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Abstract Proximal methods are known to identify the underlying substructure
of nonsmooth optimization problems. Even more, in many interesting situations,
the output of a proximity operator comes with its structure at no additional cost,
and convergence is improved once it matches the structure of a minimizer. How-
ever, it is impossible in general to know whether the current structure is final
or not; such highly valuable information has to be exploited adaptively. To do
so, we place ourselves in the case where a proximal gradient method can identify
manifolds of differentiability of the nonsmooth objective. Leveraging this manifold
identification, we show that Riemannian Newton-like methods can be intertwined
with the proximal gradient steps to drastically boost the convergence. We prove
the superlinear convergence of the algorithm when solving some nondegenerated
nonsmooth nonconvex optimization problems. We provide numerical illustrations
on optimization problems regularized by `1-norm or trace-norm.

Keywords Nonsmooth optimization · Riemannian optimization · Proximal
Gradient · Identification · Partial Smoothness · Sparsity-inducing regularization

1 Introduction

Nonsmoothness naturally appears in various applications of optimization, e.g. in
decomposition methods in operations research [15] or in sparsity-inducing reg-
ularization techniques in data analysis [6]. In these applications, the nonsmooth

objective functions usually present a smooth substructure, which involves smooth
submanifolds on which the functions are locally smooth. To fix ideas, consider the
simple example of the `1 norm: though nonsmooth, it is obviously smooth around
any point when restricted to the vector space of points with the same support.
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Exploiting the underlying smooth substructure of objective functions to de-
velop second-order methods has been a subject of fruitful research in nonsmooth
optimization, pioneered by the developments around U-Newton algorithms [26]
and the notion of partial smoothness [28]. Let us mention the UV-Newton bundle
method of [32], and the recent k-bundle Newton method of [27]. Interestingly, these
Newton-type methods for nonsmooth optimization are connected to the standard
Newton methods of nonlinear programming (SQP) and to the Newton methods of
Riemannian optimization; see [33].

In this paper, we focus on a special situation where the smooth substructure
can be exploited numerically. We consider the nonsmooth optimization problem

min
x∈Rn

F (x) , f(x) + g(x) (P)

where f is a smooth differentiable function, and g is not everywhere differentiable
– but admits a simple proximal operator. More precisely, we assume that the prox-
imal operator of g outputs an explicit expression of the proximal point together
with a representation of the current active submanifold. Coming back to the ex-
ample of the `1-norm: its proximity operator puts exactly to 0 some coordinates
of the input vector after a comparison test; hence, the output has some sparsity
structure, which is known as a byproduct of the computation. More generally, this
situation covers a large class of applications, where g is used to enforce some prior
structure such as sparsity of vectors (when g is one of the `1, `0.5, `0-norms) or low
rank of matrices (when g is the nuclear norm); see e.g. [6].

Since g has a simple proximal operator, first-order methods to minimize F are
the (accelerated) proximal gradient algorithms; see [8, Chap. 10] for a general re-
views of these methods and their analysis. Interestingly, in nondegenerate cases,
the iterates produced by these algorithms eventually reach the optimal submani-
fold (ie. the manifold which contains the minimizer): it is the so-called identification

property of proximal algorithms, extensively studied in general settings; we refer
to [16], [37], [21], or [29]. For `1-norm regularization, this means that after a fi-
nite but unknown number of iterations the algorithm “identifies” the final set of
non-zero variables; see the pedagogical paper [23] for further discussions.

In the ideal case where we know that the iterates are on the optimal manifold,
one could switch to a more sophisticated method, e.g. updating parameters of first-
order methods as in [31], considering Riemannian Newton methods as in [17], or
other second-order schemes as in [30,24]. Unfortunately, even though we know the
current structure of the iterates and we know that they will identify the optimal
manifold in finite time, we never know if the current manifold is the optimal one.

We propose here a Newton acceleration1 of the proximal gradient algorithm
solving the nonsmooth optimization problem (P), that adaptively uses identifica-
tion. Our algorithm uses the same basic ingredients that work behind the scenes
for existing nonsmooth second-order algorithms (e.g. [32] and [27]): (i) nonsmooth
structure identification and (ii) efficient Newton-type methods to benefit from
faster convergence along this structure. However, we rely on the explicit proximity

1 We choose the term “Newton acceleration” to emphasize the similarity with the celebrated
Nesterov acceleration [34]. Indeed both methods add an acceleration step after the proximal
gradient iteration. But, unlike Nesterov’s method where the acceleration is provided by an in-
ertial step, the Newton acceleration comes from a second-order step on a smooth substructure,
as we detail in this paper.
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operator of g to benefit from exact structure identification, contrary to the approx-
imate identification of the above methods. In addition, we perform Riemannian
Newton steps on the identified manifold, while previous methods do not leverage its
tractable Riemannian nature. We present a convergence analysis showing superlin-
ear convergence of the resulting algorithm under some qualification assumptions –
but without prior knowledge on the final optimal submanifold. Finally, we provide
numerical illustrations showing the interests of the proposed Newton acceleration
on typical structure-inducing regularized problems (sparse logistic regression and
low-rank least-squares). Along the way, our study reveals results that have some
interest on their own, in particular: we refine the smoothness properties of the
proximal gradient operator around structured critical points; we formalize com-
plementary properties on line searches in Riemannian optimization; we also bring
a careful attention to the technical details induced by nonconvexity.

Let us finally note that the Newton acceleration of the proximal gradient that
we propose here should not be confused with proximal-Newton schemes such as
[25,10,5]. These methods essentially replace the gradient step by a (quasi-)Newton
step before applying a proximity operator. Hence, they do not explicitly use the
second order information of the function g brought by its nonsmooth structure,
which is instrumental in our developments.

The paper is organized as follows. First, in Section 2 we recall the useful no-
tions of Riemannian optimization and variational analysis. Then, we introduce
in Section 3 our template algorithm alternating a proximal gradient step with a
Riemannian update on the identified manifold. In Section 4, we specify the im-
plementation of efficient Riemannian Newton-type methods and illustrate their
performances in Section 5. The paper also contains three appendices with mate-
rial used in our proofs; some of these results are well-known and just recalled here,
but several others seem to be less-known or not precisely treated in the literature.

2 Preliminaries: definitions, recalls, and examples

In this section, we introduce the notions which will be central in our developments.
Our notation and terminology follow closely those of the monographs [2] for Rie-
mannian optimization and [36] for nonsmooth optimization. This section can be
skipped by readers familiar with these topics.

2.1 Recalls on Riemannian optimization

We briefly introduce below the tools of Riemannian optimization used in this
paper. We refer the reader to [2] and [14] for more extensive presentations. In the
rest of the paper, M denotes a submanifold of Rn or Rm×n.

Submanifolds. A subset M of Rn is said to be a p-dimensional C2-submanifold

of Rn around x̄ ∈ M if there exists C2 function ϕ : Rp → Rn such that ϕ maps
a neighborhood of 0 ∈ Rp to a neighborhood of x̄ ∈ M, that admits a smooth
(local) inverse, and which derivative at ϕ−1(x̄) = 0 is injective. A p-dimensional
C2-submanifold of Rn can alternatively be defined via a local equation, that is, a
C2 function Φ : Rn → Rn−p with a surjective derivative at x̄ ∈M that satisfies for
all x close enough to x̄: x ∈M⇔ Φ(x) = 0.
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A basic tool to investigate approximations on manifolds is notion of the smooth

curves. A smooth curve on M is a C2 application γ : I ⊂ R →M ⊂ Rn, where I
is an open interval containing 0. At each point x ∈ M, the tangent space, noted
TxM, can be defined as the velocities of all smooth curves passing by x at 0:

TxM ,
{
c′(0) | c : I →M is a smooth curve around 0 and c(0) = x

}
.

The tangent space is a p-dimensional space containing tangent vectors. Each tangent
space TxM is equipped with a scalar product 〈·, ·〉x : TxM × TxM → R, and the
associated norm ‖ · ‖x. In many cases, the tangent metric varies smoothly with
x, making the manifold Riemannian. In this paper, we use the ambient space
scalar product to define the scalar product on tangent spaces; we will thus drop
the subscript in the tangent scalar product and norm notations when there is no
confusion possible. Related to the tangent space, we will also consider the normal

space NxM at x ∈ M, defined as the orthogonal space to TxM in Rn, and the
tangent bundle manifold defined by:

TB ,
⋃
x∈M

(x, TxM).

Note also that both tangent and normal spaces at x ∈M admit explicit expressions
from derivatives of local parametrization ϕ or local equations Φ defining M:

TxM = Im Dϕ(0) = Ker DΦ(x) NxM = Ker Dϕ(0)∗ = Im DΦ(x)∗

A metric on M can be defined as the minimal length over all curves joining
two points x, y ∈M, ie. distM(x, y) = infc∈Cx,y

∫ 1

0
‖c′(t)‖c(t)dt, where Cx,y is the

set of [0, 1] →M smooth curves c such that c(0) = x, c(1) = y. The minimizing
curves generalize the notion of straight line between two points to manifolds. The
constant speed parametrization of any minimizing curve is called a geodesic.

Riemannian Gradients and Hessian. Let F : M → R, the Riemannian differ-

ential of F at x is the linear operator DF (x) : TxM → R defined by DF (x)[η] ,
d
dtF ◦ c(t)

∣∣
t=0

, where c is a smooth curve such that c(0) = x and c′(0) = η. In
turn, the Riemannian gradient gradF (x) is the unique vector of TxM such that,
for any tangent vector η, DF (x)[η] = 〈gradF (x), η〉. If gradF (x) exists, a first or-
der Taylor development can be formulated. Let x ∈M, η ∈ TxM and c denote a
smooth curve passing by x, with velocity η at 0; then, for t near 0,

F ◦ c(t) = F (x) + t〈gradF (x), η〉+ o(t).

Notions of derivation for vector fields and of acceleration for curves are used to
define second-order objects. Let a curve c : I →M and a smooth vector field Z on
c, ie. a smooth map such that Z(t) ∈ Tc(t)M for t ∈ I. The covariant derivative of Z

on the curve c, denoted D
dtZ : I → TB, is defined by D

dtZ(t) , projc(t)Z
′(t), where

Z′(t) denotes the derivative in the ambient space Rn and projx corresponds to the
orthogonal projector from Rn to TxM. The acceleration of a curve c is defined as
the covariant derivative of its velocity: c′′(t) , D

dtc
′(0).

