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Diophantine Gaussian excursions and random

walks

November 24, 2021

Abstract We establish general asymptotic upper and lower bounds for the
volume variance of Euclidean Gaussian nodal excursions in terms of the random
walk associated to the spectral measure. These bound are sharp in several
situations, and under mild assumptions, the variance is at least linear.

To obtain sublinear variances, we focus on the case where the spectral mea-
sure is purely atomic, and show that the associated irrational random walk on
the multi-dimensional torus comes back more often close to 0 when the atoms are
well approximable by rational tuples. Hence the excursion behaviour strongly
depends on the diophantine properties of the atoms, it has fluctuations which
power can be arbitrarily close from the maximum 2d (quadratic fluctuations),
whereas if the atoms are badly approximable the excursion is strongly hyperuni-
form, meaning the variance asymptotic power is minimal, (d−1), corresponding
to the window boundary measure. Also, given any reasonable variance asymp-
totic behaviour, there are uncountably many sets of spectral atoms that realise
it.

The versatility of the variance formula is illustrated by other examples where
the spectral measure support can have higher dimension, in particular it is able
to capture the variance cancellation phenomenon of Gaussian random waves,
and it also yields that there are no hyperuniform isotropic Gaussian excursions.

Keywords: Gaussian fields, nodal excursion, random walk, diophantine ap-
proximation, hyperuniformity, Gaussian random waves, variance cancellation.

AMS 2010 60G15, 60G50, 11J13, 34L20

1 Introduction

The primary motivation of this article is to study the variance of the excursion
volume for Euclidean stationary Gaussian fields, and exhibit a class of models
that realise a presribed asymptotic variance behavior. It turns out that this can
only be achieved by spectral measures with a low dimensional support, hence
we consider measures with a finite support. This investigation requires to study
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a random walk which behaviour depends on the diophantine properties of the
spectral atoms. To conduct this program, we establish two unrelated results
which are of independent interest, corresponding to Sections 2 and 3.

The first result, Theorem 2.1, deals with the volume of general Euclidean
Gaussian fields excursions. The main finding is that the variance magnitude
is strongly related to the probability of the associated random walk to return
around 0. The second result, Theorem 3.1, contains bounds for random walks
with irrational increments. The combination of those two results yields vari-
ance asymptotics for diophantine Gaussian excursions, as detailed in Section
4, culminating with Theorem 4.1, which can be seen as the main result of this
paper.

The results about diophantine random walks are of independent interest and
can be projected onto the torus and actually add some uniform estimates to the
existing literature (see Section 1.3).

The fact that Theorem 2.1 has a more general scope and can be applied in
various situations is illustrated by the variance cancellation phenomenon for a
fundamentally different model, the Gaussian random wave, see Section 1.5.

The rest of the introduction presents some aspects and corollaries of the
important theoretical results of this paper (Theorems 2.1 and 3.1). Their proofs
necessarily call to subsequent sections.

1.1 Gaussian excursions volume variance

The main actors of this article are centred stationary real Gaussian random
fields {X(t); t ∈ Rd}, which law is invariant under translations of Rd. See the
monograph [1] for a comprehensive expositions of main properties and funda-
mental results about Gaussian fields and their geometry. It is known that they
are completely characterised by their reduced covariance function

C(t) = E(X(0)X(t)), t ∈ Rd,

or by their spectral measure, i.e. the unique finite symmetric measure µ on Rd
such that C admits the representation

C(t) =

∫
Rd
e−it·xµ(dx), t ∈ Rd, (1.1)

where · denotes the standard scalar product.
Excursions of Gaussian processes on the real line have often been studied

through their number of crossings with the axis [19, 10, 11, 32, 20]. Elementary
considerations yield that the average number of crossings on an interval is pro-
portionnal to the length of the interval. Furthermore, if µ contains more than
one (symmetrised) atom, the variance of the number of crossings is quadratic
[22, 2]. We focus here on the Lebesgue measure of the nodal excursions

{X > 0} = {t ∈ Rd : X(t) > 0}.
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Here again, the field centering and an application of Fubini’s theorem yields
that the expectation is proportionnal to the volume:

E(L d(A ∩ {X > 0})) =
L d(A)

2
, A ⊂ Rd

where L d is the d−dimensional Legesgue measure. We give in Section 2 general
upper and lower bounds for the variance of the excursion volume

Vµ(T ) = Var(L d({X > 0} ∩Bd(0, T )))

where Bd(0, T ) is the centered ball with radius T. These bounds imply in par-
ticular that if X is isotropic, or more generally if µ’s support has dimension > 1
and spans the whole space, the volume has at least linear variance, i.e. larger
than T d, and hyperuniform behaviour is unreachable (see Section 1.4).

If on the other hand µ’s support is finite, a wide class of asymptotic be-
haviours are reachable.

Corollary 1.1. Let ψ : N∗ → [0, 1] a function decaying regularly faster than

q−
1+2d
1+d (Definition 4.1). There are uncountably many finite sets Σ ⊂ Rd such

that if µ is symmetric with support Σ, there are 0 < c− 6 c+ <∞ such that for
T > 0 sufficiently large

c−T
2dψ−1(T )−(1+2d)

i.o.
6 Vµ(T ) 6 c+T

2dψ−1(T )−(1+2d)

where ψ−1 is the pseudo-inverse of ψ (defined at (3.1)) and
i.o.
6 means that the

inequality is true for a sequence Tk →∞.

The consequence is that we have a parametric model which achieves any
reasonable asymptotic variance between the minimal surface-scaling order, in
T d−1, and the maximal quadratic order, in T 2d, see Corollary 4.1 for details.
For sublinear variances (below T d), the excursions are hence hyperuniform, con-
tributing to the already large research body on the subject (see Section 1.4).

The result above is an immediate corollary of Theorem 4.1 with m = 1,
where µ is of the form

µ =

d∑
k=1

m∑
i=0

δ̄ωiek , where δ̄a =
1

2
(δa + δ−a), a ∈ Rd,

and the atoms ωi, i = 1, . . . ,m are ψ-approximable, i.e. roughly speaking such
that for infinitely many q = (qi) ∈ Zm,

∑
i ωiqi is ψ(q)-close to an integer (and

this is not true for ϕ << ψ). Let us give formal definitions, as they will be
useful throughout the introduction and the paper: say that ω ∈ Rm is

ψ-BA (Badly Approximable), if for some r > 0 (1.2)

|p− ω · q| > 2ψ(q) for all p ∈ Z,q ∈ Zm \Bm(0, r)

and ψ-WA (Well approximable), if for some c > 0 (1.3)

|p− ω · q| < cψ(q) for infinitely many p ∈ Z, q ∈ Zm, q ≡ 1,

3



where q ≡ 1 means that
∑m
i=1 qi is an odd number. The proof consists in (i)

expressing the variance in terms of the behaviour around 0 of the diophantine
random walk which increment measure is µ (see Theorem 2.1) and (ii) studying
this random walk with the help of results from diophantine approximation the-
ory, see Theorem 3.1. Independently, we also consider Gaussian random waves
(Theorem 1.1) and short range fields (Proposition 2.1) to illustrate the wide
scope of this method.

More refined results from diophantine approximation theory actually yield
the quantity of tuples (ωi) yielding a given asymptotics variance, and we build
at Section 4.3 mixtures of such Gaussian models with a random support Σ
giving a prescribed asymptotic variance. The need for models that yield any
prescribed variance asymptotics is explained in [7], along with another such
procedure based on Fourier transforms.

1.2 Background and motivation

Properties of excursions and level sets of continuous random Gaussian func-
tions have been studied under many different instances. The zero set of a
one-dimensional Gaussian stationary process is the subject of an almost cen-
tury long line of research, starting with the seminal works of Kac & Rice [19],
or Cramer & Leadbetter [10], and followed by many other authors mainly in-
terested by second order behaviour, see the major contributions [11, 32, 20].
In higher dimensions, zeros of Gaussian entire functions [16, 27] and nodal sets
of high enery Gaussian harmonics on a compact manifold [21, 38, 23] (and
their Euclidean counterpart the Random Wave Model [26]) have attracted a
lot of attention from both physicists and mathematicians. Random trigono-
metric Gaussian polynomials, i.e. independent Gaussian coefficients multiplied
by trigonometric monomials based on a fundamental frequency, have also been
studied in the asymptotics of the large degree, see for instance [39] and refer-
ences therein. We propose here a crucial modification of the spectral measure
support: instead of taking frequencies in a proportionnal relation, we choose
finitely many frequencies which are incommensurable; this specificity allows for
instance to reach all possible behaviours for the variance asymptotics (see The-
orem 4.1).

A different approach to our results is through the lens of hyperuniform mod-
els, defined at section 1.4. In the last decades, physicist have put in evidence
states of matter intermediate between crystals and liquids, where the medium
exhibits apparent disorder at the local scale, but fluctuations are suppressed
at large scales. This denotes in some sense a long-range compensation of the
medium behaviour, and is considered by physicists a new state of matter, see
the works by S. Torquato and his co-authors [36, 37] that introduce the topic
and expose the main tools and discoveries. Even though the focus was primarily
on atomic measures, this concept has been then generalised to other random
measures, in particular bi-phased random media [35, 34]. Such heterogeneous
materials abound in nature and synthetic situations. Examples include compos-
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ite and porous media, metamaterials, biological media (e.g., plant and animal
tissue), foams, polymer blends, suspensions, granular media, cellular solids, col-
loids.

The Gaussian realm provides models for many types of phenomena, and
the present work yields Gaussian hyperuniform random sets, i.e. which vari-
ance on a large window is asymptotically negligible with respect to the window
volume (see Section 1.4). The model we present here shares some similarities
with perturbed lattices, in the sense that the long range correlations are very
strong, but its disorder state is also one step above as one cannot write it as
the (perturbed) repetition of a given pattern. It shares with quasi-crystals the
property of almost periodicity, defined below, and exhibits a spectrum remi-
niscent of quasi-crystals, see Fig 1. Any asymptotic variance can be achieved,
yielding in particular hyperuniform models. According to the typology estab-
lished in [36, 6.1.2], the model is type-I hyperuniform for almost all choice of
parameters; but uncountably many choices of the parameters will yield type-II
or actually any type of hyperuniformity. We also give randomised versions of
the model not involving diophantine parameters which exhibit different types
of hyperuniformity.

