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Diophantine Gaussian excursions and random walks

Raphaël Lachièze-Rey ∗

Abstract We investigate the asymptotic variance of Gaussian nodal excursions in the
Euclidean space, focusing on the case where the spectral measure has incommensurable
atoms. This study requires to establish fine recurrence properties in 0 for the associated
irrational random walk on the torus. We show in particular that the recurrence magnitude
depends strongly on the diophantine properties of the atoms, and the same goes for the
variance asymptotics of nodal excursions.

More specifically, if the spectral measures contains atoms which ratios are well approx-
imable by rationals, the variance is likely to have large fluctuations as the observation
window grows, whereas the variance is bounded by the (d − 1)-dimensional measure of
the window boundary if these ratio are badly approximable. We also show that, given
any reasonable function, there are uncountably many sets of parameters for which the
variance is asymptotically equivalent to this function.

1 Introduction and examples

The primary motivation of this article is to study the variance of the excursion volume for
Gaussian fields, and exhibit a parametric diophantine model that realises any presribed
asymptotic variance behavior. It turns out that this work is strongly related to the
random walk which increment measure is the spectral measure of the Gaussian field, and
which behaviour depends on the diophantine properties of the atoms.

1.1 Gaussian excursions

Properties of excursions and level sets of continuous random Gaussian functions have been
studied under many different instances. The zero set of a one-dimensional Gaussian sta-
tionary process is the subject of an almost century long line of research, starting with the
seminal works of Kac & Rice [14], or Cramer & Leadbetter [6], and followed by many other
authors [7, 23, 15], mainly interested by second order behaviour. In higher dimensions, ze-
ros of Gaussian entire functions [11, 20] and nodal sets of high enery Gaussian harmonics
on a compact manifold [16, 29, 18] (and their Euclidean counterpart the Random Wave
Model [19]) have attracted a lot of attention of both physicists and mathematicians. Let us
also mention a recent breakthrough about the Euler-Poincaré characteristic of Euclidean
Gaussian excursions with the Central Limit Theorem of Estrade & Léon [10]. Random
trigonometric Gaussian polynomials, i.e. independent Gaussian coefficients multiplied by
trigonometric monomials based on a fundamental frequency, have also been studied in the
asymptotics of the large degree, see for instance [30] and references therein. We propose
here a crucial perturbation of the spectral measure support: instead of taking frequencies
in a proportionnal relation, we choose finitely many frequencies which are incommensu-
rable; this specificity allows for instance to reach all possible behaviours for the variance
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asymptotics, even with a finite support.

A different approach to our results is through the lens of hyperuniform models. In
the last decades, physicist have put in evidence amorphous states of matter intermediate
between crystals and liquids, where the medium exhibits apparent disorder at all scales,
but fluctuations are suppressed at large scales. This denotes in some sense an internal
compensation of the medium behaviour, and is considered by physicists a new state of
matter, see the works by S. Torquato and his co-authors [27, 28] that introduce the
topic and expose the main tools and discoveries. Even though the focus was primarily on
atomic measures, i.e. point configurations, this concept has been then generalised to other
random measures, in particular bi-phased random media [26, 25]. Such heterogeneous
materials abound in nature and synthetic situations. Examples include composite and
porous media, metamaterials, biological media (e.g., plant and animal tissue), foams,
polymer blends, suspensions, granular media, cellular solids, colloids.

The Gaussian world provides models for many types of phenomena, and the present
work is an attempt to produce Gaussian hyperuniform random sets. The model we
present here shares some similarities with perturbed lattices, in the sense that the long
range correlations are very strong, but its disorder state is also one step above as one can-
not write it as the (perturbed) repetition of a given pattern. It shares with quasi-crystals
the property of almost periodicity, defined below, and exhibits a spectrum reminiscent of
quasi-crystals, see Fig 1. Any asymptotic variance can be achieved, yielding in particular
hyperuniform models. According to the typology established in [27, 6.1.2], the model is
type-I hyperuniform for almost all choice of parameters; but uncountably many choices
of the parameters will yield type-II or actually any type of hyperuniformity. We also give
randomised versions of the model not involving diophantine parameters which exhibit
different types of hyperuniformity.

The main actors of this article are real Gaussian random fields {X(t); t ∈ Rd}, which
law is invariant under translations of Rd. It is known that such fields are completely
characterised by their reduced covariance function

C(t) = E(X(0)X(t)), t ∈ Rd,

or by their spectral measure, i.e. the unique finite symmetric measure µ on Rd such that
C admits the representation

C(t) =

∫
Rd
eit·xµ(dx), t ∈ Rd, (1)

where · denotes the standard scalar product. See the monograph [1] for a comprehensive
expositions of main properties and results about Gaussian fields and their geometry.

Excursions of Gaussian processes on the real line have often been studied through
their number of crossings with the axis [14, 6, 7, 23, 15]. Elementary considerations yield
that the average number of crossings on an interval is proportionnal to the length of the
interval. Furthermore, if µ contains more than 1 (symmetrised) atom, the variance of the
number of crossings is quadratic [17]. On Rd, we rather focus on the Lebesgue measure
of the nodal excursions

{X > 0} = {t ∈ Rd : X(t) > 0}.

Here again, the field centering yields that the expectation is proportionnal to the volume:

E(L d(A ∩ {X > 0})) =
L d(A)

2
, A ⊂ Rd.
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We give in Section 4 general upper and lower bounds for the variance of the excursion
volume. The need for models that yield any prescribed variance asymptotics is explained
in [4], along with another such procedure based on the Fourier transform.

We consider models where the spectral measure is finite and observe that the excursion
variance can have any prescribed behaviour. They fall within the class of almost periodic
fields, and their properties seem to put them between ergodic models, and crystalline
arrangements. We show that, depending on the diophantine properties of the atoms,
the variance can either be minimal, i.e. of surface-scaling order in T d−1, or maximal,
i.e. of quadratic order in T 2d, and achieves any reasonable intermediate behaviour. For
sublinear variances (below T d), the excursions are hence hyperuniform, contributing to
the already large research body on the subject.

1.2 Variance asymptotics for diophantine measures

We consider symmetric spectral measures whose support contains incommensurate atoms.
A model that offers a lot of diversity in Rd is parametrized by a d-tuple ω where each
entry belongs to Rm for some m > 1: ω = (ω[k],i)1 6 k 6 d

1 6 i 6 m
∈ (Rm)d and the measure

µ =
1

d(m+ 1)

d∑
k=1

(δ̄ek +

m∑
i=1

δ̄ω[k],iek), with δ̄u =
1

2
(δu + δ−u), u ∈ Rd, (2)

where (ek)16k6d is some basis of Rd.
Denote by Xω a centered stationary Gaussian random field which spectral measure is

µ. The excursion volume variance is denoted by

Vω(T ) := Var(L d({Xω > 0} ∩Bd(0, T )))

where Bd(0, T ) is the centred ball of Rd with radius T.
To describe the asymptotic behaviour, introduce for ψ : N∗ → [0, 1] the set of ψ-BA

(Badly Approximable) numbers, which are the ω ∈ Rm such that for p ∈ Z, q ∈ Zm with
|q| sufficiently large,

|p− ω · q| > 2ψ(|q|),

where |q| is the Euclidean norm of q, the typical example being ψ(|q|) = |q|−τ , τ > 0.
On the other hand, a vector ω ∈ Rm is ψ-WA(∗)(Well Approximable) if for some cW > 0
there are infinitely many couples p ∈ Z, q ∈ Zm such that (p, q) ≡ 1 and

|p− ω · q| 6 cWψ(|q|).

where here and in all the paper, for p > 1 and x = (xi)16i6p ∈ Zp we write x ≡ 1 if∑p
i=1 xi is an odd number.