The Riemannian Hessian of F at x along η is the linear operator HessF (x) :
TxM→ TxM defined by the relation HessF (x)[η] , D

dt gradF (c(t))
∣∣
t=0

, where c is

a smooth curve such that c(0) = x, c′(0) = η. Equivalently, we have 〈HessF (x)[η], η〉 =
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d2

dt2F ◦ γ(t)
∣∣∣
t=0

, where γ is a geodesic such that γ(0) = x, γ′(0) = η. A second or-

der Taylor development can now be formulated. Let x ∈M, η ∈ TxM, and c be a
smooth curve such that c(0) = x, c′(0) = η. Then, for t near 0,

F ◦c(t) = F (x)+ t〈gradF (x), η〉+ t2

2
(〈HessF (x)[η], η〉+〈gradF (x), c′′(0)〉) + o(t2).

If F : M→ R has a smooth extension on Rn, the Riemannian gradient and Hessian
can be computed from their Euclidean counterparts: for a smooth function F̄ :
Rn → R that coincides with F on M,

gradF (x) = projx(∇F̄ (x)), (2.1)

and, for Ḡ : Rn → Rn a smooth mapping that coincides with gradF on M,

HessF (x)[η] = projx (D Ḡ(x)[η]) . (2.2)

Algorithms on manifolds: retractions and convergence rates. Iterative Rie-
mannian methods require a way to produce curves on M given a point x and
a tangent vector η. A geodesic curve passing at (x, η), while attractive as the
generalization of the straight line, has a prohibitive computational cost. We thus
retractions, i.e. approximations of it, defined on a manifold M as a smooth map
R : TB →M such that

Rx(0) = x and D Rx(0) : TxM→ TxM is the identity map: DRx(0)[v] = v,

where, for each x ∈ M, Rx : TxM → M is defined as the restriction of R at
x, so that Rx(v) = R(x, v). A second-order retraction is a retraction R such that,
for all (x, η) ∈ TB, the curve c(t) = Rx(tη) has zero acceleration at 0: c′′(0) = 0.
Thus t 7→ Rx(tη) is a practical curve passing by (x, η) at 0, and provides a similar
development as above: for t near 0,

F ◦Rx(tη) = F (x) + t〈gradF (x), η〉+ t2

2
〈HessF (x)[η], η〉+ o(t2‖η‖2). (2.3)

Finally, the convergence rates on manifolds are defined as follows. A sequence
of points (xk) converges (Q-)linearly to some point x̄ ∈M if there exist an integer
K > 0 and a constant q ∈ (0, 1) such that, for all k ≥ K, there holds

distM(xk+1, x̄) ≤ q distM(xk, x̄).

The sequence converges with order at least p if there exists an integer K > 0 and a
constant q ∈ (0, 1) such that, for all k ≥ K, there holds

distM(xk+1, x̄) ≤ q distM(xk, x̄)p.

The convergence is superlinear when p > 1 and quadratic when p = 2.

Examples of submanifolds and related objects. In this paper, we will illustrate
our developments with two sparsity-inducing norms (see Section 2.3) involving
respectively the two following manifolds.
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Example 2.1 (Fixed coordinate-sparsity subspaces) We consider the submanifold

MI , {x ∈ Rn : xi = 0 for i ∈ I}, (2.4)

where I ⊂ {1, . . . , n}. This manifold is actually a vector space and all related
notions have simple expressions, as follows.

The tangent space at any point identifies with the manifold itself: TxMI = MI .
The orthogonal projection of a vector d ∈ Rn on the tangent space writes projx(d),
where [projx(d)]i is di if i 6∈ I, and null otherwise. The map Rx(η) = x+ η defines
a second-order retraction. Given a function F defined on the ambient space, the
Riemannian gradient and Hessian-vector product of the restriction of F to MI are
obtained from their Euclidean counterparts by a simple projection: for x, η ∈ TB,

gradF (x) = projx(∇F (x)) HessF (x)[η] = projx(∇2F (x)[η]).

Example 2.2 (Fixed rank matrices) We consider the manifold of fixed-rank matrices

Mr , {x ∈ Rm×n : rank(x) = r}, (2.5)

for which we refer to [14, Sec. 7.5]. A rank-r matrix x ∈ Mr is represented as
x = UΣV >, where U ∈ Rm×r, V ∈ Rn×r, Σ ∈ Rr×r such that U>U = In,
V >V = Im and Σ is a diagonal matrix with positive entries. Such a decomposition
can be obtained by computing the singular value decomposition of the matrix x.
Using this representation, a tangent vector η ∈ TxMr writes

η = UMV > + UpV
> + UV >p ,

where M ∈ Rr×r, Up ∈ Rm×r, Vp ∈ Rn×r such that U>Up = 0, V >Vp = 0.
The orthogonal projection of a vector d ∈ Rm×n onto TxMr writes projx(d) =

d−U>dV . Given a function F defined on the ambient space, a Riemannian gradient
and Hessian-vector product of F restricted to Mr can be obtained from their
Euclidean counterparts: for x, η ∈ TB, and with P>U = Im−UU>, P>V = In−V V >.

gradF (x) = projx(∇F (x))

HessF (x)[η] = projx(∇2F (x)[η]) +
[
P>U ∇F (x)VpΣ

−1
]
V > + U

[
P>V ∇F (x)>UpΣ−1

]>
.

2.2 Recalls on nonsmooth optimization

We review the basic notions of variational analysis used in this paper, following
the monograph [36]. For this section, g : Rn → R̄ = R∪{+∞} is a proper function.

Subgradients. Consider a point x̄ with g(x̄) finite. The set of regular subgradients

∂̂g(x̄) ,
{
v : g(x) ≥ g(x̄) + 〈v, x− x̄〉+ o(‖x− x̄‖) for all x ∈ Rn

}
is closed and convex, but the subdifferential mapping ∂̂g(·) may not be outer semi-
continuous [36, Th. 8.6, Prop. 8.7]. To overcome this problem, the set of (general

or limiting) subgradients is defined as

∂g(x̄) ,
{

lim
r
vr : vr ∈ ∂̂g(xr), xr → x̄, g(xr)→ g(x̄)

}
.
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The limiting subdifferential is by design outer semi-continuous:

lim sup
x→x̄

∂g(x) = {u : ∃xr → x̄,∃ur → u with ur ∈ ∂g(xr)} ⊂ ∂g(x̄),

which is an attractive property to study the properties of sequences of points
whose subgradients converge. We say that a function is (Clarke) regular at x̄ if the
regular and limiting subdifferentials at x̄ coincide [36, Def. 7.25, Cor. 8.11]. This
is notably the case for convex functions where the two above definitions coincide
with the convex subdifferential [36, Prop. 8.12].

Optimality conditions and critical points. The subdifferential allows to derive
optimality conditions: for a local minimizer x̄ of F , we have 0 ∈ ∂F (x̄). For the
objective function of (P), this writes

0 ∈ ∇f(x̄) + ∂g(x̄) or equivalently −∇f(x̄) ∈ ∂g(x̄).

A point satisfying these conditions is called a critical point. The analysis of the al-
gorithms of this paper will provide convergence guarantees towards critical points.

Proximity operator. A central tool to tackle non-differentiable functions is the
proximity operator. For γ>0 and a function g; it is defined as the set-valued mapping

proxγg(y) , argmin
u∈Rn

{
g(u) +

1

2γ
‖u− y‖2

}
.

Since this operator will be at the core of our future developments, we will assume

that it is non-empty for all y. Note that this is a reasonable assumption since it is
satisfied as soon as g is lower-bounded2, which is trivially verified by our func-
tions of interest (see Section 2.3). Though computing proximal points is in general
difficult, it is easy for some relevant cases as the `1-norm or the trace-norm; see
Section 2.3.

Prox-regularity. A function g is prox-regular at a point x̄ for a subgradient v̄ ∈
∂g(x̄) if g is finite, locally lower semi-continuous at x̄, and there exists r > 0 and
ε > 0 such that g(x′) ≥ g(x)+〈v, x′−x〉− r2‖x

′−x‖2 whenever v ∈ ∂g(x), ‖x−x̄‖ < ε,
‖x′− x̄‖ < ε, ‖v− v̄‖ < ε and g(x) < g(x̄) + ε. When this holds for all v̄ ∈ ∂g(x̄), we
say that g is prox-regular at x̄ [36, Def. 13.27].

This property allows to have local Lipschitzness of the proximal operator as
well as its characterization by first-order optimality conditions; see [22, Th. 4] and
Lemma A.1. Specifically, we will use that if g is r-prox-regular at x̄, then, for any
γ < 1/r, proxγg(y) is single-valued and Lipschitz continuous for any y near x̄+ γv̄

where v̄ ∈ ∂g(x̄) and x̄ = proxg/r(x̄ + v̄/r). Furthermore, in this neighborhood,

it is uniquely determined by the relation x = proxγg(y) ⇔
y−x
γ ∈ ∂g(x), which

characterizes proximal maps using first-order optimality conditions.

2 The weaker assumption of prox-boundedness (ie. g + r‖ · ‖2 is bounded below for some r)
implies that proxγg(y) is non-empty when γ is taken sufficiently small; see [36, Chap. 1.G].
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2.3 Running examples

Example 2.3 (`1 norm) In the context of Example 2.1, we consider the `1 norm
defined on Rn as ‖x‖1 =

∑n
i=1 |xi|. This function is convex, thus prox-regular at

every point with r = 0. Its proximity operator admits a closed form:

[proxγ‖·‖1(y)]i =


yi + γ if yi < −γ
0 if − γ ≤ yi ≤ γ
yi − γ if yi > γ

which naturally gives sparse outputs. In other words, x = proxγ‖·‖1(y) lies on MI

(see (2.4)) where I is the complementary of support of x. Observe also that the
restriction of ‖ ·‖1 to the manifold MI is locally smooth. The `1 norm thus admits
a Riemannian gradient and Hessian at point x:

grad ‖ · ‖1(x) = sign(x) and Hess ‖ · ‖1(x) = 0,

where sign(x) ∈ {−1, 0, 1} denotes the sign of x, null when x = 0.

Example 2.4 (nuclear norm) Following the notation of Example 2.2, we consider

the nuclear norm, defined on Rm×n as ‖x‖∗ =
∑rank(x)
i=1 Σii, where Σ denotes the

diagonal term of the singular value decomposition of x. This function is convex,
and thus prox-regular at every point with r = 0. Its proximity operator admits a
closed form: for matrix y (= UΣV >),

proxγ‖·‖∗(y) = U(Σ − γ)+V
>,

where the coefficient (i, j) of (Σ − γ)+ is defined as max(Σij − γ, 0). Thus, x =
proxγ‖·‖∗(y) has low rank, by construction. Said otherwise, x lies on Mr (see (2.5))
where r = rank(Σ − γ)+. Observe also that the restriction of the nuclear norm to
the manifold Mr is locally smooth, and thus admits a Riemannian gradient and
Hessian at point x: denoting η = UMV >+UpV

>+UV >p ∈ TxMr a tangent vector,

grad ‖ · ‖∗(x) = UV >

Hess ‖ · ‖∗(x)[η] = U
[
F̃ ◦ (M −M>)

]
V > + UpΣ

−1V > + UΣ−1V Tp ,

where ◦ denotes the Hadamard product and F̃ ∈ Rr̄×r̄ is such that F̃ij = 1/(Σjj +
Σii) if Σjj 6= Σii, and F̃ij = 0 otherwise. This statement is proved in Appendix C.2.