As it turns out, a non-isotropic model is necessary to obtain a hyperuniform
behaviour (Proposition 1.1). We use the general variance formula of Theorem
2.1 to study Gaussian random waves in any dimension and prove a variance
cancellation phenomenon.

1.3 Diophantine random walk on the torus

We derive in Section 3 results about diophantine random walks on Rd, which
ultimately lead to variance estimates for Gaussian diophantine excursions. The
current section discusses the connections with the existing litterature for the dio-
phantine Gaussian random walks on the torus, and is completely disconnected
from the results about Gaussian fields discussed above.

Let (e1, . . . , ed) be a basis of Rd, m > 1,µ be a symmetric measure on Rd
parametrised by its support ω = (ω[k])16k6d ∈ (Rm)d via

µ =
1

d(m+ 1)

d∑
k=1

m∑
i=0

δ̄ω[k],iek , (1.4)

with ω[k],0 = 1 by convention, and let Un be the corresponding random walk
on the torus

Un = {
n∑
i=1

Xi}

where the Xi are independent and identically distributed with law µ and {x} =
({x[k]}) ∈ [0, 1[d is the fractional part in Rd.
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It is clear that if ω’s components are well approximable by rationals, the
same goes for the increments of the random walk, hence it is likely to come
back closer to 0 faster. The study of random walks on a group started on
finite arithmetic groups with the works of Diaconis, Saloff-Coste, Rosenthal,
Porod, (see references in [33]) and results for such irrational random walks in
the continuous settings were then achieved by Diaconis [12], and finally Su [33],
who gave the optimal speed of convergence of the law of Un in an appropriate
distance. Then Prescott and Su [30] extended the study in higher dimensional
tori.

The novelty of our approach is to consider estimates as ε → 0 uniformly in
n; we show in Section 3 that for a given ε, irrelevant of the number of steps n,
there is a probablity always smaller than c+ε

m
m+η that the walk on the torus

ends up in Bd(0, ε) after n steps, where η > 0 is such that the ωk, 1 6 k 6 d are
q−(m+η)-(Badly approximable).

Remark 1.1. This value is actually very sensititive to the probability of van-
ishing coordinates Un,[k] of Un, in the sense that it decays slowly in ε because
of the fast recurrence to 0 on the axes: for p < d

P(Un,[1] = Un,[2] = · · · = Un,[p] = 0) ∼ n−p/2.

A heuristic argument is that the symmetric random walk on Z has a probability ∼
n−1/2 to come back to 0 in 2n steps, and the components are almost independent
up to the parity relation n ≡

∑d
k=1 Un,[k] (see Lemma 3.2).

In the light of the remark above, only non-vanishing coordinates matter in
the speed of decay as ε → 0. Denote by JdK the set {1, 2, . . . , d}. Define for
K ⊂ JdK,K 6= ∅, the projected ball BK(ε) := Bd(0, ε) ∩HK where

HK := {y = (y[k])16k6d ∈ Rd : y[k] 6= 0, k ∈ K and y[k] = 0, k /∈ K}.

Then we have according to Theorem 3.1-(i):

Corollary 1.2. For some c <∞, uniformly on n, ε,

P(Un ∈ BK(ε)) 6 cn−
(d−|K|)m

2 ε
|K|m
m+η

Regarding the dependance in ε, the random walk hence comes back to 0
faster on subspaces with fewer coordinates equal to 0 (the dependence as n
increases is opposite). The most interesting part of the convegence, i.e. where
the magnitude is not dominated by coordinates equal to 0, seems to happen on
the domain HJdK of points with non-vanishing coordinates. More precise results
are derived in (3.3), in Section 3, dedicated to irrational random walks; the
results are derived in particular in terms of the optimal function ψ such that
ω’s components are ψ-(Badly Approximable).

Lower bounds are more unstable, hence we consider the smoothed estimate,
for β > 2,

Iβ(ε) =
∑
n>nε

n−β/2P(0 < ‖Un‖ < ε) (1.5)
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where nε > 1 grows sufficiently slowly (see Theorem 3.1-(ii)). To have matching
upper and lower bounds, we assume that for some fixed ω ∈ Rm, ω[k] = ω for
1 6 k 6 d, and that ω is ψ-WA and ψ-BA. We have the following corollary of
Theorem 3.1-(i),(ii):

Corollary 1.3. There are 0 < c− < c+ <∞ such that

c−ε
β−2+dm
m+η

i.o.
6 Iβ(ε) 6 c+ε

β−2+dm
m+η

as ε→ 0.

In Section 3, similar results (but with different magnitudes in n) are actu-
ally derived first for the random walk Un =

∑n
i=1Xi itself, and passed on to

Un to yield the aforementionned results. A quantity Jβ(ε) related to Un and
analogue to Iβ(ε) is estimated and used in Section 2 to determine the variance
of the excursion of the Gaussian field which spectral measure is µ, as discussed
previously.

1.4 Hyperuniform models

We have just observed, for some values of the parameter ω, the suppression
of the variance at large scales, also called hyperuniformity phenomenon. A
more general mathematical indicator of hyperuniformity is through the structure
factor, or more generally the behaviour around zero of the Fourier transform of
the associated random measure. Folowing [29], we use the integrated structure
factor to characterize hyperuniformity.

Definition 1.1. Let E be a random subset of Rd. The structure factor of E,
when it exists, is the measure S on Rd defined through test functions ϕ smooth
with compact support via∫

Rd
ϕ(t)Cov(1{0∈E},1{t∈E})dt =

∫
Rd
ϕ̂(x)S(dx)

where ϕ̂ is the classical Fourier transform of ϕ. Then say that E is hyperuniform
if S(Bd(0, ε)) 6 c+ε

α+d, ε > 0 for some α > 0, and strongly hyperuniform if
furthermore α > 1.

The precise definition of a random set is not precised here as many existing
theories can fit in the previous definition (see for instance [25]). The hyper-
uniformity of E corresponds under some hypotheses to the suppression of the
variance at large scales, i.e.

lim
T→∞

L d(E ∩ TW )

T d
→ 0

for sufficiently regular shapes W ⊂ Rd, and the strong hyperuniformity cor-
responds to a variance of minimal magnitude, proportionnal to the window
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boundary measure, i.e.

sup
T

L d(E ∩ TW )

T d−1
<∞,

see for instance [29], or the survey in preparation [9]. Our first result is that
natural models of Gaussian fields will not yield hyperuniform excursions.

Proposition 1.1. Let X be some centred stationary Gaussian field on Rd with
spectral measure µ. Assume that for some odd integer n > 1, ε > 0, x ∈ Rd, c >
0, µn(Bd(x, ε)) > cεd. Then for some c− > 0, T sufficiently large,

Vµ(T ) > c−T
d.

This is for instance the case if X is isotropic, i.e. if X’s law is invariant under
rotations, or equivalently if µ is invariant under rotations.

The proof requires tools and notation from Section 2 and is at Section 2.3.
As illustrated by the proof, to obtain sublinear variance, the spectral mea-
sure’s support must have essentially dimension smaller than 1, hence we con-
sider finite atomic support. Let µ be of the form (1.4) with ω[k] ∈ Rm that is

q−(m+η)−(Badly Approximable) for some m > 1, η > 0, for 1 6 k 6 d, and Xω
the Gaussian field which spectral measure is µ.

Proposition 1.2. Let α = 1+d(1−η)
m+η . Then E = {Xω > 0} admits a structure

factor S satisfying

S(Bd(0, ε)) 6 c+ε
d+α, ε→ 0.

Hence if η < 1 + 1
d , E is hyperuniform, and if η 6 1 − m

d+1 , E is strongly
hyperuniform.

The proof is at Section 3.1. If the ω[k] are ψ-(Simultaneously Well Approx-
imable) (see Section 3), which is the case if for instance the ω[k] are all equal
to a ψ-WA tuple ω ∈ Rm, the right hand side is optimal, see (3.7). We give an
approximate representation at figure 1 in a special case.

This kind of spectrum is reminiscent of Bragg peaks in quasi-crystals [35], and
more generally of almost periodic fields, for which we give a definition here: a
field X : Rd → R is almost periodic if for any sequence of vectors tn →∞, there
is a subsequence tn′ such that ‖X − X(tn′ + ·)‖∞ → 0, see for instance the
monograph [8]. Covariance functions and random Gaussian fields considered
in this paper are ‖ · ‖∞-limits of trigonometric polynomials, and as such they
are almost periodic. On the other hand, their excursions, seen as {0, 1}−valued
functions, are not almost periodic in this sense, mainly because of the disconti-
nuities at the set boundary. On the other hand, they are likely almost periodic
for weaker norms, and could hence be seens as almost periodic sets, but this
question is outside the scope of the current article.
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Figure 1: Structure factor for d = 1,m = 1, ω[1] = ω[2] =
√

2, i.e. µ =
δ̄e1

+ δ̄√2e1
+ δ̄e2

+ δ̄√2e2

1.5 Variance cancellation for Gaussian random waves

Let us give another (and unrelated) application of Theorem 2.1 in the context
of ergodic isotropic fields. This example is mainly derived to illustrate the
sensibility of Theorem 2.1, and could likely be deduced from (more precise)
results on the sphere by Rossi [31].

Let d > 2,Sd−1 = {t ∈ Rd : |t| = 1} the d-dimensional unit sphere and
µd the Haar distribution on the sphere, i.e. the unique probability measure on
Sd−1 invariant under rotations. Let Xd(t) be a centred Gaussian random field
with spectral measure µd and reduced covariance

Cd(t) =

∫
Sd−1

exp(−ıt · x)µd(dx) = cd
B d

2−1(‖t‖)

‖t‖ d2−1
, t ∈ Rd (1.6)

for some cd > 0, see [15, (21)] and Example 2.1 for the definition of the Bessel
function of the first kind Ba, a ∈ R.

The field Xd, called Berry’s random wave model, is of central importance as
it is the unique stationary isotropic field satisfying ∆Xd = −Xd a.s. [28]. It
can be seen as a local approximation of random eigenfunctions of the Laplacian
on compact d−dimensional smooth manifolds, of high interest in the physics
litterature. Since nodal statistics are local quantities, it makes sense to expect
analogies between the behaviours of random waves on different manifolds as
T → ∞. Such random Gaussian harmonics have been recently heavily studied
in dimension 2 in the mathematics literature, especially on the sphere or the
torus [21, 24, 14, 23], and the Euclidean version Xd has also been investigated,
through its percolation properties [26] or the statistical properties of its nodal
lines [28, 14]. An interesting feature of Gaussian random harmonics is the
variance cancellation phenomenon, i.e. the very small asymptotic fluctuations
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of some statistics of the excursion set at the level u = 0 in the high energy limit,
compared to other levels u 6= 0. First conjectured by Berry [4] for the length
of the excursion boundary on the torus (nodal lines), it has then been observed
and deeply analysed in several other instances [21, 23].