Definition 1. Say that ψ is regular (or τ -regular) if it is of the form ψ(q) = q−τL(q), q ∈
N∗, where τ > 0 and L does not vanish and is slowly varying in the sense that |L(q) −
L(q + 1)| = o(L(q)q−1) as q →∞.

This property is motivated by Proposition 25 and yields that ln(L(q))/ ln(q) → 0 as
q →∞, hence L is dominated by any power of q and τ is uniquely defined. We introduce
the pseudo-inverse ψ−1 : (0, 1] 7→ N by (4). We can show that for every finite r > 0 there
are finite ci > 0 such that c1ψ(q) 6 ψ(rq) 6 c2ψ(q) and c3ψ

−1(ε) 6 ψ−1(rε) 6 c4ψ
−1(ε)

on their domains of definition. Remark that qψ(q) is strictly non-increasing for sufficiently
large q if τ > 1.
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Given two functions F (T ), G(T ), T > 1, write F (T )
i.o.
6 G(T ) (infinitely often) if

F (Tk) 6 G(Tk) for some sequence Tk →∞. Our most precise and general result concerns
the case where frequencies of µ are the same in all d directions, it implies that diophantine
Gaussian nodal excursions provide stationary random sets in Rd with any reasonable
asymptotic prescribed variance behaviour.

Theorem 2. Let τ > 0, ψ : N∗ → (0, 1] τ -regular and ω ∈ Rm that is ψ-WA(∗) and

ψ-BA, and ω := (ω, ω, . . . , ω) ∈ (Rm)d. Then with τ∗ = 1+d(m+1)
1+d , as T →∞,

Vω(T ) 6c+T
d−1 if ψ(q) > q−τ

∗
ln(q)

Vω(T ) 6c+T
d−1 ln(T ) if ψ(q) = q−τ

∗

c−T
2d

ψ−1(T−1)1+d(m+1)

i.o.
6 Vω(T ) 6

c+T
2d

ψ−1(T−1)1+d(m+1)
= o(T 2d) if τ > τ∗

for some 0 < c− 6 c+ < ∞ depending on d,m,ψ. If m = 1 and τ > 1, there are
uncountably many such ω ∈ R1.

Remark 3. The presence of the term T d−1 on the RHS, proportionnal to the surface
measure of the observation window, is natural as random stationary measures applied
to a large window are usually not expected to have a variance behaviour lower than the
boundary measure. No rigourous general result in this direction is known by the author,
Beck [2] gives a formal proof in the case of point processes. See also [27], which classifies
hyperuniform behaviours in three types: type I have asymptotic variance in T d−1, type II
in T d−1 ln(T ), and type III gathers all other sublinear behaviours. The previous theorem
shows that all types can be reached with the current model. Intermediate behaviours
between T d−1 and T d−1 ln(T ) can likely be obtained by the same method.

Remark 4. This type of behaviour is really specific of nodal excursions. The volume
variance for excursions {X > u} ∩ Bd(0, T ) always behave in T 2d if u 6= 0, see Theorem
23.

Proof. To prove this theorem, apply first Theorem 23 to the measure µ to have bounds
on the variance in terms of the function J3 (with γ as the unit ball indicator function,
see Example 24). Proposition 25 yields the upper bound. Then lower bounds for J3 are
derived in Theorem 16, noticing that ω is ψ-BA and ψ-SWA(∗) thanks to Proposition 15.

It is a standard fact in diophantine approximation that if m = 1 the set of ω that are
ψ-BA and ψ-WA is uncountable when qψ(q) is non-increasing at infinity, see the seminal
construction based on continued fractions by Jarǹık [13].

Prominent examples are provided by power functions, for which we introduce a special
notation: say that ω ∈ Rm is (τ)-BA (resp. (τ)-WA(∗)) if it is cq−τ -BA (resp. cq−τ -
WA(∗)) for some finite c > 0. These considerations are further developped and commented
in Section 2 (see Groshev’s theorem and Corollary 13), let us simply mention that for
η > 0, Lm-a.a. ω ∈ Rm is (m + η)-BA and (m)-WA(∗). For any η > 0, there are
uncountably many ω ∈ Rm that are (m + η)-BA and (m + η)−WA(∗). There are also
uncountably many Liouville numbers, i.e. ω ∈ R that are (τ)−WA(∗) for any τ > 0.

Remark 5. The random excursion is hyperuniform if ω is (η)-BA with η < 1+d
d (see also

Section 1.3 for characterisation of hyperuniformity via the structure factor), and strongly
hyperuniform if η < 1− m

d+1 .

The following corollary is then a consequence of Theorem 2.
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Corollary 6. For ω ∈ Rm, let ω = (ω, . . . , ω) ∈ (Rm)d, τ∗ = 1+d(m+1)
1+d .

(i) If d > m, for τ ∈ (m, τ∗), Lm-a.a. ω ∈ Rm is (τ)-BA, and the variance of Vω(T )
is bounded by c+T

d−1 for some c+ <∞ (strong hyperuniformity).

(ii) If d < m, since for Lm-a.a. ω ∈ Rm, ω is (m)-WA(∗) and (m+ η)−BA for η > 0,

we have c−T
d− 1+d

m

i.o.
6 Vω(T ) 6 c+T

d− 1+d
m+η for some 0 < c−, c+ <∞.

(iii) Let m = 1. For d−1 6 β < 2d, the set of ω ∈ R such that for some 0 < c− 6 c+ <∞

c−T
β

i.o.
6 Vω(T ) 6 c+T

β , T > 1

is uncountable ( there is τ > 1 such that β = 2d − 1+2d
τ , and uncountably many ω

are (τ)-WA(∗) and (τ)-BA ).

(iv) Let m = 1. For ω a Liouville number, for every ε > 0, for some c− > 0,

c−T
2d−ε i.o.

6 Vω(T ).

(v) In all cases, Vω(T ) = o(T 2d).

If the ω[k] differ along the directions 1 6 k 6 d, a similar application of Theorem 16,
Proposition 25, and Theorem 23 yield that the upper bound corresponds to the worst
upper bound among the ω[k]:

Proposition 7. Let ψ : N∗ → (0, 1] regular. Assume ω ∈ (Rd)m is such that each ω[k] is
ψ-BA, 1 6 k 6 d. Then the same upper bounds as in Theorem 2 hold. In particular

(i) if d > m, for Lmd-a.a. ω ∈ (Rm)d, Vω(T ) 6 c+T
d−1 for some c+ <∞.

(ii) for every ω ∈ (Rm)d, Vω(T ) = o(T 2d)

We need a further notion to state the lower bound. Say that ω = (ω[k])k is ψ-SWA
(Simultaneously Well Approximable) if for some cW > 0, for infinitely many qj ∈ Zm, j >
1, there exist pj[k] ∈ Z, 1 6 k 6 d such that

|pj[k] − ω[k] · qj | < cWψ(|qj |), 1 6 k 6 d,

and say that it is ψ-SWA(∗) if furthermore
∑d
k=1(pj[k] +

∑m
i=1 q

j
i ) is odd. The need

to distinguish between ψ-SWA and ψ-SWA(∗) (or ψ-WA and ψ-WA(∗)) is discussed in
Remark 17. Theorem 16-(iii) and Theorem 23 yield:

Theorem 8. Assume that for some function ψ : N∗ → (0, 1] converging to 0, ω is
ψ-SWA(∗). Then for some c+ <∞

T 2dψ−1(T−1)−1−d(m+1)
i.o.
6 c+Vω(T )

where ψ−1 denotes the pseudo-inverse of ψ (see (4)).