3 General proximal algorithm with Riemannian acceleration

As mentioned in the introduction and in the previous examples, the output of a
proximity operator often comes with the knowledge of the current manifold on
which it lives. In this section, we leverage this ability to an algorithmic advantage
by reducing our working space to the identified structure. “Smooth” structures (in-
volving smooth submanifolds and smooth restrictions on it) are of special interest
and open the way to Newton acceleration.

Let us start by specifying the blanket assumptions on the problem (P). These
assumptions are mostly common except the third point which directly comes from
our idea of using the proximal operator both for the optimization itself and as an
oracle for the current structure of the iterates.
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Assumption 1. The functions f and g are proper and

i) f is C2(Rn) with an L-Lipschitz continuous gradient;

ii) g is lower semi-continuous;

iii) proxγg is non-empty on Rn for any γ > 0;

iv) F (x) = f(x) + g(x) is bounded below.

In this setup, we propose a general algorithm (Algorithm 1) which consists
in, first, performing a proximal gradient step xk ∈ proxγg(yk−1 − γ∇f(yk−1))
that provides both the current point xk and the manifold Mk where it lies, and,
second, carrying out a Riemannian optimization update ManAccMk

on the current
manifold. This algorithm is general in the sense that we do not precise for now
what is the Riemannian step ManAcc.

We start in Section 3.1 with a technical result about the local smoothness of the
proximal gradient operator. In Section 3.2, we analyze the identification property
of this algorithm. In Section 3.3, we study how Riemannian methods with local
superlinear convergence propagate their rate to Algorithm 1. We will investigate
later in Section 4 the Riemannian Newton acceleration falling into this scheme.

Algorithm 1 General structure exploiting algorithm

Require: Pick x0 arbitrary, γ < 1/L.
1: repeat
2: Compute xk ∈ proxγg(yk−1 − γ∇f(yk−1)) and get Mk 3 xk
3: Update yk = ManAccMk

(xk) on the current manifold
4: until stopping criterion

3.1 Smoothness and localization of the proximal gradient

The results of this section are built on g being a partly smooth function; see [28].

Definition 3.1 (partial smoothness) A function g is (C2-)partly smooth at a point
x̄ relative to a set M containing x̄ if M is a C2 manifold around x̄ and:

– (smoothness) the restriction of g to M is a C2 function near x̄;
– (regularity) g is (Clarke) regular at all points x ∈M near x̄, with ∂g(x) 6= ∅;
– (sharpness) the affine span of ∂g(x̄) is a translate of Nx̄M;
– (sub-continuity) the set-valued mapping ∂g restricted to M is continuous at x̄.

Under this assumption, we show in the next theorem that the proximal gra-
dient smoothly locates active manifolds: if some input ȳ is mapped onto M, then
the proximal gradient is M-valued and C1 around ȳ. This result is based on the
sensitivity analysis of partly smooth functions [28, Sec. 5]. The proof extends and
refines the rationale of [17, Th. 28] and [35, Th. 4.4] that deal with the proximity
operator. We use this extension to allow for a full stepsize range of (0, 1/r) in the
proximal gradient around any point x̄.

Theorem 3.1 (Proximal gradient points smoothly locate manifolds) Let f

be a C2 function on Rn and g a lower semi-continuous function on Rn. Suppose that

g is both r-prox-regular at x̄ and partly-smooth relative to M at x̄.

Take γ, γ̄ such that 0 < γ < γ̄ ≤ 1/r and x̄ = proxγ̄g(ȳ − γ̄∇f(ȳ)). If
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i) 1
γ (ȳ − x̄)−∇f(ȳ) ∈ ri ∂g(x̄) (the relative interior of the subdifferential at x̄);

ii) either a) γ is sufficiently close to γ̄, or b) ȳ is sufficiently close to x̄;

then, the proximal gradient y 7→ proxγg(y − γ∇f(y)) is C1 and M-valued near ȳ.

Proof. Adopting the same reasoning as in [28, Sec. 5] and [17, Sec. 4.1], we consider
the function

ρ : Rn ×Rn → R
(x, y) 7→ g(x) + 1

2γ ‖x− y + γ∇f(y)‖2,

and denote by ρy = ρ(·, y). Computing the proximal gradient proxγg(y − γ∇f(y))
can then be seen as minimizing the parametrized function ρy.
Step 1. As a first step, we study the minimizers of ρy restricted to M, for y near ȳ.
We consider the parametric manifold optimization problem, for y near ȳ:

min
x∈M

ρy(x). (PM(y))

Since g is C2-partly-smooth relative to M and f is C2(Rn), ρy is twice continuously
differentiable on M. Moreover, the r-prox-regularity gives easily (see Lemma A.2)
that ρȳ is lower-bounded by ( 1

γ − r)‖ · −x̄‖
2/2 on a neighborhood of x̄ in Rn and,

a fortiori, in M. From usual rationale (see e.g. [14, Chap 4.2, 6.1]), this implies

grad ρȳ(x̄) = 0 Hess ρȳ(x̄) �
(1

γ
− r
)
I � 0,

which are the conditions to apply the implicit functions theorem, as follows.
We consider the equation Φ(x, y) = 0, for x, y near x̄, ȳ, where Φ : M×Rn → TB

is defined as Φ(x, y) = grad ρy(x). This function is continuously differentiable on a
neighborhood of (x̄, ȳ), and its differential relative to x̄ at that point, Hess ρȳ(x̄),
is invertible. The implicit function theorem thus grants the existence of neigh-
borhoods Nx̄, Nȳ of x̄, ȳ in M, Rn, and a continuously differentiable function
x̂ : Nȳ → Nx̄ such that, for any y in Nȳ, Φ(x̂(y), y) = grad ρy(x̂(y)) = 0. Actually,
x̂(y) is a strong minimizer of ρy on M for y close enough to ȳ. Indeed, the mapping
x̂ is continuous on Nȳ, so that y 7→ Hess ρy(x̂(y)) is also continuous there and the
property Hess ρȳ(x̂(ȳ)) � 0 extends locally around ȳ.
Step 2. As a second step, we turn to show that the minimizer x̂(y) of ρy on M is
actually a strong critical point of ρy in Rn [28, Def. 5.3], and thus the proximal
gradient of point y. More precisely, we claim that, for y near ȳ and x = x̂(y), there
holds 0 ∈ ri ∂ρy(x), that is

1

γ
(y − x)−∇f(y) ∈ ri ∂g(x).

This property holds at (x̄, ȳ) by assumption. By contradiction, assume there
exist sequences of points (yr) with limit ȳ, (xr) = (x̂(yr)) with limit x̄ = x̂(ȳ) and
(hr) of unit norm ‖hr‖ = 1 such that for all r, hr separates 0 from ∂ρyr (xr):

inf
h∈∂ρyr (xr)

〈hr, h〉 ≥ 0.

Since (hr) is bounded, a converging subsequence can be extracted from it, let h̄
denote its limit. At the cost of renaming iterates, we assume that limr→∞ hr = h̄.
The above property still holds at the limit r → ∞. Indeed, let ū ∈ ∂ρȳ(x̄). Since
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g is partly smooth, the mapping (x, y) ∈ Nx̄ × Nȳ 7→ ∂ρy(x) = ∂g(x) + 1
γ (x − y)

is continuous. Therefore, there exists a sequence (ur) such that ur ∈ ∂ρyr (xr) and
limr→∞ ur = ū. We have for all r: 〈ur, hr〉 ≥ 0, which yields at the limit 〈ū, h̄〉 ≥ 0.
Thus h̄ separates 0 from ∂ρȳ(x̄), which contradicts our assumption.
Conclusion. We thus have a continuously differentiable function x̂ defined on a
neighborhood of ȳ such that i) x̂(ȳ) = x̄, ii) x̂(y) is a strong minimizer of ρy on
M, iii) 0 ∈ ri ∂ρy(x̂(y)).

This last point tells us that (y − x̂(y))/γ − ∇f(y) ∈ ∂g(x̂(y)). The character-
ization of proximity by the optimality condition (Lemma A.1) gives that x̂(y) =
proxγg(y − γ∇f(y)) for y close enough to ȳ.

M

x̄

x̄+ 1

r∂g(x̄)

Tx̄M

x̄−
1

r∇f(x̄)

proxg/r

Fig. 1: Illustration of a r-structured critical point. Point i) is illustrated by the blue arrow, and
point ii) implies that the red cross is in the interior of the black segment. Partial smoothness
appears in the fact that the black segment is perpendicular to the tangent plane of M at x̄.

3.2 Structure identification

Theorem 3.1 captures the localization properties of the proximal gradient operator.
It also enables us to precisely define a condition under which a point can be local-
ized. We formalize it in the definition of r-structured critical points, an illustration
of which is depicted on Fig. 1.

Definition 3.2 A point x̄ of a C2 submanifold M is a r-structured critical point
for (f, g) if we have:

i) proximal gradient stability: x̄ = proxg/r(x̄− 1/r∇f(x̄)) ;
ii) qualification condition: 0 ∈ ri(∇f + ∂g)(x̄);
iii) prox-regularity: g is r-prox-regular at x̄;
iv) partial smoothness: g is partly-smooth at x̄ with respect to M.

While ii),iii),iv) are standard in the literature (see e.g. [17]), i) is not always
explicited (an exception is for the notion of identifiability in [21]). It is directly
verified when g is convex (for any r > 0), but this is not the case when g is
nonconvex.3

3 The following example shows that in the nonconvex setting, ii) and iii) do not necessarily
imply i). Take f null and g as follows, then the proximity operator of g at 0 writes:

g(x) =


x2/2 if |x| ≤ 1

1− 3x/2 if x ≥ 1

1 + 3x/2 if x ≤ −1

, proxγg(0) =


0 if γ ∈ (0, 8/9)

{−3γ/2, 0, 3γ/2} if γ = 8/9

{−3γ/2, 3γ/2} if γ > 8/9.
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Using this notion and Theorem 3.1, we get the precise identification result of
the proximal gradient algorithm, that we need in the forthcoming analysis.

Corollary 3.1 (Identification) Let f be a C2 function on Rn and g a lower semi-

continuous function on Rn. Take x̄ ∈M a r-structured critical point for (f, g). Then,

for any γ ∈ (0, 1/r), if the sequence (yk) satisfies yk → x̄, then xk , proxγg(yk −
γ∇f(yk)) ∈M for k large enough.