We prove here that a variance cancellation at the level u = 0 also occurs for
the nodal excursions of the Euclidean Gaussian random waves in any dimension.
More specifically, while the excursion volume is overfluctuating for levels u 6= 0
(i.e. the volume of large windows is negligible with respect to the variance of
the excursions of Xd restricted to this window), the fluctuations are linear for
u = 0, as would be the case for fluctuations of short range random fields such
as the Bargmann-Fock field (see Example 2.2). For T > 0, the rescaled version
Xd,T (t) = Xd(T t) satisfies ∆Xd,T = −T 2Xd,T and hence can be compared to
random harmonics with same wavelength on compact manifolds.

Theorem 1.1. Denote by V u(T ) the variance of L d(Bd(0, 1) ∩ {Xd,T > u}).
For u 6= 0, there is cu > 0 such that

cuT
1−d 6 V u(T ), T > 0

and there is 0 < c− 6 c+ <∞ such that

c−T
−d 6 V 0(T ) 6 c+T

−d, T > 0.

The proof is at Section 2.2. This result can be compared with similar results
on the sphere, see the work of Marinucci and Wigman in dimension 2 [24],
and then of Rossi [31] in dimension d > 2, who study the excursion volume
(also called defect volume after centering) of spherical Gaussian harmonics X
satisfying ∆S2X = −`(` + d − 1)X, ` ∈ N, where ∆S2 is the Laplace-Beltrami
operator on the sphere. They also obtain a variance of magnitude `1−d at levels
u 6= 0 and `−d at the level u = 0, echoing experimental results from Blum,
Gnutzmann and Smilansky [5]. Hence the present results are consistent with
those obtained on the sphere.

Remark 1.2. Various cancellation phenomena have been explained by the can-
cellation of the second order Wiener chaos of the corresponding functional, see
the seminal work [23]. The proof of the previous result hence sheds a differ-
ent light on this phenomenon, in terms of the support dimension for low order
powers µ2,µ3 of the spectral measure.

2 General variance estimates

Let X be some real centred stationary Gaussian field on Rd, denote its spectral
measure by µ and its reduced covariance function by C (see Section 1.1). We
study here the statistic

Mγ
u =

∫
Rd

1{X(t)>u}γ(t)dt
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where u ∈ R and γ is some measurable window function, bounded with compact
support with non-empty interior. Define

γ̂(x) =

∫
Rd
e−it·xγ(t)dt,x ∈ Rd,

and γT (t) = γ(T−1t), T > 0. The variance is

V γ,uµ (T ) := Var(L d(MγT
u ))

and we use the shortcut notation V γµ := V γ,0µ . The most prominent example is

the unit sphere indicator γd = 1{Bd(0,1)}(·), and in this case γd is also implicit

in the notation V γ
d,u

µ = V uµ , V
0
µ = Vµ.

Introduce the notation
A = ΘB

for two quantities A,B to mean that c−A 6 B 6 c+B for some 0 < c− 6
c+ < ∞, on their domains of definition. Without loss of generality, we use the
convention

C(0) = µ(Rd) = 1

as it allows to adopt the probability formalism and eases certain arguments,
denote by Un the random walk which increment has law µ (i.e. Un’s law is
µn). Define the function

K(ε) =
∑

n∈N odd

(
n
2n

)
4n(2n+ 1)

P(‖Un‖ 6 ε)

(this function is related to the function J3 from Section 3 via the relation K(ε) =
ΘJ3(ε)). Say that µ is Z−free if P(U2n+1 = 0) = 0 for n ∈ N. For r > 0, denote
by c+r , c

−
r respectively the supremum and infimum of ‖γ̂(x)‖2 for x ∈ Bd(0, 4r).

Remark that c−r , c
+
r → |γ̂(0)|2 > 0 as r → 0.

Theorem 2.1. Assume µ is Z−free and let r > 0.

(i) For T > 0

c−r T
2dK(rT−1) 6 V γµ (T ). (2.1)

(ii) If in addition for some c1 <∞, |γ̂(x)| 6 c1‖x‖−
d+1
2 for ‖x‖ > 4r, then

V γµ (T ) 6 c+r T
2dK(rT−1) + c1T

d−1

∫ (T/r)d+1

0

K(y−
1
d+1 )dy. (2.2)

In particular if γ = γd and K(ε) = Θεα as ε → 0 for some α > 0, then
α 6 d+ 1 and

Vµ(T ) = ΘT 2d−α, T > 0.
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(iii) For u 6= 0, T > 0,

V γ,uµ (T ) > 22dc−r α2,uT
2dP(‖U2‖ < rT−1).

In particular if µ has an atom at x0, letting r → 0 yields

0 < 22d|γ̂(0)|2α2,uµ({x0})2T 2d 6 V γ,uµ (T ) 6 T 2d.

The proof, deferred to Section 2.1, is based on a local formula for the vari-
ance of Gaussian excursions volume, which gives the exact formula (2.4). This
expression is then decomposed in two terms, one of them is proportionnal to
K(rT−1), and the other term gives rise to the second term in the right hand
side of (2.2). We show that these two terms have the same magnitude in three
different settings: (a) when µ has finitely many incommensurate atoms (The-
orem 3.1 and Proposition 4.1), (b) when µ is the Haar measure on the unit
sphere (Theorem 1.1), and (c) when µ is the Fourier transform of an integrable
function (Example 2.2); see also the end of Section 2.1 for a general argument.
The second term results from the upper bound∫ (T/r)d+1

0

K(λ(y))dy 6
∫ (T/r)d+1

0

K(cy−
1
d+1 )dy)

where λ is a pseudo-inverse of γ̂2. Since γ̂ usually experiences oscillations at
∞ (see for instance Example 2.1), obtaining a simple asymptotic equivalent of
this term requires more involved computations, but doing so would provide an
accurate lower bound on the variance.

Remark 2.1. The fact that if K(ε) = Θεα as ε → 0 for some α > 0 then
α 6 d+ 1 (point (ii)), is a non-trivial fact about general random walks on Rd.

Example 2.1. For the unit sphere indicator, we have the classical formula ([15,
Chap. 1.5])

γ̂d(x) = κd‖x‖−d/2Bd/2(‖x‖)

where κd = L d(Bd(0, 1)) and Ba is the Bessel function of the first kind with
parameter a

Ba(r) =

∞∑
m=0

(−1)m

m!Γ(m+ a+ 1)

(r
2

)2m+a

, r > 0.

In particular, γ̂d(x) ∼ κdΓ(d/2 + 1)−1 > 0 in 0 and

γ̂d(x) ∼ κd(2/π)1/2‖x‖−
d+1
2 cos(‖x‖+ ∆d)

as x→∞, for some ∆d ∈ R. It is known [13] that the first zero of Ba, a > 1/2
is larger than the first zero of B1/2, which is π , hence we can take r = 1

2 in
Theorem 2.1.

12



Example 2.2. The most studied Gaussian fields are probably those with an
integrable reduced covariance function∫

Rd
C(t)dt <∞,

such as the Bargmann-Fock field, where C(t) = e−t
2

. Let us emphasise that
the following result is far from new, but, along with theorems 4.1 and 1.1, it
illustrates the variety of situations where Theorem 2.1 can be applied.

Proposition 2.1. Let µ be a spectral measure with integrable covariance. We
have

Vµ(T ) = ΘT d, T > 0.

Proof. The integrability of C yields that µ admits a continuous bounded density
function with respect to L d, denoted by Ĉ, satisfying ‖Ĉ‖L1 = 1. Hence,
denoting by Ĉ∗n the n-fold self convolution of Ĉ,∫

1{Bd(0,ε)}(z)µn(dz) 6 L d(Bd(0, ε))‖Ĉ∗n‖∞

and classical properties of the convolution product yield that ‖Ĉ∗n‖∞ 6 ‖Ĉ‖∞‖Ĉ‖n−1
L1 =

‖Ĉ‖∞, hence

K(ε) 6 ‖Ĉ‖∞(
∑
n

αn)εd.

Theorem 2.1-(ii) then gives the upper bound.
For the lower bound, let x ∈ Rd, r > 0 be such that Ĉ > 0 on Bd(x, r).

It is then easy to show by induction that Ĉ∗n > 0 on Bd(x, nr), hence for
n > r−1(|x|+ 1) and ε 6 1, Bd(0, ε) ⊂ Bd(x, nr) and

P(‖Un‖ 6 ε) =

∫
Bd(0,ε)

C∗n(t)dt > c′εd

for some c′ > 0, Theorem 2.1-(i) concludes the proof.

2.1 Proof of Theorem 2.1

The starting point is the following lemma, straightforward consequence of [6,
Lemma 2].

Lemma 2.1. We have for every u ∈ R coefficients αn,u > 0, n ∈ N such that
for two centred standard Gaussian variables X,Y with correlation ρ

Γu(ρ) := Cov(1{X>u},1{Y >u}) =

∞∑
n=1

αn,uρ
n =

1

2π

∫ ρ

0

1√
1− r2

exp

(
− u2

1 + r

)
dr

(2.3)

13



in particular, Γ0(ρ) = arcsin(ρ) with α2n,0 = 0 and

α2n+1 := α2n+1,0 =

(
n
2n

)
4n(2n+ 1)

= Θn−3/2.

We also have α2,u 6= 0 for u 6= 0.

Let Un =
∑n
i=1Xi where the Xi are independent and identically distributed

with law µ. Denote by γ?2 the auto-convolution of γ with itself, and by µn the
law of Un. We have by Lemma 2.1

V γµ (T ) =

∫
(Rd)2

Γu(C(t− s))γ(t/T )γ(s/T )dtds

=

∫
(Rd)2

Γu(C(z))γ

(
z + w

2T

)
γ

(
w − z

2T

)
dwdz

=

∫
Rd

Γu(C(z))γ?22T (2z)dz

=
∑
n∈N

αn,u

∫
C(z)nγ?22T (2z)dz

=
∑
n∈N

αn,u

∫
µn(dz)γ̂2T (2z)2dz using (1.1)

=
∑
n∈N

αn,u

∫
µn(dz)(2T )2dγ̂(4Tz)2dz

=(2T )2d
∑
n∈N

αn,uE(γ̂(4TUn)2) (2.4)

=22d(v
(1)
T + v

(2)
T )

where, with A1 = [0, r], A2 =]r,∞]

v
(i)
T = T 2d

∑
n∈N

αn,uE(γ̂(4TUn)21{‖TUn‖∈Ai}).