Thanks to Groshev’s theorem (see Section 2), for η > 0, Lmd-a.a. ω ∈ (Rm)d is
|q|−m/d-SWA but not |q|−m/d−η-SWA.
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1.3 Structure factor, quasicrystals and almost periodicity

We have observed, for some values of the parameter ω, the suppression of the variance
at large scales, also called hyperuniformity phenomenon. A more general mathematical
indicator of hyperuniformity is the structure factor, or more generally the behaviour
around zero of the Fourier transform of the signal in some sense. Here we adopt the
more general definition of the structure factor of the random excursion indicator function
t 7→ 1{X(t)>0}: if it exists, it is the measure S satisfying∫

Rd
ϕ(t)Cov(1{X(0)>0,X(t)>0})dt =

∫
Rd
ϕ̂(x)S(dx),

for ϕ smooth with compact support. Integrable hyperuniform models are characterised
by S(dx) ∼ |x|αdx near 0 (for some α > 0), which integrates in

S(Bd(0, ε)) ∼ εα+d, ε→ 0.

Folowing [21], we adopt the latter characterization as hyperuniformity with index α > 0.
Let us consider a diophantine Gaussian field with spectral measure µ, as described in the
previous sections. We easily deduce from Lemma 27 that, with a computation similar to
(22)

S =
∑
n odd

(
n
2n

)
4n(2n+ 1)

µ?(2n+1)

S(Bd(0, ε)) 6cJ3(ε) 6 c′ε
1+d(m+1)
m+η using (8)

where m > 1 is the number of different frequencies and η > 0 is the diophantine approx-
imation parameter of the model (see the previous section), and a similar lower bound
holds for infinitely many ε→ 0; hence the model is indeed hyperuniform for η < 1+d

d , as
found at Corollary 6-(i), and strongly hyperuniform (i.e. α > 1) for η < 1− m

d+1 .
We give an approximate representation at figure 1 in a special case.

Figure 1: Structure factor for µ = δ̄e1 + δ̄√2e1
+ δ̄e2 + δ̄√2e2

This kind of spectrum is reminiscent of Bragg peaks in quasi-crystals, and more generally
of almost periodic fields, for which we give a definition here: a field X : Rd → R is

6



almost periodic if for any sequence of vectors tn → ∞, there is a subsequence tn′ such
that ‖X −X(tn′ + ·)‖∞ → 0, see for instance the monograph [5]. Covariance functions
and random Gaussian fields considered in this paper are ‖ · ‖∞-limits of trigonometric
polynomials, and as such they are almost periodic. On the other hand, their excursions,
seen as {0, 1}−valued functions, are not almost periodic in this sense, mainly because of
the discontinuities at the set boundary. On the other hand, they are likely almost periodic
for weaker norms, and could hence be seens as almost periodic sets, but this question is
outside the scope of the current article.

1.4 A randomised model

It is easy to build randomised models that exploit the metric properties of diophantine
approximation to yield hyperuniform models.

Proposition 9. Let Ω be a real random variable which law is continuous with respect
to Lebesgue measure, and let aik, i > 0, k > 1 be independent and identically distributed
standard Gaussian variables. Define

X(t) =
1

2d

d∑
k=1

(a0
k cos(t[k]) + a1

k sin(t[k]) + a2
k cos(Ωt[k]) + a3

k sin(Ωtk)), t = (t[k]) ∈ Rd,

MT = L d({X > 0} ∩Bd(0, T )) and V (T ) = Var(MT ). Then for some c+ <∞,

V (T ) 6 c+T
d−1.

Proof. Since the Gaussian field is centered, for any fixed ω ∈ R,

E(MT | Ω = ω) = L d(Bd(0, T ))/2

is deterministic. We also know that a.a. ω ∈ R is (2)-BA, and if we condition by Ω = ω,

X is the Gausian field with reduced covariance 1
2d

∑d
k=1(cos(t[k])+cos(ωt[k])). Hence the

conditional variance formula and Corollary 6 yield

V (T ) =E(Var(MT | Ω)) + Var(E(MT | Ω))

6 c+T
d−1.

The same arguments with 1 6 m < d yield the following:

Proposition 10. Let (Ω0, . . . ,Ωm) a random (m + 1)−tuple of vectors with continuous
law with respect to L (m+1)d, and

X(t) =
1

d(m+ 1)

d∑
k=1

m∑
i=0

(a2i
k cos(Ωitk) + a2i+1

k sin(Ωitk)).

Then the variance is bounded by c+T
d−1 if d > m.

Along similar lines, exploiting Corollary 6-(iii) with m > d yields randomised models
which variance is in T β for d− 1 < β < 2d.
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1.5 Diophantine random walk on the torus

Let µ be a symmetric measure on Rd of the form (2) and Un the corresponding random
walk on the torus

Un = {
n∑
i=1

Xi}

where the Xi are independent and identically distributed with law µ and {x} = ({x[k]}) ∈
[0, 1[d is the fractional part in Rd. As before, let ω be the tuple of vectors generating the
support of µ in (2), with incommensurable coordinates.

It is clear that if ω’s coordinates are well approximable by rationals, the same goes
for the increments of the random walk, hence it is likely to come back closer to 0 faster.
The study of random walks on a group started on finite arithmetic groups with the works
of Diaconis, Saloff-Coste, Rosenthal, Porod, (see references in [24]) and results for such
irrational random walks in the continuous settings were then achieved by Diaconis [8],
and finally Su [24], who gave the optimal speed of convergence of the law of Un in an
appropriate distance. Then Prescott and Su [22] extended the study in higher dimensional
tori.

The novelty of our approach is to consider estimates as ε→ 0 uniformly in n; we show
in Section 3 that for a given ε, irrelevant of the number of steps n, there is a probablity
always smaller than c+ε

m
m+η that the walk on the torus ends up in Bd(0, ε) after n steps,

where η is such that ω is (m+ η)-BA and c+ <∞ does not depend on n or ε.
The probability is actually very sensititive to the probability of vanishing coordinates

Un,[k] of Un, in the sense that it decays slowly in ε because of the fast recurrence to 0 on
the axes: for p < d

P(Un,[1] = Un,[2] = · · · = Un,[p] = 0) ∼ n−p/2.

We don’t give a formal proof but one can sense this result by noticing that the probability
that the elementary random walk on Z with ±1 increments has a probability ∼ n−1/2

to come back to 0 in 2n steps, and the components are almost independent up to the
parity relation n ≡

∑d
k=1 Un,[k] (see Lemma 19). Hence only non-vanishing coordinates

matter in the speed of decay as ε → 0. Denote by JdK the set {1, 2, . . . , d}. Define for
K ⊂ JdK,K 6= ∅, the restricted ball BK(ε) := Bd(0, ε) ∩HK where

HK := {y = (y[k])16k6d ∈ Rd : y[k] 6= 0, k ∈ K and y[k] = 0, k /∈ K}.

Then we have according to Theorem 16 for some c <∞, uniformly on n, ε,

p̄Kn (ε) 6 cn−
(d−|K|)m

2 ε
|K|m
m+η where p̄Kn (ε) = P(Un ∈ BK(ε)).

Regarding the dependance in ε, the random walk hence comes back to 0 faster on sub-
spaces with fewer coordinates equal to 0 (the dependence as n increases is opposite). The
most interesting part of the convegence, i.e. where the magnitude is not dominated by
coordinates equal to 0, seems to happen on the domain H[d] of points with non-vanishing
coordinates. More precise results are derived in (6), in Section 3, dedicated to irrational
random walks; the results are derived in particular in terms of the optimal function ψ
such that ω is ψ-BA.

Lower bounds are more erratic and difficult to prove, hence we consider the smoothed
estimate, for β > 2,

Iβ(ε) =
∑
n>nε

n−β/2P(0 < |Un| < ε) (3)
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where nε > 1 grows sufficiently slowly. We prove also in Theorem 16 that Iβ(ε) behaves

in ε
β−2+dm
m+η as ε→ 0, regardless of the number of vanishing coordinates.

In Section 3, similar results (but with different magnitudes in n) are actually derived
first for the random walk Un =

∑n
i=1Xi itself, and passed on to Un to yield the afore-

mentionned results. A quantity Jβ(ε) related to Un and analogue to Iβ(ε) is estimated
and used in Section 4 to determine the variance of the excursion of the Gaussian field
which spectral measure is µ, as discussed previously.