Proof. The notion of r-structured critical point allows us to apply Theorem 3.1
with x̄ = ȳ ∈M and γ̄ = 1/r. So we get that, for any γ ∈ (0, 1/r), the proximal
gradient map y 7→ proxγg(y− γ∇f(y)) is C1 and M-valued near x̄. Since its input
(yk) converges to x̄, the proximal gradient mapping reaches the neighborhood in
finite time, which guarantees that (yk) are M-valued.

3.3 Superlinear convergence

Using the structure identification result above, we can guarantee that our method
benefits from superlinear convergence, provided that the considered Riemannian
method is superlinearly convergent locally around a limit point.

Theorem 3.2 Let Assumption 1 hold and take γ ∈ (0, 1/L), where L is the Lipschitz

constant for ∇f . Assume that Algorithm 1 generates a sequence (yk) which admits at

least one limit point x̄ such that:

i) x̄ ∈M is a r-structured critical point for (f, g) with r < 1/γ;

ii) ManAccM has superlinear convergence rate of order 1 + θ ∈ (1, 2) near x̄ in M.

Then, after some finite time:

a) the full sequence (xk) lies on M;

b) xk converges to x̄ superlinearly with the same order as ManAcc:

distM(xk+1, x̄) ≤ c distM(xk, x̄)1+θ for some c > 0. (3.1)

Proof. Let us note T(y) = proxγg(y − γ∇f(y)) for y ∈ Rn. The part i) of the as-
sumptions enables us to show the existence of some neighborhood of x̄ on which the
proximal gradient operation is M-valued and Lipschitz continuous. More precisely,
Theorem 3.1 implies that there exists δ1 > 0 and C > 0 such that,

T(y) ∈M and ‖T(y)− T(x̄)‖ ≤ C‖y − x̄‖ for all y in B(x̄, δ1).

Now, if y belongs to M, we get that there exists ε1 > 0 such that for any y in
BM(x̄, ε1), T(y) ∈M; but in addition, the Euclidean Lipschitz continuity can be
translated into a Riemannian one (see Lemma B.2) since for some δ > 0,

(1− δ)distM(T(y), x̄) = (1− δ)distM(T(y),T(x̄)) ≤ ‖T(y)− T(x̄)‖
≤ C‖y − x̄‖ ≤ C(1 + δ)distM(y, x̄) (3.2)

The function g is 1-prox-regular at 0, there holds 0 ∈ ri ∂g(0) = {0}, and yet 0 is not a fixed
point of the proximal operator with stepsizes close to 1.
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Hence, there is q1 > 0 such that for any y in BM(x̄, ε1)

distM(T(y), x̄) = distM(T(y),T(x̄)) ≤ q1 distM(y, x̄). (3.3)

Then, the part ii) of the assumptions gives us the existence of ε2, q2 > 0 and
θ ∈ (0, 1) such that, for any x in BM(x̄, ε2),

distM(ManAccM(x), x̄) ≤ q2 distM(x, x̄)1+θ. (3.4)

Let us now take any x ∈ BM(x̄, ε) where ε = min(ε1, ε2, (ε1/q2)
1

1+θ , (q2q1)−
1
θ ):

(i) Since x ∈ BM(x̄, ε2), the manifold update (3.4) yields

distM(ManAccM(x), x̄) ≤ q2 distM(x, x̄)1+θ ≤ q2 ε1+θ ≤ ε1.

(ii) As ManAccM(x) lies in BM(x̄, ε1), the proximal gradient update (3.3) applied
to y = ManAccM(x) gives

distM(T(ManAccM(x)), x̄) ≤ q1distM(ManAccM(x), x̄)

≤ q1q2 distM(x, x̄)1+θ ≤ q1q2 εθdistM(x, x̄). (3.5)

Since q2q1ε
θ ≤ 1 by construction, this gives

distM(T(ManAccM(x)), x̄) ≤ distM(x, x̄) for any x ∈ BM(x̄, ε). (3.6)

We have thus proved the existence of a neighborhood BM(x̄, ε) of x̄ in M which is
stable for an iteration of Algorithm 1 and over which one iteration has a superlinear
improvement of order 1 + θ (by (3.5)).

Finally, since x̄ is a limit point of (yk), there exists K < ∞ such that yK ∈
B(x̄, (1− δ)ε/C). Besides, (3.2) tells us that distM(T(yK), x̄) ≤ ε and thus xk and
yk belong to BM(x̄, ε) for all k > K by (3.6). We conclude that xk+1 = T(yk) ∈M
for all k ≥ K, and, using (3.5), that we have (3.1) with c = q1q2, for all k > K.

4 Newton acceleration

In this section, we investigate the possibilities of manifold acceleration within Al-
gorithm 1. We show in Sections 4.2 and 4.3 how to use Riemannian (truncated)
Newton accelerations within our framework and derive superlinear/quadratic con-
vergence guarantees. A technical difficulty to ensure global convergence when in-
terlacing proximal gradient updates with Riemannian Newton accelerations is to
guarantee some functional decrease. Thus, we first study in Section 4.1 the use of
line search for ManAccM in our context.
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4.1 Ensuring functional descent while preserving local rates: line search

We use in the following convergence proofs three properties of ManAccM: it should
produce an update that lives on M, enjoy a superlinear local convergence rate, and
not degrade function value. For this last point, we consider a simple line search and
we prove that, under mild assumptions, it helps to find a point which decreases
function value, and retains the favorable local properties. Surprisingly, this result
does not appear in the standard references on Riemannian optimization. We pro-
vide here the necessary developments inspired from the classical monograph [19].

Standing at point x ∈M with a proposed direction η ∈ TxM, a stepsize α > 0
is acceptable if it satisfies the following Armijo condition

F (Rx(αη)) ≤ F (x) +m1α〈gradF (x), η〉, for 0 < m1 < 1/2. (4.1)

The line search employs a second-order retraction Rx, e.g. the exponential map, a
projection retraction [3], or any other second-order retraction [14].4 The conditions
under which stepsizes satisfying the Armijo rule exist are discussed in [19, Sec 6.3],
the following lemma can then be derived.

Lemma 4.1 Let Assumption 1 hold and consider a manifold M equipped with a re-

traction R and a pair (x, η) ∈ TB. If F is differentiable on M at x, 〈gradF (x), η〉 < 0,

and m1 < 1, then there exists α̂ > 0 such that any step size α ∈ (0, α̂) is acceptable by

the Armijo rule (4.1).

Proof. We adapt a part of the proof of [19, Th. 6.3.2] for the Armijo rule and the
Riemannian setting. Since m1 < 1/2, for any α sufficiently small there holds

F ◦Rx(αη) ≤ F ◦Rx(0) +m1 D (F ◦Rx) (0)[αη] = F (x) +m1α〈gradF (x), η〉.

Since F is bounded below, there exists a smallest α̂ such that F (Rx(α̂η)) = F (x)+
m1α̂〈gradF (x), η〉. Thus all stepsizes in (0, α̂) are acceptable by (4.1).

In addition, a line search performed near a minimizer with a Newton direction
should accept the unit stepsize, so that a full step may be taken. This is the case
when the Riemannian Hessian around this minimizer is positive definite as stated
by the next lemma, which is a direct corollary of Theorem B.1.

Lemma 4.2 Let Assumption 1 hold and consider a manifold M equipped with a re-

traction R, a point x? ∈ M and a pair (x, η) ∈ TB. Assume that F is twice differ-

entiable on M near a strong local minimizer x? on M, that is HessF (x?) is posi-

tive definite. If the direction η brings a superlinear improvement towards x?, that is

distM(Rx(η), x?) = o(distM(x, x?)) as x→ x?, and 0 < m1 < 1/2, then η is accept-

able by the Armijo rule (4.1) with unit stepsize α = 1.

In the following, we will consider a backtracking line search for finding an ac-
ceptable stepsize α: the unit stepsize is first tried, and then the search space is
reduced geometrically. In practice, we use exactly [19, Alg. A6.3.1], which features
polynomial interpolation of F in the search space.

4 Indeed, in many applications of Riemannian optimization, computing geodesics and the
exponential map can be costly and then retractions provide an efficient alternative. For this
reason, we consider here second-order retractions [2,14].
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4.2 Riemannian Newton & quadratic convergence

We construct a manifold update based on the Riemannian Newton method [2,
Chap. 6], which is the simplest method with a local quadratic convergence. It
consists in finding d ∈ TxM that minimizes the second order model (2.3) of F at
point x ∈M, or equivalently that solves Newton equation; see [14, Sec. 6.2].

Algorithm 2 ManAcc-Newton

Require: Manifold M, point x ∈M
1: Find d in TxM that solves

gradF (x) + HessF (x)[d] = 0 (Newton equation)

2: Find α satisfying the Armijo condition (4.1) with direction d
3: return y = Rx(αd)

Theorem 4.1 Let Assumption 1 hold and take γ ∈ (0, 1/L). Consider the sequence of

iterates (xk) generated by Algorithm 1 equipped with the Riemannian Newton manifold

update (Algorithm 2). If HessF (xk) is positive definite at each step, then all limit

points of (xk) are critical points of F and share the same functional value.

Furthermore, assume that the sequence (yk) admits a limit point x? such that

i) x? ∈M is a r-structured critical point for (f, g) with r < 1/γ;

ii) HessM F (x?) � 0 and HessM F is locally Lipschitz around x?.

Then, after some finite time,

a) the sequence (xk) lies on M;

b) xk converges to x? quadratically: for large k, there exists c > 0 such that

distM(xk+1, x
?) ≤ c distM(xk, x

?)2.

Proof. As the Riemannian Hessian is assumed to be positive definite, Newton’s
direction is a descent direction:

〈gradF (xk), dk〉 = −〈gradF (xk),HessF (xk)−1 gradF (xk)〉 < 0.

The Riemannian Newton manifold step is therefore well-defined, and the line
search terminates by Lemma 4.1, so that the manifold update is well-defined and
provides descent (F (yk) ≤ F (xk)).

Now, since the proximal gradient update provides a descent (see [8, Lem. 10.4]),

F (xk+1) ≤ F (yk)− 1− γL
2γ

‖xk+1 − yk‖2 ≤ F (xk)− 1− γL
2γ

‖xk+1 − yk‖2. (4.2)

The sequence (F (xk)) is thus non-increasing and lower-bounded, therefore it con-
verges. Besides, any accumulation point of (xk) is a critical point of F . Indeed,
summing equation (4.2) for k = 1, . . . , n yields:

1− γL
2γ

n∑
k=1

‖xk+1 − yk‖2 ≤ F (x1)− F (xn+1) ≤ F (x1)− inf F < +∞.
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Since dist(0, ∂F (xk+1)) ≤ Lγ+1
γ ‖xk+1 − yk‖ (see e.g. the proof of [12, Prop. 13]),

we have that dist(0, ∂F (xk+1)) converges to 0. The outer-semi continuity of the
limiting subdifferential then yields criticality of accumulation points.