For the case u 6= 0, point (iii) simply comes by lower bounding by the term
corresponding to n = 2.

Let us now focus on the case u = 0. Remark first that since µ is Z-free,
P(Un = 0) = 0 for n odd, hence

v
(1)
T >T 2dc−r K(rT−1)

14



hence (2.1) is proved. For the second point, the hypothesis on γ yields

v
(2)
T 6T 2d

∑
n odd

αnE(c21‖TUn‖−d−11{‖TUn‖>r})

=c21T
2d
∑
n odd

αn

∫ r−d−1

0

P((T‖Un‖)−d−1 > y)dy

=c21T
2dT−d−1

∑
n odd

αn

∫ (T/r)d+1

0

P(‖Un‖ < y−
1
d+1 )dy

=c21T
d−1

∫ (T/r)d+1

0

K(y−
1
d+1 )dy.

To conclude the proof of (ii), let us assume that c−ε
α 6 K(ε) 6 c+ε

α as ε→ 0
for some 0 < c− 6 c+ <∞, and let us prove that α 6 d+ 1. If α > d+ 1, then
the second term on the right hand side of 2.2 is negligible with respect to the
first one (recall that K is uniformly bounded), we have in particular

c−r c−r
α 6 Tα−2dVµ(T ) 6 c+r c+r

α + oT→∞(T ).

Since this is true for all r, we have in particular for 0 < r1 < r2

c−r1c−r
α
1 6 c+r2c+r

α
2

which is impossible if we let r2 go to 0 faster than r1.

2.2 Proof of Theorem 1.1

We study the field at the original scale Xd, it is then straightforward to deduce
the results for Xd,T , T > 0. We need to estimate P(‖Un‖ 6 ε) for n > 1, where
Un is the random walk which increment measure is µd. Equation (1.6) and the

universal bound |Ba(t)| 6 Θ‖t‖−1/2, t ∈ Rd yield |Cd(t)| 6 Θ(1 + ‖t‖)− d−1
2 .

Then

P(‖Un‖ 6 ε) =

∫
1{Bd(0,ε)}(z)µnd (dz) 6 εd

∫
1{Bd(0,1)}(x)

∣∣∣∣∫
Rd
C(t)neiεxtdt

∣∣∣∣ dx
6 Θεd

∫
Rd

(1 + ‖t‖)−n
d−1
2 dt,

hence P(‖Un‖ 6 ε) 6 c5+ε
d < ∞ for n > 5 (and n > 3 if d > 4). We still

have to deal with 1 6 n 6 4, and independently with the lower bounds. Let
us analyse the self-convoluted measures µnd , n > 1. They are related by the
recurrence relation, based on the isotropy of the measures µn, n > 1,

µn+1
d (Bd(0, r)) =

∫
Sd−1×Rd

1{s+x∈Bd(0,r)}µ
n
d (ds)µd(dx)

=µd(Sd−1)µnd ({x : x+ e1 ∈ Bd(0, r)}) = µnd (Bd(−e1, r)) = µnd (Bd(e1, r))
(2.5)
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where e1 is some vector of Sd−1, e.g. e1 = (1, 0, . . . , 0). Let r > 0. Hence

µ2
d(Bd(0, r)) = µd(Bd(e1, r)) (2.6)

which is equivalent to L d−1(Bd−1(0, r)) as r → 0. Theorem 2.1-(iii) implies in
the case u 6= 0 that

V γ,uµ (T ) > 22dc−r α2,uT
2dµ2

d(Bd(0, rT
−1)) > c2,−T

d+1, ε > 0

for some c2,− > 0 (for r > 0 sufficiently small, see Example 2.1).
Since α2,0 = α4,0 = 0 (Lemma 2.1), to treat the case u = 0 it remains to

study µ3
d (only for d = 2 and d = 3). Using (2.5)-(2.6) easily yields 0 < c3,−ε

d 6
µ3
d(Bd(0, ε)) 6 c3,+ε

d <∞ as ε→ 0. Hence

α3c3,−ε
d 6 K(ε) =

∑
n>3,n odd

αnP(‖Un‖ 6 ε) 6 α3c3,+ε
d +

∞∑
n=5

αnc5+ε
d

gives the desired upper and lower bounds for u = 0 (using Theorem 2.1-(i),(ii)).

2.3 Proof of Proposition 1.1

The statement in the case µn(B(0, ε)) > cεd, n odd, follows immediately from
(2.1). If x 6= 0, we have µn+m(Bd(0, ε)) > c′εd for m > |x|/ε even, for some
c′ > 0. Let us prove that this is the case if µ is isotropic. There is b > 0 such
that µ(Ab) > 0 where

Ab = {t ∈ Rd : ‖t‖ ∈ [b, b+ 1]}.

Up to lower bounding µ by µ1Ad , assume without loss of generality that µ’s
support is contained in Ab. By isotropy there is a measure ν on [b, b + 1] such
that µ can be decomposed in µ = µd × ν in polar coordinates, where µd is the
uniform measure on the d-dimensional sphere (see Section 2.2). We have

C(t) =

∫
Rd

exp(−ix · t)µ(dx)

=

∫ b+1

b

B0(r‖t‖)ν(dr)

6
∫ b+1

b

Θ(1 + r‖t‖)− 1
2 ν(dr)

6Θ(1 + b‖t‖)− 1
2 , t ∈ Rd.

It follows that C2d+1 ∈ L1(Rd), hence µ2d+1 has a bounded continuous density
f , there is in particular t ∈ Rd, r > 0, c > 0 such that f > c > 0 on B(x, r). For
m > 1, µ(2d+1)m hence has a positive density on B(x,mr), and for m sufficiently
large, µ(2d+1)m has a positive density on B(0, 1). Since n = (2d + 1)m is odd
for m odd, we indeed have µn(Bd(0, ε)) > c′εd for some c′ > 0.
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3 Irrational random walks

We consider a random walk in Rd which increment measure µ is symmetric with
finite support. For technical reasons, it is simpler to assume that µ has atoms
along some d linearly independent unit vectors e1, . . . , ed, with the same number
of atoms in each direction: for some m > 1, let ω = (ω[k],i)1 6 k 6 d

1 6 i 6 m
∈ (Rm)d

and µ be of the form (1.4) with ω[k],0 = 1 by convention. We are interested in
the associated random walk

Un :=

n∑
k=1

Xk

where the Xk are independent and identically distributed with law µ, hence
centred. The study of Un is related to the random walk on the torus

Un = Un − [Un] ∈ [0, 1[d,

which has been intensively studied, the consequences of the current results to
the random walk on the torus are discussed at Section 1.3. To avoid degenerate
behaviour, we assume that µ is Z-free, i.e. there is no q ∈ ZM \ {0} such that∑M
i=1 qiωi = 0, where M = (m + 1)d. In general we further assume that the

ω[k] are ψ-BA for some non-vanishing function ψ, which automatically implies
that µ is Z-free.

According to the Central Limit Theorem, the law of the renormalised sum
n−1/2Un weakly converges to a Gaussian measure (see also Lemma 3.2 for
precise estimates), and the law µn of Un is known to converge to Lebesgue
measure on [0, 1[d [33]. But if we zoom in further on this convergence around
0, it becomes very erratic. We estimate the following quantities below:

pxn(ε) =P(0 < ‖Un − x‖ 6 ε), ε > 0,x ∈ Zd,

p̄n(ε) =
∑
x∈Zd

pxn(ε) = P(0 < ‖Un‖ 6 ε).

Remark 3.1. In general, if the sum n+
∑d
k=1 x[k] is even, P(Un = x) is in n−

M
2

and dominates pxn(ε) for ε→ 0, which is why it is estimated separately. For odd
values, since µ is Z-free, P(Un = x) = 0, hence pxn(ε) is simply P(‖Un−x‖ 6 ε).
A fine analysis of the recurrence around 0 yields that the rate strongly depends
on the number of coordinates equal to 0, expressed through

pK,xn (ε) = P(Un − x ∈ BK(0, ε)), p̄Kn (ε) = P(Un ∈ BK(0, ε)).

We show below for instance that if along each direction k of Rd, µ’s support
is made up of a vector (ω[k],i)16i6m which is q−(m+η)-(Badly Approximable) for
some m > 1, η > 0 (see 1.2), then for some c <∞,

p̄Kn (ε) 6 cn−m
d−|K|

2 ε
m|K|
m+η , K ⊂ JdK, n ∈ N, 0 < ε <

1

2
,

so that it is really the number of vanishing coordinates that determines the re-
currence probabilities.
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To avoid the technicality mentionned in the previous remark and obtain

lower bounds, we consider the smoothed estimates for β > 0, with p0n = p
JdK,0
n

Jβ(ε) :=
∑

n>nε,n∈N,n odd

n−β/2p0n(ε)

where nε does not grow too fast as ε→ 0 and serves the purpose to show that
it is the series tail that actually matters.

Remark 3.2. Considering this statistic also allows to suppress the erratic be-
haviour in n, and we can prove that Jβ(ε) and Iβ(ε) (defined in the introduction

at (1.5)) both behave in ε
m
m+η and find a matching lower bound. The summation

over odd n in Jβ(ε) is adapted to estimating the volume variance of Gaussian
nodal excursions (see Remark 3.3).

If the atoms are different in different directions, we need to generalise the
concept of ψ-WA: say that ω = (ω[k])16k6d is ψ-SWA’ (Simultaneously Well
Approximable) if for some c > 0, for infinitely many qj ∈ Zm, j > 1, there exist
pj[k] ∈ Z, 1 6 k 6 d such that

|pj[k] − ω[k] · qj | < cψ(|qj |), 1 6 k 6 d.

Say that ω is ψ-SWA if furthermore
∑d
k=1(pj[k] +

∑m
i=1 q

j
i ) is odd. The need to

distinguish between ψ-SWA and ψ-SWA’ is discussed in Remark 3.3.