2 Diophantine approximation

The core of the paper is provided by results from diophantine approximation, we explain
here basic principles and results, as well as the more advanced ones we will need. The
definitions of ψ−BA, ψ−WA(∗), ψ−SWA are given in the introduction. The quality of
the approximation of a tuple ω ∈ Rm is measured by the numbers

dq(ω) = inf
p∈Z
|p− q · ω|, q ∈ Zm.

The most basic, yet useful result is the Dirichlet principle:

Proposition 11. Let m > 1. There is cm < ∞ such that for N ∈ N∗, one can find
q, q′ ∈ BN := (Z ∩ [−N,N ])m distinct such that for ω ∈ Rm,

dq−q′(ω) 6 N−m 6 cm‖q − q′‖−m,

which yields that ω is (m)-WA and if ω is (m+ η)-BA, then necessarily η > 0.

Proof. Simply remark that if one divides [0, 1] in M := |BN | − 1 bins of size M−1, out of
the |BN | values dq(ω), q ∈ BN , at least two of them will end up in the same bin, yielding
for some q, q′ ∈ BN distinct

dq−q′(ω) 6 |dq(ω)− dq′(ω)| 6M−1 6 N−m.

The second inequality comes from ‖q − q′‖ 6 2
√
mN 6

√
m21−mM1/m.

Another fundamental but more technical result is the Khintchine-Groshev theorem,
we do not include the proof here, see the latest improvement by Hussain and Yusupova
[12].

Theorem 12 (Khintchine-Groshev). Let ψ : N→ R+ tending to 0 such that∑
q∈Zm

ψ(|q|)d <∞.

Then the set of ω ∈ (Rm)d that are ψ-SWA is Lmd−negligible. If on the other hand
the sum diverges then Lmd−a.a. ω ∈ (Rm)d is ψ-SWA, in the case m = d = 1 ψ needs
furthermore to be monotonic.

The theorem yields that Lmd−a.a. ω has irrationality index τ(ω) = m/d, where the
irrationality index of some ω ∈ (Rm)d is defined by

τ(ω) := inf{τ : ω is not τ -SWA} = sup{τ : ω is τ -SWA}.

The following result can be retrieved from Dirichlet’s principle and Groshev’s theorem
with d = 1. The fourth point goes back to [13], who built explicit examples based on the
continued fraction expansion of a real number.
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Corollary 13. 1. All ω ∈ Rm is (m)-WA

2. Lm−a.a. ω ∈ Rm is not (m)-BA.

3. For η > 0, Lm−a.a. ω is not (m+ η)-WA and is (m+ η)-BA

4. For m = 1 and ψ regular, the set of ω ∈ R that are ψ-WA and ψ-BA has positive
Hausdorff dimension and is in particular uncountable.

Thie third point implies that for Lm-a.a. ω ∈ Rm, ω is (m+ η)−BA for each η > 0.
The following result yields that the situation is essentially the same if WA is replaced by
WA(∗). Recall that for p > 1 and x = (xi)16i6p ∈ Zp, x ≡ 1 means that

∑p
i=1 xi is an

odd number (otherwise x ≡ 0).

Proposition 14. If ω is ψ-WA and not ψ-WA(∗) for ψ non-increasing, then for some
1 6 i 6 m, ω − ei is ψ-WA(∗).

Proof. Since ω is ψ-WA and not ψ-WA(∗), there are infinitely many pj ∈ Z, qj ∈ Zm such
that (pj , qj) ≡ 0 and |pj − ω · qj | < cWψ(|qj |). Let kj ∈ N be the largest natural integer

such that 2kj divides pj and each qji , 1 6 i 6 m, let p̃j = 2−kjpj , q̃j = 2−kjqj . We have

|p̃j − ω · q̃j | < 2−kjcWψ(|qj |) = 2−kjcWψ(2kj |q̃j |) < cWψ(|q̃j |)

hence either (p̃j , q̃j) ≡ 1 for infinitely many j and the result is proved, or for infinitely

many j , (p̃j , q̃j) ≡ 0. In the latter case, since 21 does not divide each q̃ji and p̃j , but

(p̃j , q̃j) ≡ 0, necessarily for each j, q̃ji ≡ 1 for at least one i. By the drawer principle,

for at least one i there is an infinity of j such that q̃ji is odd, denote it by i∗. Let then

ω′ = ω + ei∗, p
′j = p̃j + q̃ji∗. We have

|p′j − ω′ · q̃j | = |p′j − q̃ji∗ − ω · q̃
j | = |p̃j − ω · q̃j | < cWψ(|q̃j |).

Since (p′j , q̃j) ≡ q̃ji∗ ≡ 1 for infinitely many j, the result is proved.

The next result is useful for tensorizing variance estimates.

Proposition 15. If ω ∈ Rm is ψ-WA(∗), ω = (ω, . . . , ω) ∈ (Rm)d is ψ-SWA(∗).

Proof. Since ω is assumed to be ψ-WA(∗), there is a sequence (pj , qj)j such that |pj −ω ·
qj | < cWψ(|qj |) and (pj , qj) ≡ 1. Hence with qj[k] = qj , pj[k] = pj ,

|pj[k] − q
j
[k] · ω| = |p

j − qj · ω| < cWψ(qj)

but
∑d
k=1(pj[k] +

∑m
i=1 q

j
[k],i) = d(pj +

∑
i q
j
i ) is odd only if d is odd. If d is even, choose

instead pj[1] = 2pj , qj[1] = 2qj , so that |pj[1] − qj[1] · ω| < 2cWψ(|qj |), and
∑d
k=1(pj[k] +∑

qj[k],i) = (2d + 1)(pj + qj) is indeed odd. This sequence demonstrates taht ω is ψ-

SWA(∗).
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3 Irrational random walks

Given µ =
∑M
i=1 θiδ̄ωi a finite atomic symmetric probability measure on Rd, we are

interested in the associated random walk

Un :=

n∑
k=1

Xk

where the Xk are independent and identically distributed with law µ, hence centred, and
the θi are in [0, 1

2 ] and sum to 1 ( 1
2 could be replaced by any element of (0, 1), as long as

it is fixed throughout the paper). The study of Un is related to the random walk on the
torus

Un = Un − [Un] ∈ [0, 1[d,

which has been intensively studied, the consequences of the current results to the random
walk on the torus are discussed at Section 1.5. To avoid degenerate behaviour, we assume
that µ is Z-free, i.e. there is no q ∈ ZM \ {0} such that

∑M
i=1 qiωi = 0. In general

we further assume that ω := (ωi) is ψ-BA for some non-vanishing function ψ, which
automatically implies that µ is Z-free.

According to the Central Limit Theorem, the law of the renormalised sum n−1/2Un

weakly converges to a Gaussian measure (see also Lemma 19 for precise estimates), and
the law µn of Un is known to converge to Lebesgue measure on [0, 1[d [24]. But it seems
that if we zoom in further on this convergence, it becomes very irregular.

We estimate the following quantities below:

pxn(ε) =P(0 < |Un − x| 6 ε), ε > 0,x ∈ Zd,

p̄n(ε) =
∑
x∈Zd

pxn(ε) = P(0 < |Un| 6 ε).

Remark that in general, if the sum n+
∑d
k=1 x[k] is even, P(Un = x) is in n−

M
2 and hence

dominates pxn(ε) for ε→ 0, which is why it is estimated separately. For odd values, since
µ is Z-free, P(Un = x) = 0, hence pxn(ε) is simply P(|Un − x| 6 ε).

A fine analysis of the recurrence around 0 yields that the rate strongly depends on
the number of coordinates equal to 0, expressed through

pK,xn (ε) = P(Un − x ∈ BK(0, ε)), p̄Kn (ε) = P(Un ∈ BK(0, ε)).

