bidirectional leveled enumerator and a leveled 2-ordering of T p = Π

	5.1 BL(X,Y) preserves leveled orderings	
	Lemma 15. p i=1 E i .	
	Proof. By induction on p.	
	If p = 1 Lemma 14 applied with X = BL(E 1 , Null) yields the
	desired result.	
	Induction hypothesis	
	BL(E 2 Let BL(X, Y ) defined as in Section 4.1.	
	By Proposition 12, we have a bidirectional leveled enumera-
	tor giving a leveled ordering	
	p i=1 E i .	
	Proof. By repeated application of Lemma 18 and Lemma 17
	.	□
	5.3 Leveled 2-ordering	

□

5.2 BL(X,Y) preserves 2-orderings

Lemma 16. An enumerator X enumerating x 0 , x 1 , . . . , can be seen as a leveled enumerator whose levels are the singletons L i = x i having only major steps of size 1. Lemma 17. If all major steps of Y have size 1 then all major steps of BL(X,Y) have size 1. Proof. During a major step of BL(X,Y) □ Lemma 18. If all minor steps of Y have size 2 then all minor steps of BL(X,Y) have size 2. Proof. If BL(X,Y) does a minor step, it is either a minor step on Y p i=1 E i . Proof. By Lemma 15 and Lemma 19. □

There are sometimes called iterators in the programming context.