Theorem 3.1. Let ψ be some mapping N∗ → (0, 1] converging to 0, and let
ψ−1 be its pseudo-inverse defined by

ψ−1(ε) = min{q ∈ N∗ : ψ(q) 6 ε}, ε > 0. (3.1)

Let β > 0. There is 0 < c < ∞ depending on d,m,ψ, β such that the following
holds:
(i) assume each ω[k] is ψ-BA. We have for x ∈ Zd,K ⊂ JdK, 0 < ε < 1

2 , n ∈ N∗

pK,xn (ε) 6cn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−cn−1‖x‖2) (3.2)

p̄Kn (ε) 6cn
−(d−|K|)m

2 ψ−1(ε)−m|K| (3.3)

Iβ(ε) 6cψ−1(ε)−β−dm+2 (3.4)

Jβ(ε) 6cψ−1(ε)−β−d(m+1)+2 (3.5)

(ii) Assume ω is ψ-SWA’. Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−dm+2
i.o.
6 cIβ(ε), ε→ 0. (3.6)

(iii) Assume ω is ψ-SWA . Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−d(m+1)+2
i.o.
6 cJβ(ε), ε→ 0. (3.7)
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Remark 3.3. The assumption that ω is ψ-SWA is stronger than ψ-SWA’, and
also less natural, which might cause confusions. The reason why ω has to be
ψ−SWA instead of ψ−SWA’ at point (iii) is because summands are odd in the
definition of Jβ. The assumption ψ-SWA’ and function Iβ are introduced only
because they are more natural in the context of random walks, but they are use-
less for giving lower bounds for Gaussian excursions variances. As supported
by Proposition 4.5, this subtlety does not influence final results about Gaussian
excursions, hence one would like a general result from diophantine approxima-
tion that states that ψ−SWA’ tuples are also ψ−SWA, but that is most likely
not true.

Example 3.1. An example intensively used in this article is β = 3, ψ(q) =
cq−(m+η), η > 0, for which

ψ−1(ε)−β−d(m+1)+2 = c′ε
1+d(m+1)
m+η , ε > 0. (3.8)

3.1 Proof of Proposition 1.2

Recall from Lemma 2.1 that

Cov(1{0∈E},1{t∈E}) =
∑
n odd

αnC(t)n, t ∈ Rd

where C is the reduced covariance function of Xω. Hence we are looking for S
satisfying for ϕ smooth with compact support∫

Rd
ϕ̂(x)S(dx) =

∫
Rd
ϕ(t)

∑
n odd

αnC(t)ndt

=

∫
Rd
ϕ(t)

∑
n odd

αn

(∫
Rd
eit·xµ(dt)

)n
dx

hence

S =
∑
n odd

αnµ
n.

Then using (3.5) in the context of Example 3.1,

S(Bd(0, ε)) 6c
∑
n odd

αnµ
n(Bd(0, ε)) 6 c′ε

1+d(m+1)
m+η .

3.2 Proof of Theorem 3.1

Notation. We specify here the notation A = ΘB to indicate that there are
finite constants c, c′ > 0 depending on m, d, ψ, β and not (further) on ω, ε, T, n
such that A 6 cB,B 6 c′A.
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Also, for a d-tuple of vectors of Rm+1, x̄ = (x̄[1], . . . , x̄[d]) ∈ (Rm+1)d with
x̄[k] = (x[k],0, . . . , x[k],m) ∈ Rm+1, remove the bar when the 0-th component is
removed from each vector:

x[k] = (x[k],1, . . . , x[k],m), x = (x[1] . . . , x[d]).

Euclideand norms in Rm are denoted by a single bar and in (Rm)d by two bars:

|x[k]|2 =

m∑
i=1

x2
[k],i, ‖x‖

2 =

d∑
k=1

|x[k]|2.

We also define for q ∈ Zm, ω ∈ Rm

dq(ω) = inf
p∈Z
|p− q · ω|.

Lemma 3.1. Let ω ∈ Rm that is ψ-BA. For 1/2 > ε > 0, define

Iε(ω) := {q ∈ Zm \ {0} : 0 < dq(ω) 6 ε}.

Let q(N), N ∈ N∗, the elements of Iε ordered by increasing radius. Then

|q(N)| > ΘN
1
mψ−1(ε). (3.9)

In particular, we prove the following estimate:∑
q∈Iε

exp(−Θn−1|q|2) 6
∞∑
N=1

exp(−Θn−1N
2
mψ−1(ε)2) 6 Θn

m
2 ψ−1(ε)−m.

(3.10)

Proof. The starting point is that for q ∈ Iε, since ε > ε/2 > dq(ω)/2 > ψ(|q|),
we have |q| > ρ := ψ−1(ε). And the triangular inequality yields for q 6= q′ ∈ Iε,

2ψ(q − q′) 6 dq−q′(ω) 6 2ε,

hence |q − q′| > ρ as well. It follows that all q ∈ Iε are pairwise distant by
more than ρ, and the balls Bm(q, ρ/2), q ∈ Iε are disjoint. Hence for N0 ∈ N∗,
the total Lm− measure occupied by the Bm(q(N), ρ/2), N 6 N0 is larger than
ΘN0ρ

m. This volume is necessarily smaller than the volume of the ball with
radius |q(N0)|+ ρ/2 6 2|q(N0)|, hence

ΘN0ρ
m 6 Θ|q(N0)|m

which yields (3.9). Finally (3.10) follows from

∞∑
N=1

exp(−Θn−1(N
1
mψ−1(ε))2) 6 2

∫ ∞
1/2

exp(−Θ(n−
m
2 ψ−1(ε)my)

2
m )dy 6 Θn

m
2 ψ−1(ε)−m.
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Proof of Theorem 3.1. Let M = d(m + 1). The proof is based on the study of
the symmetric random walk (Sn)n on ZM with independent increments defined
by S0 = 0 and

P(Sn+1 = Sn ± ej) =
1

2M
, 1 6 j 6M,

where (ej)j is some basis of Rd. Following the notation introduced above, denote
also ω̄[k] = (1, ω[k]) and ω̄ = (ω̄[k])k.

For q̄[k] = (q[k],0, q[k]) ∈ Zm+1, 1 6 k 6 d, q̄ = (q̄[1], . . . , q̄[d]) ∈ (Zm+1)d ≈
ZM , denote by q[k] = (q[k],1, . . . , q[k],m) ∈ Zm,q = (q[k])k ∈ (Zm)d. We define

q̄⊗ ω̄ := q0 − (q̄[k] · ω̄[k])k=1,...,d

where q0 = (q[k],0)dk=1, so that we have the equality in law Un
(d)
= Sn ⊗ ω̄.

We use the notation, for x = (x[1], . . . , x[d]) ∈ Zd,K ⊂ JdK,

Īx,Kε (ω) = Īx,Kε = {q̄ ∈ ZM : q̄[k] = 0, k /∈ K and 0 < |q̄[k]·ω̄[k]−x[k]| 6 ε, k ∈ K}.

For ε < 1/2, an element q̄ ∈ Īx,Kε satisfies the following for k ∈ K:

|q[k],0 − q[k] · ω[k] − x[k]| < ε,

hence since x[k] ∈ Z and q[k] ∈ Iε(ω[k]), ω[k] · q[k] is ε-close to Z. It follows that
q[k],0 depends explicitly on other coordinates

q[k],0 =q[k],0(x[k], q[k]) := argminp∈Z|p− q[k] · ω[k] − x[k]| (3.11)

q0 =q0(x,q) := (q[k],0)k.

In particular, |x[k]| 6 |q[k],0|+ |q[k] · ω[k]|+ 1, and

‖q̄‖2 =‖q0‖2 + ‖q‖2 > max(‖q‖2, ‖q‖2 + Θ(‖x‖2 − 1)) > Θ(‖q‖2 + ‖x‖2).
(3.12)

We also have the one-to-one correspondance

Ix,Kε (ω) := {q ∈
∏
k∈K

Zm : (q0(x; q),q) ∈ Īx,Kε (ω), k ∈ K} ≡ {0}d−|K| ×
∏
k∈K

Iε(ω[k]).

(3.13)

Proof of (i): By the Gaussian approximation Lemma 3.2 (below), and
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(3.12),

px,Kn (ε) =
∑

q̄∈Īx,Kε

P(Sn = q̄) =
∑

q∈Ix,Kε

P(Sn = (q0(x,q),q))

6 Θ
∑

q∈IK,xε

n−
M
2 exp(−Θn−1(‖q‖2 + ‖q0‖2))

6 Θn−
M
2

∑
q∈IK,xε

exp(−Θn−1‖q‖2) exp(−Θn−1‖x‖2))

6 Θn−
M
2 exp(−Θn−1‖x‖2)

∏
k∈K

∑
q[k]∈Iε(ω[k])

exp(−Θn−1|q[k]|2)) by (3.13)

(3.14)

6 Θn−
d(m+1)

2 exp(−Θn−1‖x‖2)(n
m
2 ψ−1(ε)−m)|K| with (3.10),

6 Θn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−Θn−1‖x‖2)

and (3.2) is proved.
The bound (3.3) immediately stems from p̄Kn =

∑
x∈Zd p

x,K
n and Lemma 3.3

(after summing over i ∈ {0, 1}). Hence using (3.10), and (3.14) with x = 0

I0β(ε) :=
∑
n>nε

n−β/2p0n(ε)

=
∑
n>nε

n−β/2
∑
K 6=∅

p0,Kn (ε)

6ΘKβ(ε)

with Kβ(ε) :=
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∞∑
Nk>1,k∈K

exp(−Θn−1
∑
k∈K

(N
1
m

k ψ−1(ε))2)

6Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

∑
n>nε

∫ n+1/2

n

(z − 1/2)−β/2−
M
2 exp(−Θz−1

∑
k∈K

ψ−1(ε)2N
2/m
k )dz

6Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

(
∑
k∈K

ψ−1(ε)2N
2/m
k )1−β/2−M2

∫ ∞
0

yβ/2+M
2 −2 exp(−Θy)dy

6Θ(ψ−1(ε)2)1−β/2−M2 max
K⊂JdK,K 6=∅

∫
[1,∞]|K|

(
∑
k∈K

x
2
m

k )1−β/2−M2
∏
k∈K

dxk

6Θψ−1(ε)2−M−β max
16p6d

∫
[1,∞]p

(

p∑
k=1

yk)1−β/2−M2
p∏
k=1

y
m
2 −1

k dyk

6Θψ−1(ε)2−d(m+1)−β max
16p6d

∫ ∞
1

(Θr)1−β/2− (m+1)d
2 rmp/2−prp−1dr
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and the integral converges if β/2 > 1− d/2. Since there are less terms in Jβ(ε)
than in I0β(ε), the upper bound holds and (3.5) is proved.