We show below for instance that for some c <∞, for K ⊂ JdK, for ω that is (m+η)-BA,
η > 0,

p̄Kn (ε) 6 cn−m
d−|K|

2 ε
m|K|
m+η

so that it is really the number of vanishing coordinates that determines the recurrence
probabilities. To avoid this technicality and obtain lower bounds, we consider the smoothed

estimates for β > 0, with p0n = p
JdK,0
n

Jβ(ε) :=
∑

n>nε,n∈N,n odd

n−β/2p0n(ε)

analogue to Iβ(ε) defined in the introduction at (3) , where nε does not grow too fast
as ε → 0 and serves the purpose to show that it is the series tail that actually matters.
Considering this statistic also allows to suppress the erratic behaviour in n, and we can
prove that Iβ(ε),Jβ(ε) both behave in ε

m
m+η and find a matching lower bound. The

11



summation over odd n in Jβ(ε) is adapted to estimating the volume variance of Gaussian
nodal excursions (see Remark 17).

Assume there is m ∈ N, and real numbers ω[k],i, 1 6 k 6 d, 0 6 i 6 m such that µ is of
the form (2) and denote by ω[k] = (ω[k],0, . . . , ω[k],m),ω = (ω[k])16k6d. For ψ : N∗ → [0, 1]
that converges to 0 let ψ−1 its pseudo-inverse defined by

ψ−1(ε) = min{q ∈ N∗ : ψ(q) 6 ε}, ε > 0. (4)

Theorem 16. Assume that µ is under the form (2) for some ω = (ω[k])16k6d ∈ (Rm)d.
Let ψ be some mapping N∗ → (0, 1] converging to 0. Let β > 0. There is 0 < c < ∞
depending on d,m,ψ, β such that the following holds:

(i) Assume each ω[k] is ψ-BA. We have for x ∈ Zd,K ⊂ JdK, 0 < ε < 1
2 , n ∈ N∗

pK,xn (ε) 6cn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−cn−1‖x‖2) (5)

p̄Kn (ε) 6cn
−(d−|K|)m

2 ψ−1(ε)−m|K| (6)

Iβ(ε) 6cψ−1(ε)−β−dm+2 (7)

Jβ(ε) 6cψ−1(ε)−β−d(m+1)+2 (8)

(ii) Assume ω is ψ-SWA. Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−dm+2
i.o.
6 cIβ(ε), ε→ 0. (9)

(iii) Assume ω is ψ-SWA(∗). Then if nε 6 ψ−1(ε)2, ε > 0,

ψ−1(ε)−β−d(m+1)+2
i.o.
6 cJβ(ε), ε→ 0 (10)

Remark 17. The reason why ω has to be ψ−SWA(∗) instead of ψ−SWA at point (iii)
is because summands are odd in the definition of Jβ . As proved at Proposition 14, this
subtlety does not influence final results about Gaussian excursions, hence one would like
a general result from diophantine approximation that states that ψ−SWA tuples are also
ψ−SWA(∗), but that is unlikely.

3.1 Proof of Theorem 16

Notation. We introduce the notation A = ΘB to indicate that there are finite constants
c, c′ > 0 depending on µ,m, d, ψ and not (further) on ω, ε, T, n such that A 6 cB,B 6
c′A.

Also, for a d-tuple of vectors of Rm+1, x̄ = (x̄[1], . . . , x̄[d]) ∈ (Rm+1)d with x̄[k] =
(x[k],0, . . . , x[k],m) ∈ Rm+1, remove the bar when the 0-th component is removed from
each vector:

x[k] = (x[k],1, . . . , x[k],m), x = (x[1] . . . , x[d]).

Euclideand norms in Rm are denoted by a single bar and in (Rm)d by two bars:

|x[k]|2 =

m∑
i=1

x2
i,[k], ‖x‖

2 =

d∑
k=1

|x[k]|2.

Lemma 18. Let ω ∈ Rm that is ψ-BA. For 1/2 > ε > 0, define

Iε(ω) := {q ∈ Zm \ {0} : 0 < dq(ω) 6 ε}.

12



Let q(N), N ∈ N∗, the elements of Iε ordered by increasing radius. Then

|q(N)| > ΘN
1
mψ−1(ε). (11)

In particular, we have the following estimate:∑
q∈Iε

exp(−Θn−1|q|2) 6
∞∑
N=1

exp(−Θn−1N
2
mψ−1(ε)2) 6 Θn

m
2 ψ−1(ε)−m. (12)

Proof. The starting point is that for q ∈ Iε, since ε > ε/2 > dq(ω)/2 > ψ(|q|), we have
|q| > ρ := ψ−1(ε). And the triangular inequality yields for q 6= q′ ∈ Iε,

2ψ(q − q′) 6 dq−q′(ω) 6 2ε,

hence |q − q′| > ρ as well. It follows that all q ∈ Iε are pairwise distant by more than ρ,
and the balls Bm(q, ρ/2), q ∈ Iε are disjoint. Hence for N0 ∈ N∗, the total Lm− measure
occupied by the Bm(q(N), ρ/2), N 6 N0 is larger than ΘN0ρ

m. This volume is necessarily
smaller than the volume of the ball with radius |q(N0)|+ ρ/2 6 2|q(N0)|, hence

ΘN0ρ
m 6 Θ|q(N0)|m

which yields (11). Finally (12) follows from

∞∑
N=1

exp(−Θn−1(N
1
mψ−1(ε))2) 6 2

∫ ∞
1/2

exp(−Θ(n−
m
2 ψ−1(ε)my)

2
m )dy 6 Θn

m
2 ψ−1(ε)−m.

Proof of Theorem 16. LetM = d(m+1). The proof is based on the study of the symmetric
random walk (Sn)n on ZM with independent increments defined by S0 = 0 and

P(Sn+1 = Sn ± ej) =
1

2M
, 1 6 j 6M,

where (ej)j is the canonical basis. Following the notation introduced above, denote also
ω̄[k] = (1, ω[k]) and ω̄ = (ω̄[k])k.

For q̄[k] = (q[k],0, q[k]) ∈ Zm+1, 1 6 k 6 d, q̄ = (q̄[1], . . . , q̄[d]) ∈ (Zm+1)d ≈ ZM , denote

by q[k] = (q[k],1, . . . , q[k],m) ∈ Zm,q = (q[k])k ∈ (Zm)d. We define

q̄⊗ ω̄ := (q̄[k] · ω̄[k])k=1,...,d = q0 + q⊗ ω ∈ Rd

where q0 = (q[k],0)dk=1, so that we have the representation Un = Sn ⊗ ω̄.
We use the notation, for x = (x[1], . . . , x[d]) ∈ Zd,K ⊂ JdK,

Īx,Kε = {q̄ ∈ ZM : q̄[k] = 0, k /∈ K and 0 < |q̄[k] · ω̄[k] − x[k]| 6 ε, k ∈ K}.

For ε < 1/2, an element q̄ ∈ Īx,Zε satisfies the following for 1 6 k 6 d:

|q[k],0 + q[k] · ω[k] − x[k]| < ε,

hence since x[k] ∈ Z and q[k] ∈ Iε(ω[k]), dq[k](ω[k]) 6 ε. It follows that q[k],0 depends
explicitly on other coordinates

q[k],0 =q[k],0(x[k], q[k]) := argminp∈Z|p+ q[k] · ω[k] − x[k]| (13)

q0 =q0(x,q) := (q[k],0)k.
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In particular, |x[k]| 6 |q[k],0|+ |q[k] · ω[k]|+ 1, and

‖q̄‖2 =‖q0‖2 + ‖q‖2 > max(‖q‖2, ‖q‖2 + Θ(‖x‖2 − 1)) > Θ(‖q‖2 + ‖x‖2). (14)

We also have the one-to-one correspondance

Ix,Kε (ω) := {q ∈
∏
k

Zm : (q0(x; q),q) ∈ Īx,Kε (ω), k ∈ K} ≡ {0}d−|K| ×
∏
k∈K

Iε(ω[k]).