Now we apply the local convergence of Riemannian Newton [2, Th. 6.3.2]:
assumption ii) ensures that the Riemannian Newton direction d computed in step 1
of Algorithm 2 provides a quadratic improvement on a neighborhood of x? on M.
Moreover, the line search returns the unit-stepsize after some finite time: α = 1
is tried first, and is acceptable for directions providing superlinear improvement
by Lemma 4.2. Thus the whole Riemannian Newton update provides quadratic
improvement after some finite time. Using this and assumption i), Theorem 3.2
applies and yields the results.

This theorem states that alternating proximal gradient steps and Riemannian
Newton steps converges quadratically to structured points with virtually the same
assumptions the Euclidean Newton method. However, the two standard issues of
Newton’s method still hold in our setting: at each iteration, a linear system has
to be solved to produce the Newton direction; and this direction does not always
provide descent (without positive definiteness of the Hessian). We show in the next
section that truncated versions overcome these issues also in our framework.

4.3 Riemannian Truncated Newton & superlinear convergence

We consider a manifold update based on a truncated Newton procedure [18]. (Rie-
mannian) Truncated Newton consists in solving (Newton equation) partially by
using a (Riemannian) conjugate gradient procedure so that whenever the reso-
lution of (Newton equation) is stopped, the resulting direction provides descent
on the function. The quality of the truncated Newton direction is controlled by a
parameter η ∈ [0, 1) which bounds the ratio of residual and gradient norms:

‖ gradF (x) + HessF (x)[d]‖ ≤ η‖ gradF (x)‖. (Inexact Newton eq.)

Algorithm 3 ManAcc-Newton-CG

Require: Manifold M, point x ∈M, convergence defining parameter θ ∈ (0, 1]
1: Let η = ‖ gradF (x)‖θ
2: Find d that solves (Inexact Newton eq.)
3: Find α satisfying the Armijo condition (4.1) with direction d
4: return y = Rx(αd)

Theorem 4.2 Let Assumption 1 hold and take γ ∈ (0, 1/L). Consider the sequence of

iterates (xk) generated by Algorithm 1 equipped with the Riemannian Truncated Newton

manifold update (Algorithm 3). Then all limit points of (xk) are critical points of F

and share the same function value.

Furthermore, assume that sequence (yk) admits a limit point x? such that

i) x? ∈M is a r-structured critical point for (f, g) with r < 1/γ;

ii) HessM F (x?) � 0 and HessM F is locally Lipschitz around x?.

iii) we take ηk = O(‖ gradF (xk)‖θ), for some θ ∈ (0, 1].
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Then, for k large enough, the full sequence (xk) lies on M, and xk converges to x?

superlinearly with order 1 + θ: for large k, there exist c > 0,

distM(xk+1, x
?) ≤ c distM(xk, x

?)1+θ.

Proof. The direction provided by (Inexact Newton eq.) is a descent direction by
Lemma B.3, the line search terminates by Lemma 4.1, so that the updates are
well-defined and provide descent. Thus, as in the proof of Theorem 4.1 we get that
every accumulation point of the iterate sequence is a critical point for F . We can
apply now the local convergence of the Riemannian truncated Newton method [2,
Th. 8.2.1]: assumptions ii) and iii) ensure that the direction d computed in step 1
of Algorithm 3 provides a local superlinear improvement towards x?. The end of
the proof is the same as the one of the proof of Theorem 4.1.

5 Numerical illustrations

In this section, we illustrate the effect of Newton acceleration. We consider Algo-
rithm 1 equipped with either the Newton update of Algorithm 2, denoted ‘Alt.
Newton’ or the truncated Newton update of Algorithm 3, denoted ‘Alt. Truncated
Newton’. These methods are compared to the Proximal Gradient and the Acceler-
ated Proximal Gradient, which serve as baseline. The algorithms and problems are
implemented in Julia [11]; experiments may be reproduced using the code available
at https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad.

We report the numerical results in figures showing a) the suboptimality F (xk)−
F (x?) of the current iterate xk versus time, and b) the dimension of the current
manifold Mk 3 xk versus iteration. We also report a table comparing the algo-
rithms at the first iteration that makes suboptimality lower than tolerances 10−3

and 10−9 for various measures summarized in the following table:

F (xk)− F (x?) Suboptimality at current iteration.
#prox. grad. steps Number of proximal gradient steps, each involve computing ∇f(·) and

proxγg(·) once.
#ManAcc steps Number of Riemannian steps, each involve computing gradF (·) once

and HessF (·)[·] multiple times (one per Conjugate Gradient iteration).
#HessF (·)[·] Number of Riemannian Hessian-vector products, approximates the ef-

fort spent in manifold updates since algorithm started.
#f Number of calls to f(x), one per iteration + some for the line search

+ some for the backtracking estimation of the Lipschitz constant.
#g Number of calls to g(x), one per iteration + some for the line search.

The proximal gradient updates, present in all methods, include a backtracking
procedure that maintains an estimate of the Lipschitz constant of ∇f , so that
the proximal gradient step length is taken as the inverse of that estimate. The
Conjugate Gradient used to solve (Newton equation) and (Inexact Newton eq.)
follows [14, Alg. 6.2]; it is stopped when the (in)exactness criterion is met, or after
50 iterations for the logistic problem and 150 for the trace-norm one, or when
the inner direction d makes the ratio 〈HessF (xk)[d], d〉/‖d‖2 small.5 The manifold

5 Each CG iteration requires one Hessian-vector product, avoiding to form the Hessian ma-
trix. A test on this ratio is used to detect a direction of quasi-negative curvature for the
(Riemannian) Hessian, which is a stopping criterion of the Conjugate Gradient. In our imple-
mentation, we require this quantity to be smaller than 10−15 for the Newton method. For the
truncated version, we reduce the threshold when getting close to the solution: initialized at 1,
the threshold is decreased by a factor 10 each time the unit-step is accepted by the line search.

https://github.com/GillesBareilles/NewtonRiemannAccel-ProxGrad
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updates are completed by a backtracking line search started from unit stepsize, a
direct implementation of [19, Alg. 6.3.1].

5.1 Two-dimensional nonsmooth example

We consider the piecewise quadratic problem of [27]:

min
x∈R2

2x2
1 + x2

2 + |x2
1 − x2|.

The objective function is partly-smooth relative to the parabola {x : x2 = x2
1},

for which an expression for the tangent space, the orthogonal projection on tan-
gent space, a second-order retraction and conversion from Euclidean gradients and
Hessian-vector products to Riemannian ones are readily available.

We run the proximal gradient, its accelerated counterpart, and Algorithm 1
with the Newton update Algorithm 2. The proximal gradient steps of all algorithms
have a constant step-size γ = 0.05, all algorithms are started from point (2, 3).
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Proximal Gradient
Accel. Proximal Gradient

Alt. Newton

Algorithm Tolerance F (xk)− F (x?)
#prox. grad.

steps
#ManAcc

steps
#HessF (·)[·] #f #g

Prox. Gradient 1 · 10−3 7.74 · 10−4 29 – – 30 30
Prox. Gradient 1 · 10−9 7.59 · 10−10 60 – – 61 61

Accel. Prox. Gradient 1 · 10−3 9.63 · 10−4 16 – – 17 17
Accel. Prox. Gradient 1 · 10−9 5.18 · 10−10 63 – – 64 64

Alt. Newton 1 · 10−3 1.49 · 10−4 2 2 10 7 7
Alt. Newton 1 · 10−9 8.75 · 10−13 3 3 15 10 10

Fig. 2: nonsmooth example

Observations The iterates are displayed in Fig. 2. The Proximal Gradient iterates
reach the parabola in finite time, and then converge linearly on the parabola
while the Accelerated Proximal Gradient iterates “overshoot” the optimal manifold
(see [7]). The iterates of the Alt. Newton method stay on the parabola and the
quadratic convergence behavior appears clearly since two Newton updates bring
suboptimality below 10−3, and one additional step gets it below 10−12.
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Prox. Gradient Accel. Prox. Gradient Alt. Newton Alt. Truncated Newton

Algorithm Tolerance F (xk)− F (x?)
#prox. grad.

steps
#ManAcc

steps
#HessF (·)[·] #f #g

Prox. Gradient 1 · 10−3 9.96 · 10−4 357 – – 779 358
Prox. Gradient 1 · 10−9 9.97 · 10−10 2,306 – – 4,677 2,307

Accel. Prox. Gradient 1 · 10−3 9.26 · 10−4 90 – – 246 91
Accel. Prox. Gradient 1 · 10−9 9.9 · 10−10 953 – – 1,972 954

Alt. Newton 1 · 10−3 9.76 · 10−4 62 61 6,303 556 427
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 9.56 · 10−4 51 50 2,616 437 321
Alt. Truncated Newton 1 · 10−9 3.77 · 10−15 105 105 5,091 742 572

Fig. 3: Logistic-`1 problem

5.2 `1-regularized logistic problem

We now turn to the `1-regularized logistic problem:

min
x∈Rn

1

m

m∑
i=1

log(1 + exp(−yi〈Ai, x〉)) + λ‖x‖1, (5.1)

where A ∈ Rm×n, y ∈ {−1, 1}m, and λ > 0. The nonsmooth part g(x) = λ‖x‖1 is
described in Section 2.3.

We consider an instance where n = 4000, m = 400, λ = 10−2 and the final
manifold has dimension 249. The coefficients of A are drawn independently follow-
ing a normal law. From a sparse random vector s, yi is set to 1 with probability
1/(1 + exp(−〈Ai, s〉)), and −1 otherwise. All algorithms start from the same point
which is the output of 35 iterations of the accelerated proximal gradient randomly
initiated.

Observations The experiments are presented in Fig. 3. The optimal manifold
is identified around iteration 200 for all methods except for Proximal Gradient,
which needs 1000 iterations. The two baselines Proximal Gradient and its accel-
erated version show linear convergence, with a better rate for the non accelerated
version once the final manifold is reached. Alt. Truncated Newton shows superlin-
ear acceleration, while Alt. Newton fails to converge in the given time budget.

As iterations grow, the (Accelerated) Proximal Gradient identifies manifolds
of decreasing dimension in a roughly monotonical way. Alt. Truncated Newton
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behaves differently: after identifying monotonically manifolds of dimension lower
than 2000, the dimension of the current manifold jumps to about 3000 for about 10
iterations, to finally reach quickly the final manifold. We believe that this partial
loss of identified structure is caused by iterates getting close to a point having
one non-null but very small coordinate. There, the second-order Taylor extension
is valid on a small set however it may lead to a Newton step that lies outside
that set, thus driving the iterate away. The same behavior occurs for Alt. Newton.
This difficulty can be related to the well-known problem of constraint activation
in nonlinear programming. Despite this, Algorithm 1 retains a good rate overall.