With the same computations, using first (3.14), and then(3.10), and Lemma
3.3,

Iβ(ε) =
∑
n>nε

n−β/2
∑
x∈Zd

∑
K 6=∅

px,Kn (ε)

6
∑
n>nε

n−β/2−
M
2

∑
x∈Zd

exp(−Θn−1x2)
∑

K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6ΘKβ−d(ε)

provided β/2 > 1 , which proves (3.4).
Let us conclude with the proof of (iii), the proof of (ii) is similar and easier.

There are by hypothesis infinitely many qj ∈ Zm, j > 1 and pj[k] ∈ Z, 1 6 k 6 d,

such that q̄j := ((pj[k], q
j))k ≡ 1 and

|pj[k] − ω[k] · qj | 6 cWψ(|qj |) =: cW εj

(we have εj → 0 because ψ converges to 0 by hypothesis). We have in particular
with Cauchy-Schwarz inequality

‖q̄j‖ 6
d∑
k=1

(|pj[k]|+ |q
j |) 6

d∑
k=1

(|ωk||qj |+ 1 + |qj |) 6 Θ|qj |

and clearly the other inequality as well |qj | 6 ‖q̄j‖.
Then, by Lemma 3.2, with ñj := c−1

inf |q̄j | ∨ nεj

Jβ(εj) =
∑

n>nεj ,n odd

n−β/2p0n(εj) >
∑

n>nεj ,n odd

n−β/2P(Sn = q̄j)

>Θ
∑

n>ñj ,n≡q̄j≡1

n−β/2n−
d(m+1)

2 exp(−Θn−1‖q̄j‖2)

>Θ

∫ ∞
[ñj/2]

y−β/2−d
m+1

2 exp(−Θy−1|qj |2)dy

>Θ|qj |2−β−d(m+1)

∫ Θ|qj |2ñ−1
j

0

zβ/2+dm+1
2 −2 exp(−Θz)dz

>Θψ−1(εj)
2−β−d(m+1)

provided β > 0, because |qj |2‖q̄j‖−1 > Θ > 0 and nεj 6 ψ−1(εj)
2 yields

(recalling ψ(|qj |) = εj)

|qj |2n−1
εj > ψ−1(εj)

2ψ−1(εj)
−2 = 1,

hence (3.7) is proved. The proof of (3.6) is similar without the requirement that
q̄j ≡ 1, hence the sum is over all n > nεj (even and odd).
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3.3 Gaussian approximation

The following lemma quantifies how much Sn is close to a Gaussian distribution.

Lemma 3.2. Let θ0 ∈ (0, 1
2 ),M ∈ N and Sn be the symmetric random walk on

ZM with weights θi ∈ (θ0, 1− θ0), 1 6 i 6M , summing to 1, i.e.

P(Sn+1 = Sn ± ei) =
θi
2
, 1 6 i 6M,n ∈ N.

For q = (qi) ∈ ZM , n ∈ N, write q ≡ n if
∑M
i=1 qi and n have the same parity,

and remark that P(Sn = q) = 0 if q 6≡ n. There is a constant cinf > 0 such that
for q ∈ ZM

P(Sn = q) 6Θn−
p
2 exp(−Θn−1‖q‖2) (3.15)

1{‖q‖6cinfn}P(Sn = q) >Θn−
p
2 exp(−Θn−1‖q‖2)1{|q|6cinfn} for q ≡ n.

Remark 3.4. The constants involved in this result depend also on θ0.

Proof. Let Ni be the number of times direction i has been chosen in the random
walk, and let Bi 6 Ni be the number of +ei increments, hence Ni − Bi is the
number of −ei increments. The i-th component of Sn is therefore Sn,i :=
2Bi −Ni. We have Ni ∼ B(n, θi), Bi ∼ B(Ni, 1/2), and the Bi are independent
conditionally on N := (Ni)i. Hence for |ε| 6 cBin, from Lemma 3.4

P(Bi = [Ni(1/2 + ε)] | N) = Θ exp(−ΘNiε
2)N

−1/2
i .

Let q = (qi) ∈ ZM such that for 1 6 i 6 p, |qi| 6 cBinNi, let εi = N−1
i qi,

P(Sn,i = qi | N) = P(Bi = Ni/2 + qi/2 | N)

=

{
0 if Ni 6≡ qi

ΘN
−1/2
i exp(−ΘNiε

2
i ) = ΘN

−1/2
i exp(−ΘN−1

i q2
i ) otherwise.

Let

cinf := cBin(min
i
θi − cBin) > 0.

If for all i, Ni > (θi− cBin)n and |qi| < cinfn, then |qi| < cBinNi (and Ni = Θn)
and we have the lower bound

P(Sn = q) =E(P(Sn = q | N))

=E(1{qi≡Ni,∀i}P(Sn = q | N))

>E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}P(Sn = q | N))

>E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}Θ
∏
i

N
− 1

2
i exp(−ΘN−1

i q2
i ))

>E(1{qi≡Ni,Ni>(θi−cBin)n,∀i}Θn
− p2 exp(−Θn−1q2))

>Θn−
p
2 exp(−Θn−1q2)P(qi ≡ Ni, Ni > (θi − cBin)n, ∀i).
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Since
∑
iNi ≡ n, if we don’t have

∑
i qi ≡ n, we can’t have Ni ≡ qi,∀i.

Otherwise, asymptotically a fraction 2−p of admissible tuples N ∈ JnKM are
such that Ni ≡ qi,∀i, hence P(qi ≡ Ni, Ni > (θi−cBin)n, ∀i) = Θ1{q≡n}P(Ni >
(θi − cBin)n, ∀i) and the latter probability converges to 1 thanks to Lemma 3.4
, hence the lower bound is proved.

The upper bound is a bit delicate. Let us start by the trivial bound, if
|qi| > n for some i,

P(Sn = q) = 0 6 Θn−1/2 exp(−Θn−1q2
i ).

Assume henceforth that |qi| 6 n for all i. Let Ω be the event that for some
i, Ni < θi(1− cBin)n. On Ωc, Ni = Θn for all i, hence by Lemma 3.2

P(Sn,i = qi | Ωc) 6 Θn−1/2 exp(−Θn−1q2
i ).

Finally, in all cases,

P(Sn = q) 6E(1{Ωc}
∏
i

P(Sn,i = qi | N)) + P(Ω)

6E(1{Ωc}Θ
∏
i

n−
1
2 exp(−Θn−1q2

i )) + P(Ω)

6n−p/2 exp(−Θn−1q2) + P(Ω).

Then Lemma 3.4 with ε = −cBin yields, using the decreasing of binomial prob-
abilities around the mean,

P(Ω) 6
∑
i

∑
k<[n(θi−cBin)]

P(Ni = k)

6
∑
i

nP(Ni = [n(θi + ε)])

6Θn1/2 exp(−Θn)

6Θn−
p
2 exp(−Θn/2)

6Θn−
p
2 exp(−Θn−1q2),

using ‖q‖ 6 n, which concludes the proof of (3.15).

Lemma 3.3. For i ∈ {0, 1}∑
x∈Zd,x≡i

exp(−Θn−1x2) = Θnd/2.

where x ≡ i means that
∑d
k=1 x[k] has the same parity as i.
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Proof. The lower bound stems from y2 > min
x∈Zd∩B(y,2),x≡i or x=0

x2, y ∈ Rd, and

Θnd/2 6
∫
Rd

exp(−Θn−1y2)dy 6
∫

max
x∈Zd∩B(y,2),x≡i or x=0

exp(−Θn−1x2)dy

64d
∑

x∈Zd,x≡i or x=0

exp(−Θn−1x2)

64d(
∑

x∈Zd,x≡i

exp(−Θn−1x2) + 1)

because at most a mass 4d of y′s are within distance 2 from some x ∈ Zd. For
the upper bound, for x ∈ Zd\{0}, there is at least one unit cube Cx with integer
coordinates within the 2d cubes that touch x such that for all y ∈ Cx, y2 6 x2.
Hence∑
x≡i

exp(−Θn−1x2) 6
∑

x≡i,x6=0

exp(−Θn−1x2) + 1 6
∑

x∈Zd\{0}

∫
Cx

exp(−Θn−1y2)dy + 1

62d
∫
Rd

exp(−Θn−1y2)dy + 1 6 Θnd/2.

3.4 Binomial estimates

Lemma 3.4. Let θ0 <
1
2 . There is a constant cBin ∈ (0, 1) depending on θ0

such that for θ ∈ (θ0, 1− θ0), B ∼ B(m, θ), for −cBin 6 εm = ε 6 cBin

P(B = [m(θ + ε)]) =Θm−1/2 exp
(
−Θmε2

)
where the constants involved in Θ depend on θ0, and not on θ,m, ε.

Proof. Let c0 = min( 1
2 ,

1−θ0
2 ), and ε ∈ (−c0θ, c0θ). Let then k = [m(θ+ ε)]. By

Stirling’s formula,

P(B = k) =Θ

√
m√

k
√
m− k

θk(1− θ)m−k mm

kk(m− k)m−k

=Θm−1/2 θk(1− θ)m−k√
(θ + ε)(1− θ − ε)

mm

(θm)k(m(1− θ))m−k
(
k
θm

)k ( m−k
m(1−θ)

)m−k
=Θm−1/2 1√

θ

(
1 +

ε

θ

)−k (
1− ε

1− θ

)k−m
=Θm−1/2θ

−1/2
0 exp(γε,θ)
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where

γε,θ =−m(θ + ε)(
ε

θ
− ε2

2θ2
+O(ε3))−m((1− θ)− ε)(− ε

1− θ
+

ε2

2(1− θ)2
+O(ε3))

=m
ε2

2θ
− mε2

θ
+O(mε3 +mε4)− mε2

2(1− θ)
− mε2

1− θ
+O(mε3 +mε4)

=
−mε2

2θ
− 3mε2

2(1− θ)
+O(mε3)

=−Θmε2

for |ε| sufficiently small.

4 Variance asymptotics for diophantine Gaus-
sian excursions

We consider symmetric spectral measures whose support contains incommen-
surate atoms. For ω ∈ (Rm)d, denote by Xω a centered stationary Gaussian
random field which spectral measure is µ, as defined in (1.4). The excursion
volume variance is denoted by

Vω(T ) := Var(L d({Xω > 0} ∩Bd(0, T ))).