(15)

Proof of (i): By the Gaussian approximation Lemma 19 (below), and (14),

px,Kn (ε) =
∑

q̄∈Īx,Kε

P(Sn = q̄) =
∑

q∈Ix,Kε

P(Sn = (q0(x,q),q))

6 Θ
∑

q∈IK,xε

n−
M
2 exp(−Θn−1(‖q‖2 + ‖q0‖2))

6 Θn−
M
2

∑
q∈IK,xε

exp(−Θn−1‖q‖2) exp(−Θn−1‖x‖2))

6 Θn−
M
2 exp(−Θn−1‖x‖2)

∏
k∈K

∑
q[k]∈Iε(ω[k])

exp(−Θn−1|q[k]|2)) by (15) (16)

6 Θn−
d(m+1)

2 exp(−Θn−1‖x‖2)(n
m
2 ψ−1(ε)−m)|K| with (12),

6 Θn−d/2n−
(d−|K|)m

2 ψ−1(ε)−m|K| exp(−Θn−1‖x‖2)

and (5) is proved.
The bound (6) immediately stems from p̄Kn =

∑
x∈Zd p

x,K
n and Lemma 21 (after

summing over i ∈ {0, 1}). Hence using (12), and (16) with x = 0

I0β(ε) :=
∑
n>nε

n−β/2p0n(ε)

=
∑
n>nε

n−β/2
∑
K 6=∅

p0,Kn (ε)

6ΘKβ(ε)

with Kβ(ε) :=
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6
∑
n>nε

n−β/2−
M
2

∑
K⊂JdK,K 6=∅

∞∑
Nk>1,k∈K

exp(−Θn−1
∑
k∈K

(N
1
m

k ψ−1(ε))2)

6Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

∑
n>nε

∫ n+1/2

n

(z − 1/2)−β/2−
M
2 exp(−Θz−1

∑
k∈K

ψ−1(ε)2N
2/m
k )dz

6Θ
∑

K⊂JdK,K 6=∅

∑
Nk>1,k∈K

(
∑
k∈K

ψ−1(ε)2N
2/m
k )1−β/2−M2

∫ ∞
0

yβ/2+M
2 −2 exp(−Θy)dy

6Θ(ψ−1(ε)2)1−β/2−M2 max
K⊂JdK,K 6=∅

∫
[1,∞]|K|

(
∑
k∈K

x
2
m

k )1−β/2−M2
∏
k∈K

dxk

6Θψ−1(ε)2−M−β max
16p6d

∫
[1,∞]p

(

p∑
k=1

yk)1−β/2−M2
p∏
k=1

y
m
2 −1

k dyk

6Θψ−1(ε)2−d(m+1)−β max
16p6d

∫ ∞
1

(Θr)1−β/2− (m+1)d
2 rmp/2−prp−1dr
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and the integral converges if β/2 > 1− d/2. Since there are less terms in Jβ(ε), than in
I0β(ε), the upper bound holds and (8) is proved.

With the same computations, using first (16), and then(12), and Lemma 21,

Iβ(ε) =
∑
n>nε

n−β/2
∑
x∈Zd

∑
K 6=∅

px,Kn (ε)

6
∑
n>nε

n−β/2−
M
2

∑
x∈Zd

exp(−Θn−1x2)
∑

K⊂JdK,K 6=∅

∏
k∈K

∞∑
Nk=1

exp(−Θn−1(N
1
m

k ψ−1(ε))2)

6ΘKβ−d(ε)

provided β/2 > 1 , which proves (7).
Let us conclude with the proof of (iii), the proof of (ii) is similar and easier. There

are by hypothesis infinitely many qj ∈ Zm, j > 1 and pj[k] ∈ Z, 1 6 k 6 d, such that

q̄j := ((pj[k], q
j))k ≡ 1 and

|pj[k] − ω[k] · qj | = dqj (ω[k]) 6 cWψ(|qj |) =: cW εj

(we have εj → 0 because ψ converges to 0 by hypothesis). We have in particular with
Cauchy-Schwarz inequality

‖q̄j‖ 6
d∑
k=1

(|pj[k]|+ |q
j |) 6

d∑
k=1

(|ωk||qj |+ 1 + |qj |) 6 Θ|qj |

and clearly the other inequality as well |qj | 6 ‖q̄j‖.
Then, by Lemma 19, with ñj := c−1

inf |q̄j | ∨ nεj

Jβ(εj) =
∑

n>nεj ,n odd

n−β/2p0n(εj) >
∑

n>nεj ,n odd

n−β/2P(Sn = q̄j)

>Θ
∑

n>ñj ,n≡q̄j≡1

n−β/2n−
d(m+1)

2 exp(−Θn−1‖q̄j‖2)

>Θ

∫ ∞
[ñj/2]

y−β/2−d
m+1

2 exp(−Θy−1|qj |2)dy

>Θ|qj |2−β−d(m+1)

∫ Θ|qj |2ñ−1
j

0

zβ/2+dm+1
2 −2 exp(−Θz)dz

>Θψ−1(εj)
2−β−d(m+1)

provided β > 0, because |qj |2|q̄j |−1 > Θ > 0 and nεj 6 ψ−1(εj)
2 yields (recalling

ψ(|qj |) = εj)

|qj |2n−1
εj > ψ−1(εj)

2ψ−1(εj)
−2 = 1,

hence (10) is proved. The proof of (9) is similar without the requirement that q̄j ≡ 1,
hence the sum is over all n > nεj (even and odd).

3.2 Gaussian approximation

The following lemma quantifies how much Sn is close to a Gaussian distribution.
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Lemma 19. Let p ∈ N and Sn be the centred random walk on Zp with weights θi ∈
(0, 1), 1 6 i 6 p, summing to 1, i.e.

P(Sn+1 = Sn ± ei) =
θi
2
, 1 6 i 6 p, n ∈ N.

For q = (qi) ∈ Zp, n ∈ N, write q ≡ n if
∑p
i=1 qi and n have the same parity, and remark

that P(Sn = q) = 0 if q 6≡ n. There is a constant cinf > 0 such that for q ∈ Zp

P(Sn = q) 6Θn−
p
2 exp(−Θn−1‖q‖2) (17)

1{|q|6cinfn}P(Sn = q) >Θn−
p
2 exp(−Θn−1‖q‖2)1{|q|6cinfn} for q ≡ n.

Remark 20. The constants involved in this result depend also on the θi, 1 6 i 6 p.

Proof. Let Ni be the number of times direction i has been chosen in the random walk,
and let Bi 6 Ni be the number of +ei increments, hence Ni − Bi is the number of
−ei increments. The i-th component of Sn is therefore Sn,i := Ni − 2Bi. We have
Ni ∼ B(n, θi), Bi ∼ B(Ni, 1/2), and the Bi are independent conditionally on N := (Ni)i.
Hence for |ε| 6 cBin, from Lemma 22

P(Bi = [Ni(1/2 + ε]) | N) = Θ exp(−ΘNiε
2)N

−1/2
i .

Let q = (qi) ∈ Zp such that for 1 6 i 6 p, |qi| 6 cBinNi, let εi = N−1
i qi,

P(Sn,i = qi | N) = P(Bi = Ni/2 + qi/2 | N) =

{
0 if Ni 6≡ qi

ΘN
−1/2
i exp(−ΘNiε

2
i ) = ΘN

−1/2
i exp(−ΘN−1

i q2
i ) otherwise.

Let

cinf := cBin(1− cBin) min
i
θi > 0.