5.3 Trace-norm regularized problem

We consider the following matrix regression problem:

min
x∈Rn1×n2

1

2

m∑
i=1

(〈Ai, x〉 − yi)2 + λ‖x‖∗, (5.2)

where Ai ∈ Rn1×n2 for i = 1, . . . ,m, y ∈ Rm and λ denotes a positive scalar. The
nonsmooth part g(x) = λ‖x‖∗ is described in Section 2.3.

We consider an instance of (5.2) where n1 = 10, n2 = 12, m = 60, λ = 10−2

and the final manifold is that of matrices of rank 6. The coefficients of the Ai’s
are drawn independently from a normal law. From a sparse random vector s, yi is
taken as 〈Ai, s〉+ ξi, where ξi follows a centered normal law with variance 0.012.
All algorithms start from the same point which is the output of 103 iterations of
the accelerated proximal gradient randomly initiated.

Observations The experiments are presented in Fig. 4. We see on Fig. 4a that
the Proximal Gradient algorithm and its accelerated version converge sublinearly,
which is to be related to the lack of strong convexity of the objective problem. Alt.
Truncated Newton converges superlinearly, and shows the interest of the Newto-
nian acceleration. Figure 4b shows that the Proximal Gradient does not reach the
final optimal manifold within the budget of iterations; similarly for the Newton
method, within the budget of time.

6 Concluding remarks

This paper proposes and studies a nonsmooth optimization algorithm exploiting
the underlying smooth geometry revealed by the proximal operator. The method
alternates between a proximal gradient step providing identification and a Rie-
mann Newton acceleration providing superlinear convergence. This algorithm has
two special features: (i) it does not rely on prior knowledge of the final manifold,
and (ii) its convergence is guaranteed in the (structured) nonconvex case.

Several extensions of this algorithm are possible; specifically, both building
blocks can be refined: other Newton accelerations could be considered (e.g. trust-
region [1], cubic regularization [4]) as well as other proximal algorithms (e.g. prox-
Newton [25], fast proximal gradient [9]). We focused here on the simplest Newton
acceleration to highlight the ideas and the working horses of our approach.
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Prox. Gradient Accel. Prox. Gradient Alt. Newton Alt. Truncated Newton

Algorithm Tolerance F (xk)− F (x?)
#prox. grad.

steps
#ManAcc

steps
#HessF (·)[·] #f #g

Prox. Gradient 1 · 10−3 – – – – – –
Prox. Gradient 1 · 10−9 – – – – – –

Accel. Prox. Gradient 1 · 10−3 9.99 · 10−4 1,489 – – 3,073 1,490
Accel. Prox. Gradient 1 · 10−9 9.86 · 10−10 43,283 – – 86,661 43,284

Alt. Newton 1 · 10−3 9.83 · 10−4 93 93 28,063 873 687
Alt. Newton 1 · 10−9 – – – – – –

Alt. Truncated Newton 1 · 10−3 9.7 · 10−4 76 76 16,342 738 568
Alt. Truncated Newton 1 · 10−9 2.27 · 10−11 128 128 27,786 1,101 879

Fig. 4: Trace-norm problem
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A Preliminary Results on the Proximal Gradient

The first result shows the local Lipschitz continuity of the proximity operator. It can be proven
by applying [35, Th. 4.4] with the assumption that x̄ = proxγ̄g(ȳ), following the arguments
of [22, Th. 1]. We provide here a self-contained proof.

Lemma A.1 Consider a function g : Rn → R, a pair of points x̄, ȳ and a step length γ̄ > 0
such that x̄ = proxγ̄g(ȳ) and g is r prox-regular at x̄ for subgradient v̄ , (ȳ − x̄)/γ̄.

http://www.nicolasboumal.net/book
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Then, for any γ ∈ (0,min(1/r, γ̄)), there exists a neighborhood Nȳ of ȳ over which proxγg
is single-valued and (1− γr)−1-Lipschitz continuous. Furthermore, there holds

x = proxγg(y)⇔ (y − x)/γ ∈ ∂g(x)

for y ∈ Nȳ and x near x̄ in the sense ‖x− x̄‖ < ε, |g(x)− g(x̄)| < ε and ‖(y− x)/γ − v̄‖ < ε.

Proof. One can easily check that prox-regularity of g at x̄ for subgradient v̄ is equivalent to
prox-regularity of function g̃ around 0 for subgradient 0, with g̃ = g(· + x̄) − 〈v̄, ·〉 − g(x̄)
and a change of variable x̃ = x − x̄. Similarly, x̄ = proxγ̄g(ȳ) is characterized by its global
optimality condition

g(x) +
1

2γ̄
‖x− ȳ‖ > g(x̄) +

1

2γ̄
‖x̄− ȳ‖2 for all x 6= x̄,

which we may write as

g(x) > g(x̄) + 〈v̄, x− x̄〉 − 1

2γ̄
‖x− x̄‖2 for all x 6= x̄.

Under that same change of variables, since g̃(0) = 0, this optimality condition rewrites as

g̃(x̃) > − 1

2γ̄
‖x̃‖2 for all x̃ 6= 0.

We may thus apply Theorem 4.4 from [35] to get the claimed result on g̃, which transfers
back to g as our change of function and variable is bijective. We thus obtain that for γ ∈
(0,min(1/r, γ̄)), on a neighborhood Nȳ of ȳ, proxγg is single-valued, (1 − γr)−1-Lipschitz

continuous and proxγg(y) = [I + γT ]−1(y), where T denotes the g-attentive ε-localization
of ∂g at x̄. Taking y near ȳ and x near x̄ such that ‖x − x̄‖ < ε, |g(x) − g(x̄)| < ε and
‖(y − x)/γ − v̄‖ < ε allows to identify the localization of ∂g(x) with ∂g(x), so that

y − x
γ
∈ ∂g(x)⇔ y − x

γ
∈ T (x)⇔ (I + γT )(x) = y ⇔ x = proxγg(y).

Note that the proof of [35, Th. 4.4] includes a minor error relative to the Lipschitz constant
computation, we report here a corrected value.

Now, we show that critical points of prox-regular functions are strong local minimizers;
this result appears more or less explicitly in some articles, including [17].

Lemma A.2 Let f and g denote two functions and x̄, ȳ two points such that f is differentiable
at ȳ and g is r-prox-regular at x̄ for subgradient 1

γ
(ȳ − x̄)−∇f(ȳ) ∈ ∂g(x̄) with γ ∈ (0, 1/r).

Then, the function ρȳ : x 7→ g(x) + 1
2γ
‖ȳ − γ∇f(ȳ)− x‖2 satisfies

ρȳ(x) ≥ ρȳ(x̄) +
1

2

(
1

γ
− r
)
‖x− x̄‖2, for all x near x̄.

Proof. Prox-regularity of g at x̄ with subgradient 1
γ

(ȳ − γ∇f(ȳ)− x̄) ∈ ∂g(x̄) writes

g(x) ≥ g(x̄) +
1

γ
〈ȳ − γ∇f(ȳ)− x̄, x− x̄〉 − r

2
‖x− x̄‖2.

The identity 2〈b − a, c − a〉 = ‖b − a‖2 + ‖c − a‖2 − ‖b − c‖2 applied to the previous scalar
product yields:

g(x) ≥ g(x̄) +
1

2γ
‖ȳ − γ∇f(ȳ)− x̄‖2 +

1

2γ
‖x− x̄‖2 − 1

2γ
‖ȳ − γ∇f(ȳ)− x‖2 − r

2
‖x− x̄‖2,

which rewrites

g(x) +
1

2γ
‖ȳ − γ∇f(ȳ)− x‖2︸ ︷︷ ︸

=ρȳ(x)

≥ g(x̄) +
1

2γ
‖ȳ − γ∇f(ȳ)− x̄‖2︸ ︷︷ ︸

=ρȳ(x̄)

+
1

2

(
1

γ
− r
)
‖x− x̄‖2,

which is the claimed inequality.
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B Technical results on Riemannian methods.

In this section, we provide basic results on Riemannian optimization that simplify our devel-
opments and that we have not been able to find in the existing literature.

B.1 Euclidean spaces and manifolds, back and forth

We establish here a connection between the Riemannian and the Euclidean distances.

Lemma B.1 Consider a point x̄ of a Riemannian manifold M, equipped with a retraction
R such that Rx̄ is C2. For any ε > 0, there exists a neighborhood U of x̄ in M such that

(1− ε)distM(x, x̄) ≤ ‖R−1
x̄ (x)‖ ≤ (1 + ε)distM(x, x̄) for all x ∈ U .

where R−1
x̄ :M→ Tx̄M is the smooth inverse of Rx̄ defined locally around x̄.

Proof. The retraction at x̄ can be inverted locally around 0. Indeed, as D Rx̄(0Tx̄M) = I is
invertible and Rx̄ is C2, the implicit function theorem provides the existence of a C2 inverse
function R−1

x̄ :M→ Tx̄M defined locally around x̄. Furthermore, one shows by differentiating

the relation Rx̄ ◦R−1
x̄ that the differential of R−1

x̄ at x̄ is the identity.

We consider the function f : M → R defined by f(x) = ‖ logx̄(x)‖ − ‖R−1
x̄ (x)‖. Clearly

f(x̄) = 0, and D f(x̄) = 0 as the differentials of both R−1
x̄ and logarithm at x̄ are the identity.

In local coordinates x̂ = logx̄ x around x̄, f is represented by the function f̂ = f ◦ expx̄ :

Tx̄M→ R. As f̂(ˆ̄x) = 0, D f̂(ˆ̄x) = 0 and f̂ is C2, there exists some C > 0 such that

−C‖x̂− ˆ̄x‖2 ≤ f̂(x̂) ≤ C‖x̂− ˆ̄x‖2 in a neighborhood Û of ˆ̄x,.

For any ε > 0, by taking a small enough neighborhood Û ′ ⊂ Û , there holds

−ε‖x̂− ˆ̄x‖ ≤ f̂(x̂) ≤ ε‖x̂− ˆ̄x‖.

Thus for all x in U = Rx̄(Û ′),

−ε‖ logx̄(x)‖ ≤ ‖ logx̄(x)‖ − ‖R−1
x̄ (x)‖ ≤ ε‖ logx̄(x)‖,

as x̂ = logx̄(x), ˆ̄x = 0. We conclude with distM(x, x̄) = ‖x̂− ˆ̄x‖ = ‖ logx̄(x)‖.

We recall a slightly specialized version of [33, Th. 2.2], which is essentially the application
of the implicit function theorem around a point of a manifold.

Proposition B.1 Consider a p-dimensional Ck-submanifoldM of Rn around a point x̄ ∈M.
The mapping R : TB →M, defined for (x, η) ∈ TB near (x̄, 0) by projx(R(x, η)) = η defines
a second-order retraction near (x̄, 0). The point-wise retraction, defined as Rx = R(x, ·), is
locally invertible with inverse R−1

x = projx.