4.1 Regular asymptotics

We will use the assumptions that ω is ψ-BA and / or ψ-WA (Section 1.1) with
functions ψ of the following form :

Definition 4.1. Say that ψ : N∗ → (0, 1] is regular (or τ -regular) if it is of the
form ψ(q) = q−τL(q), q ∈ N∗, where τ > 0 and L does not vanish and is slowly
varying in the sense that |L(q)− L(q + 1)| = o(L(q)q−1) as q →∞.

This property yields that ln(L(q))/ ln(q) → 0 as q → ∞, hence L is domi-
nated by any power of q and τ is uniquely defined. We introduce the pseudo-
inverse ψ−1 : (0, 1] 7→ N by (3.1). We can show that for every finite r > 0 there
are finite ci > 0 such that c1ψ(q) 6 ψ(rq) 6 c2ψ(q) and c3ψ

−1(ε) 6 ψ−1(rε) 6
c4ψ
−1(ε) on their domains of definition. Remark that qψ(q) is strictly non-

increasing for sufficiently large q if τ > 1.
Our most precise and general result concerns the case where the frequencies

ω[k] of µ are the same in all d directions, i.e. ω[k],i = ω[1],i, it yields sta-

tionary random sets in Rd with any reasonable asymptotic prescribed variance
behaviour.
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Theorem 4.1. Let τ > 0, ψ τ -regular and ω ∈ Rm that is ψ-WA and ψ-BA,

and ω := (ω, ω, . . . , ω) ∈ (Rm)d. Then with τ∗ = 1+d(m+1)
1+d , as T →∞,

c−T
2d

ψ−1(T−1)1+d(m+1)

i.o.
6 Vω(T ) 6

c+T
2d

ψ−1(T−1)1+d(m+1)
= o(T 2d) if τ > τ∗

c−T
d−1

i.o.
6 Vω(T ) 6c+T

d−1 ln(T ) if ψ(q) = q−τ
∗

c−
T d−1

ln(T )α
6 Vω(T ) 6c+T

d−1 if ψ(q) > q−τ
∗

ln(q)
1
d

for some 0 < c− 6 c+ <∞ depending on d,m,ψ, and α = 1+d(m+1)
dτ∗ . If m = 1

and τ > 1, there are uncountably many ω ∈ R satisfying the assumption.

To prove the upper bound we need the following computation.

Proposition 4.1. Let ψ(q) = q−τL(q) be regular (Definition 4.1) and assume
µ is of the form (1.4) with ω that is ψ-BA. Then as T →∞,

max

{
T 2dJ3(T−1), T d−1

∫ Td+1

0

J3(y−
1
d+1 )dy

}
6


ΘT d−1 if ψ(q) > q−τ

∗
ln(q)1/d

ΘT d−1 ln(T ) if ψ(q) = q−τ
∗

ΘT 2dψ−1(T−1)−1−d(m+1) if τ > τ∗

Proof. According to (3.5) in Theorem 3.1-(i),

J3(ε) 6 Θψ−1(ε)−1−d(m+1), ε > 0,

which yields that T 2dJ3(T−1) admits an upper bound consistent with the claim.
To deal with the other term, assume without loss of generality that ψ is

extended to a smooth strictly non-increasing function z−τL(z) : [a,∞)→ (0, 1]
for some a > 1, such that L′(z) = o(z−1L(z)) (the contribution of the integral

on (0, a) is uniformly bounded). Make the change of variables z = ψ−1(y−
1
d+1 ),

i.e. ψ(z)−d−1 = y, let Z = ψ−1(T−1).∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Td+1

a

ψ−1(y−
1
d+1 )−1−d(m+1)dy = Θ

∫ Z

Θ

z−1−d(m+1)(ψ(z)−d−1)′dz.

The hypotheses on ψ yield

(ψ(z)−d−1)′ =(d+ 1)(τz−τ−1L(z)− z−τL′(z))ψ(z)−d−2 = (d+ 1)(τz−1ψ(z)− z−τo(z−1L(z)))ψ(z)−d−2

∼z→∞(d+ 1)τz−1ψ(z)−d−1. (4.1)

In the case τ 6 τ∗, the previous two displays yield∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Z

Θ

z−2−d(m+1)ψ(z)−(d+1)dz

and the integral converges if ψ(q) > q−τ
∗

ln(q)1/d, and if ψ(q) = q−τ
∗

it behaves
in ln(Z) = Θ ln(T ).
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Let us turn to the case τ > τ∗. Let τ ′ ∈ (τ∗, τ), we have by (4.1) as z →∞

(z−1−d(m+1)ψ(z)−d−1)′ =z−1−d(m+1)(ψ(z)−d−1)′ − (1 + d(m+ 1))z−2−d(m+1)ψ(z)−d−1

>z−1−d(m+1)(ψ(z)−d−1)′ − 1 + d(m+ 1)

d+ 1
z−1−d(m+1)(ψ(z)−d−1)′

>z−1−d(m+1)(ψ(z)−d−1)′(1− τ∗
τ ′

)

which results in∫ Td+1

a

J3(y−
1
d+1 )dy 6

Θ

1− τ∗/τ ′
[z−1−d(m+1)ψ(z)−d−1]ZΘ = Θψ−1(T−1)−1−d(m+1)T d+1

which allows to conclude.

Proof of Theorem 4.1. Apply first Theorem 2.1 to the measure µ to have bounds
on the variance in terms of the function J3, recalling that J3 = ΘK (with γ as
the unit ball indicator function, see Example 2.1). Proposition 4.1 yields the
upper bound. Then lower bounds for J3 are derived in Theorem 3.1, noticing
that ω is ψ-BA and ψ-SWA thanks to Proposition 4.6. In the case ψ(q) =

q−τ
∗

ln(q)
1
d , ψ−1 is not explicit, but we use the bound

ψ−1(ε) > cε−
1
τ∗ | ln(ε)| 1

dτ∗ , ε > 0

for some c > 0.

Regarding the non-vacuity of Theorem 4.1, if m = 1 and τ > 1, it is a
standard fact in diophantine approximation that the set of ω that are ψ-BA and
ψ-WA is uncountable when qψ(q) is non-increasing at infinity, see the seminal
construction based on continued fractions by Jarǹık [18] and Proposition 4.5.

For m > 2, most studies concern power functions ψ(q) = q−τ and are dis-
cussed in Corollary 4.1, but can likely be extended to more general functions
ψ.

Remark 4.1. The presence of the term T d−1 on the right hand side, propor-
tionnal to the surface measure of the observation window, is natural as random
stationary measures applied to a large window are usually not expected to have a
variance behaviour lower than the boundary measure. No rigourous general re-
sult in this direction is known by the author, Beck [3] gives a formal proof in the
case of point processes. See also [36], which classifies hyperuniform behaviours
in three types: type I have asymptotic variance in T d−1, type II in T d−1 ln(T ),
and type III gathers all other sublinear behaviours, which actually correspond
to the three cases above. Intermediate behaviours between T d−1 and T d−1 ln(T )
can likely be obtained by the same method.

It is likely that the upper bound in T d−1 ln(T ) is sharp if ψ(q) = q−τ
∗
, proving

it rigourously would require a lower bound for v
(2)
T in the proof of Theorem 1.1,

which raises some technical difficulties because of the cosine term.
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Remark 4.2. This type of behaviour is really specific of nodal excursions. The
volume variance for excursions {X > u} ∩ Bd(0, T ) always behave in T 2d if
u 6= 0, see Theorem 2.1. The phenomenon of variance cancellation at u = 0 is
heavily documented for Gaussian random waves (see Section 1.5).

4.2 Power functions

Prominent examples are provided by power functions, for which we introduce
a special notation: say that ω ∈ Rm is (τ)-BA (resp. (τ)-WA) if it is cq−τ -
BA (resp. cq−τ -WA) for some finite c > 0. These considerations are further
developped and commented in the Appendix 3.4, let us simply mention that for
η > 0, Lm-a.a. ω ∈ Rm is (m+ η)-BA and (m)-WA. For any η > 0, there are
uncountably many ω ∈ Rm that are (m + η)-BA and (m + η)−WA. There are
also uncountably many Liouville numbers, i.e. ω ∈ R that are (τ)−WA for any
τ > 0.

The following corollary examines different regimes, depending on the relation
between τ, d and m, it is a consequence of Theorem 4.1 for ψ(q) = q−τ .

Corollary 4.1. For ω ∈ Rm, τ > 0, let ω = (ω, . . . , ω) ∈ (Rm)d, τ∗ = 1+d(m+1)
1+d .

(i) If d > m, for τ ∈ (m, τ∗), Lm-a.a. ω ∈ Rm is (τ)-BA, and for some
c+ <∞

Vω(T ) 6 c+T
d−1, T > 0.

(ii) If d < m, since for Lm-a.a. ω ∈ Rm, ω is (m)-WA and (m+ η)−BA for
η > 0, we have

c−T
d− 1+d

m

i.o.
6 Vω(T ) 6 c+T

d− 1+d
m+η

for some 0 < c−, c+ <∞.

(iii) Let m = 1. For d − 1 6 β < 2d, the set of ω ∈ R such that for some
0 < c− 6 c+ <∞

c−T
β

i.o.
6 Vω(T ) 6 c+T

β , T > 1

is uncountable (there is τ > 1 such that β = 2d − 1+2d
τ , and uncountably

many ω are (τ)-WA and (τ)-BA ).

(iv) Let m = 1. For ω a Liouville number, for every ε > 0, for some c− > 0,

c−T
2d−ε i.o.

6 Vω(T ).

(v) In all cases, Vω(T ) = o(T 2d).

All constants c−, c+ involved only depend on d,m, τ.
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Remark 4.3. An interesting observation in dimension d = 1 is that in (i),
the variance of the excursion indicator is bounded, while its derivative in the
distributional sense, i.e. the number of zeros, has maximal quadratic variance,
in T 2 (see [22, Theorem 2-(iii)]).