If for all i, Ni > θi(1− cBin)n and |qi| < cinfn, then |qi| < cBinNi and we have the lower
bound

P(Sn = q) =E(P(Sn = q | N))

=E(1{qi≡Ni,∀i}P(Sn = q | N))

>E(1{qi≡Ni,Ni>θi(1−cBin)n,∀i}P(Sn = q | N))

>E(1{qi≡Ni,Ni>θi(1−cBin)n,∀i}Θ
∏
i

N
− 1

2
i exp(−ΘN−1

i q2
i ))

>E(1{qi≡Ni,Ni>θi(1−cBin)n,∀i}Θn
− p2 exp(−Θn−1q2))

>Θn−
p
2 exp(−Θn−1q2)P(qi ≡ Ni, Ni > θi(1− cBin)n, ∀i).

If q ≡ n, Asymptotically a fraction 2−(p−1) of tuples N ∈ JnKp are such that
∑
iNi ≡ n

and Ni > θi(1−cBin)n will be compatible with q, hence P(qi ≡ Ni, Ni > (θi−cBin)n, ∀i) =
Θ1{q≡n}P(Ni > (θi − cBin)n, ∀i) and the latter probability converges to 1 thanks to
Lemma 22 , hence the lower bound is proved.

The upper bound is a bit delicate. Let us start by the trivial bound, if |qi| > n for
some i,

0 = P(Sn,i = qi | N) = P(Sn = q) 6 Θn−1/2 exp(−Θn−1q2
i ).

Assume henceforth that |qi| 6 n for all i. Let Ω be the event that for some i,
Ni < θi(1− cBin)n. On Ωc, Ni = Θn for all i, hence

P(Sn,i = qi | Ωc) 6 Θn−1/2 exp(−Θn−1q2
i ).
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Finally, in all cases,

P(Sn = q) 6E(1{Ωc}
∏
i

P(Sn,i = qi | N)) + P(Ω)

6E(1{Ωc}Θ
∏
i

n−
1
2 exp(−Θn−1q2

i )) + P(Ω)

6n−p/2 exp(−Θn−1q2) + P(Ω).

Then Lemma 22 with ε = −cBin yields, using the decreasing of binomial probabilities
around the mean,

P(Ω) 6
∑
i

∑
k<[nθi(1−cBin)]

P(Ni = k)

6
∑
i

ΘnP(Ni = nθi(1 + ε))

6Θn1/2 exp(−Θn)

6Θn−
p
2 exp(−Θn/2)

6Θn−
p
2 exp(−Θn−1q2),

using |q| 6 n, which concludes the proof of (17).

Lemma 21. For i ∈ {0, 1} ∑
x∈Zd,x≡i

exp(−Θn−1x2) = Θnd/2.

where x ≡ i means that
∑d
k=1 x[k] has the same parity as i.

Proof. The lower bound stems from y2 > minx∈Zd∩B(y,2),x≡i or x=0 x2, y ∈ Rd, and

Θnd/2 6
∫
Rd

exp(−Θn−1y2)dy 6
∫

max
x∈Zd∩B(y,2),x≡i or x=0

exp(−Θn−1x2)dy

64d
∑

x∈Zd,x≡i or x=0

exp(−Θn−1x2)

64d(
∑

x∈Zd,x≡i

exp(−Θn−1x2) + 1)

because at most a mass 4d of y′s are within distance 2 from some x ∈ Zd. For the upper
bound, for x ∈ Zd \ {0}, there is at least one cube Cx within the 2d cubes that touch x
such that for all y ∈ Cx, y2 6 x2. Hence∑

x≡i
exp(−Θn−1x2) 6

∑
x≡i,x6=0

exp(−Θn−1x2) + 1 6
∑

x∈Zd\{0}

∫
Cx

exp(−Θn−1y2)dy + 1

62d
∫
Rd

exp(−Θn−1y2dy) + 1 6 Θnd/2.
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3.3 Binomial estimates

Lemma 22. Let θ0 < 1. There is a universal constant cBin ∈ (0, 1) such that for
0 < θ 6 θ0, B ∼ B(m, θ), for −cBinθ 6 εm = ε 6 cBinθ

P(B = [m(θ + ε)]) =Θm−1/2 exp
(
−Θmε2

)
where the constants involved in Θ depend on θ0.

Proof. Let k = [m(θ + ε)]. By Stirling’s formula,

P(B = k) =Θ

√
m√

k
√
m− k

θk(1− θ)m−k mm

kk(m− k)m−k

=Θm−1/2 θk(1− θ)m−k√
(θ + ε)(1− θ − ε)

mm

(θm)k(m(1− θ))m−k
(
k
θm

)k ( m−k
m(1−θ)

)m−k
=Θm−1/2 1√

θ

(
1 +

ε

θ

)−k (
1− ε

1− θ

)k−m
=Θm−1/2θ−1/2 exp(γε,θ)

where for |ε| 6 θ/2

γε,θ =−m(θ + ε)(
ε

θ
− ε2

2θ2
+O(ε3/θ3))−m((1− θ)− ε)(− ε

1− θ
+

ε2

2(1− θ)2
+O(ε3))

=m
ε2

2θ
− mε2

θ
+O(mε3θ−2 +mε4θ−3)− mε2

2(1− θ)
− mε2

1− θ
+O(mε3 +mε4)

=
−mε2

2θ
− 3mε2

2(1− θ)
+O(mε3θ−2)

using ε 6 θ, hence for some C∣∣∣∣γε,θ − (
−mε2

2θ
− 3mε2

2(1− θ)
)

∣∣∣∣ 6 Cmε3θ−1

and for every C ′ > 0 there is c such that for |ε| < c, the right hand side is smaller than
C ′mε2θ−1, hence γε,θ = −Θmε2 for c sufficiently small and |ε| 6 c.

4 Variance estimates

Let X be some stationary Gaussian field on Rd with spectral measure µ and reduced
covariance function denoted by C. We study here the excursion set

Eu = {t ∈ Rd : X(t) > u}, u ∈ R,

and the statistic

Mγ
u =

∫
Rd

1{X(t)>0}γ(t)dt

where γ is some measurable window function, bounded with compact support. Define

γ̂(x) =

∫
Rd
eit·xγ(t)dt,x ∈ Rd,
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and γT (t) = γ(T−1t), T > 0. The nodal variance is

V γµ (T ) = Var(L d(MγT
0 )).

The most prominent example is the unit sphere indicator γd = 1{Bd(0,1)}(·), and in this

case γd is implicit in the notation V γ
d

µ = Vµ. Recall the notation

J3(ε) =
∑

n∈N odd

n−
3
2P(|Un| < ε)

where (Un)n is the random walk on Rd with increment law µ. Say that µ is Z−free if
P(Un = 0) = 0 for n ∈ N odd.

Theorem 23. Assume µ is Z−free and γ̂(t) > c1 > 0, t ∈ Bd(0, 4r) for some r > 0.

(i) Then for some c2 > 0, as T →∞,

c2T
2dJ3(rT−1)

i.o.
6 V γµ (T ). (18)

(ii) If in addition for some c3 < ∞, |γ̂(x)| 6 c3‖x‖−
d+1
2 as ‖x‖ → ∞, then for some

c4 <∞,

V γµ (T ) 6 c4(T 2dJ3(rT−1) + T d−1

∫ (T/r)d+1

1

J3(y−
1
d+1 )dy). (19)

(iii) If the hypotheses of (i) and (ii) and Proposition 25 below are satisfied, as T →∞,

V γµ (T ) = o(T 2d).

(iv) If µ has an atom, we have for u 6= 0 some finite c5, c6 > 0 such that

c5T
2d 6 Var(MγT

u ) 6 c6T
2d.

Example 24. For the unit sphere indicator, we have

γ̂d(x) = κd|x|−d/2Bd/2(|x|)

where Ba is the Bessel function of the first kind with parameter a and κd = L d(Bd(0, 1)).
In particular, γ̂d(x) ∼ κdΓ(d/2 + 1)−1 > 0 in 0 and

γ̂d(x) ∼ κd(2/π)1/2|x|−
d+1
2 cos(|x|+ ∆d)

as x → ∞, for some ∆d ∈ R. It is known [9] that the first zero of Ba, a > 1/2 is larger
than the first zero of B1/2, which is π , hence we can take r = 1

2 in the result above.