Proof. Let Ψ : Rn → Rn−p denote a Ck function defining M around x̄: for all x close enough
to x̄, there holds x ∈ M ⇔ Ψ(x) = 0, and DΨ(x) is surjective. Consider the equation
Φ(x, ηt, ηn) = 0 around (x̄, 0, 0), with

Φ : {x, ηt, ηn : x ∈M, ηt ∈ TxM, ηn ∈ NxM} → R
x, ηt, ηn 7→ Ψ(x+ ηt + ηn).

The partial differential Dηn Φ(x̄, 0, 0) is, for ξn ∈ Nx̄M,

Dηn Φ(x̄, 0, 0)[ξn] = DΨ(x̄)[ξn].

Since x̄ ∈ M, Dηn Φ(x̄, 0, 0) is surjective from Nx̄M to Rn−p so its a bijection. The implicit
function theorem provides the existence of neighborhoods N 1

x̄ ⊂M, N 2
0 ⊂ ∪x∈MTxM, N 3

0 ⊂
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∪x∈MNxM and a unique Ck function ηn : N 1
x̄ ×N 2

0 → N 3
0 such that, for all x ∈ N 1

x̄ , ηt ∈ N 2
0

and ηn ∈ N 3
0 , ηn(x̄, 0) = 0 and

Φ(x, ηt, ηn(x, ηt)) = 0⇔ x+ ηt + ηn(x, ηt) ∈M.

It also provides an expression for the partial derivative of ηn at (x, 0) along ηt: for ξt ∈ TxM,

Dηt ηn(x, 0)[ξt] = − [Dηn Φ(x, 0, 0)]−1 Dηt Φ(x, 0, 0)[ξt].

As noted before, Dηn Φ(x, 0, 0) is bijective since x ∈M. Besides, Dηt Φ(x, 0, 0) = DΦ(x)[ξt] =
0 since TxM identifies as the kernel of DΦ(x). Thus Dηt ηn(x, 0) = 0.

Now, define a map R : N 1
x̄ × N 2

0 → M by R(x, ηt) = x + ηt + ηn(x, ηt). This map has

degree of smoothness Ck since ηn is Ck, satisfies R(x, 0) = x since ηn(x, 0) = 0 and satisfies
Dηt ηn(x, 0) = I + Dηt (x, 0) = I. Thus R defines a retraction on a neighborhood of (x̄, 0).

We turn to show the second-order property of R. Consider the smooth curve c defined as
c(t) = R(x, tη) for some x ∈ N 1

x̄ , ηt ∈ TxM∩N 2
0 . It’s first derivative writes

c′(t) = η + Dηt ηn(x, tη)[η] = η.

The acceleration of the curve c is obtained by computing the derivative of c′(·) in the ambient
space and then projecting onto TxM. Thus c′′(t) = 0 and in particular, c′′(0) = 0 which makes
R a second-order retraction.

Lemma B.2 Consider a point x̄ of a Riemannian manifold M. For any ε > 0, there exists
a neighborhood U of x̄ in M such that, for all x ∈ U ,

(1− ε)distM(x, x̄) ≤ ‖x− x̄‖ ≤ (1 + ε)distM(x, x̄),

where ‖x− x̄‖ is the Euclidean distance in the ambient space.

Proof. Let x̄, x denote two close points on M. Consider the tangential retraction introduced
in Proposition B.1. As a retraction, it satisfies:

Rx̄(η) = Rx̄(0) + D Rx̄(0)[η] +O(‖η‖2) = x̄+O(‖η‖2).

Taking x = Rx̄(η) allows to write x = x̄+O(‖R−1
x̄ (x)‖2), so that for any small ε1 > 0, there

exists a small enough neighborhood U1 ⊂ U of x̄ in M such that

(1− ε1)‖R−1
x̄ (x)‖ ≤ ‖x− x̄‖ ≤ (1 + ε1)‖R−1

x̄ (x)‖.

By Lemma B.1, for ε2 > 0 small enough, there exists a neighborhood U2 ⊂ U of x̄ such that,

(1− ε2)distM(x, x̄) ≤ ‖R−1
x̄ (x)‖ ≤ (1 + ε2)distM(x, x̄).

With ε1, ε2 such that 1− ε = (1− ε1)(1− ε2), we combine the two estimates to conclude.

B.2 Two technical results on Riemannian descent algorithms

We provide here two technical results used in the proofs of Section 4. First, Theorem B.1
adapts [13, Th. 4.16] to the Riemannian setting. Second, Lemma B.3 adapts the proof of [18,
Lemma A.2] to the Riemannian setting.

Theorem B.1 (Soundness of the Riemannian line search) Consider a manifold M
equipped with a retraction R and a twice differentiable function F : M → R that admits
a strong local minimizer x?, that is, a point such that HessF (x?) is positive definite. If x
is close to x?, η brings a superlinear improvement towards x?, that is distM(Rx(η), x?) =
o(distM(x, x?)) as x → x?, and 0 < m1 < 1/2, then η is acceptable by the Armijo rule (4.1)
with unit stepsize α = 1.
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Proof. Let x, η ∈ TB denote a pair such that x is close to x? and distM(Rx(η), x?) =
o(distM(x, x?)). For convenience, let x+ = Rx(η) denote the next point.

Following [2] (see e.g. the proof of Th. 6.3.2), we work in local coordinates around x?,
representing any point x ∈ M by x̂ = logx? (x) and any tangent vector η ∈ TxM by η̂x =

D logx? (x)[η]. The function F is represented by F̂ = F ◦ expx? : Tx?M → R. Defining
the coordinates via the logarithm grants the useful property that the Riemannian distance
of any two points x, y ∈ M matches the euclidean distance between their representatives:
distM(x, y) = ‖x̂− ŷ‖. Besides, there holds

DF (x)[η] = D F̂ (x̂)[η̂] and HessF (x)[η, η] = D F̂ (x̂)[η̂, η̂]. (B.1)

Indeed, DF (x)[η] = (F ◦γ)′(0) and HessF (x)[η, η] = (F ◦γ)′′(0), where γ denotes the geodesic

curve defined by γ̂(t) = x̂+ tη̂. Using F ◦ γ = F̂ ◦ γ̂, one obtains the result.

Step 1. We derive an approximation of DF (x)[η] = 〈gradF (x), η〉 in terms of D2 F̂ (x̂?)[x̂−
x̂?]2. To do so, we go through the intermediate quantity D F̂ (x̂)[x̂+ − x̂], and handle precisely

the o(·) terms. By smoothness of F̂ and since D F̂ (x̂?) = 0, Taylor’s formula for D F̂ writes

D F̂ (x̂)[x̂+ − x̂] = D2 F̂ (x̂?)[x̂+ − x̂, x̂− x̂?] + o(‖x̂− x̂?‖2)

= −D2 F̂ (x̂?)[x̂− x̂?]2 + D2 F̂ (x̂?)[x̂+ − x̂?, x̂− x̂?] + o(‖x̂− x̂?‖2)

= −D2 F̂ (x̂?)[x̂− x̂?]2 + o(‖x̂− x̂?‖2),

where, in the last step, we used that ‖x̂+ − x̂?‖ = o(‖x̂ − x̂?‖) to get that ‖D2 F̂ (x̂?)[x̂+ −
x̂?, x̂ − x̂?]‖ = ‖D2 F̂ (x̂?)‖‖x̂+ − x̂?‖‖x̂ − x̂?‖ = o(‖x̂ − x̂?‖2). We now turn to show that

D F̂ (x̂)[x̂+ − x̂] behaves as DF (x)[η] up to o(‖x̂+ − x̂‖2). Since DF (x)[η] = D F̂ (x̂)[η̂] by
(B.1), there holds:

‖DF (x)[η]−D F̂ (x̂)[x̂+ − x̂]‖ = ‖D F̂ (x̂)[η̂ − (x̂+ − x̂)]‖ ≤ ‖D F̂ (x̂)‖‖η̂ − (x̂+ − x̂)‖.

As F is twice differentiable and exp is C∞, F̂ is twice differentiable as well. In particular
its derivative is locally Lipschitz continuous, so that for x̂ near x̂?, we obtain a first estimate:

‖D F̂ (x̂)‖ = ‖D F̂ (x̂)−D F̂ (x̂?)‖ = O(‖x̂− x̂?‖).

Besides, the following estimate holds ‖η̂− (x̂+− x̂)‖ = o(‖x̂− x̂?‖). Indeed, as the function
logx? ◦Rx : TxM→ Tx?M is differentiable, there holds for η ∈ TxM small,

logx? (Rx(η)) = logx? (Rx(0)) + D logx? (Rx(0))[D Rx(0)[η]] + o(‖η‖),

which simplifies to x̂+ = x̂ + η̂ + o(‖η‖). Lemma B.1 allows to write ‖η‖ = ‖R−1
x (x+)‖ =

O(distM(x, x+)). Using the triangular inequality and the assumption that distM(x+, x?) =
o(distM(x, x∗)) we get

distM(x, x+) ≤ distM(x, x?) + distM(x?, x+) = O(distM(x, x∗)) = O(‖x̂− x̂?‖),

so that the second estimate holds.
Combining the two above estimates allows to conclude that

‖DF (x)[η]−D F̂ (x̂)[x̂+ − x̂]‖ = o(‖x̂− x̂?‖2),

so that overall,

DF (x)[η] = D F̂ (x̂)[x̂+ − x̂] + o(‖x̂− x̂?‖2) = −D2 F̂ (x̂?)[x̂− x̂?]2 + o(‖x̂− x̂?‖2).

Using that ‖x̂− x̂?‖ = distM(x, x?) and D2 F̂ (x̂?) = HessF (x?) (B.1), we obtain

DF (x)[η] = −HessF (x?)[x̂− x̂?]2 + o(distM(x, x?)2). (B.2)
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Step 2. The function F admits a second-order development around x?: applying Eq. (2.3)
with the exponential map expx? as a second-order retraction yields

F (x) = F (x?) +
1

2
HessF (x?)[x̂− x̂?]2 + o(distM(x, x?)2), (B.3)

where we used that distM(x, x?) = ‖ logx? (x) − logx? (x?)‖. Denote 0 < l ≤ L the lower and
upper eigenvalues of HessF (x?). The combination (B.3) +m1(B.2) writes

F (x) +m1 DF (x)[η] = F (x?) + (
1

2
−m1) HessF (x?)[x̂− x̂?]2 + o(distM(x, x?)2)

≥ F (x?) + (
1

2
−m1)ldistM(x, x?)2 + o(distM(x, x?)2),

Let ε > 0 such that 1
2
Lε2 < ( 1

2
−m1)l. As distM(x+, x?) = o(distM(x, x?)), for x close

enough to x? there holds distM(x+, x?) ≤ εdistM(x, x?). Combining this with the second-
order development of f at x+, there holds:

F (x+) = F (x?) +
1

2
HessF (x?)[x̂+ − x̂?]2 + o(distM(x+, x

?)2)

≤ F (x?) +
1

2
LdistM(x+, x

?)2 + o(distM(x+, x
?)2)

≤ F (x?) +
1

2
Lε2distM(x, x?)2 + o(distM(x, x?)2).

Subtracting the two estimates yields

F (x+)− (F (x) +m1 DF (x)[η]) ≤
(

1

2
Lε2 − (

1

2
−m1)l

)
distM(x, x?)2 + o(distM(x, x?)2),

which ensures that the Armijo condition is satisfied.