If the ω[k] differ along the directions 1 6 k 6 d, an application of Theorem
3.1, Proposition 4.1, and Theorem 2.1 similar to the proof of Theorem 4.1 yields
that the upper bound corresponds to the worst upper bound among the ω[k]:

Corollary 4.2. Let ψ : N∗ → (0, 1] regular. Assume ω ∈ (Rm)d is such that
each ω[k] is ψ-BA, 1 6 k 6 d. Then the same upper bounds as in Theorem 4.1
hold. In particular

(i) if d > m, for Lmd-a.a. ω ∈ (Rm)d, Vω(T ) 6 c+T
d−1 for some c+ <∞.

(ii) For every ω ∈ (Rm)d, Vω(T ) = o(T 2d)

Theorem 3.1-(iii) and Theorem 2.1 yield:

Corollary 4.3. Assume that for some function ψ : N∗ → (0, 1] converging to
0, ω is ψ-SWA. Then for some c− > 0

c−T
2dψ−1(T−1)−1−d(m+1)

i.o.
6 Vω(T )

where ψ−1 denotes the pseudo-inverse of ψ (see (3.1)).

Thanks to Groshev’s theorem (see the Appendix 3.4), for η > 0, Lmd-a.a.
ω ∈ (Rm)d is |q|−m/d-SWA but not |q|−m/d−η-SWA.

4.3 A randomised model

It is easy to build randomised models that exploit the metric results of diophan-
tine approximation to yield hyperuniform models that are more stable, i.e. not
subject to subtle diophantine properties of the parameters.

Proposition 4.2. Let Ω be a real random variable which law is continuous
with respect to Lebesgue measure, and let aik, i > 0, k > 1 be independent and
identically distributed standard Gaussian variables. Define

X(t) =
1

2d

d∑
k=1

(a0
k cos(t[k]) + a1

k sin(t[k]) + a2
k cos(Ωt[k]) + a3

k sin(Ωtk)), t = (t[k]) ∈ Rd,

MT = L d({X > 0}∩Bd(0, T )) and V (T ) = Var(MT ). Then for some c+ <∞,

V (T ) 6 c+T
d−1.

Proof. Since the Gaussian field is centered, for any fixed ω ∈ R,

E(MT | Ω = ω) = L d(Bd(0, T ))/2
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is deterministic. We also know that a.a. ω ∈ R is (2)-BA, and if we condition

by Ω = ω, X is the Gausian field with reduced covariance 1
2d

∑d
k=1(cos(t[k]) +

cos(ωt[k])). Hence the conditional variance formula and Corollary 4.1 yield

V (T ) =E(Var(MT | Ω)) + Var(E(MT | Ω))

6 c+T
d−1,

we emphasize that c+ depends only on d,m, τ = 2, and not further on ω.

The same arguments with 1 6 m < d yield the following:

Proposition 4.3. Let (Ω0, . . . ,Ωm) a random (m + 1)−tuple of vectors with
continuous law with respect to L (m+1)d, and

X(t) =
1

d(m+ 1)

d∑
k=1

m∑
i=0

(a2i
k cos(Ωitk) + a2i+1

k sin(Ωitk)).

Then the variance is bounded by c+T
d−1 if d > m.

Along similar lines, exploiting Corollary 4.1-(iii) with m > d yields ran-
domised models which variance is in T β for some d− 1 < β < 2d.

Remark 4.4. Similar models in the context of random walks (Section 3) yield
interesting examples of random walks in a random environment.

Appendix: Diophantine approximation

The core of the paper is provided by results from diophantine approximation,
we explain here basic principles and results, as well as the more advanced ones
we will need. The quality of the approximation of a tuple ω ∈ Rm is measured
by the numbers

dq(ω) = inf
p∈Z
|p− q · ω|, q ∈ Zm.

Given ψ : N∗ → [0, 1], the definitions of ψ−BA, ψ−WA , ψ-SWA’, ψ−SWA
based on this distance are given in the introduction and we complete this picture
with the following definition: ω ∈ Rm is ψ-WA’ if for some cω <∞, for infinitely
many p ∈ Z, q ∈ Zm,

dq(ω) 6 cωψ(q).

Proposition 4.5, at the end of this section, yields that most quantitative state-
ments available in the literature about ψ-SWA’ tuples also hold for ψ-SWA
tuples. The most basic, yet useful result is the Dirichlet principle:
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Proposition 4.4. Let m > 1. There is cm <∞ such that for N ∈ N∗, one can
find q, q′ ∈ BN := (Z ∩ [−N,N ])m distinct such that for ω ∈ Rm,

dq−q′(ω) 6 N−m 6 cm‖q − q′‖−m,

which yields that ω is (m)-WA’ and if ω is (m+ η)-BA, then necessarily η > 0.

Proof. Simply remark that if one divides [0, 1] in M := |BN | − 1 bins of size
M−1, out of the |BN | values dq(ω), q ∈ BN , at least two of them will end up in
the same bin, yielding for some q, q′ ∈ BN distinct

dq−q′(ω) 6 |dq(ω)− dq′(ω)| 6M−1 6 N−m.

The second inequality comes from |q − q′| 6 2
√
mN 6

√
m21−mM1/m.

Another fundamental but more technical result is the Khintchine-Groshev
theorem, we do not include the proof here, see the latest improvement by Hus-
sain and Yusupova [17].

Theorem 4.2 (Khintchine-Groshev). Let ψ : N→ R+ tending to 0 such that∑
q∈Zm

ψ(|q|)d <∞.

Then the set of ω ∈ (Rm)d that are ψ-SWA’ is (Lm)d−negligible. If on the
other hand the sum diverges then (Lm)d−a.a. ω ∈ (Rm)d is ψ-SWA’, in the
case m = d = 1 ψ needs furthermore to be monotonic.

The theorem yields that (Lm)d−a.a. ω has irrationality index τ(ω) = m/d,
where the irrationality index of some ω ∈ (Rm)d is defined by

τ(ω) := inf{τ : ω is not τ -SWA’} = sup{τ : ω is τ -SWA’}.

In particular, for Lm-a.a. ω ∈ Rm, ω is (m + η)−BA for each η > 0.
The following result yields that the situation is the same if SWA’ is replaced
by SWA. Actually, for most statements about the quantity of existing ψ-SWA’
arrays, there are about as many ψ-SWA arrays. More precisely, we show that for
every ω that is ψ-SWA’, there is a ψ-SWA array ω′ in the finite neighbourhood

N (ω) = {ω′ = (ω′[k])
d
k=1 : (∃k : ω′[k] = 2ω[k] or ∃i : ω′[1],i = ω[1],i + 1 or ω′ = ω)}.

Proposition 4.5. Let ω ∈ (Rm)d that is ψ-SWA’ for ψ : N → R+ non-
increasing, then there is ω′ in N (ω) that is ψ-SWA.

Proof. Either ω is ψ-SWA or there are by definition c > 0 and infinitely many
distinct p[k] = pj[k] ∈ Z, q = qj ∈ Zm, j > 1, 1 6 k 6 d such that∑

k

(p[k] +
∑
i

qi) =
∑
k

p[k] + d
∑
i

qi ≡ 0
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and
|p[k] − ω[k] · q| < cψ(|q|), 1 6 k 6 d.

Let mj ∈ N maximal such that 2mj divides each p[k], 1 6 k 6 d and each
qi, 1 6 i 6 m, and let p̃[k] = 2−mjp[k], q̃i = 2−mjqi. Since ψ is non-increasing
and |q̃| 6 |q|,

|p̃k − ω[k] · q̃| = 2−mj |p[k] − ω[k] · q| < 2−mjcψ(|q|) 6 cψ(|q̃|), 1 6 k 6 d.

It is important to precise that there are infinitely many pairwise distinct couples
(p̃j , q̃j) with p̃j = (p̃j[k])k, otherwise there is j0 and m′j → ∞ such that for

infinitely many j, pj = 2m
′
j p̃j0 , qj = 2m

′
j q̃j0 , which contradicts |pj[k]−ω[k] · qj | →

0.
If there are infinitely many couples (p̃, q̃) ≡ 1, then ω is ψ-SWA and the

proof is complete. Hence let us suppose in the following that there are infinitely
many couples (p̃, q̃) ≡ 0. The maximality of mj and the drawer principle then
yield that there is either k0 such that for infinitely many couples (p̃, q̃), p̃[k0] ≡ 1,
or i0 such that for infinitely many couples, q̃i0 ≡ 1.

In the case where p̃[k0] ≡ 1, let

ω′[k],i =

{
2ω[k0],i if k = k0

ω[k],i otherwise,
p′[k0],i =

{
2p̃[k0],i if k = k0

p̃[k],i otherwise,
1 6 i 6 m.

We have |p′[k] − ω
′
[k] · q̃| 6 2ψ(|q̃|), 1 6 k 6 d for infinitely many couples (p′, q̃),

and (p′, q̃) = (p̃, q̃) + (p[k0]i, 0) ≡ 1, hence ω′ := (ω′[k])16k6d is ψ-SWA.
In the case where q̃i0 ≡ 1, let

ω′[k],i =

{
ω[1],i + 1 if k = 1, i = i0

ω[k],i otherwise
, p′[k] =

{
p[1] + qi0 if k = 1

p[k] otherwise
.

Then

p′[k] − ω
′
[k] · q̃ =

{
p̃[1] + q̃i0 − ω[1] · q̃ − q̃i0 = p̃1 − ω1 · q̃ if k = 1

p̃[k] − ω[k] · q̃ otherwise

and

(p′, q̃) ≡ (0, q̃i0) ≡ 1

for infinitely many couples (p′, q̃), hence ω′ is ψ-SWA.

The next result is useful for tensorizing variance estimates.

Proposition 4.6. If ω ∈ Rm is ψ-WA, ω = (ω, . . . , ω) ∈ (Rm)d is ψ-SWA.

Proof. Since ω is assumed to be ψ-WA, there is a sequence (pj , qj)j such that

|pj − ω · qj | < cWψ(|qj |) and (pj , qj) ≡ 1. Hence with qj[k] = qj , pj[k] = pj ,

|pj[k] − q
j
[k] · ω| = |p

j − qj · ω| < cWψ(qj)
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but
∑d
k=1(pj[k] +

∑m
i=1 q

j
[k],i) = d(pj +

∑
i q
j
i ) is odd only if d is odd. If d is

even, choose instead pj[1] = 2pj , qj[1] = 2qj , so that |pj[1] − q
j
[1] · ω| < 2cWψ(|qj |),

and
∑d
k=1(pj[k] +

∑
qj[k],i) = (2d + 1)(pj + qj) is indeed odd. This sequence

demonstrates taht ω is ψ-SWA.
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