The terms on the right hand side of (19) have similar magnitude in the regular dio-
phantine case:

Proposition 25. Let ψ(q) = q−τL(q) be regular (Definition 1) and assume µ is of the

form (2) with ω that is ψ-BA. Let τ∗ = 1+d(m+1)
d+1 . Then as T →∞,

max

{
T 2dJ3(T−1), T d−1

∫ Td+1

1

J3(y−
1
d+1 )dy

}
6


ΘT d−1 if ψ(q) > q−τ

∗
log(q)1/d

ΘT d−1 ln(T ) if ψ(q) = q−τ
∗

ΘT 2dψ−1(T−1)−1−d(m+1) if τ > τ∗
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Remark 26. It is likely that the upper bound in T d−1 ln(T ) is sharp if ψ(q) = q−τ
∗
,

proving it rigourously would require a lower bound for v
(2)
T in the proof, which raises some

technical difficulties because of the cosine term.

Proof. According to (8) in Theorem 16-(i),

J3(ε) 6 Θψ−1(ε)−1−d(m+1), ε > 0,

which yields that T 2dJ3(T−1) admits an upper bound consistent with the claim.
To deal with the other term, assume without loss of generality that ψ is extended to

a smooth strictly non-increasing function z−τL(z) : [a,∞) → (0, 1] for some a > 1, such

that L′(z) = o(z−1L(z)). Make the change of variables z = ψ−1(y−
1
d+1 ), i.e. ψ(z)−d−1 =

y, Z = ψ−1(T−1) 6 Θψ−1(T−1),∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Td+1

a

ψ−1(y−
1
d+1 )−1−d(m+1)dy = Θ

∫ Z

Θ

z−1−d(m+1)(ψ(z)−d−1)′dz.

The hypotheses on ψ yield

(ψ(z)−d−1)′ =(d+ 1)(τz−τ−1L(z)− z−τL′(z))ψ(z)−d−2 = (d+ 1)(τz−1ψ(z)− z−τo(z−1L(z)))ψ(z)−d−2

∼z→∞(d+ 1)τz−1ψ(z)−d−1. (20)

In the case τ 6 τ∗, the previous two displays yield∫ Td+1

a

J3(y−
1
d+1 )dy 6 Θ

∫ Z

Θ

z−2−d(m+1)ψ(z)−(d+1)dz

and the integral converges if ψ(q) > q−τ
∗

ln(q)1/d, and if ψ(q) = q−τ
∗

it behaves in
ln(Z) = Θ ln(T ).

Let us turn to the case τ > τ∗. Let τ ′ ∈ (τ∗, τ), we have by (20) as z →∞

(z−1−d(m+1)ψ(z)−d−1)′ =z−1−d(m+1)(ψ(z)−d−1)′ − (1 + d(m+ 1))z−2−d(m+1)ψ(z)−d−1

>z−1−d(m+1)(ψ(z)−d−1)′ − 1 + d(m+ 1)

d+ 1
z−1−d(m+1)(ψ(z)−d−1)′

>z−1−d(m+1)(ψ(z)−d−1)′(1− τ∗
τ ′

)

which results in∫ Td+1

a

J3(y−
1
d+1 )dy 6

Θ

1− τ∗/τ ′
[z−1−d(m+1)ψ(z)−d−1]ZΘ = Θψ−1(T−1)−1−d(m+1)T d+1

which allows to conclude.

Proof of Theorem 23. The starting point is the following lemma, available for instance
partially in [3, Lemma 2].

Lemma 27. We have for every u ∈ R coefficients αn,u > 0, n ∈ N such that for two
standard gaussian variables X,Y with correlation ρ

Γu(ρ) := Cov(1{X>u},1{Y >u}) =

∞∑
n=0

αn,uρ
n =

1

2π

∫ ρ

0

1√
1− r2

exp

(
− u2

1 + r

)
dr (21)

in particular, Γ0(ρ) = arcsin(ρ) with α2n,0 = 0 and

α2n+1 := α2n+1,0 =

(
n
2n

)
4n(2n+ 1)

= Θn−3/2.

For u 6= 0, α2,u + α4,u > 0.
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Proof. The result is a consequence of the proof of [3, Lemma 2]. Denoting by Φ(k) the
k-th order derivative of the Gaussian distribution function, it is shown there that (21) is
true with

αk,u =
Φ(k)(u)2

k!
,

hence for instance α2,u = 0 only if u ∈ {0, 3}, and α4,3 > 0, which yields that for u 6= 0,
α2,u+α4,u > 0. For u = 0 we have the explicit decomposition of the arcsine function with

Γ0(ρ) = arcsin(ρ) =

∞∑
n=0

α2n+1ρ
2n+1 with α2n+1 =

(
2n
n

)
4n(2n+ 1)

∼n→∞
1√

πn(2n+ 1)
.

Let Un =
∑n
i=1Xi where the Xi are independent and identically distributed with law

µ. Recall the Fourier inversion formula

γ(t) = (2π)−d
∫
γ̂(t)eit·xdx, t ∈ Rd.

Denote by γ?2 the auto-convolution of γ with itself, and by µ∗(n) the n-fold convolution
of the probability measure µ with itself, which is the law of Un. We have by Lemma 27

Vµ(T ) =

∫
(Rd)2

Γu(C(t− s))γ(t/T )γ(s/T )dtds (22)

=

∫
(Rd)2

Γu(C(z))γ

(
z + t

2T

)
γ

(
t− z

2T

)
dtdz

=

∫
Rd

Γu(C(z))γ?22T (2z)dz

=
∑
n∈N

αn,u

∫
C(z)nγ?22T (2z)dz

=
∑
n∈N

αn,u

∫
µ∗(n)(dz)γ̂2T (2z)2dz using (1)

=
∑
n∈N

αn,u

∫
µ∗(n)(dz)(2T )2dγ̂(4Tz)2dz

=(2T )2d
∑
n∈N

αnE(γ̂(4TUn)2)

=22d(v
(1)
T + v

(2)
T )

where, with A1 = [0, r], A2 =]r,∞]

v
(i)
T = T 2d

∑
n∈N

αn,uE(γ̂(4TUn)21{‖TUn‖∈Ai}).

For the case u 6= 0, we simply have according to Lemma 27 α2,u + α4,u > 0, hence

Vµ(T ) > 22dv
(1)
T > T 2d(α2,uP(U2 = 0) + α4,uP(U4 = 0))γ̂d(0)2 > 0.

Let us now focus on the case u = 0, αn = αn,u = Θn−3/21{n odd}, and estimate v
(1)
T .

Remark first that since µ is Z-free, P(Un = 0) = 0 for n odd, and since by hypothesis
C > γ̂(t) > c > 0 on Bd(0, 4r) for some r ∈ (0, 1),

v
(1)
T =T 2d

∑
n odd

Θn−3/2P(‖Un‖ < rT−1) = ΘT 2dJ3(rT−1)
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hence (18) is proved.
For the second point, the second term satisfies

v
(2)
T 6T 2d

∑
n odd

Θn−3/2E(‖TUn‖−d−11{|TUn|>r})

6T 2d
∑
n odd

Θn−3/2

∫ r−d−1

0

P((T‖Un‖)−d−1 > y)dy

6ΘT 2dT−d−1
∑
n odd

n−3/2

∫ (T/r)d+1

0

P(‖Un‖ < y−
1
d+1 )dy

=ΘT d−1

∫ (T/r)d+1

1

J3(y−
1
d+1 )dy.

Point (iii) is a consequence of Proposition 25 and the fact that ψ−1 converges to 0 in 0.
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J. de théorie des nombres de Bordeaux, 26(2):385–397, 2014.
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