Lemma B.3 (Riemannian Newton-CG a descent direction) Let Assumption 1 hold
and consider a manifold M and a point x ∈M. If F is twice differentiable on M at x and x
is not a stationary point of F , then there holds:

〈gradF (x), d〉 ≤ −min(1, ‖HessF (x)‖−1)‖ gradF (x)‖2,

where d was obtained solving (Inexact Newton eq.) with any forcing parameter η.

Proof. The result is obtained by applying the analysis of [18, Lemma A.2] to the approxi-
mate resolution of (Inexact Newton eq.) on the euclidean space TxM, with constant specified
according to the proof.

C Complements to the experimental section

C.1 Oracles of Section 5.1

We detail here the oracles of f(x) , 2x2
1 + x2

2 and g(x) , |x2
1 − x2|:

– proximity operator: For γ < 1/2, there holds

proxγg(x) =


( x1

1+2γ
, x2 + γ) if x2 ≤ x2

1
(1+2γ)2

− γ
( x1

1+4γt−2γ
, x2 + 2γt− γ) if

x2
1

(1+2γ)2
− γ ≤ x2 ≤ x2

1
(1−2γ)2

+ γ

( x1
1−2γ

, x2 − γ) if
x2

1
(1−2γ)2

+ γ ≤ x2

where t solves x2
2 + (−2γt+ γ − x2)(1 + 4γt− 2γ)2 = 0.
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– Riemannian gradient and Hessian: Since g is identically null onM, for any point (x, η) ∈
TB, grad g(x) = 0 and Hess g(x)[η] = 0. Moreover, Euclidean gradient and Hessian-vector
product are converted to Riemannian ones using equations (2.1) and (2.2):

grad f(x) = projx(∇f(x))

Hess f(x)[η] = projx

(
∇2f(x)[η]−

(
2η1

0

)〈
∇f(x),

(
2x1

−1

)〉
1

1 + 4x2
1

)
,

and the orthogonal projection onto TxM writes

projx(d) = d−
〈
d,

(
2x1

−1

)〉
1

1 + 4x2
1

(
2x1

−1

)
.

C.2 Differentiating the singular-value decomposition

We establish the expressions of the derivative of the matrices involved in the singular value
decomposition. These results may be seen as part of folklore, but, up to our knowledge, there
are not explicitly written in the literature. We need them for the computations related to
trace-norm regularized problems.

Lemma C.1 Consider the manifold of fixed rank matrices Mr, a pair x, η ∈ TB and a
smooth curve c : I →Mr such that c(0) = x, c′(0) = η. Besides, let U(t), Σ(t), V (t) denote
smooth curves of St(m, r), Rr×r, St(n, r) such that γ(t) = U(t)Σ(t)V (t)>. The derivatives
of the decomposition factors at t = 0 write

U ′ = U
(
F ◦

[
U>ηV Σ +ΣV >η>U

])
+ (Im − UU>)ηV Σ−1

V ′ = V
(
F ◦

[
ΣU>ηV + V >η>UΣ

])
+ (In − V V >)η>UΣ−1

Σ′ = Ik ◦
[
U>ηV

]
,

where Ik is the identity of Rk×k, ◦ denotes the Hadamard product and F ∈ Rr×r is such that
Fij = 1/(Σ2

jj − Σ2
ii) if Σjj 6= Σii, and Fij = 0 otherwise. Equivalently, when the tangent

vector is represented as η = UMV > + UpV > + UV >p , the above expressions simplify to

U ′ = U
(
F ◦

[
MΣ +ΣM>

])
+ UpΣ

−1

V ′ = V
(
F ◦

[
ΣM +M>Σ

])
+ VpΣ

−1

Σ′ = Ik ◦M,

Proof. We consider the curve γ and all components and derivatives at t = 0, therefore we
don’t mention evaluation time. Differentiating γ = UΣV > yields

η = U ′ΣV > + UΣ′V > + UΣV ′> (C.1)

As a tangent vector to the Stiefel manifold at point U , U ′ can be expressed as [2, Ex. 3.5.2]

U ′ = UΩU + U⊥BU , (C.2)

where ΩU ∈ Rr×r is a skew-symmetric matrix, BU ∈ Rm−r×m−r, and U⊥ is any matrix such
that U>U⊥ = 0 and U>⊥U⊥ = Im−r. Similarly, V ′ = V ΩV +V⊥BV , where ΩV ∈ Rr×r is skew-

symmetric, BV ∈ Rn−r×n−r, and V⊥ is any matrix such that V >V⊥ = 0 and V >⊥ V⊥ = In−r.
Computing U> × (C.1)× V yields

U>ηV = ΩUΣ +Σ′ +ΣΩ>V .
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Looking at the diagonal elements of this equation yields the derivative of the diagonal com-
ponent of η. This is done by taking the Hadamard product of both sides of previous equation
with the identity matrix of Rr×r, and writes

Σ′ = Ir ◦
[
U>ηV

]
.

The off-diagonal elements of this equation write

Īr ◦
[
U>ηV

]
= ΩUΣ +ΣΩ>V , (C.3)

where Īr has zeros on the diagonal and ones elsewhere. Adding (C.3)Σ and Σ(C.3)> yields

Īr ◦
[
U>ηV Σ +ΣV >η>U

]
= ΩUΣ

2 −Σ2ΩU ,

which decouples coefficient-wise. At coefficient (ij), with i 6= j,[
U>ηV Σ +ΣV >η>U

]
ij

= [ΩU ]ij
(
Σ2
jj −Σ2

ii

)
,

hence ΩU = F ◦
[
U>ηV Σ +ΣV >η>U

]
, where F ∈ Rm−r×r has zeros on the diagonal and

for i 6= j, Fij = 1/(Σ2
jj − Σ2

ii) if Σ2
jj 6= Σ2

ii, 0 otherwise. Besides, left-multiplying (C.1)

by U>⊥ yields U>⊥ η = U>⊥U
′ΣV >, which rewrites, using the decomposition (C.2) of U ′, as

U>⊥ η = BUΣV
>. Hence BU = U>⊥ ηV Σ

−1 and we get the complete expression for U ′ by

assembling the expressions of ΩU and BU with the decomposition (C.2). The term U>⊥U⊥ is

eliminated using that U>U + U>⊥U⊥ = Im.

Let’s follow the same steps to get expressions for V ′. Adding Σ(C.3) and (C.3)>Σ yields

Īr ◦
[
ΣU>ηV + V >η>UΣ

]
= ΩV Σ

2 −Σ2ΩV ,

from which we get ΩV = F ◦
[
ΣU>ηV + V >η>UΣ

]
. Besides, right-multiplying (C.1) by V⊥

yields ηV⊥ = UΣV ′>V⊥, which rewrites using the decomposition V ′ = V ΩV + V⊥BV as
ηV⊥ = UΣB>V . Hence BV = V >⊥ η

>UΣ−1, and we get the claimed formula by eliminating

the V⊥ terms with V >V + V >⊥ V⊥ = In. The simplified expressions are obtained using that

U>U = Im, U>Up = 0, V >V = In and V >Vp = 0.

We are now ready to give the expression of the Riemannian gradient and Hessian of the
nuclear norm.

Proposition C.1 The nuclear norm g = ‖ · ‖∗ restricted to Mr is C2 and admits a smooth
second-order development of the form (2.3) near any point x = UΣV > ∈ Mr. Denoting
η = UMV > + UpV > + UV >p ∈ TxMr a tangent vector, there holds:

grad g(x) = UV >

Hess g(x)[η] = U
[
F̃ ◦ (M −M>)

]
V > + UpΣ

−1V > + UΣ−1V Tp ,

where ◦ denotes the Hadamard product and F̃ ∈ Rr×r is such that F̃ij = 1/(Σjj + Σii) if

Σjj 6= Σii, and F̃ij = 0 otherwise.

Proof. Let c : I → Mr denote a smooth curve over Mr such that γ(0) = x and γ′(0) = η,
and consider ϕ = ‖c(·)‖∗ : I → R. Writing the decomposition c(t) = U(t)Σ(t)V (t)>, for U(t),
Σ(t), V (t) smooth curves of St(m, r), Rr×r, St(n, r) allows to write ϕ(t) = Tr(Σ(t)). Applying
Lemma C.1 yields

ϕ′(0) = Tr(Σ′(0)) = Tr(U>ηV ) = Tr(ηV U>) = 〈η, UV >〉,

so that grad g(x) = UV > ∈ TXM.
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In order to obtain the Riemannian Hessian, let Z̄ : I → Rn denote a smooth extension
of grad g(c(·)), defined by Z̄(t) = U(t)V (t)>. The Riemannian Hessian is then obtained as
Hess g(x)[η] = projxZ̄

′(0). The derivative of Z̄ at 0 is simply Z̄′(0) = U ′V > +UV ′> and thus
writes, applying Lemma C.1

Z̄′(0) = U
(
F ◦

[
MΣ +ΣM>

])
V >+UpΣ

−1V >+U
(
F ◦

[
ΣM +M>Σ

])>
V >+UΣ−1V >p

This expression simplifies to the statement by using the fact that F is antisymmetric and
applying the identity (A ◦B)> = A> ◦B>.

C.3 Additional numerical experiment
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Fig. 5: Performance profile for the time to de-
crease suboptimality below 10−9

We illustrate in this appendix the robust-
ness of the Newton acceleration on sev-
eral instances of the same problem. More
precisely, in the set-up of Section 5.3, we
compare the 4 algorithms on 20 random
instances of the tracenorm problem, in
terms of wallclock time required to reach
a suboptimality of 10−9. We then provide
in Fig. 5 a performance profile (i.e. the or-
dinate of a curve at absciss t ≥ 1 indicates
the proportion of problems for which the
corresponding algorithm was able to sat-
isfy the criterion within t times the best
algorithm time for each problem; see [20]).

We observe the following on Fig. 5.
The ordinate at origin of a curve gives
the proportion of problems for which the
corresponding algorithm performed best:
methods with Newton acceleration are the
most efficient in 95%(= 75% + 20%) of
the instances. Furthermore, they require
about 2.5× less time to converge in half
of the instances. Note also that the proximal gradient is completely outperformed by the
others algorithms since it takes 5× more time than the best algorithm, for all instances.
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